xref: /linux/mm/page-writeback.c (revision 656fe3ee455e8d8dfa1c18292c508da26b29a39c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 	bool			freerun;
143 	bool			dirty_exceeded;
144 };
145 
146 /*
147  * Length of period for aging writeout fractions of bdis. This is an
148  * arbitrarily chosen number. The longer the period, the slower fractions will
149  * reflect changes in current writeout rate.
150  */
151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
152 
153 #ifdef CONFIG_CGROUP_WRITEBACK
154 
155 #define GDTC_INIT(__wb)		.wb = (__wb),				\
156 				.dom = &global_wb_domain,		\
157 				.wb_completions = &(__wb)->completions
158 
159 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
160 
161 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
162 				.dom = mem_cgroup_wb_domain(__wb),	\
163 				.wb_completions = &(__wb)->memcg_completions, \
164 				.gdtc = __gdtc
165 
166 static bool mdtc_valid(struct dirty_throttle_control *dtc)
167 {
168 	return dtc->dom;
169 }
170 
171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
172 {
173 	return dtc->dom;
174 }
175 
176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
177 {
178 	return mdtc->gdtc;
179 }
180 
181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
182 {
183 	return &wb->memcg_completions;
184 }
185 
186 static void wb_min_max_ratio(struct bdi_writeback *wb,
187 			     unsigned long *minp, unsigned long *maxp)
188 {
189 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
190 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
191 	unsigned long long min = wb->bdi->min_ratio;
192 	unsigned long long max = wb->bdi->max_ratio;
193 
194 	/*
195 	 * @wb may already be clean by the time control reaches here and
196 	 * the total may not include its bw.
197 	 */
198 	if (this_bw < tot_bw) {
199 		if (min) {
200 			min *= this_bw;
201 			min = div64_ul(min, tot_bw);
202 		}
203 		if (max < 100 * BDI_RATIO_SCALE) {
204 			max *= this_bw;
205 			max = div64_ul(max, tot_bw);
206 		}
207 	}
208 
209 	*minp = min;
210 	*maxp = max;
211 }
212 
213 #else	/* CONFIG_CGROUP_WRITEBACK */
214 
215 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
216 				.wb_completions = &(__wb)->completions
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
219 
220 static bool mdtc_valid(struct dirty_throttle_control *dtc)
221 {
222 	return false;
223 }
224 
225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
226 {
227 	return &global_wb_domain;
228 }
229 
230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
231 {
232 	return NULL;
233 }
234 
235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
236 {
237 	return NULL;
238 }
239 
240 static void wb_min_max_ratio(struct bdi_writeback *wb,
241 			     unsigned long *minp, unsigned long *maxp)
242 {
243 	*minp = wb->bdi->min_ratio;
244 	*maxp = wb->bdi->max_ratio;
245 }
246 
247 #endif	/* CONFIG_CGROUP_WRITEBACK */
248 
249 /*
250  * In a memory zone, there is a certain amount of pages we consider
251  * available for the page cache, which is essentially the number of
252  * free and reclaimable pages, minus some zone reserves to protect
253  * lowmem and the ability to uphold the zone's watermarks without
254  * requiring writeback.
255  *
256  * This number of dirtyable pages is the base value of which the
257  * user-configurable dirty ratio is the effective number of pages that
258  * are allowed to be actually dirtied.  Per individual zone, or
259  * globally by using the sum of dirtyable pages over all zones.
260  *
261  * Because the user is allowed to specify the dirty limit globally as
262  * absolute number of bytes, calculating the per-zone dirty limit can
263  * require translating the configured limit into a percentage of
264  * global dirtyable memory first.
265  */
266 
267 /**
268  * node_dirtyable_memory - number of dirtyable pages in a node
269  * @pgdat: the node
270  *
271  * Return: the node's number of pages potentially available for dirty
272  * page cache.  This is the base value for the per-node dirty limits.
273  */
274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
275 {
276 	unsigned long nr_pages = 0;
277 	int z;
278 
279 	for (z = 0; z < MAX_NR_ZONES; z++) {
280 		struct zone *zone = pgdat->node_zones + z;
281 
282 		if (!populated_zone(zone))
283 			continue;
284 
285 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
286 	}
287 
288 	/*
289 	 * Pages reserved for the kernel should not be considered
290 	 * dirtyable, to prevent a situation where reclaim has to
291 	 * clean pages in order to balance the zones.
292 	 */
293 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
294 
295 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
296 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
297 
298 	return nr_pages;
299 }
300 
301 static unsigned long highmem_dirtyable_memory(unsigned long total)
302 {
303 #ifdef CONFIG_HIGHMEM
304 	int node;
305 	unsigned long x = 0;
306 	int i;
307 
308 	for_each_node_state(node, N_HIGH_MEMORY) {
309 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
310 			struct zone *z;
311 			unsigned long nr_pages;
312 
313 			if (!is_highmem_idx(i))
314 				continue;
315 
316 			z = &NODE_DATA(node)->node_zones[i];
317 			if (!populated_zone(z))
318 				continue;
319 
320 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
321 			/* watch for underflows */
322 			nr_pages -= min(nr_pages, high_wmark_pages(z));
323 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
324 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
325 			x += nr_pages;
326 		}
327 	}
328 
329 	/*
330 	 * Make sure that the number of highmem pages is never larger
331 	 * than the number of the total dirtyable memory. This can only
332 	 * occur in very strange VM situations but we want to make sure
333 	 * that this does not occur.
334 	 */
335 	return min(x, total);
336 #else
337 	return 0;
338 #endif
339 }
340 
341 /**
342  * global_dirtyable_memory - number of globally dirtyable pages
343  *
344  * Return: the global number of pages potentially available for dirty
345  * page cache.  This is the base value for the global dirty limits.
346  */
347 static unsigned long global_dirtyable_memory(void)
348 {
349 	unsigned long x;
350 
351 	x = global_zone_page_state(NR_FREE_PAGES);
352 	/*
353 	 * Pages reserved for the kernel should not be considered
354 	 * dirtyable, to prevent a situation where reclaim has to
355 	 * clean pages in order to balance the zones.
356 	 */
357 	x -= min(x, totalreserve_pages);
358 
359 	x += global_node_page_state(NR_INACTIVE_FILE);
360 	x += global_node_page_state(NR_ACTIVE_FILE);
361 
362 	if (!vm_highmem_is_dirtyable)
363 		x -= highmem_dirtyable_memory(x);
364 
365 	return x + 1;	/* Ensure that we never return 0 */
366 }
367 
368 /**
369  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
370  * @dtc: dirty_throttle_control of interest
371  *
372  * Calculate @dtc->thresh and ->bg_thresh considering
373  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
374  * must ensure that @dtc->avail is set before calling this function.  The
375  * dirty limits will be lifted by 1/4 for real-time tasks.
376  */
377 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
378 {
379 	const unsigned long available_memory = dtc->avail;
380 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
381 	unsigned long bytes = vm_dirty_bytes;
382 	unsigned long bg_bytes = dirty_background_bytes;
383 	/* convert ratios to per-PAGE_SIZE for higher precision */
384 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
385 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
386 	unsigned long thresh;
387 	unsigned long bg_thresh;
388 	struct task_struct *tsk;
389 
390 	/* gdtc is !NULL iff @dtc is for memcg domain */
391 	if (gdtc) {
392 		unsigned long global_avail = gdtc->avail;
393 
394 		/*
395 		 * The byte settings can't be applied directly to memcg
396 		 * domains.  Convert them to ratios by scaling against
397 		 * globally available memory.  As the ratios are in
398 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
399 		 * number of pages.
400 		 */
401 		if (bytes)
402 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
403 				    PAGE_SIZE);
404 		if (bg_bytes)
405 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
406 				       PAGE_SIZE);
407 		bytes = bg_bytes = 0;
408 	}
409 
410 	if (bytes)
411 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
412 	else
413 		thresh = (ratio * available_memory) / PAGE_SIZE;
414 
415 	if (bg_bytes)
416 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
417 	else
418 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
419 
420 	if (bg_thresh >= thresh)
421 		bg_thresh = thresh / 2;
422 	tsk = current;
423 	if (rt_task(tsk)) {
424 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
425 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
426 	}
427 	dtc->thresh = thresh;
428 	dtc->bg_thresh = bg_thresh;
429 
430 	/* we should eventually report the domain in the TP */
431 	if (!gdtc)
432 		trace_global_dirty_state(bg_thresh, thresh);
433 }
434 
435 /**
436  * global_dirty_limits - background-writeback and dirty-throttling thresholds
437  * @pbackground: out parameter for bg_thresh
438  * @pdirty: out parameter for thresh
439  *
440  * Calculate bg_thresh and thresh for global_wb_domain.  See
441  * domain_dirty_limits() for details.
442  */
443 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
444 {
445 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
446 
447 	gdtc.avail = global_dirtyable_memory();
448 	domain_dirty_limits(&gdtc);
449 
450 	*pbackground = gdtc.bg_thresh;
451 	*pdirty = gdtc.thresh;
452 }
453 
454 /**
455  * node_dirty_limit - maximum number of dirty pages allowed in a node
456  * @pgdat: the node
457  *
458  * Return: the maximum number of dirty pages allowed in a node, based
459  * on the node's dirtyable memory.
460  */
461 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
462 {
463 	unsigned long node_memory = node_dirtyable_memory(pgdat);
464 	struct task_struct *tsk = current;
465 	unsigned long dirty;
466 
467 	if (vm_dirty_bytes)
468 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
469 			node_memory / global_dirtyable_memory();
470 	else
471 		dirty = vm_dirty_ratio * node_memory / 100;
472 
473 	if (rt_task(tsk))
474 		dirty += dirty / 4;
475 
476 	return dirty;
477 }
478 
479 /**
480  * node_dirty_ok - tells whether a node is within its dirty limits
481  * @pgdat: the node to check
482  *
483  * Return: %true when the dirty pages in @pgdat are within the node's
484  * dirty limit, %false if the limit is exceeded.
485  */
486 bool node_dirty_ok(struct pglist_data *pgdat)
487 {
488 	unsigned long limit = node_dirty_limit(pgdat);
489 	unsigned long nr_pages = 0;
490 
491 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
492 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
493 
494 	return nr_pages <= limit;
495 }
496 
497 #ifdef CONFIG_SYSCTL
498 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
499 		void *buffer, size_t *lenp, loff_t *ppos)
500 {
501 	int ret;
502 
503 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
504 	if (ret == 0 && write)
505 		dirty_background_bytes = 0;
506 	return ret;
507 }
508 
509 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
510 		void *buffer, size_t *lenp, loff_t *ppos)
511 {
512 	int ret;
513 
514 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
515 	if (ret == 0 && write)
516 		dirty_background_ratio = 0;
517 	return ret;
518 }
519 
520 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
521 		size_t *lenp, loff_t *ppos)
522 {
523 	int old_ratio = vm_dirty_ratio;
524 	int ret;
525 
526 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
527 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
528 		writeback_set_ratelimit();
529 		vm_dirty_bytes = 0;
530 	}
531 	return ret;
532 }
533 
534 static int dirty_bytes_handler(struct ctl_table *table, int write,
535 		void *buffer, size_t *lenp, loff_t *ppos)
536 {
537 	unsigned long old_bytes = vm_dirty_bytes;
538 	int ret;
539 
540 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
541 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
542 		writeback_set_ratelimit();
543 		vm_dirty_ratio = 0;
544 	}
545 	return ret;
546 }
547 #endif
548 
549 static unsigned long wp_next_time(unsigned long cur_time)
550 {
551 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
552 	/* 0 has a special meaning... */
553 	if (!cur_time)
554 		return 1;
555 	return cur_time;
556 }
557 
558 static void wb_domain_writeout_add(struct wb_domain *dom,
559 				   struct fprop_local_percpu *completions,
560 				   unsigned int max_prop_frac, long nr)
561 {
562 	__fprop_add_percpu_max(&dom->completions, completions,
563 			       max_prop_frac, nr);
564 	/* First event after period switching was turned off? */
565 	if (unlikely(!dom->period_time)) {
566 		/*
567 		 * We can race with other __bdi_writeout_inc calls here but
568 		 * it does not cause any harm since the resulting time when
569 		 * timer will fire and what is in writeout_period_time will be
570 		 * roughly the same.
571 		 */
572 		dom->period_time = wp_next_time(jiffies);
573 		mod_timer(&dom->period_timer, dom->period_time);
574 	}
575 }
576 
577 /*
578  * Increment @wb's writeout completion count and the global writeout
579  * completion count. Called from __folio_end_writeback().
580  */
581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
582 {
583 	struct wb_domain *cgdom;
584 
585 	wb_stat_mod(wb, WB_WRITTEN, nr);
586 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
587 			       wb->bdi->max_prop_frac, nr);
588 
589 	cgdom = mem_cgroup_wb_domain(wb);
590 	if (cgdom)
591 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
592 				       wb->bdi->max_prop_frac, nr);
593 }
594 
595 void wb_writeout_inc(struct bdi_writeback *wb)
596 {
597 	unsigned long flags;
598 
599 	local_irq_save(flags);
600 	__wb_writeout_add(wb, 1);
601 	local_irq_restore(flags);
602 }
603 EXPORT_SYMBOL_GPL(wb_writeout_inc);
604 
605 /*
606  * On idle system, we can be called long after we scheduled because we use
607  * deferred timers so count with missed periods.
608  */
609 static void writeout_period(struct timer_list *t)
610 {
611 	struct wb_domain *dom = from_timer(dom, t, period_timer);
612 	int miss_periods = (jiffies - dom->period_time) /
613 						 VM_COMPLETIONS_PERIOD_LEN;
614 
615 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
616 		dom->period_time = wp_next_time(dom->period_time +
617 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
618 		mod_timer(&dom->period_timer, dom->period_time);
619 	} else {
620 		/*
621 		 * Aging has zeroed all fractions. Stop wasting CPU on period
622 		 * updates.
623 		 */
624 		dom->period_time = 0;
625 	}
626 }
627 
628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
629 {
630 	memset(dom, 0, sizeof(*dom));
631 
632 	spin_lock_init(&dom->lock);
633 
634 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
635 
636 	dom->dirty_limit_tstamp = jiffies;
637 
638 	return fprop_global_init(&dom->completions, gfp);
639 }
640 
641 #ifdef CONFIG_CGROUP_WRITEBACK
642 void wb_domain_exit(struct wb_domain *dom)
643 {
644 	del_timer_sync(&dom->period_timer);
645 	fprop_global_destroy(&dom->completions);
646 }
647 #endif
648 
649 /*
650  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
651  * registered backing devices, which, for obvious reasons, can not
652  * exceed 100%.
653  */
654 static unsigned int bdi_min_ratio;
655 
656 static int bdi_check_pages_limit(unsigned long pages)
657 {
658 	unsigned long max_dirty_pages = global_dirtyable_memory();
659 
660 	if (pages > max_dirty_pages)
661 		return -EINVAL;
662 
663 	return 0;
664 }
665 
666 static unsigned long bdi_ratio_from_pages(unsigned long pages)
667 {
668 	unsigned long background_thresh;
669 	unsigned long dirty_thresh;
670 	unsigned long ratio;
671 
672 	global_dirty_limits(&background_thresh, &dirty_thresh);
673 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
674 
675 	return ratio;
676 }
677 
678 static u64 bdi_get_bytes(unsigned int ratio)
679 {
680 	unsigned long background_thresh;
681 	unsigned long dirty_thresh;
682 	u64 bytes;
683 
684 	global_dirty_limits(&background_thresh, &dirty_thresh);
685 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
686 
687 	return bytes;
688 }
689 
690 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
691 {
692 	unsigned int delta;
693 	int ret = 0;
694 
695 	if (min_ratio > 100 * BDI_RATIO_SCALE)
696 		return -EINVAL;
697 
698 	spin_lock_bh(&bdi_lock);
699 	if (min_ratio > bdi->max_ratio) {
700 		ret = -EINVAL;
701 	} else {
702 		if (min_ratio < bdi->min_ratio) {
703 			delta = bdi->min_ratio - min_ratio;
704 			bdi_min_ratio -= delta;
705 			bdi->min_ratio = min_ratio;
706 		} else {
707 			delta = min_ratio - bdi->min_ratio;
708 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
709 				bdi_min_ratio += delta;
710 				bdi->min_ratio = min_ratio;
711 			} else {
712 				ret = -EINVAL;
713 			}
714 		}
715 	}
716 	spin_unlock_bh(&bdi_lock);
717 
718 	return ret;
719 }
720 
721 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
722 {
723 	int ret = 0;
724 
725 	if (max_ratio > 100 * BDI_RATIO_SCALE)
726 		return -EINVAL;
727 
728 	spin_lock_bh(&bdi_lock);
729 	if (bdi->min_ratio > max_ratio) {
730 		ret = -EINVAL;
731 	} else {
732 		bdi->max_ratio = max_ratio;
733 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
734 						(100 * BDI_RATIO_SCALE);
735 	}
736 	spin_unlock_bh(&bdi_lock);
737 
738 	return ret;
739 }
740 
741 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
742 {
743 	return __bdi_set_min_ratio(bdi, min_ratio);
744 }
745 
746 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
747 {
748 	return __bdi_set_max_ratio(bdi, max_ratio);
749 }
750 
751 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
752 {
753 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
754 }
755 
756 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
757 {
758 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
759 }
760 EXPORT_SYMBOL(bdi_set_max_ratio);
761 
762 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
763 {
764 	return bdi_get_bytes(bdi->min_ratio);
765 }
766 
767 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
768 {
769 	int ret;
770 	unsigned long pages = min_bytes >> PAGE_SHIFT;
771 	unsigned long min_ratio;
772 
773 	ret = bdi_check_pages_limit(pages);
774 	if (ret)
775 		return ret;
776 
777 	min_ratio = bdi_ratio_from_pages(pages);
778 	return __bdi_set_min_ratio(bdi, min_ratio);
779 }
780 
781 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
782 {
783 	return bdi_get_bytes(bdi->max_ratio);
784 }
785 
786 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
787 {
788 	int ret;
789 	unsigned long pages = max_bytes >> PAGE_SHIFT;
790 	unsigned long max_ratio;
791 
792 	ret = bdi_check_pages_limit(pages);
793 	if (ret)
794 		return ret;
795 
796 	max_ratio = bdi_ratio_from_pages(pages);
797 	return __bdi_set_max_ratio(bdi, max_ratio);
798 }
799 
800 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
801 {
802 	if (strict_limit > 1)
803 		return -EINVAL;
804 
805 	spin_lock_bh(&bdi_lock);
806 	if (strict_limit)
807 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
808 	else
809 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
810 	spin_unlock_bh(&bdi_lock);
811 
812 	return 0;
813 }
814 
815 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
816 					   unsigned long bg_thresh)
817 {
818 	return (thresh + bg_thresh) / 2;
819 }
820 
821 static unsigned long hard_dirty_limit(struct wb_domain *dom,
822 				      unsigned long thresh)
823 {
824 	return max(thresh, dom->dirty_limit);
825 }
826 
827 /*
828  * Memory which can be further allocated to a memcg domain is capped by
829  * system-wide clean memory excluding the amount being used in the domain.
830  */
831 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
832 			    unsigned long filepages, unsigned long headroom)
833 {
834 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
835 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
836 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
837 	unsigned long other_clean = global_clean - min(global_clean, clean);
838 
839 	mdtc->avail = filepages + min(headroom, other_clean);
840 }
841 
842 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
843 {
844 	return mdtc_gdtc(dtc) == NULL;
845 }
846 
847 /*
848  * Dirty background will ignore pages being written as we're trying to
849  * decide whether to put more under writeback.
850  */
851 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
852 			       bool include_writeback)
853 {
854 	if (dtc_is_global(dtc)) {
855 		dtc->avail = global_dirtyable_memory();
856 		dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
857 		if (include_writeback)
858 			dtc->dirty += global_node_page_state(NR_WRITEBACK);
859 	} else {
860 		unsigned long filepages = 0, headroom = 0, writeback = 0;
861 
862 		mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
863 				    &writeback);
864 		if (include_writeback)
865 			dtc->dirty += writeback;
866 		mdtc_calc_avail(dtc, filepages, headroom);
867 	}
868 }
869 
870 /**
871  * __wb_calc_thresh - @wb's share of dirty threshold
872  * @dtc: dirty_throttle_context of interest
873  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
874  *
875  * Note that balance_dirty_pages() will only seriously take dirty throttling
876  * threshold as a hard limit when sleeping max_pause per page is not enough
877  * to keep the dirty pages under control. For example, when the device is
878  * completely stalled due to some error conditions, or when there are 1000
879  * dd tasks writing to a slow 10MB/s USB key.
880  * In the other normal situations, it acts more gently by throttling the tasks
881  * more (rather than completely block them) when the wb dirty pages go high.
882  *
883  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
884  * - starving fast devices
885  * - piling up dirty pages (that will take long time to sync) on slow devices
886  *
887  * The wb's share of dirty limit will be adapting to its throughput and
888  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
889  *
890  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
891  * "dirty" in the context of dirty balancing includes all PG_dirty and
892  * PG_writeback pages.
893  */
894 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
895 				      unsigned long thresh)
896 {
897 	struct wb_domain *dom = dtc_dom(dtc);
898 	u64 wb_thresh;
899 	unsigned long numerator, denominator;
900 	unsigned long wb_min_ratio, wb_max_ratio;
901 
902 	/*
903 	 * Calculate this wb's share of the thresh ratio.
904 	 */
905 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
906 			      &numerator, &denominator);
907 
908 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
909 	wb_thresh *= numerator;
910 	wb_thresh = div64_ul(wb_thresh, denominator);
911 
912 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
913 
914 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
915 	if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
916 		wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
917 
918 	return wb_thresh;
919 }
920 
921 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
922 {
923 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
924 
925 	return __wb_calc_thresh(&gdtc, thresh);
926 }
927 
928 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
929 {
930 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
931 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
932 
933 	domain_dirty_avail(&gdtc, true);
934 	domain_dirty_avail(&mdtc, true);
935 	domain_dirty_limits(&mdtc);
936 
937 	return __wb_calc_thresh(&mdtc, mdtc.thresh);
938 }
939 
940 /*
941  *                           setpoint - dirty 3
942  *        f(dirty) := 1.0 + (----------------)
943  *                           limit - setpoint
944  *
945  * it's a 3rd order polynomial that subjects to
946  *
947  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
948  * (2) f(setpoint) = 1.0 => the balance point
949  * (3) f(limit)    = 0   => the hard limit
950  * (4) df/dx      <= 0	 => negative feedback control
951  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
952  *     => fast response on large errors; small oscillation near setpoint
953  */
954 static long long pos_ratio_polynom(unsigned long setpoint,
955 					  unsigned long dirty,
956 					  unsigned long limit)
957 {
958 	long long pos_ratio;
959 	long x;
960 
961 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
962 		      (limit - setpoint) | 1);
963 	pos_ratio = x;
964 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
965 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
966 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
967 
968 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
969 }
970 
971 /*
972  * Dirty position control.
973  *
974  * (o) global/bdi setpoints
975  *
976  * We want the dirty pages be balanced around the global/wb setpoints.
977  * When the number of dirty pages is higher/lower than the setpoint, the
978  * dirty position control ratio (and hence task dirty ratelimit) will be
979  * decreased/increased to bring the dirty pages back to the setpoint.
980  *
981  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
982  *
983  *     if (dirty < setpoint) scale up   pos_ratio
984  *     if (dirty > setpoint) scale down pos_ratio
985  *
986  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
987  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
988  *
989  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
990  *
991  * (o) global control line
992  *
993  *     ^ pos_ratio
994  *     |
995  *     |            |<===== global dirty control scope ======>|
996  * 2.0  * * * * * * *
997  *     |            .*
998  *     |            . *
999  *     |            .   *
1000  *     |            .     *
1001  *     |            .        *
1002  *     |            .            *
1003  * 1.0 ................................*
1004  *     |            .                  .     *
1005  *     |            .                  .          *
1006  *     |            .                  .              *
1007  *     |            .                  .                 *
1008  *     |            .                  .                    *
1009  *   0 +------------.------------------.----------------------*------------->
1010  *           freerun^          setpoint^                 limit^   dirty pages
1011  *
1012  * (o) wb control line
1013  *
1014  *     ^ pos_ratio
1015  *     |
1016  *     |            *
1017  *     |              *
1018  *     |                *
1019  *     |                  *
1020  *     |                    * |<=========== span ============>|
1021  * 1.0 .......................*
1022  *     |                      . *
1023  *     |                      .   *
1024  *     |                      .     *
1025  *     |                      .       *
1026  *     |                      .         *
1027  *     |                      .           *
1028  *     |                      .             *
1029  *     |                      .               *
1030  *     |                      .                 *
1031  *     |                      .                   *
1032  *     |                      .                     *
1033  * 1/4 ...............................................* * * * * * * * * * * *
1034  *     |                      .                         .
1035  *     |                      .                           .
1036  *     |                      .                             .
1037  *   0 +----------------------.-------------------------------.------------->
1038  *                wb_setpoint^                    x_intercept^
1039  *
1040  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1041  * be smoothly throttled down to normal if it starts high in situations like
1042  * - start writing to a slow SD card and a fast disk at the same time. The SD
1043  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1044  * - the wb dirty thresh drops quickly due to change of JBOD workload
1045  */
1046 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1047 {
1048 	struct bdi_writeback *wb = dtc->wb;
1049 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1050 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1051 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1052 	unsigned long wb_thresh = dtc->wb_thresh;
1053 	unsigned long x_intercept;
1054 	unsigned long setpoint;		/* dirty pages' target balance point */
1055 	unsigned long wb_setpoint;
1056 	unsigned long span;
1057 	long long pos_ratio;		/* for scaling up/down the rate limit */
1058 	long x;
1059 
1060 	dtc->pos_ratio = 0;
1061 
1062 	if (unlikely(dtc->dirty >= limit))
1063 		return;
1064 
1065 	/*
1066 	 * global setpoint
1067 	 *
1068 	 * See comment for pos_ratio_polynom().
1069 	 */
1070 	setpoint = (freerun + limit) / 2;
1071 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1072 
1073 	/*
1074 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1075 	 * from growing a large number of dirty pages before throttling. For
1076 	 * such filesystems balance_dirty_pages always checks wb counters
1077 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1078 	 * This is especially important for fuse which sets bdi->max_ratio to
1079 	 * 1% by default. Without strictlimit feature, fuse writeback may
1080 	 * consume arbitrary amount of RAM because it is accounted in
1081 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1082 	 *
1083 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1084 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1085 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1086 	 * limits are set by default to 10% and 20% (background and throttle).
1087 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1088 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1089 	 * about ~6K pages (as the average of background and throttle wb
1090 	 * limits). The 3rd order polynomial will provide positive feedback if
1091 	 * wb_dirty is under wb_setpoint and vice versa.
1092 	 *
1093 	 * Note, that we cannot use global counters in these calculations
1094 	 * because we want to throttle process writing to a strictlimit wb
1095 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1096 	 * in the example above).
1097 	 */
1098 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1099 		long long wb_pos_ratio;
1100 
1101 		if (dtc->wb_dirty < 8) {
1102 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1103 					   2 << RATELIMIT_CALC_SHIFT);
1104 			return;
1105 		}
1106 
1107 		if (dtc->wb_dirty >= wb_thresh)
1108 			return;
1109 
1110 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1111 						    dtc->wb_bg_thresh);
1112 
1113 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1114 			return;
1115 
1116 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1117 						 wb_thresh);
1118 
1119 		/*
1120 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1121 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1122 		 * state ("dirty") is not limiting factor and we have to
1123 		 * make decision based on wb counters. But there is an
1124 		 * important case when global pos_ratio should get precedence:
1125 		 * global limits are exceeded (e.g. due to activities on other
1126 		 * wb's) while given strictlimit wb is below limit.
1127 		 *
1128 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1129 		 * but it would look too non-natural for the case of all
1130 		 * activity in the system coming from a single strictlimit wb
1131 		 * with bdi->max_ratio == 100%.
1132 		 *
1133 		 * Note that min() below somewhat changes the dynamics of the
1134 		 * control system. Normally, pos_ratio value can be well over 3
1135 		 * (when globally we are at freerun and wb is well below wb
1136 		 * setpoint). Now the maximum pos_ratio in the same situation
1137 		 * is 2. We might want to tweak this if we observe the control
1138 		 * system is too slow to adapt.
1139 		 */
1140 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1141 		return;
1142 	}
1143 
1144 	/*
1145 	 * We have computed basic pos_ratio above based on global situation. If
1146 	 * the wb is over/under its share of dirty pages, we want to scale
1147 	 * pos_ratio further down/up. That is done by the following mechanism.
1148 	 */
1149 
1150 	/*
1151 	 * wb setpoint
1152 	 *
1153 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1154 	 *
1155 	 *                        x_intercept - wb_dirty
1156 	 *                     := --------------------------
1157 	 *                        x_intercept - wb_setpoint
1158 	 *
1159 	 * The main wb control line is a linear function that subjects to
1160 	 *
1161 	 * (1) f(wb_setpoint) = 1.0
1162 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1163 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1164 	 *
1165 	 * For single wb case, the dirty pages are observed to fluctuate
1166 	 * regularly within range
1167 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1168 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1169 	 * fluctuation range for pos_ratio.
1170 	 *
1171 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1172 	 * own size, so move the slope over accordingly and choose a slope that
1173 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1174 	 */
1175 	if (unlikely(wb_thresh > dtc->thresh))
1176 		wb_thresh = dtc->thresh;
1177 	/*
1178 	 * It's very possible that wb_thresh is close to 0 not because the
1179 	 * device is slow, but that it has remained inactive for long time.
1180 	 * Honour such devices a reasonable good (hopefully IO efficient)
1181 	 * threshold, so that the occasional writes won't be blocked and active
1182 	 * writes can rampup the threshold quickly.
1183 	 */
1184 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1185 	/*
1186 	 * scale global setpoint to wb's:
1187 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1188 	 */
1189 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1190 	wb_setpoint = setpoint * (u64)x >> 16;
1191 	/*
1192 	 * Use span=(8*write_bw) in single wb case as indicated by
1193 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1194 	 *
1195 	 *        wb_thresh                    thresh - wb_thresh
1196 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1197 	 *         thresh                           thresh
1198 	 */
1199 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1200 	x_intercept = wb_setpoint + span;
1201 
1202 	if (dtc->wb_dirty < x_intercept - span / 4) {
1203 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1204 				      (x_intercept - wb_setpoint) | 1);
1205 	} else
1206 		pos_ratio /= 4;
1207 
1208 	/*
1209 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1210 	 * It may push the desired control point of global dirty pages higher
1211 	 * than setpoint.
1212 	 */
1213 	x_intercept = wb_thresh / 2;
1214 	if (dtc->wb_dirty < x_intercept) {
1215 		if (dtc->wb_dirty > x_intercept / 8)
1216 			pos_ratio = div_u64(pos_ratio * x_intercept,
1217 					    dtc->wb_dirty);
1218 		else
1219 			pos_ratio *= 8;
1220 	}
1221 
1222 	dtc->pos_ratio = pos_ratio;
1223 }
1224 
1225 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1226 				      unsigned long elapsed,
1227 				      unsigned long written)
1228 {
1229 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1230 	unsigned long avg = wb->avg_write_bandwidth;
1231 	unsigned long old = wb->write_bandwidth;
1232 	u64 bw;
1233 
1234 	/*
1235 	 * bw = written * HZ / elapsed
1236 	 *
1237 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1238 	 * write_bandwidth = ---------------------------------------------------
1239 	 *                                          period
1240 	 *
1241 	 * @written may have decreased due to folio_redirty_for_writepage().
1242 	 * Avoid underflowing @bw calculation.
1243 	 */
1244 	bw = written - min(written, wb->written_stamp);
1245 	bw *= HZ;
1246 	if (unlikely(elapsed > period)) {
1247 		bw = div64_ul(bw, elapsed);
1248 		avg = bw;
1249 		goto out;
1250 	}
1251 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1252 	bw >>= ilog2(period);
1253 
1254 	/*
1255 	 * one more level of smoothing, for filtering out sudden spikes
1256 	 */
1257 	if (avg > old && old >= (unsigned long)bw)
1258 		avg -= (avg - old) >> 3;
1259 
1260 	if (avg < old && old <= (unsigned long)bw)
1261 		avg += (old - avg) >> 3;
1262 
1263 out:
1264 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1265 	avg = max(avg, 1LU);
1266 	if (wb_has_dirty_io(wb)) {
1267 		long delta = avg - wb->avg_write_bandwidth;
1268 		WARN_ON_ONCE(atomic_long_add_return(delta,
1269 					&wb->bdi->tot_write_bandwidth) <= 0);
1270 	}
1271 	wb->write_bandwidth = bw;
1272 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1273 }
1274 
1275 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1276 {
1277 	struct wb_domain *dom = dtc_dom(dtc);
1278 	unsigned long thresh = dtc->thresh;
1279 	unsigned long limit = dom->dirty_limit;
1280 
1281 	/*
1282 	 * Follow up in one step.
1283 	 */
1284 	if (limit < thresh) {
1285 		limit = thresh;
1286 		goto update;
1287 	}
1288 
1289 	/*
1290 	 * Follow down slowly. Use the higher one as the target, because thresh
1291 	 * may drop below dirty. This is exactly the reason to introduce
1292 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1293 	 */
1294 	thresh = max(thresh, dtc->dirty);
1295 	if (limit > thresh) {
1296 		limit -= (limit - thresh) >> 5;
1297 		goto update;
1298 	}
1299 	return;
1300 update:
1301 	dom->dirty_limit = limit;
1302 }
1303 
1304 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1305 				      unsigned long now)
1306 {
1307 	struct wb_domain *dom = dtc_dom(dtc);
1308 
1309 	/*
1310 	 * check locklessly first to optimize away locking for the most time
1311 	 */
1312 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1313 		return;
1314 
1315 	spin_lock(&dom->lock);
1316 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1317 		update_dirty_limit(dtc);
1318 		dom->dirty_limit_tstamp = now;
1319 	}
1320 	spin_unlock(&dom->lock);
1321 }
1322 
1323 /*
1324  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1325  *
1326  * Normal wb tasks will be curbed at or below it in long term.
1327  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1328  */
1329 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1330 				      unsigned long dirtied,
1331 				      unsigned long elapsed)
1332 {
1333 	struct bdi_writeback *wb = dtc->wb;
1334 	unsigned long dirty = dtc->dirty;
1335 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1336 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1337 	unsigned long setpoint = (freerun + limit) / 2;
1338 	unsigned long write_bw = wb->avg_write_bandwidth;
1339 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1340 	unsigned long dirty_rate;
1341 	unsigned long task_ratelimit;
1342 	unsigned long balanced_dirty_ratelimit;
1343 	unsigned long step;
1344 	unsigned long x;
1345 	unsigned long shift;
1346 
1347 	/*
1348 	 * The dirty rate will match the writeout rate in long term, except
1349 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1350 	 */
1351 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1352 
1353 	/*
1354 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1355 	 */
1356 	task_ratelimit = (u64)dirty_ratelimit *
1357 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1358 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1359 
1360 	/*
1361 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1362 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1363 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1364 	 * formula will yield the balanced rate limit (write_bw / N).
1365 	 *
1366 	 * Note that the expanded form is not a pure rate feedback:
1367 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1368 	 * but also takes pos_ratio into account:
1369 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1370 	 *
1371 	 * (1) is not realistic because pos_ratio also takes part in balancing
1372 	 * the dirty rate.  Consider the state
1373 	 *	pos_ratio = 0.5						     (3)
1374 	 *	rate = 2 * (write_bw / N)				     (4)
1375 	 * If (1) is used, it will stuck in that state! Because each dd will
1376 	 * be throttled at
1377 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1378 	 * yielding
1379 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1380 	 * put (6) into (1) we get
1381 	 *	rate_(i+1) = rate_(i)					     (7)
1382 	 *
1383 	 * So we end up using (2) to always keep
1384 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1385 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1386 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1387 	 * the dirty count meet the setpoint, but also where the slope of
1388 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1389 	 */
1390 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1391 					   dirty_rate | 1);
1392 	/*
1393 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1394 	 */
1395 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1396 		balanced_dirty_ratelimit = write_bw;
1397 
1398 	/*
1399 	 * We could safely do this and return immediately:
1400 	 *
1401 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1402 	 *
1403 	 * However to get a more stable dirty_ratelimit, the below elaborated
1404 	 * code makes use of task_ratelimit to filter out singular points and
1405 	 * limit the step size.
1406 	 *
1407 	 * The below code essentially only uses the relative value of
1408 	 *
1409 	 *	task_ratelimit - dirty_ratelimit
1410 	 *	= (pos_ratio - 1) * dirty_ratelimit
1411 	 *
1412 	 * which reflects the direction and size of dirty position error.
1413 	 */
1414 
1415 	/*
1416 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1417 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1418 	 * For example, when
1419 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1420 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1421 	 * lowering dirty_ratelimit will help meet both the position and rate
1422 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1423 	 * only help meet the rate target. After all, what the users ultimately
1424 	 * feel and care are stable dirty rate and small position error.
1425 	 *
1426 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1427 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1428 	 * keeps jumping around randomly and can even leap far away at times
1429 	 * due to the small 200ms estimation period of dirty_rate (we want to
1430 	 * keep that period small to reduce time lags).
1431 	 */
1432 	step = 0;
1433 
1434 	/*
1435 	 * For strictlimit case, calculations above were based on wb counters
1436 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1437 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1438 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1439 	 * "dirty" and wb_setpoint as "setpoint".
1440 	 *
1441 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1442 	 * it's possible that wb_thresh is close to zero due to inactivity
1443 	 * of backing device.
1444 	 */
1445 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1446 		dirty = dtc->wb_dirty;
1447 		if (dtc->wb_dirty < 8)
1448 			setpoint = dtc->wb_dirty + 1;
1449 		else
1450 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1451 	}
1452 
1453 	if (dirty < setpoint) {
1454 		x = min3(wb->balanced_dirty_ratelimit,
1455 			 balanced_dirty_ratelimit, task_ratelimit);
1456 		if (dirty_ratelimit < x)
1457 			step = x - dirty_ratelimit;
1458 	} else {
1459 		x = max3(wb->balanced_dirty_ratelimit,
1460 			 balanced_dirty_ratelimit, task_ratelimit);
1461 		if (dirty_ratelimit > x)
1462 			step = dirty_ratelimit - x;
1463 	}
1464 
1465 	/*
1466 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1467 	 * rate itself is constantly fluctuating. So decrease the track speed
1468 	 * when it gets close to the target. Helps eliminate pointless tremors.
1469 	 */
1470 	shift = dirty_ratelimit / (2 * step + 1);
1471 	if (shift < BITS_PER_LONG)
1472 		step = DIV_ROUND_UP(step >> shift, 8);
1473 	else
1474 		step = 0;
1475 
1476 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1477 		dirty_ratelimit += step;
1478 	else
1479 		dirty_ratelimit -= step;
1480 
1481 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1482 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1483 
1484 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1485 }
1486 
1487 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1488 				  struct dirty_throttle_control *mdtc,
1489 				  bool update_ratelimit)
1490 {
1491 	struct bdi_writeback *wb = gdtc->wb;
1492 	unsigned long now = jiffies;
1493 	unsigned long elapsed;
1494 	unsigned long dirtied;
1495 	unsigned long written;
1496 
1497 	spin_lock(&wb->list_lock);
1498 
1499 	/*
1500 	 * Lockless checks for elapsed time are racy and delayed update after
1501 	 * IO completion doesn't do it at all (to make sure written pages are
1502 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1503 	 * division errors.
1504 	 */
1505 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1506 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1507 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1508 
1509 	if (update_ratelimit) {
1510 		domain_update_dirty_limit(gdtc, now);
1511 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1512 
1513 		/*
1514 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1515 		 * compiler has no way to figure that out.  Help it.
1516 		 */
1517 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1518 			domain_update_dirty_limit(mdtc, now);
1519 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1520 		}
1521 	}
1522 	wb_update_write_bandwidth(wb, elapsed, written);
1523 
1524 	wb->dirtied_stamp = dirtied;
1525 	wb->written_stamp = written;
1526 	WRITE_ONCE(wb->bw_time_stamp, now);
1527 	spin_unlock(&wb->list_lock);
1528 }
1529 
1530 void wb_update_bandwidth(struct bdi_writeback *wb)
1531 {
1532 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1533 
1534 	__wb_update_bandwidth(&gdtc, NULL, false);
1535 }
1536 
1537 /* Interval after which we consider wb idle and don't estimate bandwidth */
1538 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1539 
1540 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1541 {
1542 	unsigned long now = jiffies;
1543 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1544 
1545 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1546 	    !atomic_read(&wb->writeback_inodes)) {
1547 		spin_lock(&wb->list_lock);
1548 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1549 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1550 		WRITE_ONCE(wb->bw_time_stamp, now);
1551 		spin_unlock(&wb->list_lock);
1552 	}
1553 }
1554 
1555 /*
1556  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1557  * will look to see if it needs to start dirty throttling.
1558  *
1559  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1560  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1561  * (the number of pages we may dirty without exceeding the dirty limits).
1562  */
1563 static unsigned long dirty_poll_interval(unsigned long dirty,
1564 					 unsigned long thresh)
1565 {
1566 	if (thresh > dirty)
1567 		return 1UL << (ilog2(thresh - dirty) >> 1);
1568 
1569 	return 1;
1570 }
1571 
1572 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1573 				  unsigned long wb_dirty)
1574 {
1575 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1576 	unsigned long t;
1577 
1578 	/*
1579 	 * Limit pause time for small memory systems. If sleeping for too long
1580 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1581 	 * idle.
1582 	 *
1583 	 * 8 serves as the safety ratio.
1584 	 */
1585 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1586 	t++;
1587 
1588 	return min_t(unsigned long, t, MAX_PAUSE);
1589 }
1590 
1591 static long wb_min_pause(struct bdi_writeback *wb,
1592 			 long max_pause,
1593 			 unsigned long task_ratelimit,
1594 			 unsigned long dirty_ratelimit,
1595 			 int *nr_dirtied_pause)
1596 {
1597 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1598 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1599 	long t;		/* target pause */
1600 	long pause;	/* estimated next pause */
1601 	int pages;	/* target nr_dirtied_pause */
1602 
1603 	/* target for 10ms pause on 1-dd case */
1604 	t = max(1, HZ / 100);
1605 
1606 	/*
1607 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1608 	 * overheads.
1609 	 *
1610 	 * (N * 10ms) on 2^N concurrent tasks.
1611 	 */
1612 	if (hi > lo)
1613 		t += (hi - lo) * (10 * HZ) / 1024;
1614 
1615 	/*
1616 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1617 	 * on the much more stable dirty_ratelimit. However the next pause time
1618 	 * will be computed based on task_ratelimit and the two rate limits may
1619 	 * depart considerably at some time. Especially if task_ratelimit goes
1620 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1621 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1622 	 * result task_ratelimit won't be executed faithfully, which could
1623 	 * eventually bring down dirty_ratelimit.
1624 	 *
1625 	 * We apply two rules to fix it up:
1626 	 * 1) try to estimate the next pause time and if necessary, use a lower
1627 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1628 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1629 	 * 2) limit the target pause time to max_pause/2, so that the normal
1630 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1631 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1632 	 */
1633 	t = min(t, 1 + max_pause / 2);
1634 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1635 
1636 	/*
1637 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1638 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1639 	 * When the 16 consecutive reads are often interrupted by some dirty
1640 	 * throttling pause during the async writes, cfq will go into idles
1641 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1642 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1643 	 */
1644 	if (pages < DIRTY_POLL_THRESH) {
1645 		t = max_pause;
1646 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1647 		if (pages > DIRTY_POLL_THRESH) {
1648 			pages = DIRTY_POLL_THRESH;
1649 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1650 		}
1651 	}
1652 
1653 	pause = HZ * pages / (task_ratelimit + 1);
1654 	if (pause > max_pause) {
1655 		t = max_pause;
1656 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1657 	}
1658 
1659 	*nr_dirtied_pause = pages;
1660 	/*
1661 	 * The minimal pause time will normally be half the target pause time.
1662 	 */
1663 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1664 }
1665 
1666 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1667 {
1668 	struct bdi_writeback *wb = dtc->wb;
1669 	unsigned long wb_reclaimable;
1670 
1671 	/*
1672 	 * wb_thresh is not treated as some limiting factor as
1673 	 * dirty_thresh, due to reasons
1674 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1675 	 * - in a system with HDD and USB key, the USB key may somehow
1676 	 *   go into state (wb_dirty >> wb_thresh) either because
1677 	 *   wb_dirty starts high, or because wb_thresh drops low.
1678 	 *   In this case we don't want to hard throttle the USB key
1679 	 *   dirtiers for 100 seconds until wb_dirty drops under
1680 	 *   wb_thresh. Instead the auxiliary wb control line in
1681 	 *   wb_position_ratio() will let the dirtier task progress
1682 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1683 	 */
1684 	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1685 	dtc->wb_bg_thresh = dtc->thresh ?
1686 		div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1687 
1688 	/*
1689 	 * In order to avoid the stacked BDI deadlock we need
1690 	 * to ensure we accurately count the 'dirty' pages when
1691 	 * the threshold is low.
1692 	 *
1693 	 * Otherwise it would be possible to get thresh+n pages
1694 	 * reported dirty, even though there are thresh-m pages
1695 	 * actually dirty; with m+n sitting in the percpu
1696 	 * deltas.
1697 	 */
1698 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1699 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1700 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1701 	} else {
1702 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1703 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1704 	}
1705 }
1706 
1707 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1708 				      bool strictlimit)
1709 {
1710 	unsigned long dirty, thresh;
1711 
1712 	if (strictlimit) {
1713 		dirty = dtc->wb_dirty;
1714 		thresh = dtc->wb_thresh;
1715 	} else {
1716 		dirty = dtc->dirty;
1717 		thresh = dtc->thresh;
1718 	}
1719 
1720 	return dirty_poll_interval(dirty, thresh);
1721 }
1722 
1723 /*
1724  * Throttle it only when the background writeback cannot catch-up. This avoids
1725  * (excessively) small writeouts when the wb limits are ramping up in case of
1726  * !strictlimit.
1727  *
1728  * In strictlimit case make decision based on the wb counters and limits. Small
1729  * writeouts when the wb limits are ramping up are the price we consciously pay
1730  * for strictlimit-ing.
1731  */
1732 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1733 				 bool strictlimit)
1734 {
1735 	unsigned long dirty, thresh, bg_thresh;
1736 
1737 	if (unlikely(strictlimit)) {
1738 		wb_dirty_limits(dtc);
1739 		dirty = dtc->wb_dirty;
1740 		thresh = dtc->wb_thresh;
1741 		bg_thresh = dtc->wb_bg_thresh;
1742 	} else {
1743 		dirty = dtc->dirty;
1744 		thresh = dtc->thresh;
1745 		bg_thresh = dtc->bg_thresh;
1746 	}
1747 	dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1748 }
1749 
1750 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1751 				  bool strictlimit)
1752 {
1753 	domain_dirty_avail(dtc, true);
1754 	domain_dirty_limits(dtc);
1755 	domain_dirty_freerun(dtc, strictlimit);
1756 }
1757 
1758 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1759 			     bool strictlimit)
1760 {
1761 	dtc->freerun = false;
1762 
1763 	/* was already handled in domain_dirty_freerun */
1764 	if (strictlimit)
1765 		return;
1766 
1767 	wb_dirty_limits(dtc);
1768 	/*
1769 	 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1770 	 * freerun ceiling.
1771 	 */
1772 	if (!(current->flags & PF_LOCAL_THROTTLE))
1773 		return;
1774 
1775 	dtc->freerun = dtc->wb_dirty <
1776 		       dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1777 }
1778 
1779 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1780 				     bool strictlimit)
1781 {
1782 	dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1783 		((dtc->dirty > dtc->thresh) || strictlimit);
1784 }
1785 
1786 /*
1787  * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1788  * in freerun state. Please don't use these invalid fields in freerun case.
1789  */
1790 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1791 			      bool strictlimit)
1792 {
1793 	wb_dirty_freerun(dtc, strictlimit);
1794 	if (dtc->freerun)
1795 		return;
1796 
1797 	wb_dirty_exceeded(dtc, strictlimit);
1798 	wb_position_ratio(dtc);
1799 }
1800 
1801 /*
1802  * balance_dirty_pages() must be called by processes which are generating dirty
1803  * data.  It looks at the number of dirty pages in the machine and will force
1804  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1805  * If we're over `background_thresh' then the writeback threads are woken to
1806  * perform some writeout.
1807  */
1808 static int balance_dirty_pages(struct bdi_writeback *wb,
1809 			       unsigned long pages_dirtied, unsigned int flags)
1810 {
1811 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1812 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1813 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1814 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1815 						     &mdtc_stor : NULL;
1816 	struct dirty_throttle_control *sdtc;
1817 	unsigned long nr_dirty;
1818 	long period;
1819 	long pause;
1820 	long max_pause;
1821 	long min_pause;
1822 	int nr_dirtied_pause;
1823 	unsigned long task_ratelimit;
1824 	unsigned long dirty_ratelimit;
1825 	struct backing_dev_info *bdi = wb->bdi;
1826 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1827 	unsigned long start_time = jiffies;
1828 	int ret = 0;
1829 
1830 	for (;;) {
1831 		unsigned long now = jiffies;
1832 
1833 		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1834 
1835 		balance_domain_limits(gdtc, strictlimit);
1836 		if (mdtc) {
1837 			/*
1838 			 * If @wb belongs to !root memcg, repeat the same
1839 			 * basic calculations for the memcg domain.
1840 			 */
1841 			balance_domain_limits(mdtc, strictlimit);
1842 		}
1843 
1844 		/*
1845 		 * In laptop mode, we wait until hitting the higher threshold
1846 		 * before starting background writeout, and then write out all
1847 		 * the way down to the lower threshold.  So slow writers cause
1848 		 * minimal disk activity.
1849 		 *
1850 		 * In normal mode, we start background writeout at the lower
1851 		 * background_thresh, to keep the amount of dirty memory low.
1852 		 */
1853 		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1854 		    !writeback_in_progress(wb))
1855 			wb_start_background_writeback(wb);
1856 
1857 		/*
1858 		 * If memcg domain is in effect, @dirty should be under
1859 		 * both global and memcg freerun ceilings.
1860 		 */
1861 		if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1862 			unsigned long intv;
1863 			unsigned long m_intv;
1864 
1865 free_running:
1866 			intv = domain_poll_intv(gdtc, strictlimit);
1867 			m_intv = ULONG_MAX;
1868 
1869 			current->dirty_paused_when = now;
1870 			current->nr_dirtied = 0;
1871 			if (mdtc)
1872 				m_intv = domain_poll_intv(mdtc, strictlimit);
1873 			current->nr_dirtied_pause = min(intv, m_intv);
1874 			break;
1875 		}
1876 
1877 		/* Start writeback even when in laptop mode */
1878 		if (unlikely(!writeback_in_progress(wb)))
1879 			wb_start_background_writeback(wb);
1880 
1881 		mem_cgroup_flush_foreign(wb);
1882 
1883 		/*
1884 		 * Calculate global domain's pos_ratio and select the
1885 		 * global dtc by default.
1886 		 */
1887 		balance_wb_limits(gdtc, strictlimit);
1888 		if (gdtc->freerun)
1889 			goto free_running;
1890 		sdtc = gdtc;
1891 
1892 		if (mdtc) {
1893 			/*
1894 			 * If memcg domain is in effect, calculate its
1895 			 * pos_ratio.  @wb should satisfy constraints from
1896 			 * both global and memcg domains.  Choose the one
1897 			 * w/ lower pos_ratio.
1898 			 */
1899 			balance_wb_limits(mdtc, strictlimit);
1900 			if (mdtc->freerun)
1901 				goto free_running;
1902 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1903 				sdtc = mdtc;
1904 		}
1905 
1906 		wb->dirty_exceeded = gdtc->dirty_exceeded ||
1907 				     (mdtc && mdtc->dirty_exceeded);
1908 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1909 					   BANDWIDTH_INTERVAL))
1910 			__wb_update_bandwidth(gdtc, mdtc, true);
1911 
1912 		/* throttle according to the chosen dtc */
1913 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1914 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1915 							RATELIMIT_CALC_SHIFT;
1916 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1917 		min_pause = wb_min_pause(wb, max_pause,
1918 					 task_ratelimit, dirty_ratelimit,
1919 					 &nr_dirtied_pause);
1920 
1921 		if (unlikely(task_ratelimit == 0)) {
1922 			period = max_pause;
1923 			pause = max_pause;
1924 			goto pause;
1925 		}
1926 		period = HZ * pages_dirtied / task_ratelimit;
1927 		pause = period;
1928 		if (current->dirty_paused_when)
1929 			pause -= now - current->dirty_paused_when;
1930 		/*
1931 		 * For less than 1s think time (ext3/4 may block the dirtier
1932 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1933 		 * however at much less frequency), try to compensate it in
1934 		 * future periods by updating the virtual time; otherwise just
1935 		 * do a reset, as it may be a light dirtier.
1936 		 */
1937 		if (pause < min_pause) {
1938 			trace_balance_dirty_pages(wb,
1939 						  sdtc->thresh,
1940 						  sdtc->bg_thresh,
1941 						  sdtc->dirty,
1942 						  sdtc->wb_thresh,
1943 						  sdtc->wb_dirty,
1944 						  dirty_ratelimit,
1945 						  task_ratelimit,
1946 						  pages_dirtied,
1947 						  period,
1948 						  min(pause, 0L),
1949 						  start_time);
1950 			if (pause < -HZ) {
1951 				current->dirty_paused_when = now;
1952 				current->nr_dirtied = 0;
1953 			} else if (period) {
1954 				current->dirty_paused_when += period;
1955 				current->nr_dirtied = 0;
1956 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1957 				current->nr_dirtied_pause += pages_dirtied;
1958 			break;
1959 		}
1960 		if (unlikely(pause > max_pause)) {
1961 			/* for occasional dropped task_ratelimit */
1962 			now += min(pause - max_pause, max_pause);
1963 			pause = max_pause;
1964 		}
1965 
1966 pause:
1967 		trace_balance_dirty_pages(wb,
1968 					  sdtc->thresh,
1969 					  sdtc->bg_thresh,
1970 					  sdtc->dirty,
1971 					  sdtc->wb_thresh,
1972 					  sdtc->wb_dirty,
1973 					  dirty_ratelimit,
1974 					  task_ratelimit,
1975 					  pages_dirtied,
1976 					  period,
1977 					  pause,
1978 					  start_time);
1979 		if (flags & BDP_ASYNC) {
1980 			ret = -EAGAIN;
1981 			break;
1982 		}
1983 		__set_current_state(TASK_KILLABLE);
1984 		bdi->last_bdp_sleep = jiffies;
1985 		io_schedule_timeout(pause);
1986 
1987 		current->dirty_paused_when = now + pause;
1988 		current->nr_dirtied = 0;
1989 		current->nr_dirtied_pause = nr_dirtied_pause;
1990 
1991 		/*
1992 		 * This is typically equal to (dirty < thresh) and can also
1993 		 * keep "1000+ dd on a slow USB stick" under control.
1994 		 */
1995 		if (task_ratelimit)
1996 			break;
1997 
1998 		/*
1999 		 * In the case of an unresponsive NFS server and the NFS dirty
2000 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
2001 		 * to go through, so that tasks on them still remain responsive.
2002 		 *
2003 		 * In theory 1 page is enough to keep the consumer-producer
2004 		 * pipe going: the flusher cleans 1 page => the task dirties 1
2005 		 * more page. However wb_dirty has accounting errors.  So use
2006 		 * the larger and more IO friendly wb_stat_error.
2007 		 */
2008 		if (sdtc->wb_dirty <= wb_stat_error())
2009 			break;
2010 
2011 		if (fatal_signal_pending(current))
2012 			break;
2013 	}
2014 	return ret;
2015 }
2016 
2017 static DEFINE_PER_CPU(int, bdp_ratelimits);
2018 
2019 /*
2020  * Normal tasks are throttled by
2021  *	loop {
2022  *		dirty tsk->nr_dirtied_pause pages;
2023  *		take a snap in balance_dirty_pages();
2024  *	}
2025  * However there is a worst case. If every task exit immediately when dirtied
2026  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2027  * called to throttle the page dirties. The solution is to save the not yet
2028  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2029  * randomly into the running tasks. This works well for the above worst case,
2030  * as the new task will pick up and accumulate the old task's leaked dirty
2031  * count and eventually get throttled.
2032  */
2033 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2034 
2035 /**
2036  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2037  * @mapping: address_space which was dirtied.
2038  * @flags: BDP flags.
2039  *
2040  * Processes which are dirtying memory should call in here once for each page
2041  * which was newly dirtied.  The function will periodically check the system's
2042  * dirty state and will initiate writeback if needed.
2043  *
2044  * See balance_dirty_pages_ratelimited() for details.
2045  *
2046  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2047  * indicate that memory is out of balance and the caller must wait
2048  * for I/O to complete.  Otherwise, it will return 0 to indicate
2049  * that either memory was already in balance, or it was able to sleep
2050  * until the amount of dirty memory returned to balance.
2051  */
2052 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2053 					unsigned int flags)
2054 {
2055 	struct inode *inode = mapping->host;
2056 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2057 	struct bdi_writeback *wb = NULL;
2058 	int ratelimit;
2059 	int ret = 0;
2060 	int *p;
2061 
2062 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2063 		return ret;
2064 
2065 	if (inode_cgwb_enabled(inode))
2066 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2067 	if (!wb)
2068 		wb = &bdi->wb;
2069 
2070 	ratelimit = current->nr_dirtied_pause;
2071 	if (wb->dirty_exceeded)
2072 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2073 
2074 	preempt_disable();
2075 	/*
2076 	 * This prevents one CPU to accumulate too many dirtied pages without
2077 	 * calling into balance_dirty_pages(), which can happen when there are
2078 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2079 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2080 	 */
2081 	p =  this_cpu_ptr(&bdp_ratelimits);
2082 	if (unlikely(current->nr_dirtied >= ratelimit))
2083 		*p = 0;
2084 	else if (unlikely(*p >= ratelimit_pages)) {
2085 		*p = 0;
2086 		ratelimit = 0;
2087 	}
2088 	/*
2089 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2090 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2091 	 * the dirty throttling and livelock other long-run dirtiers.
2092 	 */
2093 	p = this_cpu_ptr(&dirty_throttle_leaks);
2094 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2095 		unsigned long nr_pages_dirtied;
2096 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2097 		*p -= nr_pages_dirtied;
2098 		current->nr_dirtied += nr_pages_dirtied;
2099 	}
2100 	preempt_enable();
2101 
2102 	if (unlikely(current->nr_dirtied >= ratelimit))
2103 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2104 
2105 	wb_put(wb);
2106 	return ret;
2107 }
2108 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2109 
2110 /**
2111  * balance_dirty_pages_ratelimited - balance dirty memory state.
2112  * @mapping: address_space which was dirtied.
2113  *
2114  * Processes which are dirtying memory should call in here once for each page
2115  * which was newly dirtied.  The function will periodically check the system's
2116  * dirty state and will initiate writeback if needed.
2117  *
2118  * Once we're over the dirty memory limit we decrease the ratelimiting
2119  * by a lot, to prevent individual processes from overshooting the limit
2120  * by (ratelimit_pages) each.
2121  */
2122 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2123 {
2124 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2125 }
2126 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2127 
2128 /*
2129  * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2130  * and thresh, but it's for background writeback.
2131  */
2132 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2133 {
2134 	struct bdi_writeback *wb = dtc->wb;
2135 
2136 	dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2137 	if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2138 		dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2139 	else
2140 		dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2141 }
2142 
2143 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2144 {
2145 	domain_dirty_avail(dtc, false);
2146 	domain_dirty_limits(dtc);
2147 	if (dtc->dirty > dtc->bg_thresh)
2148 		return true;
2149 
2150 	wb_bg_dirty_limits(dtc);
2151 	if (dtc->wb_dirty > dtc->wb_bg_thresh)
2152 		return true;
2153 
2154 	return false;
2155 }
2156 
2157 /**
2158  * wb_over_bg_thresh - does @wb need to be written back?
2159  * @wb: bdi_writeback of interest
2160  *
2161  * Determines whether background writeback should keep writing @wb or it's
2162  * clean enough.
2163  *
2164  * Return: %true if writeback should continue.
2165  */
2166 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2167 {
2168 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2169 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2170 
2171 	if (domain_over_bg_thresh(&gdtc))
2172 		return true;
2173 
2174 	if (mdtc_valid(&mdtc))
2175 		return domain_over_bg_thresh(&mdtc);
2176 
2177 	return false;
2178 }
2179 
2180 #ifdef CONFIG_SYSCTL
2181 /*
2182  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2183  */
2184 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2185 		void *buffer, size_t *length, loff_t *ppos)
2186 {
2187 	unsigned int old_interval = dirty_writeback_interval;
2188 	int ret;
2189 
2190 	ret = proc_dointvec(table, write, buffer, length, ppos);
2191 
2192 	/*
2193 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2194 	 * and a different non-zero value will wakeup the writeback threads.
2195 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2196 	 * iterate over all bdis and wbs.
2197 	 * The reason we do this is to make the change take effect immediately.
2198 	 */
2199 	if (!ret && write && dirty_writeback_interval &&
2200 		dirty_writeback_interval != old_interval)
2201 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2202 
2203 	return ret;
2204 }
2205 #endif
2206 
2207 void laptop_mode_timer_fn(struct timer_list *t)
2208 {
2209 	struct backing_dev_info *backing_dev_info =
2210 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2211 
2212 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2213 }
2214 
2215 /*
2216  * We've spun up the disk and we're in laptop mode: schedule writeback
2217  * of all dirty data a few seconds from now.  If the flush is already scheduled
2218  * then push it back - the user is still using the disk.
2219  */
2220 void laptop_io_completion(struct backing_dev_info *info)
2221 {
2222 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2223 }
2224 
2225 /*
2226  * We're in laptop mode and we've just synced. The sync's writes will have
2227  * caused another writeback to be scheduled by laptop_io_completion.
2228  * Nothing needs to be written back anymore, so we unschedule the writeback.
2229  */
2230 void laptop_sync_completion(void)
2231 {
2232 	struct backing_dev_info *bdi;
2233 
2234 	rcu_read_lock();
2235 
2236 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2237 		del_timer(&bdi->laptop_mode_wb_timer);
2238 
2239 	rcu_read_unlock();
2240 }
2241 
2242 /*
2243  * If ratelimit_pages is too high then we can get into dirty-data overload
2244  * if a large number of processes all perform writes at the same time.
2245  *
2246  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2247  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2248  * thresholds.
2249  */
2250 
2251 void writeback_set_ratelimit(void)
2252 {
2253 	struct wb_domain *dom = &global_wb_domain;
2254 	unsigned long background_thresh;
2255 	unsigned long dirty_thresh;
2256 
2257 	global_dirty_limits(&background_thresh, &dirty_thresh);
2258 	dom->dirty_limit = dirty_thresh;
2259 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2260 	if (ratelimit_pages < 16)
2261 		ratelimit_pages = 16;
2262 }
2263 
2264 static int page_writeback_cpu_online(unsigned int cpu)
2265 {
2266 	writeback_set_ratelimit();
2267 	return 0;
2268 }
2269 
2270 #ifdef CONFIG_SYSCTL
2271 
2272 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2273 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2274 
2275 static struct ctl_table vm_page_writeback_sysctls[] = {
2276 	{
2277 		.procname   = "dirty_background_ratio",
2278 		.data       = &dirty_background_ratio,
2279 		.maxlen     = sizeof(dirty_background_ratio),
2280 		.mode       = 0644,
2281 		.proc_handler   = dirty_background_ratio_handler,
2282 		.extra1     = SYSCTL_ZERO,
2283 		.extra2     = SYSCTL_ONE_HUNDRED,
2284 	},
2285 	{
2286 		.procname   = "dirty_background_bytes",
2287 		.data       = &dirty_background_bytes,
2288 		.maxlen     = sizeof(dirty_background_bytes),
2289 		.mode       = 0644,
2290 		.proc_handler   = dirty_background_bytes_handler,
2291 		.extra1     = SYSCTL_LONG_ONE,
2292 	},
2293 	{
2294 		.procname   = "dirty_ratio",
2295 		.data       = &vm_dirty_ratio,
2296 		.maxlen     = sizeof(vm_dirty_ratio),
2297 		.mode       = 0644,
2298 		.proc_handler   = dirty_ratio_handler,
2299 		.extra1     = SYSCTL_ZERO,
2300 		.extra2     = SYSCTL_ONE_HUNDRED,
2301 	},
2302 	{
2303 		.procname   = "dirty_bytes",
2304 		.data       = &vm_dirty_bytes,
2305 		.maxlen     = sizeof(vm_dirty_bytes),
2306 		.mode       = 0644,
2307 		.proc_handler   = dirty_bytes_handler,
2308 		.extra1     = (void *)&dirty_bytes_min,
2309 	},
2310 	{
2311 		.procname   = "dirty_writeback_centisecs",
2312 		.data       = &dirty_writeback_interval,
2313 		.maxlen     = sizeof(dirty_writeback_interval),
2314 		.mode       = 0644,
2315 		.proc_handler   = dirty_writeback_centisecs_handler,
2316 	},
2317 	{
2318 		.procname   = "dirty_expire_centisecs",
2319 		.data       = &dirty_expire_interval,
2320 		.maxlen     = sizeof(dirty_expire_interval),
2321 		.mode       = 0644,
2322 		.proc_handler   = proc_dointvec_minmax,
2323 		.extra1     = SYSCTL_ZERO,
2324 	},
2325 #ifdef CONFIG_HIGHMEM
2326 	{
2327 		.procname	= "highmem_is_dirtyable",
2328 		.data		= &vm_highmem_is_dirtyable,
2329 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2330 		.mode		= 0644,
2331 		.proc_handler	= proc_dointvec_minmax,
2332 		.extra1		= SYSCTL_ZERO,
2333 		.extra2		= SYSCTL_ONE,
2334 	},
2335 #endif
2336 	{
2337 		.procname	= "laptop_mode",
2338 		.data		= &laptop_mode,
2339 		.maxlen		= sizeof(laptop_mode),
2340 		.mode		= 0644,
2341 		.proc_handler	= proc_dointvec_jiffies,
2342 	},
2343 };
2344 #endif
2345 
2346 /*
2347  * Called early on to tune the page writeback dirty limits.
2348  *
2349  * We used to scale dirty pages according to how total memory
2350  * related to pages that could be allocated for buffers.
2351  *
2352  * However, that was when we used "dirty_ratio" to scale with
2353  * all memory, and we don't do that any more. "dirty_ratio"
2354  * is now applied to total non-HIGHPAGE memory, and as such we can't
2355  * get into the old insane situation any more where we had
2356  * large amounts of dirty pages compared to a small amount of
2357  * non-HIGHMEM memory.
2358  *
2359  * But we might still want to scale the dirty_ratio by how
2360  * much memory the box has..
2361  */
2362 void __init page_writeback_init(void)
2363 {
2364 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2365 
2366 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2367 			  page_writeback_cpu_online, NULL);
2368 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2369 			  page_writeback_cpu_online);
2370 #ifdef CONFIG_SYSCTL
2371 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2372 #endif
2373 }
2374 
2375 /**
2376  * tag_pages_for_writeback - tag pages to be written by writeback
2377  * @mapping: address space structure to write
2378  * @start: starting page index
2379  * @end: ending page index (inclusive)
2380  *
2381  * This function scans the page range from @start to @end (inclusive) and tags
2382  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2383  * can then use the TOWRITE tag to identify pages eligible for writeback.
2384  * This mechanism is used to avoid livelocking of writeback by a process
2385  * steadily creating new dirty pages in the file (thus it is important for this
2386  * function to be quick so that it can tag pages faster than a dirtying process
2387  * can create them).
2388  */
2389 void tag_pages_for_writeback(struct address_space *mapping,
2390 			     pgoff_t start, pgoff_t end)
2391 {
2392 	XA_STATE(xas, &mapping->i_pages, start);
2393 	unsigned int tagged = 0;
2394 	void *page;
2395 
2396 	xas_lock_irq(&xas);
2397 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2398 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2399 		if (++tagged % XA_CHECK_SCHED)
2400 			continue;
2401 
2402 		xas_pause(&xas);
2403 		xas_unlock_irq(&xas);
2404 		cond_resched();
2405 		xas_lock_irq(&xas);
2406 	}
2407 	xas_unlock_irq(&xas);
2408 }
2409 EXPORT_SYMBOL(tag_pages_for_writeback);
2410 
2411 static bool folio_prepare_writeback(struct address_space *mapping,
2412 		struct writeback_control *wbc, struct folio *folio)
2413 {
2414 	/*
2415 	 * Folio truncated or invalidated. We can freely skip it then,
2416 	 * even for data integrity operations: the folio has disappeared
2417 	 * concurrently, so there could be no real expectation of this
2418 	 * data integrity operation even if there is now a new, dirty
2419 	 * folio at the same pagecache index.
2420 	 */
2421 	if (unlikely(folio->mapping != mapping))
2422 		return false;
2423 
2424 	/*
2425 	 * Did somebody else write it for us?
2426 	 */
2427 	if (!folio_test_dirty(folio))
2428 		return false;
2429 
2430 	if (folio_test_writeback(folio)) {
2431 		if (wbc->sync_mode == WB_SYNC_NONE)
2432 			return false;
2433 		folio_wait_writeback(folio);
2434 	}
2435 	BUG_ON(folio_test_writeback(folio));
2436 
2437 	if (!folio_clear_dirty_for_io(folio))
2438 		return false;
2439 
2440 	return true;
2441 }
2442 
2443 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2444 {
2445 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2446 		return PAGECACHE_TAG_TOWRITE;
2447 	return PAGECACHE_TAG_DIRTY;
2448 }
2449 
2450 static pgoff_t wbc_end(struct writeback_control *wbc)
2451 {
2452 	if (wbc->range_cyclic)
2453 		return -1;
2454 	return wbc->range_end >> PAGE_SHIFT;
2455 }
2456 
2457 static struct folio *writeback_get_folio(struct address_space *mapping,
2458 		struct writeback_control *wbc)
2459 {
2460 	struct folio *folio;
2461 
2462 retry:
2463 	folio = folio_batch_next(&wbc->fbatch);
2464 	if (!folio) {
2465 		folio_batch_release(&wbc->fbatch);
2466 		cond_resched();
2467 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2468 				wbc_to_tag(wbc), &wbc->fbatch);
2469 		folio = folio_batch_next(&wbc->fbatch);
2470 		if (!folio)
2471 			return NULL;
2472 	}
2473 
2474 	folio_lock(folio);
2475 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2476 		folio_unlock(folio);
2477 		goto retry;
2478 	}
2479 
2480 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2481 	return folio;
2482 }
2483 
2484 /**
2485  * writeback_iter - iterate folio of a mapping for writeback
2486  * @mapping: address space structure to write
2487  * @wbc: writeback context
2488  * @folio: previously iterated folio (%NULL to start)
2489  * @error: in-out pointer for writeback errors (see below)
2490  *
2491  * This function returns the next folio for the writeback operation described by
2492  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2493  * implementation.
2494  *
2495  * To start the writeback operation, %NULL is passed in the @folio argument, and
2496  * for every subsequent iteration the folio returned previously should be passed
2497  * back in.
2498  *
2499  * If there was an error in the per-folio writeback inside the writeback_iter()
2500  * loop, @error should be set to the error value.
2501  *
2502  * Once the writeback described in @wbc has finished, this function will return
2503  * %NULL and if there was an error in any iteration restore it to @error.
2504  *
2505  * Note: callers should not manually break out of the loop using break or goto
2506  * but must keep calling writeback_iter() until it returns %NULL.
2507  *
2508  * Return: the folio to write or %NULL if the loop is done.
2509  */
2510 struct folio *writeback_iter(struct address_space *mapping,
2511 		struct writeback_control *wbc, struct folio *folio, int *error)
2512 {
2513 	if (!folio) {
2514 		folio_batch_init(&wbc->fbatch);
2515 		wbc->saved_err = *error = 0;
2516 
2517 		/*
2518 		 * For range cyclic writeback we remember where we stopped so
2519 		 * that we can continue where we stopped.
2520 		 *
2521 		 * For non-cyclic writeback we always start at the beginning of
2522 		 * the passed in range.
2523 		 */
2524 		if (wbc->range_cyclic)
2525 			wbc->index = mapping->writeback_index;
2526 		else
2527 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2528 
2529 		/*
2530 		 * To avoid livelocks when other processes dirty new pages, we
2531 		 * first tag pages which should be written back and only then
2532 		 * start writing them.
2533 		 *
2534 		 * For data-integrity writeback we have to be careful so that we
2535 		 * do not miss some pages (e.g., because some other process has
2536 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2537 		 * TOWRITE tag can be cleared only by the process clearing the
2538 		 * DIRTY tag (and submitting the page for I/O).
2539 		 */
2540 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2541 			tag_pages_for_writeback(mapping, wbc->index,
2542 					wbc_end(wbc));
2543 	} else {
2544 		wbc->nr_to_write -= folio_nr_pages(folio);
2545 
2546 		WARN_ON_ONCE(*error > 0);
2547 
2548 		/*
2549 		 * For integrity writeback we have to keep going until we have
2550 		 * written all the folios we tagged for writeback above, even if
2551 		 * we run past wbc->nr_to_write or encounter errors.
2552 		 * We stash away the first error we encounter in wbc->saved_err
2553 		 * so that it can be retrieved when we're done.  This is because
2554 		 * the file system may still have state to clear for each folio.
2555 		 *
2556 		 * For background writeback we exit as soon as we run past
2557 		 * wbc->nr_to_write or encounter the first error.
2558 		 */
2559 		if (wbc->sync_mode == WB_SYNC_ALL) {
2560 			if (*error && !wbc->saved_err)
2561 				wbc->saved_err = *error;
2562 		} else {
2563 			if (*error || wbc->nr_to_write <= 0)
2564 				goto done;
2565 		}
2566 	}
2567 
2568 	folio = writeback_get_folio(mapping, wbc);
2569 	if (!folio) {
2570 		/*
2571 		 * To avoid deadlocks between range_cyclic writeback and callers
2572 		 * that hold pages in PageWriteback to aggregate I/O until
2573 		 * the writeback iteration finishes, we do not loop back to the
2574 		 * start of the file.  Doing so causes a page lock/page
2575 		 * writeback access order inversion - we should only ever lock
2576 		 * multiple pages in ascending page->index order, and looping
2577 		 * back to the start of the file violates that rule and causes
2578 		 * deadlocks.
2579 		 */
2580 		if (wbc->range_cyclic)
2581 			mapping->writeback_index = 0;
2582 
2583 		/*
2584 		 * Return the first error we encountered (if there was any) to
2585 		 * the caller.
2586 		 */
2587 		*error = wbc->saved_err;
2588 	}
2589 	return folio;
2590 
2591 done:
2592 	if (wbc->range_cyclic)
2593 		mapping->writeback_index = folio->index + folio_nr_pages(folio);
2594 	folio_batch_release(&wbc->fbatch);
2595 	return NULL;
2596 }
2597 EXPORT_SYMBOL_GPL(writeback_iter);
2598 
2599 /**
2600  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2601  * @mapping: address space structure to write
2602  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2603  * @writepage: function called for each page
2604  * @data: data passed to writepage function
2605  *
2606  * Return: %0 on success, negative error code otherwise
2607  *
2608  * Note: please use writeback_iter() instead.
2609  */
2610 int write_cache_pages(struct address_space *mapping,
2611 		      struct writeback_control *wbc, writepage_t writepage,
2612 		      void *data)
2613 {
2614 	struct folio *folio = NULL;
2615 	int error;
2616 
2617 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2618 		error = writepage(folio, wbc, data);
2619 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2620 			folio_unlock(folio);
2621 			error = 0;
2622 		}
2623 	}
2624 
2625 	return error;
2626 }
2627 EXPORT_SYMBOL(write_cache_pages);
2628 
2629 static int writeback_use_writepage(struct address_space *mapping,
2630 		struct writeback_control *wbc)
2631 {
2632 	struct folio *folio = NULL;
2633 	struct blk_plug plug;
2634 	int err;
2635 
2636 	blk_start_plug(&plug);
2637 	while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2638 		err = mapping->a_ops->writepage(&folio->page, wbc);
2639 		if (err == AOP_WRITEPAGE_ACTIVATE) {
2640 			folio_unlock(folio);
2641 			err = 0;
2642 		}
2643 		mapping_set_error(mapping, err);
2644 	}
2645 	blk_finish_plug(&plug);
2646 
2647 	return err;
2648 }
2649 
2650 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2651 {
2652 	int ret;
2653 	struct bdi_writeback *wb;
2654 
2655 	if (wbc->nr_to_write <= 0)
2656 		return 0;
2657 	wb = inode_to_wb_wbc(mapping->host, wbc);
2658 	wb_bandwidth_estimate_start(wb);
2659 	while (1) {
2660 		if (mapping->a_ops->writepages) {
2661 			ret = mapping->a_ops->writepages(mapping, wbc);
2662 		} else if (mapping->a_ops->writepage) {
2663 			ret = writeback_use_writepage(mapping, wbc);
2664 		} else {
2665 			/* deal with chardevs and other special files */
2666 			ret = 0;
2667 		}
2668 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2669 			break;
2670 
2671 		/*
2672 		 * Lacking an allocation context or the locality or writeback
2673 		 * state of any of the inode's pages, throttle based on
2674 		 * writeback activity on the local node. It's as good a
2675 		 * guess as any.
2676 		 */
2677 		reclaim_throttle(NODE_DATA(numa_node_id()),
2678 			VMSCAN_THROTTLE_WRITEBACK);
2679 	}
2680 	/*
2681 	 * Usually few pages are written by now from those we've just submitted
2682 	 * but if there's constant writeback being submitted, this makes sure
2683 	 * writeback bandwidth is updated once in a while.
2684 	 */
2685 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2686 				   BANDWIDTH_INTERVAL))
2687 		wb_update_bandwidth(wb);
2688 	return ret;
2689 }
2690 
2691 /*
2692  * For address_spaces which do not use buffers nor write back.
2693  */
2694 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2695 {
2696 	if (!folio_test_dirty(folio))
2697 		return !folio_test_set_dirty(folio);
2698 	return false;
2699 }
2700 EXPORT_SYMBOL(noop_dirty_folio);
2701 
2702 /*
2703  * Helper function for set_page_dirty family.
2704  *
2705  * Caller must hold folio_memcg_lock().
2706  *
2707  * NOTE: This relies on being atomic wrt interrupts.
2708  */
2709 static void folio_account_dirtied(struct folio *folio,
2710 		struct address_space *mapping)
2711 {
2712 	struct inode *inode = mapping->host;
2713 
2714 	trace_writeback_dirty_folio(folio, mapping);
2715 
2716 	if (mapping_can_writeback(mapping)) {
2717 		struct bdi_writeback *wb;
2718 		long nr = folio_nr_pages(folio);
2719 
2720 		inode_attach_wb(inode, folio);
2721 		wb = inode_to_wb(inode);
2722 
2723 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2724 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2725 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2726 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2727 		wb_stat_mod(wb, WB_DIRTIED, nr);
2728 		task_io_account_write(nr * PAGE_SIZE);
2729 		current->nr_dirtied += nr;
2730 		__this_cpu_add(bdp_ratelimits, nr);
2731 
2732 		mem_cgroup_track_foreign_dirty(folio, wb);
2733 	}
2734 }
2735 
2736 /*
2737  * Helper function for deaccounting dirty page without writeback.
2738  *
2739  * Caller must hold folio_memcg_lock().
2740  */
2741 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2742 {
2743 	long nr = folio_nr_pages(folio);
2744 
2745 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2746 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2747 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2748 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2749 }
2750 
2751 /*
2752  * Mark the folio dirty, and set it dirty in the page cache.
2753  *
2754  * If warn is true, then emit a warning if the folio is not uptodate and has
2755  * not been truncated.
2756  *
2757  * The caller must hold folio_memcg_lock().  It is the caller's
2758  * responsibility to prevent the folio from being truncated while
2759  * this function is in progress, although it may have been truncated
2760  * before this function is called.  Most callers have the folio locked.
2761  * A few have the folio blocked from truncation through other means (e.g.
2762  * zap_vma_pages() has it mapped and is holding the page table lock).
2763  * When called from mark_buffer_dirty(), the filesystem should hold a
2764  * reference to the buffer_head that is being marked dirty, which causes
2765  * try_to_free_buffers() to fail.
2766  */
2767 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2768 			     int warn)
2769 {
2770 	unsigned long flags;
2771 
2772 	xa_lock_irqsave(&mapping->i_pages, flags);
2773 	if (folio->mapping) {	/* Race with truncate? */
2774 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2775 		folio_account_dirtied(folio, mapping);
2776 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2777 				PAGECACHE_TAG_DIRTY);
2778 	}
2779 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2780 }
2781 
2782 /**
2783  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2784  * @mapping: Address space this folio belongs to.
2785  * @folio: Folio to be marked as dirty.
2786  *
2787  * Filesystems which do not use buffer heads should call this function
2788  * from their dirty_folio address space operation.  It ignores the
2789  * contents of folio_get_private(), so if the filesystem marks individual
2790  * blocks as dirty, the filesystem should handle that itself.
2791  *
2792  * This is also sometimes used by filesystems which use buffer_heads when
2793  * a single buffer is being dirtied: we want to set the folio dirty in
2794  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2795  * whereas block_dirty_folio() is a "top-down" dirtying.
2796  *
2797  * The caller must ensure this doesn't race with truncation.  Most will
2798  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2799  * folio mapped and the pte lock held, which also locks out truncation.
2800  */
2801 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2802 {
2803 	folio_memcg_lock(folio);
2804 	if (folio_test_set_dirty(folio)) {
2805 		folio_memcg_unlock(folio);
2806 		return false;
2807 	}
2808 
2809 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2810 	folio_memcg_unlock(folio);
2811 
2812 	if (mapping->host) {
2813 		/* !PageAnon && !swapper_space */
2814 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2815 	}
2816 	return true;
2817 }
2818 EXPORT_SYMBOL(filemap_dirty_folio);
2819 
2820 /**
2821  * folio_redirty_for_writepage - Decline to write a dirty folio.
2822  * @wbc: The writeback control.
2823  * @folio: The folio.
2824  *
2825  * When a writepage implementation decides that it doesn't want to write
2826  * @folio for some reason, it should call this function, unlock @folio and
2827  * return 0.
2828  *
2829  * Return: True if we redirtied the folio.  False if someone else dirtied
2830  * it first.
2831  */
2832 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2833 		struct folio *folio)
2834 {
2835 	struct address_space *mapping = folio->mapping;
2836 	long nr = folio_nr_pages(folio);
2837 	bool ret;
2838 
2839 	wbc->pages_skipped += nr;
2840 	ret = filemap_dirty_folio(mapping, folio);
2841 	if (mapping && mapping_can_writeback(mapping)) {
2842 		struct inode *inode = mapping->host;
2843 		struct bdi_writeback *wb;
2844 		struct wb_lock_cookie cookie = {};
2845 
2846 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2847 		current->nr_dirtied -= nr;
2848 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2849 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2850 		unlocked_inode_to_wb_end(inode, &cookie);
2851 	}
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL(folio_redirty_for_writepage);
2855 
2856 /**
2857  * folio_mark_dirty - Mark a folio as being modified.
2858  * @folio: The folio.
2859  *
2860  * The folio may not be truncated while this function is running.
2861  * Holding the folio lock is sufficient to prevent truncation, but some
2862  * callers cannot acquire a sleeping lock.  These callers instead hold
2863  * the page table lock for a page table which contains at least one page
2864  * in this folio.  Truncation will block on the page table lock as it
2865  * unmaps pages before removing the folio from its mapping.
2866  *
2867  * Return: True if the folio was newly dirtied, false if it was already dirty.
2868  */
2869 bool folio_mark_dirty(struct folio *folio)
2870 {
2871 	struct address_space *mapping = folio_mapping(folio);
2872 
2873 	if (likely(mapping)) {
2874 		/*
2875 		 * readahead/folio_deactivate could remain
2876 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2877 		 * About readahead, if the folio is written, the flags would be
2878 		 * reset. So no problem.
2879 		 * About folio_deactivate, if the folio is redirtied,
2880 		 * the flag will be reset. So no problem. but if the
2881 		 * folio is used by readahead it will confuse readahead
2882 		 * and make it restart the size rampup process. But it's
2883 		 * a trivial problem.
2884 		 */
2885 		if (folio_test_reclaim(folio))
2886 			folio_clear_reclaim(folio);
2887 		return mapping->a_ops->dirty_folio(mapping, folio);
2888 	}
2889 
2890 	return noop_dirty_folio(mapping, folio);
2891 }
2892 EXPORT_SYMBOL(folio_mark_dirty);
2893 
2894 /*
2895  * set_page_dirty() is racy if the caller has no reference against
2896  * page->mapping->host, and if the page is unlocked.  This is because another
2897  * CPU could truncate the page off the mapping and then free the mapping.
2898  *
2899  * Usually, the page _is_ locked, or the caller is a user-space process which
2900  * holds a reference on the inode by having an open file.
2901  *
2902  * In other cases, the page should be locked before running set_page_dirty().
2903  */
2904 int set_page_dirty_lock(struct page *page)
2905 {
2906 	int ret;
2907 
2908 	lock_page(page);
2909 	ret = set_page_dirty(page);
2910 	unlock_page(page);
2911 	return ret;
2912 }
2913 EXPORT_SYMBOL(set_page_dirty_lock);
2914 
2915 /*
2916  * This cancels just the dirty bit on the kernel page itself, it does NOT
2917  * actually remove dirty bits on any mmap's that may be around. It also
2918  * leaves the page tagged dirty, so any sync activity will still find it on
2919  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2920  * look at the dirty bits in the VM.
2921  *
2922  * Doing this should *normally* only ever be done when a page is truncated,
2923  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2924  * this when it notices that somebody has cleaned out all the buffers on a
2925  * page without actually doing it through the VM. Can you say "ext3 is
2926  * horribly ugly"? Thought you could.
2927  */
2928 void __folio_cancel_dirty(struct folio *folio)
2929 {
2930 	struct address_space *mapping = folio_mapping(folio);
2931 
2932 	if (mapping_can_writeback(mapping)) {
2933 		struct inode *inode = mapping->host;
2934 		struct bdi_writeback *wb;
2935 		struct wb_lock_cookie cookie = {};
2936 
2937 		folio_memcg_lock(folio);
2938 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2939 
2940 		if (folio_test_clear_dirty(folio))
2941 			folio_account_cleaned(folio, wb);
2942 
2943 		unlocked_inode_to_wb_end(inode, &cookie);
2944 		folio_memcg_unlock(folio);
2945 	} else {
2946 		folio_clear_dirty(folio);
2947 	}
2948 }
2949 EXPORT_SYMBOL(__folio_cancel_dirty);
2950 
2951 /*
2952  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2953  * Returns true if the folio was previously dirty.
2954  *
2955  * This is for preparing to put the folio under writeout.  We leave
2956  * the folio tagged as dirty in the xarray so that a concurrent
2957  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2958  * The ->writepage implementation will run either folio_start_writeback()
2959  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2960  * and xarray dirty tag back into sync.
2961  *
2962  * This incoherency between the folio's dirty flag and xarray tag is
2963  * unfortunate, but it only exists while the folio is locked.
2964  */
2965 bool folio_clear_dirty_for_io(struct folio *folio)
2966 {
2967 	struct address_space *mapping = folio_mapping(folio);
2968 	bool ret = false;
2969 
2970 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2971 
2972 	if (mapping && mapping_can_writeback(mapping)) {
2973 		struct inode *inode = mapping->host;
2974 		struct bdi_writeback *wb;
2975 		struct wb_lock_cookie cookie = {};
2976 
2977 		/*
2978 		 * Yes, Virginia, this is indeed insane.
2979 		 *
2980 		 * We use this sequence to make sure that
2981 		 *  (a) we account for dirty stats properly
2982 		 *  (b) we tell the low-level filesystem to
2983 		 *      mark the whole folio dirty if it was
2984 		 *      dirty in a pagetable. Only to then
2985 		 *  (c) clean the folio again and return 1 to
2986 		 *      cause the writeback.
2987 		 *
2988 		 * This way we avoid all nasty races with the
2989 		 * dirty bit in multiple places and clearing
2990 		 * them concurrently from different threads.
2991 		 *
2992 		 * Note! Normally the "folio_mark_dirty(folio)"
2993 		 * has no effect on the actual dirty bit - since
2994 		 * that will already usually be set. But we
2995 		 * need the side effects, and it can help us
2996 		 * avoid races.
2997 		 *
2998 		 * We basically use the folio "master dirty bit"
2999 		 * as a serialization point for all the different
3000 		 * threads doing their things.
3001 		 */
3002 		if (folio_mkclean(folio))
3003 			folio_mark_dirty(folio);
3004 		/*
3005 		 * We carefully synchronise fault handlers against
3006 		 * installing a dirty pte and marking the folio dirty
3007 		 * at this point.  We do this by having them hold the
3008 		 * page lock while dirtying the folio, and folios are
3009 		 * always locked coming in here, so we get the desired
3010 		 * exclusion.
3011 		 */
3012 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
3013 		if (folio_test_clear_dirty(folio)) {
3014 			long nr = folio_nr_pages(folio);
3015 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3016 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3017 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3018 			ret = true;
3019 		}
3020 		unlocked_inode_to_wb_end(inode, &cookie);
3021 		return ret;
3022 	}
3023 	return folio_test_clear_dirty(folio);
3024 }
3025 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3026 
3027 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3028 {
3029 	atomic_inc(&wb->writeback_inodes);
3030 }
3031 
3032 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3033 {
3034 	unsigned long flags;
3035 	atomic_dec(&wb->writeback_inodes);
3036 	/*
3037 	 * Make sure estimate of writeback throughput gets updated after
3038 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3039 	 * (which is the interval other bandwidth updates use for batching) so
3040 	 * that if multiple inodes end writeback at a similar time, they get
3041 	 * batched into one bandwidth update.
3042 	 */
3043 	spin_lock_irqsave(&wb->work_lock, flags);
3044 	if (test_bit(WB_registered, &wb->state))
3045 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3046 	spin_unlock_irqrestore(&wb->work_lock, flags);
3047 }
3048 
3049 bool __folio_end_writeback(struct folio *folio)
3050 {
3051 	long nr = folio_nr_pages(folio);
3052 	struct address_space *mapping = folio_mapping(folio);
3053 	bool ret;
3054 
3055 	folio_memcg_lock(folio);
3056 	if (mapping && mapping_use_writeback_tags(mapping)) {
3057 		struct inode *inode = mapping->host;
3058 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3059 		unsigned long flags;
3060 
3061 		xa_lock_irqsave(&mapping->i_pages, flags);
3062 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3063 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3064 					PAGECACHE_TAG_WRITEBACK);
3065 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3066 			struct bdi_writeback *wb = inode_to_wb(inode);
3067 
3068 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3069 			__wb_writeout_add(wb, nr);
3070 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3071 				wb_inode_writeback_end(wb);
3072 		}
3073 
3074 		if (mapping->host && !mapping_tagged(mapping,
3075 						     PAGECACHE_TAG_WRITEBACK))
3076 			sb_clear_inode_writeback(mapping->host);
3077 
3078 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3079 	} else {
3080 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3081 	}
3082 
3083 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3084 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3085 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3086 	folio_memcg_unlock(folio);
3087 
3088 	return ret;
3089 }
3090 
3091 void __folio_start_writeback(struct folio *folio, bool keep_write)
3092 {
3093 	long nr = folio_nr_pages(folio);
3094 	struct address_space *mapping = folio_mapping(folio);
3095 	int access_ret;
3096 
3097 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3098 
3099 	folio_memcg_lock(folio);
3100 	if (mapping && mapping_use_writeback_tags(mapping)) {
3101 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3102 		struct inode *inode = mapping->host;
3103 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3104 		unsigned long flags;
3105 		bool on_wblist;
3106 
3107 		xas_lock_irqsave(&xas, flags);
3108 		xas_load(&xas);
3109 		folio_test_set_writeback(folio);
3110 
3111 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3112 
3113 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3114 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3115 			struct bdi_writeback *wb = inode_to_wb(inode);
3116 
3117 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3118 			if (!on_wblist)
3119 				wb_inode_writeback_start(wb);
3120 		}
3121 
3122 		/*
3123 		 * We can come through here when swapping anonymous
3124 		 * folios, so we don't necessarily have an inode to
3125 		 * track for sync.
3126 		 */
3127 		if (mapping->host && !on_wblist)
3128 			sb_mark_inode_writeback(mapping->host);
3129 		if (!folio_test_dirty(folio))
3130 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3131 		if (!keep_write)
3132 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3133 		xas_unlock_irqrestore(&xas, flags);
3134 	} else {
3135 		folio_test_set_writeback(folio);
3136 	}
3137 
3138 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3139 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3140 	folio_memcg_unlock(folio);
3141 
3142 	access_ret = arch_make_folio_accessible(folio);
3143 	/*
3144 	 * If writeback has been triggered on a page that cannot be made
3145 	 * accessible, it is too late to recover here.
3146 	 */
3147 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3148 }
3149 EXPORT_SYMBOL(__folio_start_writeback);
3150 
3151 /**
3152  * folio_wait_writeback - Wait for a folio to finish writeback.
3153  * @folio: The folio to wait for.
3154  *
3155  * If the folio is currently being written back to storage, wait for the
3156  * I/O to complete.
3157  *
3158  * Context: Sleeps.  Must be called in process context and with
3159  * no spinlocks held.  Caller should hold a reference on the folio.
3160  * If the folio is not locked, writeback may start again after writeback
3161  * has finished.
3162  */
3163 void folio_wait_writeback(struct folio *folio)
3164 {
3165 	while (folio_test_writeback(folio)) {
3166 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3167 		folio_wait_bit(folio, PG_writeback);
3168 	}
3169 }
3170 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3171 
3172 /**
3173  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3174  * @folio: The folio to wait for.
3175  *
3176  * If the folio is currently being written back to storage, wait for the
3177  * I/O to complete or a fatal signal to arrive.
3178  *
3179  * Context: Sleeps.  Must be called in process context and with
3180  * no spinlocks held.  Caller should hold a reference on the folio.
3181  * If the folio is not locked, writeback may start again after writeback
3182  * has finished.
3183  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3184  */
3185 int folio_wait_writeback_killable(struct folio *folio)
3186 {
3187 	while (folio_test_writeback(folio)) {
3188 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3189 		if (folio_wait_bit_killable(folio, PG_writeback))
3190 			return -EINTR;
3191 	}
3192 
3193 	return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3196 
3197 /**
3198  * folio_wait_stable() - wait for writeback to finish, if necessary.
3199  * @folio: The folio to wait on.
3200  *
3201  * This function determines if the given folio is related to a backing
3202  * device that requires folio contents to be held stable during writeback.
3203  * If so, then it will wait for any pending writeback to complete.
3204  *
3205  * Context: Sleeps.  Must be called in process context and with
3206  * no spinlocks held.  Caller should hold a reference on the folio.
3207  * If the folio is not locked, writeback may start again after writeback
3208  * has finished.
3209  */
3210 void folio_wait_stable(struct folio *folio)
3211 {
3212 	if (mapping_stable_writes(folio_mapping(folio)))
3213 		folio_wait_writeback(folio);
3214 }
3215 EXPORT_SYMBOL_GPL(folio_wait_stable);
3216