1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 bool freerun; 143 bool dirty_exceeded; 144 }; 145 146 /* 147 * Length of period for aging writeout fractions of bdis. This is an 148 * arbitrarily chosen number. The longer the period, the slower fractions will 149 * reflect changes in current writeout rate. 150 */ 151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 152 153 #ifdef CONFIG_CGROUP_WRITEBACK 154 155 #define GDTC_INIT(__wb) .wb = (__wb), \ 156 .dom = &global_wb_domain, \ 157 .wb_completions = &(__wb)->completions 158 159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 160 161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 162 .dom = mem_cgroup_wb_domain(__wb), \ 163 .wb_completions = &(__wb)->memcg_completions, \ 164 .gdtc = __gdtc 165 166 static bool mdtc_valid(struct dirty_throttle_control *dtc) 167 { 168 return dtc->dom; 169 } 170 171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 172 { 173 return dtc->dom; 174 } 175 176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 177 { 178 return mdtc->gdtc; 179 } 180 181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 182 { 183 return &wb->memcg_completions; 184 } 185 186 static void wb_min_max_ratio(struct bdi_writeback *wb, 187 unsigned long *minp, unsigned long *maxp) 188 { 189 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 190 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 191 unsigned long long min = wb->bdi->min_ratio; 192 unsigned long long max = wb->bdi->max_ratio; 193 194 /* 195 * @wb may already be clean by the time control reaches here and 196 * the total may not include its bw. 197 */ 198 if (this_bw < tot_bw) { 199 if (min) { 200 min *= this_bw; 201 min = div64_ul(min, tot_bw); 202 } 203 if (max < 100 * BDI_RATIO_SCALE) { 204 max *= this_bw; 205 max = div64_ul(max, tot_bw); 206 } 207 } 208 209 *minp = min; 210 *maxp = max; 211 } 212 213 #else /* CONFIG_CGROUP_WRITEBACK */ 214 215 #define GDTC_INIT(__wb) .wb = (__wb), \ 216 .wb_completions = &(__wb)->completions 217 #define GDTC_INIT_NO_WB 218 #define MDTC_INIT(__wb, __gdtc) 219 220 static bool mdtc_valid(struct dirty_throttle_control *dtc) 221 { 222 return false; 223 } 224 225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 226 { 227 return &global_wb_domain; 228 } 229 230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 231 { 232 return NULL; 233 } 234 235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 236 { 237 return NULL; 238 } 239 240 static void wb_min_max_ratio(struct bdi_writeback *wb, 241 unsigned long *minp, unsigned long *maxp) 242 { 243 *minp = wb->bdi->min_ratio; 244 *maxp = wb->bdi->max_ratio; 245 } 246 247 #endif /* CONFIG_CGROUP_WRITEBACK */ 248 249 /* 250 * In a memory zone, there is a certain amount of pages we consider 251 * available for the page cache, which is essentially the number of 252 * free and reclaimable pages, minus some zone reserves to protect 253 * lowmem and the ability to uphold the zone's watermarks without 254 * requiring writeback. 255 * 256 * This number of dirtyable pages is the base value of which the 257 * user-configurable dirty ratio is the effective number of pages that 258 * are allowed to be actually dirtied. Per individual zone, or 259 * globally by using the sum of dirtyable pages over all zones. 260 * 261 * Because the user is allowed to specify the dirty limit globally as 262 * absolute number of bytes, calculating the per-zone dirty limit can 263 * require translating the configured limit into a percentage of 264 * global dirtyable memory first. 265 */ 266 267 /** 268 * node_dirtyable_memory - number of dirtyable pages in a node 269 * @pgdat: the node 270 * 271 * Return: the node's number of pages potentially available for dirty 272 * page cache. This is the base value for the per-node dirty limits. 273 */ 274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 275 { 276 unsigned long nr_pages = 0; 277 int z; 278 279 for (z = 0; z < MAX_NR_ZONES; z++) { 280 struct zone *zone = pgdat->node_zones + z; 281 282 if (!populated_zone(zone)) 283 continue; 284 285 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 286 } 287 288 /* 289 * Pages reserved for the kernel should not be considered 290 * dirtyable, to prevent a situation where reclaim has to 291 * clean pages in order to balance the zones. 292 */ 293 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 294 295 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 296 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 297 298 return nr_pages; 299 } 300 301 static unsigned long highmem_dirtyable_memory(unsigned long total) 302 { 303 #ifdef CONFIG_HIGHMEM 304 int node; 305 unsigned long x = 0; 306 int i; 307 308 for_each_node_state(node, N_HIGH_MEMORY) { 309 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 310 struct zone *z; 311 unsigned long nr_pages; 312 313 if (!is_highmem_idx(i)) 314 continue; 315 316 z = &NODE_DATA(node)->node_zones[i]; 317 if (!populated_zone(z)) 318 continue; 319 320 nr_pages = zone_page_state(z, NR_FREE_PAGES); 321 /* watch for underflows */ 322 nr_pages -= min(nr_pages, high_wmark_pages(z)); 323 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 324 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 325 x += nr_pages; 326 } 327 } 328 329 /* 330 * Make sure that the number of highmem pages is never larger 331 * than the number of the total dirtyable memory. This can only 332 * occur in very strange VM situations but we want to make sure 333 * that this does not occur. 334 */ 335 return min(x, total); 336 #else 337 return 0; 338 #endif 339 } 340 341 /** 342 * global_dirtyable_memory - number of globally dirtyable pages 343 * 344 * Return: the global number of pages potentially available for dirty 345 * page cache. This is the base value for the global dirty limits. 346 */ 347 static unsigned long global_dirtyable_memory(void) 348 { 349 unsigned long x; 350 351 x = global_zone_page_state(NR_FREE_PAGES); 352 /* 353 * Pages reserved for the kernel should not be considered 354 * dirtyable, to prevent a situation where reclaim has to 355 * clean pages in order to balance the zones. 356 */ 357 x -= min(x, totalreserve_pages); 358 359 x += global_node_page_state(NR_INACTIVE_FILE); 360 x += global_node_page_state(NR_ACTIVE_FILE); 361 362 if (!vm_highmem_is_dirtyable) 363 x -= highmem_dirtyable_memory(x); 364 365 return x + 1; /* Ensure that we never return 0 */ 366 } 367 368 /** 369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 370 * @dtc: dirty_throttle_control of interest 371 * 372 * Calculate @dtc->thresh and ->bg_thresh considering 373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 374 * must ensure that @dtc->avail is set before calling this function. The 375 * dirty limits will be lifted by 1/4 for real-time tasks. 376 */ 377 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 378 { 379 const unsigned long available_memory = dtc->avail; 380 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 381 unsigned long bytes = vm_dirty_bytes; 382 unsigned long bg_bytes = dirty_background_bytes; 383 /* convert ratios to per-PAGE_SIZE for higher precision */ 384 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 385 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 386 unsigned long thresh; 387 unsigned long bg_thresh; 388 struct task_struct *tsk; 389 390 /* gdtc is !NULL iff @dtc is for memcg domain */ 391 if (gdtc) { 392 unsigned long global_avail = gdtc->avail; 393 394 /* 395 * The byte settings can't be applied directly to memcg 396 * domains. Convert them to ratios by scaling against 397 * globally available memory. As the ratios are in 398 * per-PAGE_SIZE, they can be obtained by dividing bytes by 399 * number of pages. 400 */ 401 if (bytes) 402 ratio = min(DIV_ROUND_UP(bytes, global_avail), 403 PAGE_SIZE); 404 if (bg_bytes) 405 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 406 PAGE_SIZE); 407 bytes = bg_bytes = 0; 408 } 409 410 if (bytes) 411 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 412 else 413 thresh = (ratio * available_memory) / PAGE_SIZE; 414 415 if (bg_bytes) 416 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 417 else 418 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 419 420 if (bg_thresh >= thresh) 421 bg_thresh = thresh / 2; 422 tsk = current; 423 if (rt_task(tsk)) { 424 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 425 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 426 } 427 dtc->thresh = thresh; 428 dtc->bg_thresh = bg_thresh; 429 430 /* we should eventually report the domain in the TP */ 431 if (!gdtc) 432 trace_global_dirty_state(bg_thresh, thresh); 433 } 434 435 /** 436 * global_dirty_limits - background-writeback and dirty-throttling thresholds 437 * @pbackground: out parameter for bg_thresh 438 * @pdirty: out parameter for thresh 439 * 440 * Calculate bg_thresh and thresh for global_wb_domain. See 441 * domain_dirty_limits() for details. 442 */ 443 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 444 { 445 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 446 447 gdtc.avail = global_dirtyable_memory(); 448 domain_dirty_limits(&gdtc); 449 450 *pbackground = gdtc.bg_thresh; 451 *pdirty = gdtc.thresh; 452 } 453 454 /** 455 * node_dirty_limit - maximum number of dirty pages allowed in a node 456 * @pgdat: the node 457 * 458 * Return: the maximum number of dirty pages allowed in a node, based 459 * on the node's dirtyable memory. 460 */ 461 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 462 { 463 unsigned long node_memory = node_dirtyable_memory(pgdat); 464 struct task_struct *tsk = current; 465 unsigned long dirty; 466 467 if (vm_dirty_bytes) 468 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 469 node_memory / global_dirtyable_memory(); 470 else 471 dirty = vm_dirty_ratio * node_memory / 100; 472 473 if (rt_task(tsk)) 474 dirty += dirty / 4; 475 476 return dirty; 477 } 478 479 /** 480 * node_dirty_ok - tells whether a node is within its dirty limits 481 * @pgdat: the node to check 482 * 483 * Return: %true when the dirty pages in @pgdat are within the node's 484 * dirty limit, %false if the limit is exceeded. 485 */ 486 bool node_dirty_ok(struct pglist_data *pgdat) 487 { 488 unsigned long limit = node_dirty_limit(pgdat); 489 unsigned long nr_pages = 0; 490 491 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 492 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 493 494 return nr_pages <= limit; 495 } 496 497 #ifdef CONFIG_SYSCTL 498 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 499 void *buffer, size_t *lenp, loff_t *ppos) 500 { 501 int ret; 502 503 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 504 if (ret == 0 && write) 505 dirty_background_bytes = 0; 506 return ret; 507 } 508 509 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 510 void *buffer, size_t *lenp, loff_t *ppos) 511 { 512 int ret; 513 514 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 515 if (ret == 0 && write) 516 dirty_background_ratio = 0; 517 return ret; 518 } 519 520 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 521 size_t *lenp, loff_t *ppos) 522 { 523 int old_ratio = vm_dirty_ratio; 524 int ret; 525 526 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 527 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 528 writeback_set_ratelimit(); 529 vm_dirty_bytes = 0; 530 } 531 return ret; 532 } 533 534 static int dirty_bytes_handler(struct ctl_table *table, int write, 535 void *buffer, size_t *lenp, loff_t *ppos) 536 { 537 unsigned long old_bytes = vm_dirty_bytes; 538 int ret; 539 540 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 541 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 542 writeback_set_ratelimit(); 543 vm_dirty_ratio = 0; 544 } 545 return ret; 546 } 547 #endif 548 549 static unsigned long wp_next_time(unsigned long cur_time) 550 { 551 cur_time += VM_COMPLETIONS_PERIOD_LEN; 552 /* 0 has a special meaning... */ 553 if (!cur_time) 554 return 1; 555 return cur_time; 556 } 557 558 static void wb_domain_writeout_add(struct wb_domain *dom, 559 struct fprop_local_percpu *completions, 560 unsigned int max_prop_frac, long nr) 561 { 562 __fprop_add_percpu_max(&dom->completions, completions, 563 max_prop_frac, nr); 564 /* First event after period switching was turned off? */ 565 if (unlikely(!dom->period_time)) { 566 /* 567 * We can race with other __bdi_writeout_inc calls here but 568 * it does not cause any harm since the resulting time when 569 * timer will fire and what is in writeout_period_time will be 570 * roughly the same. 571 */ 572 dom->period_time = wp_next_time(jiffies); 573 mod_timer(&dom->period_timer, dom->period_time); 574 } 575 } 576 577 /* 578 * Increment @wb's writeout completion count and the global writeout 579 * completion count. Called from __folio_end_writeback(). 580 */ 581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 582 { 583 struct wb_domain *cgdom; 584 585 wb_stat_mod(wb, WB_WRITTEN, nr); 586 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 587 wb->bdi->max_prop_frac, nr); 588 589 cgdom = mem_cgroup_wb_domain(wb); 590 if (cgdom) 591 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 592 wb->bdi->max_prop_frac, nr); 593 } 594 595 void wb_writeout_inc(struct bdi_writeback *wb) 596 { 597 unsigned long flags; 598 599 local_irq_save(flags); 600 __wb_writeout_add(wb, 1); 601 local_irq_restore(flags); 602 } 603 EXPORT_SYMBOL_GPL(wb_writeout_inc); 604 605 /* 606 * On idle system, we can be called long after we scheduled because we use 607 * deferred timers so count with missed periods. 608 */ 609 static void writeout_period(struct timer_list *t) 610 { 611 struct wb_domain *dom = from_timer(dom, t, period_timer); 612 int miss_periods = (jiffies - dom->period_time) / 613 VM_COMPLETIONS_PERIOD_LEN; 614 615 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 616 dom->period_time = wp_next_time(dom->period_time + 617 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 618 mod_timer(&dom->period_timer, dom->period_time); 619 } else { 620 /* 621 * Aging has zeroed all fractions. Stop wasting CPU on period 622 * updates. 623 */ 624 dom->period_time = 0; 625 } 626 } 627 628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 629 { 630 memset(dom, 0, sizeof(*dom)); 631 632 spin_lock_init(&dom->lock); 633 634 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 635 636 dom->dirty_limit_tstamp = jiffies; 637 638 return fprop_global_init(&dom->completions, gfp); 639 } 640 641 #ifdef CONFIG_CGROUP_WRITEBACK 642 void wb_domain_exit(struct wb_domain *dom) 643 { 644 del_timer_sync(&dom->period_timer); 645 fprop_global_destroy(&dom->completions); 646 } 647 #endif 648 649 /* 650 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 651 * registered backing devices, which, for obvious reasons, can not 652 * exceed 100%. 653 */ 654 static unsigned int bdi_min_ratio; 655 656 static int bdi_check_pages_limit(unsigned long pages) 657 { 658 unsigned long max_dirty_pages = global_dirtyable_memory(); 659 660 if (pages > max_dirty_pages) 661 return -EINVAL; 662 663 return 0; 664 } 665 666 static unsigned long bdi_ratio_from_pages(unsigned long pages) 667 { 668 unsigned long background_thresh; 669 unsigned long dirty_thresh; 670 unsigned long ratio; 671 672 global_dirty_limits(&background_thresh, &dirty_thresh); 673 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 674 675 return ratio; 676 } 677 678 static u64 bdi_get_bytes(unsigned int ratio) 679 { 680 unsigned long background_thresh; 681 unsigned long dirty_thresh; 682 u64 bytes; 683 684 global_dirty_limits(&background_thresh, &dirty_thresh); 685 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 686 687 return bytes; 688 } 689 690 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 691 { 692 unsigned int delta; 693 int ret = 0; 694 695 if (min_ratio > 100 * BDI_RATIO_SCALE) 696 return -EINVAL; 697 698 spin_lock_bh(&bdi_lock); 699 if (min_ratio > bdi->max_ratio) { 700 ret = -EINVAL; 701 } else { 702 if (min_ratio < bdi->min_ratio) { 703 delta = bdi->min_ratio - min_ratio; 704 bdi_min_ratio -= delta; 705 bdi->min_ratio = min_ratio; 706 } else { 707 delta = min_ratio - bdi->min_ratio; 708 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 709 bdi_min_ratio += delta; 710 bdi->min_ratio = min_ratio; 711 } else { 712 ret = -EINVAL; 713 } 714 } 715 } 716 spin_unlock_bh(&bdi_lock); 717 718 return ret; 719 } 720 721 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 722 { 723 int ret = 0; 724 725 if (max_ratio > 100 * BDI_RATIO_SCALE) 726 return -EINVAL; 727 728 spin_lock_bh(&bdi_lock); 729 if (bdi->min_ratio > max_ratio) { 730 ret = -EINVAL; 731 } else { 732 bdi->max_ratio = max_ratio; 733 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 734 (100 * BDI_RATIO_SCALE); 735 } 736 spin_unlock_bh(&bdi_lock); 737 738 return ret; 739 } 740 741 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 742 { 743 return __bdi_set_min_ratio(bdi, min_ratio); 744 } 745 746 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 747 { 748 return __bdi_set_max_ratio(bdi, max_ratio); 749 } 750 751 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 752 { 753 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 754 } 755 756 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 757 { 758 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 759 } 760 EXPORT_SYMBOL(bdi_set_max_ratio); 761 762 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 763 { 764 return bdi_get_bytes(bdi->min_ratio); 765 } 766 767 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 768 { 769 int ret; 770 unsigned long pages = min_bytes >> PAGE_SHIFT; 771 unsigned long min_ratio; 772 773 ret = bdi_check_pages_limit(pages); 774 if (ret) 775 return ret; 776 777 min_ratio = bdi_ratio_from_pages(pages); 778 return __bdi_set_min_ratio(bdi, min_ratio); 779 } 780 781 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 782 { 783 return bdi_get_bytes(bdi->max_ratio); 784 } 785 786 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 787 { 788 int ret; 789 unsigned long pages = max_bytes >> PAGE_SHIFT; 790 unsigned long max_ratio; 791 792 ret = bdi_check_pages_limit(pages); 793 if (ret) 794 return ret; 795 796 max_ratio = bdi_ratio_from_pages(pages); 797 return __bdi_set_max_ratio(bdi, max_ratio); 798 } 799 800 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 801 { 802 if (strict_limit > 1) 803 return -EINVAL; 804 805 spin_lock_bh(&bdi_lock); 806 if (strict_limit) 807 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 808 else 809 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 810 spin_unlock_bh(&bdi_lock); 811 812 return 0; 813 } 814 815 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 816 unsigned long bg_thresh) 817 { 818 return (thresh + bg_thresh) / 2; 819 } 820 821 static unsigned long hard_dirty_limit(struct wb_domain *dom, 822 unsigned long thresh) 823 { 824 return max(thresh, dom->dirty_limit); 825 } 826 827 /* 828 * Memory which can be further allocated to a memcg domain is capped by 829 * system-wide clean memory excluding the amount being used in the domain. 830 */ 831 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 832 unsigned long filepages, unsigned long headroom) 833 { 834 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 835 unsigned long clean = filepages - min(filepages, mdtc->dirty); 836 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 837 unsigned long other_clean = global_clean - min(global_clean, clean); 838 839 mdtc->avail = filepages + min(headroom, other_clean); 840 } 841 842 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 843 { 844 return mdtc_gdtc(dtc) == NULL; 845 } 846 847 /* 848 * Dirty background will ignore pages being written as we're trying to 849 * decide whether to put more under writeback. 850 */ 851 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 852 bool include_writeback) 853 { 854 if (dtc_is_global(dtc)) { 855 dtc->avail = global_dirtyable_memory(); 856 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 857 if (include_writeback) 858 dtc->dirty += global_node_page_state(NR_WRITEBACK); 859 } else { 860 unsigned long filepages = 0, headroom = 0, writeback = 0; 861 862 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 863 &writeback); 864 if (include_writeback) 865 dtc->dirty += writeback; 866 mdtc_calc_avail(dtc, filepages, headroom); 867 } 868 } 869 870 /** 871 * __wb_calc_thresh - @wb's share of dirty threshold 872 * @dtc: dirty_throttle_context of interest 873 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 874 * 875 * Note that balance_dirty_pages() will only seriously take dirty throttling 876 * threshold as a hard limit when sleeping max_pause per page is not enough 877 * to keep the dirty pages under control. For example, when the device is 878 * completely stalled due to some error conditions, or when there are 1000 879 * dd tasks writing to a slow 10MB/s USB key. 880 * In the other normal situations, it acts more gently by throttling the tasks 881 * more (rather than completely block them) when the wb dirty pages go high. 882 * 883 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 884 * - starving fast devices 885 * - piling up dirty pages (that will take long time to sync) on slow devices 886 * 887 * The wb's share of dirty limit will be adapting to its throughput and 888 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 889 * 890 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 891 * "dirty" in the context of dirty balancing includes all PG_dirty and 892 * PG_writeback pages. 893 */ 894 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 895 unsigned long thresh) 896 { 897 struct wb_domain *dom = dtc_dom(dtc); 898 u64 wb_thresh; 899 unsigned long numerator, denominator; 900 unsigned long wb_min_ratio, wb_max_ratio; 901 902 /* 903 * Calculate this wb's share of the thresh ratio. 904 */ 905 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 906 &numerator, &denominator); 907 908 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 909 wb_thresh *= numerator; 910 wb_thresh = div64_ul(wb_thresh, denominator); 911 912 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 913 914 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 915 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 916 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 917 918 return wb_thresh; 919 } 920 921 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 922 { 923 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 924 925 return __wb_calc_thresh(&gdtc, thresh); 926 } 927 928 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 929 { 930 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 931 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 932 933 domain_dirty_avail(&gdtc, true); 934 domain_dirty_avail(&mdtc, true); 935 domain_dirty_limits(&mdtc); 936 937 return __wb_calc_thresh(&mdtc, mdtc.thresh); 938 } 939 940 /* 941 * setpoint - dirty 3 942 * f(dirty) := 1.0 + (----------------) 943 * limit - setpoint 944 * 945 * it's a 3rd order polynomial that subjects to 946 * 947 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 948 * (2) f(setpoint) = 1.0 => the balance point 949 * (3) f(limit) = 0 => the hard limit 950 * (4) df/dx <= 0 => negative feedback control 951 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 952 * => fast response on large errors; small oscillation near setpoint 953 */ 954 static long long pos_ratio_polynom(unsigned long setpoint, 955 unsigned long dirty, 956 unsigned long limit) 957 { 958 long long pos_ratio; 959 long x; 960 961 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 962 (limit - setpoint) | 1); 963 pos_ratio = x; 964 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 965 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 966 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 967 968 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 969 } 970 971 /* 972 * Dirty position control. 973 * 974 * (o) global/bdi setpoints 975 * 976 * We want the dirty pages be balanced around the global/wb setpoints. 977 * When the number of dirty pages is higher/lower than the setpoint, the 978 * dirty position control ratio (and hence task dirty ratelimit) will be 979 * decreased/increased to bring the dirty pages back to the setpoint. 980 * 981 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 982 * 983 * if (dirty < setpoint) scale up pos_ratio 984 * if (dirty > setpoint) scale down pos_ratio 985 * 986 * if (wb_dirty < wb_setpoint) scale up pos_ratio 987 * if (wb_dirty > wb_setpoint) scale down pos_ratio 988 * 989 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 990 * 991 * (o) global control line 992 * 993 * ^ pos_ratio 994 * | 995 * | |<===== global dirty control scope ======>| 996 * 2.0 * * * * * * * 997 * | .* 998 * | . * 999 * | . * 1000 * | . * 1001 * | . * 1002 * | . * 1003 * 1.0 ................................* 1004 * | . . * 1005 * | . . * 1006 * | . . * 1007 * | . . * 1008 * | . . * 1009 * 0 +------------.------------------.----------------------*-------------> 1010 * freerun^ setpoint^ limit^ dirty pages 1011 * 1012 * (o) wb control line 1013 * 1014 * ^ pos_ratio 1015 * | 1016 * | * 1017 * | * 1018 * | * 1019 * | * 1020 * | * |<=========== span ============>| 1021 * 1.0 .......................* 1022 * | . * 1023 * | . * 1024 * | . * 1025 * | . * 1026 * | . * 1027 * | . * 1028 * | . * 1029 * | . * 1030 * | . * 1031 * | . * 1032 * | . * 1033 * 1/4 ...............................................* * * * * * * * * * * * 1034 * | . . 1035 * | . . 1036 * | . . 1037 * 0 +----------------------.-------------------------------.-------------> 1038 * wb_setpoint^ x_intercept^ 1039 * 1040 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1041 * be smoothly throttled down to normal if it starts high in situations like 1042 * - start writing to a slow SD card and a fast disk at the same time. The SD 1043 * card's wb_dirty may rush to many times higher than wb_setpoint. 1044 * - the wb dirty thresh drops quickly due to change of JBOD workload 1045 */ 1046 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1047 { 1048 struct bdi_writeback *wb = dtc->wb; 1049 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1050 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1051 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1052 unsigned long wb_thresh = dtc->wb_thresh; 1053 unsigned long x_intercept; 1054 unsigned long setpoint; /* dirty pages' target balance point */ 1055 unsigned long wb_setpoint; 1056 unsigned long span; 1057 long long pos_ratio; /* for scaling up/down the rate limit */ 1058 long x; 1059 1060 dtc->pos_ratio = 0; 1061 1062 if (unlikely(dtc->dirty >= limit)) 1063 return; 1064 1065 /* 1066 * global setpoint 1067 * 1068 * See comment for pos_ratio_polynom(). 1069 */ 1070 setpoint = (freerun + limit) / 2; 1071 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1072 1073 /* 1074 * The strictlimit feature is a tool preventing mistrusted filesystems 1075 * from growing a large number of dirty pages before throttling. For 1076 * such filesystems balance_dirty_pages always checks wb counters 1077 * against wb limits. Even if global "nr_dirty" is under "freerun". 1078 * This is especially important for fuse which sets bdi->max_ratio to 1079 * 1% by default. Without strictlimit feature, fuse writeback may 1080 * consume arbitrary amount of RAM because it is accounted in 1081 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1082 * 1083 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1084 * two values: wb_dirty and wb_thresh. Let's consider an example: 1085 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1086 * limits are set by default to 10% and 20% (background and throttle). 1087 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1088 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1089 * about ~6K pages (as the average of background and throttle wb 1090 * limits). The 3rd order polynomial will provide positive feedback if 1091 * wb_dirty is under wb_setpoint and vice versa. 1092 * 1093 * Note, that we cannot use global counters in these calculations 1094 * because we want to throttle process writing to a strictlimit wb 1095 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1096 * in the example above). 1097 */ 1098 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1099 long long wb_pos_ratio; 1100 1101 if (dtc->wb_dirty < 8) { 1102 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1103 2 << RATELIMIT_CALC_SHIFT); 1104 return; 1105 } 1106 1107 if (dtc->wb_dirty >= wb_thresh) 1108 return; 1109 1110 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1111 dtc->wb_bg_thresh); 1112 1113 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1114 return; 1115 1116 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1117 wb_thresh); 1118 1119 /* 1120 * Typically, for strictlimit case, wb_setpoint << setpoint 1121 * and pos_ratio >> wb_pos_ratio. In the other words global 1122 * state ("dirty") is not limiting factor and we have to 1123 * make decision based on wb counters. But there is an 1124 * important case when global pos_ratio should get precedence: 1125 * global limits are exceeded (e.g. due to activities on other 1126 * wb's) while given strictlimit wb is below limit. 1127 * 1128 * "pos_ratio * wb_pos_ratio" would work for the case above, 1129 * but it would look too non-natural for the case of all 1130 * activity in the system coming from a single strictlimit wb 1131 * with bdi->max_ratio == 100%. 1132 * 1133 * Note that min() below somewhat changes the dynamics of the 1134 * control system. Normally, pos_ratio value can be well over 3 1135 * (when globally we are at freerun and wb is well below wb 1136 * setpoint). Now the maximum pos_ratio in the same situation 1137 * is 2. We might want to tweak this if we observe the control 1138 * system is too slow to adapt. 1139 */ 1140 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1141 return; 1142 } 1143 1144 /* 1145 * We have computed basic pos_ratio above based on global situation. If 1146 * the wb is over/under its share of dirty pages, we want to scale 1147 * pos_ratio further down/up. That is done by the following mechanism. 1148 */ 1149 1150 /* 1151 * wb setpoint 1152 * 1153 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1154 * 1155 * x_intercept - wb_dirty 1156 * := -------------------------- 1157 * x_intercept - wb_setpoint 1158 * 1159 * The main wb control line is a linear function that subjects to 1160 * 1161 * (1) f(wb_setpoint) = 1.0 1162 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1163 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1164 * 1165 * For single wb case, the dirty pages are observed to fluctuate 1166 * regularly within range 1167 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1168 * for various filesystems, where (2) can yield in a reasonable 12.5% 1169 * fluctuation range for pos_ratio. 1170 * 1171 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1172 * own size, so move the slope over accordingly and choose a slope that 1173 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1174 */ 1175 if (unlikely(wb_thresh > dtc->thresh)) 1176 wb_thresh = dtc->thresh; 1177 /* 1178 * It's very possible that wb_thresh is close to 0 not because the 1179 * device is slow, but that it has remained inactive for long time. 1180 * Honour such devices a reasonable good (hopefully IO efficient) 1181 * threshold, so that the occasional writes won't be blocked and active 1182 * writes can rampup the threshold quickly. 1183 */ 1184 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1185 /* 1186 * scale global setpoint to wb's: 1187 * wb_setpoint = setpoint * wb_thresh / thresh 1188 */ 1189 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1190 wb_setpoint = setpoint * (u64)x >> 16; 1191 /* 1192 * Use span=(8*write_bw) in single wb case as indicated by 1193 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1194 * 1195 * wb_thresh thresh - wb_thresh 1196 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1197 * thresh thresh 1198 */ 1199 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1200 x_intercept = wb_setpoint + span; 1201 1202 if (dtc->wb_dirty < x_intercept - span / 4) { 1203 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1204 (x_intercept - wb_setpoint) | 1); 1205 } else 1206 pos_ratio /= 4; 1207 1208 /* 1209 * wb reserve area, safeguard against dirty pool underrun and disk idle 1210 * It may push the desired control point of global dirty pages higher 1211 * than setpoint. 1212 */ 1213 x_intercept = wb_thresh / 2; 1214 if (dtc->wb_dirty < x_intercept) { 1215 if (dtc->wb_dirty > x_intercept / 8) 1216 pos_ratio = div_u64(pos_ratio * x_intercept, 1217 dtc->wb_dirty); 1218 else 1219 pos_ratio *= 8; 1220 } 1221 1222 dtc->pos_ratio = pos_ratio; 1223 } 1224 1225 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1226 unsigned long elapsed, 1227 unsigned long written) 1228 { 1229 const unsigned long period = roundup_pow_of_two(3 * HZ); 1230 unsigned long avg = wb->avg_write_bandwidth; 1231 unsigned long old = wb->write_bandwidth; 1232 u64 bw; 1233 1234 /* 1235 * bw = written * HZ / elapsed 1236 * 1237 * bw * elapsed + write_bandwidth * (period - elapsed) 1238 * write_bandwidth = --------------------------------------------------- 1239 * period 1240 * 1241 * @written may have decreased due to folio_redirty_for_writepage(). 1242 * Avoid underflowing @bw calculation. 1243 */ 1244 bw = written - min(written, wb->written_stamp); 1245 bw *= HZ; 1246 if (unlikely(elapsed > period)) { 1247 bw = div64_ul(bw, elapsed); 1248 avg = bw; 1249 goto out; 1250 } 1251 bw += (u64)wb->write_bandwidth * (period - elapsed); 1252 bw >>= ilog2(period); 1253 1254 /* 1255 * one more level of smoothing, for filtering out sudden spikes 1256 */ 1257 if (avg > old && old >= (unsigned long)bw) 1258 avg -= (avg - old) >> 3; 1259 1260 if (avg < old && old <= (unsigned long)bw) 1261 avg += (old - avg) >> 3; 1262 1263 out: 1264 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1265 avg = max(avg, 1LU); 1266 if (wb_has_dirty_io(wb)) { 1267 long delta = avg - wb->avg_write_bandwidth; 1268 WARN_ON_ONCE(atomic_long_add_return(delta, 1269 &wb->bdi->tot_write_bandwidth) <= 0); 1270 } 1271 wb->write_bandwidth = bw; 1272 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1273 } 1274 1275 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1276 { 1277 struct wb_domain *dom = dtc_dom(dtc); 1278 unsigned long thresh = dtc->thresh; 1279 unsigned long limit = dom->dirty_limit; 1280 1281 /* 1282 * Follow up in one step. 1283 */ 1284 if (limit < thresh) { 1285 limit = thresh; 1286 goto update; 1287 } 1288 1289 /* 1290 * Follow down slowly. Use the higher one as the target, because thresh 1291 * may drop below dirty. This is exactly the reason to introduce 1292 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1293 */ 1294 thresh = max(thresh, dtc->dirty); 1295 if (limit > thresh) { 1296 limit -= (limit - thresh) >> 5; 1297 goto update; 1298 } 1299 return; 1300 update: 1301 dom->dirty_limit = limit; 1302 } 1303 1304 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1305 unsigned long now) 1306 { 1307 struct wb_domain *dom = dtc_dom(dtc); 1308 1309 /* 1310 * check locklessly first to optimize away locking for the most time 1311 */ 1312 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1313 return; 1314 1315 spin_lock(&dom->lock); 1316 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1317 update_dirty_limit(dtc); 1318 dom->dirty_limit_tstamp = now; 1319 } 1320 spin_unlock(&dom->lock); 1321 } 1322 1323 /* 1324 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1325 * 1326 * Normal wb tasks will be curbed at or below it in long term. 1327 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1328 */ 1329 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1330 unsigned long dirtied, 1331 unsigned long elapsed) 1332 { 1333 struct bdi_writeback *wb = dtc->wb; 1334 unsigned long dirty = dtc->dirty; 1335 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1336 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1337 unsigned long setpoint = (freerun + limit) / 2; 1338 unsigned long write_bw = wb->avg_write_bandwidth; 1339 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1340 unsigned long dirty_rate; 1341 unsigned long task_ratelimit; 1342 unsigned long balanced_dirty_ratelimit; 1343 unsigned long step; 1344 unsigned long x; 1345 unsigned long shift; 1346 1347 /* 1348 * The dirty rate will match the writeout rate in long term, except 1349 * when dirty pages are truncated by userspace or re-dirtied by FS. 1350 */ 1351 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1352 1353 /* 1354 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1355 */ 1356 task_ratelimit = (u64)dirty_ratelimit * 1357 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1358 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1359 1360 /* 1361 * A linear estimation of the "balanced" throttle rate. The theory is, 1362 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1363 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1364 * formula will yield the balanced rate limit (write_bw / N). 1365 * 1366 * Note that the expanded form is not a pure rate feedback: 1367 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1368 * but also takes pos_ratio into account: 1369 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1370 * 1371 * (1) is not realistic because pos_ratio also takes part in balancing 1372 * the dirty rate. Consider the state 1373 * pos_ratio = 0.5 (3) 1374 * rate = 2 * (write_bw / N) (4) 1375 * If (1) is used, it will stuck in that state! Because each dd will 1376 * be throttled at 1377 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1378 * yielding 1379 * dirty_rate = N * task_ratelimit = write_bw (6) 1380 * put (6) into (1) we get 1381 * rate_(i+1) = rate_(i) (7) 1382 * 1383 * So we end up using (2) to always keep 1384 * rate_(i+1) ~= (write_bw / N) (8) 1385 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1386 * pos_ratio is able to drive itself to 1.0, which is not only where 1387 * the dirty count meet the setpoint, but also where the slope of 1388 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1389 */ 1390 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1391 dirty_rate | 1); 1392 /* 1393 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1394 */ 1395 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1396 balanced_dirty_ratelimit = write_bw; 1397 1398 /* 1399 * We could safely do this and return immediately: 1400 * 1401 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1402 * 1403 * However to get a more stable dirty_ratelimit, the below elaborated 1404 * code makes use of task_ratelimit to filter out singular points and 1405 * limit the step size. 1406 * 1407 * The below code essentially only uses the relative value of 1408 * 1409 * task_ratelimit - dirty_ratelimit 1410 * = (pos_ratio - 1) * dirty_ratelimit 1411 * 1412 * which reflects the direction and size of dirty position error. 1413 */ 1414 1415 /* 1416 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1417 * task_ratelimit is on the same side of dirty_ratelimit, too. 1418 * For example, when 1419 * - dirty_ratelimit > balanced_dirty_ratelimit 1420 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1421 * lowering dirty_ratelimit will help meet both the position and rate 1422 * control targets. Otherwise, don't update dirty_ratelimit if it will 1423 * only help meet the rate target. After all, what the users ultimately 1424 * feel and care are stable dirty rate and small position error. 1425 * 1426 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1427 * and filter out the singular points of balanced_dirty_ratelimit. Which 1428 * keeps jumping around randomly and can even leap far away at times 1429 * due to the small 200ms estimation period of dirty_rate (we want to 1430 * keep that period small to reduce time lags). 1431 */ 1432 step = 0; 1433 1434 /* 1435 * For strictlimit case, calculations above were based on wb counters 1436 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1437 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1438 * Hence, to calculate "step" properly, we have to use wb_dirty as 1439 * "dirty" and wb_setpoint as "setpoint". 1440 * 1441 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1442 * it's possible that wb_thresh is close to zero due to inactivity 1443 * of backing device. 1444 */ 1445 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1446 dirty = dtc->wb_dirty; 1447 if (dtc->wb_dirty < 8) 1448 setpoint = dtc->wb_dirty + 1; 1449 else 1450 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1451 } 1452 1453 if (dirty < setpoint) { 1454 x = min3(wb->balanced_dirty_ratelimit, 1455 balanced_dirty_ratelimit, task_ratelimit); 1456 if (dirty_ratelimit < x) 1457 step = x - dirty_ratelimit; 1458 } else { 1459 x = max3(wb->balanced_dirty_ratelimit, 1460 balanced_dirty_ratelimit, task_ratelimit); 1461 if (dirty_ratelimit > x) 1462 step = dirty_ratelimit - x; 1463 } 1464 1465 /* 1466 * Don't pursue 100% rate matching. It's impossible since the balanced 1467 * rate itself is constantly fluctuating. So decrease the track speed 1468 * when it gets close to the target. Helps eliminate pointless tremors. 1469 */ 1470 shift = dirty_ratelimit / (2 * step + 1); 1471 if (shift < BITS_PER_LONG) 1472 step = DIV_ROUND_UP(step >> shift, 8); 1473 else 1474 step = 0; 1475 1476 if (dirty_ratelimit < balanced_dirty_ratelimit) 1477 dirty_ratelimit += step; 1478 else 1479 dirty_ratelimit -= step; 1480 1481 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1482 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1483 1484 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1485 } 1486 1487 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1488 struct dirty_throttle_control *mdtc, 1489 bool update_ratelimit) 1490 { 1491 struct bdi_writeback *wb = gdtc->wb; 1492 unsigned long now = jiffies; 1493 unsigned long elapsed; 1494 unsigned long dirtied; 1495 unsigned long written; 1496 1497 spin_lock(&wb->list_lock); 1498 1499 /* 1500 * Lockless checks for elapsed time are racy and delayed update after 1501 * IO completion doesn't do it at all (to make sure written pages are 1502 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1503 * division errors. 1504 */ 1505 elapsed = max(now - wb->bw_time_stamp, 1UL); 1506 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1507 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1508 1509 if (update_ratelimit) { 1510 domain_update_dirty_limit(gdtc, now); 1511 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1512 1513 /* 1514 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1515 * compiler has no way to figure that out. Help it. 1516 */ 1517 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1518 domain_update_dirty_limit(mdtc, now); 1519 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1520 } 1521 } 1522 wb_update_write_bandwidth(wb, elapsed, written); 1523 1524 wb->dirtied_stamp = dirtied; 1525 wb->written_stamp = written; 1526 WRITE_ONCE(wb->bw_time_stamp, now); 1527 spin_unlock(&wb->list_lock); 1528 } 1529 1530 void wb_update_bandwidth(struct bdi_writeback *wb) 1531 { 1532 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1533 1534 __wb_update_bandwidth(&gdtc, NULL, false); 1535 } 1536 1537 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1538 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1539 1540 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1541 { 1542 unsigned long now = jiffies; 1543 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1544 1545 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1546 !atomic_read(&wb->writeback_inodes)) { 1547 spin_lock(&wb->list_lock); 1548 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1549 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1550 WRITE_ONCE(wb->bw_time_stamp, now); 1551 spin_unlock(&wb->list_lock); 1552 } 1553 } 1554 1555 /* 1556 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1557 * will look to see if it needs to start dirty throttling. 1558 * 1559 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1560 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1561 * (the number of pages we may dirty without exceeding the dirty limits). 1562 */ 1563 static unsigned long dirty_poll_interval(unsigned long dirty, 1564 unsigned long thresh) 1565 { 1566 if (thresh > dirty) 1567 return 1UL << (ilog2(thresh - dirty) >> 1); 1568 1569 return 1; 1570 } 1571 1572 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1573 unsigned long wb_dirty) 1574 { 1575 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1576 unsigned long t; 1577 1578 /* 1579 * Limit pause time for small memory systems. If sleeping for too long 1580 * time, a small pool of dirty/writeback pages may go empty and disk go 1581 * idle. 1582 * 1583 * 8 serves as the safety ratio. 1584 */ 1585 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1586 t++; 1587 1588 return min_t(unsigned long, t, MAX_PAUSE); 1589 } 1590 1591 static long wb_min_pause(struct bdi_writeback *wb, 1592 long max_pause, 1593 unsigned long task_ratelimit, 1594 unsigned long dirty_ratelimit, 1595 int *nr_dirtied_pause) 1596 { 1597 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1598 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1599 long t; /* target pause */ 1600 long pause; /* estimated next pause */ 1601 int pages; /* target nr_dirtied_pause */ 1602 1603 /* target for 10ms pause on 1-dd case */ 1604 t = max(1, HZ / 100); 1605 1606 /* 1607 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1608 * overheads. 1609 * 1610 * (N * 10ms) on 2^N concurrent tasks. 1611 */ 1612 if (hi > lo) 1613 t += (hi - lo) * (10 * HZ) / 1024; 1614 1615 /* 1616 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1617 * on the much more stable dirty_ratelimit. However the next pause time 1618 * will be computed based on task_ratelimit and the two rate limits may 1619 * depart considerably at some time. Especially if task_ratelimit goes 1620 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1621 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1622 * result task_ratelimit won't be executed faithfully, which could 1623 * eventually bring down dirty_ratelimit. 1624 * 1625 * We apply two rules to fix it up: 1626 * 1) try to estimate the next pause time and if necessary, use a lower 1627 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1628 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1629 * 2) limit the target pause time to max_pause/2, so that the normal 1630 * small fluctuations of task_ratelimit won't trigger rule (1) and 1631 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1632 */ 1633 t = min(t, 1 + max_pause / 2); 1634 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1635 1636 /* 1637 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1638 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1639 * When the 16 consecutive reads are often interrupted by some dirty 1640 * throttling pause during the async writes, cfq will go into idles 1641 * (deadline is fine). So push nr_dirtied_pause as high as possible 1642 * until reaches DIRTY_POLL_THRESH=32 pages. 1643 */ 1644 if (pages < DIRTY_POLL_THRESH) { 1645 t = max_pause; 1646 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1647 if (pages > DIRTY_POLL_THRESH) { 1648 pages = DIRTY_POLL_THRESH; 1649 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1650 } 1651 } 1652 1653 pause = HZ * pages / (task_ratelimit + 1); 1654 if (pause > max_pause) { 1655 t = max_pause; 1656 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1657 } 1658 1659 *nr_dirtied_pause = pages; 1660 /* 1661 * The minimal pause time will normally be half the target pause time. 1662 */ 1663 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1664 } 1665 1666 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1667 { 1668 struct bdi_writeback *wb = dtc->wb; 1669 unsigned long wb_reclaimable; 1670 1671 /* 1672 * wb_thresh is not treated as some limiting factor as 1673 * dirty_thresh, due to reasons 1674 * - in JBOD setup, wb_thresh can fluctuate a lot 1675 * - in a system with HDD and USB key, the USB key may somehow 1676 * go into state (wb_dirty >> wb_thresh) either because 1677 * wb_dirty starts high, or because wb_thresh drops low. 1678 * In this case we don't want to hard throttle the USB key 1679 * dirtiers for 100 seconds until wb_dirty drops under 1680 * wb_thresh. Instead the auxiliary wb control line in 1681 * wb_position_ratio() will let the dirtier task progress 1682 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1683 */ 1684 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1685 dtc->wb_bg_thresh = dtc->thresh ? 1686 div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1687 1688 /* 1689 * In order to avoid the stacked BDI deadlock we need 1690 * to ensure we accurately count the 'dirty' pages when 1691 * the threshold is low. 1692 * 1693 * Otherwise it would be possible to get thresh+n pages 1694 * reported dirty, even though there are thresh-m pages 1695 * actually dirty; with m+n sitting in the percpu 1696 * deltas. 1697 */ 1698 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1699 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1700 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1701 } else { 1702 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1703 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1704 } 1705 } 1706 1707 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1708 bool strictlimit) 1709 { 1710 unsigned long dirty, thresh; 1711 1712 if (strictlimit) { 1713 dirty = dtc->wb_dirty; 1714 thresh = dtc->wb_thresh; 1715 } else { 1716 dirty = dtc->dirty; 1717 thresh = dtc->thresh; 1718 } 1719 1720 return dirty_poll_interval(dirty, thresh); 1721 } 1722 1723 /* 1724 * Throttle it only when the background writeback cannot catch-up. This avoids 1725 * (excessively) small writeouts when the wb limits are ramping up in case of 1726 * !strictlimit. 1727 * 1728 * In strictlimit case make decision based on the wb counters and limits. Small 1729 * writeouts when the wb limits are ramping up are the price we consciously pay 1730 * for strictlimit-ing. 1731 */ 1732 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1733 bool strictlimit) 1734 { 1735 unsigned long dirty, thresh, bg_thresh; 1736 1737 if (unlikely(strictlimit)) { 1738 wb_dirty_limits(dtc); 1739 dirty = dtc->wb_dirty; 1740 thresh = dtc->wb_thresh; 1741 bg_thresh = dtc->wb_bg_thresh; 1742 } else { 1743 dirty = dtc->dirty; 1744 thresh = dtc->thresh; 1745 bg_thresh = dtc->bg_thresh; 1746 } 1747 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1748 } 1749 1750 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1751 bool strictlimit) 1752 { 1753 domain_dirty_avail(dtc, true); 1754 domain_dirty_limits(dtc); 1755 domain_dirty_freerun(dtc, strictlimit); 1756 } 1757 1758 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1759 bool strictlimit) 1760 { 1761 dtc->freerun = false; 1762 1763 /* was already handled in domain_dirty_freerun */ 1764 if (strictlimit) 1765 return; 1766 1767 wb_dirty_limits(dtc); 1768 /* 1769 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1770 * freerun ceiling. 1771 */ 1772 if (!(current->flags & PF_LOCAL_THROTTLE)) 1773 return; 1774 1775 dtc->freerun = dtc->wb_dirty < 1776 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1777 } 1778 1779 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1780 bool strictlimit) 1781 { 1782 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1783 ((dtc->dirty > dtc->thresh) || strictlimit); 1784 } 1785 1786 /* 1787 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1788 * in freerun state. Please don't use these invalid fields in freerun case. 1789 */ 1790 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1791 bool strictlimit) 1792 { 1793 wb_dirty_freerun(dtc, strictlimit); 1794 if (dtc->freerun) 1795 return; 1796 1797 wb_dirty_exceeded(dtc, strictlimit); 1798 wb_position_ratio(dtc); 1799 } 1800 1801 /* 1802 * balance_dirty_pages() must be called by processes which are generating dirty 1803 * data. It looks at the number of dirty pages in the machine and will force 1804 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1805 * If we're over `background_thresh' then the writeback threads are woken to 1806 * perform some writeout. 1807 */ 1808 static int balance_dirty_pages(struct bdi_writeback *wb, 1809 unsigned long pages_dirtied, unsigned int flags) 1810 { 1811 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1812 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1813 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1814 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1815 &mdtc_stor : NULL; 1816 struct dirty_throttle_control *sdtc; 1817 unsigned long nr_dirty; 1818 long period; 1819 long pause; 1820 long max_pause; 1821 long min_pause; 1822 int nr_dirtied_pause; 1823 unsigned long task_ratelimit; 1824 unsigned long dirty_ratelimit; 1825 struct backing_dev_info *bdi = wb->bdi; 1826 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1827 unsigned long start_time = jiffies; 1828 int ret = 0; 1829 1830 for (;;) { 1831 unsigned long now = jiffies; 1832 1833 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1834 1835 balance_domain_limits(gdtc, strictlimit); 1836 if (mdtc) { 1837 /* 1838 * If @wb belongs to !root memcg, repeat the same 1839 * basic calculations for the memcg domain. 1840 */ 1841 balance_domain_limits(mdtc, strictlimit); 1842 } 1843 1844 /* 1845 * In laptop mode, we wait until hitting the higher threshold 1846 * before starting background writeout, and then write out all 1847 * the way down to the lower threshold. So slow writers cause 1848 * minimal disk activity. 1849 * 1850 * In normal mode, we start background writeout at the lower 1851 * background_thresh, to keep the amount of dirty memory low. 1852 */ 1853 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1854 !writeback_in_progress(wb)) 1855 wb_start_background_writeback(wb); 1856 1857 /* 1858 * If memcg domain is in effect, @dirty should be under 1859 * both global and memcg freerun ceilings. 1860 */ 1861 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1862 unsigned long intv; 1863 unsigned long m_intv; 1864 1865 free_running: 1866 intv = domain_poll_intv(gdtc, strictlimit); 1867 m_intv = ULONG_MAX; 1868 1869 current->dirty_paused_when = now; 1870 current->nr_dirtied = 0; 1871 if (mdtc) 1872 m_intv = domain_poll_intv(mdtc, strictlimit); 1873 current->nr_dirtied_pause = min(intv, m_intv); 1874 break; 1875 } 1876 1877 /* Start writeback even when in laptop mode */ 1878 if (unlikely(!writeback_in_progress(wb))) 1879 wb_start_background_writeback(wb); 1880 1881 mem_cgroup_flush_foreign(wb); 1882 1883 /* 1884 * Calculate global domain's pos_ratio and select the 1885 * global dtc by default. 1886 */ 1887 balance_wb_limits(gdtc, strictlimit); 1888 if (gdtc->freerun) 1889 goto free_running; 1890 sdtc = gdtc; 1891 1892 if (mdtc) { 1893 /* 1894 * If memcg domain is in effect, calculate its 1895 * pos_ratio. @wb should satisfy constraints from 1896 * both global and memcg domains. Choose the one 1897 * w/ lower pos_ratio. 1898 */ 1899 balance_wb_limits(mdtc, strictlimit); 1900 if (mdtc->freerun) 1901 goto free_running; 1902 if (mdtc->pos_ratio < gdtc->pos_ratio) 1903 sdtc = mdtc; 1904 } 1905 1906 wb->dirty_exceeded = gdtc->dirty_exceeded || 1907 (mdtc && mdtc->dirty_exceeded); 1908 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1909 BANDWIDTH_INTERVAL)) 1910 __wb_update_bandwidth(gdtc, mdtc, true); 1911 1912 /* throttle according to the chosen dtc */ 1913 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1914 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1915 RATELIMIT_CALC_SHIFT; 1916 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1917 min_pause = wb_min_pause(wb, max_pause, 1918 task_ratelimit, dirty_ratelimit, 1919 &nr_dirtied_pause); 1920 1921 if (unlikely(task_ratelimit == 0)) { 1922 period = max_pause; 1923 pause = max_pause; 1924 goto pause; 1925 } 1926 period = HZ * pages_dirtied / task_ratelimit; 1927 pause = period; 1928 if (current->dirty_paused_when) 1929 pause -= now - current->dirty_paused_when; 1930 /* 1931 * For less than 1s think time (ext3/4 may block the dirtier 1932 * for up to 800ms from time to time on 1-HDD; so does xfs, 1933 * however at much less frequency), try to compensate it in 1934 * future periods by updating the virtual time; otherwise just 1935 * do a reset, as it may be a light dirtier. 1936 */ 1937 if (pause < min_pause) { 1938 trace_balance_dirty_pages(wb, 1939 sdtc->thresh, 1940 sdtc->bg_thresh, 1941 sdtc->dirty, 1942 sdtc->wb_thresh, 1943 sdtc->wb_dirty, 1944 dirty_ratelimit, 1945 task_ratelimit, 1946 pages_dirtied, 1947 period, 1948 min(pause, 0L), 1949 start_time); 1950 if (pause < -HZ) { 1951 current->dirty_paused_when = now; 1952 current->nr_dirtied = 0; 1953 } else if (period) { 1954 current->dirty_paused_when += period; 1955 current->nr_dirtied = 0; 1956 } else if (current->nr_dirtied_pause <= pages_dirtied) 1957 current->nr_dirtied_pause += pages_dirtied; 1958 break; 1959 } 1960 if (unlikely(pause > max_pause)) { 1961 /* for occasional dropped task_ratelimit */ 1962 now += min(pause - max_pause, max_pause); 1963 pause = max_pause; 1964 } 1965 1966 pause: 1967 trace_balance_dirty_pages(wb, 1968 sdtc->thresh, 1969 sdtc->bg_thresh, 1970 sdtc->dirty, 1971 sdtc->wb_thresh, 1972 sdtc->wb_dirty, 1973 dirty_ratelimit, 1974 task_ratelimit, 1975 pages_dirtied, 1976 period, 1977 pause, 1978 start_time); 1979 if (flags & BDP_ASYNC) { 1980 ret = -EAGAIN; 1981 break; 1982 } 1983 __set_current_state(TASK_KILLABLE); 1984 bdi->last_bdp_sleep = jiffies; 1985 io_schedule_timeout(pause); 1986 1987 current->dirty_paused_when = now + pause; 1988 current->nr_dirtied = 0; 1989 current->nr_dirtied_pause = nr_dirtied_pause; 1990 1991 /* 1992 * This is typically equal to (dirty < thresh) and can also 1993 * keep "1000+ dd on a slow USB stick" under control. 1994 */ 1995 if (task_ratelimit) 1996 break; 1997 1998 /* 1999 * In the case of an unresponsive NFS server and the NFS dirty 2000 * pages exceeds dirty_thresh, give the other good wb's a pipe 2001 * to go through, so that tasks on them still remain responsive. 2002 * 2003 * In theory 1 page is enough to keep the consumer-producer 2004 * pipe going: the flusher cleans 1 page => the task dirties 1 2005 * more page. However wb_dirty has accounting errors. So use 2006 * the larger and more IO friendly wb_stat_error. 2007 */ 2008 if (sdtc->wb_dirty <= wb_stat_error()) 2009 break; 2010 2011 if (fatal_signal_pending(current)) 2012 break; 2013 } 2014 return ret; 2015 } 2016 2017 static DEFINE_PER_CPU(int, bdp_ratelimits); 2018 2019 /* 2020 * Normal tasks are throttled by 2021 * loop { 2022 * dirty tsk->nr_dirtied_pause pages; 2023 * take a snap in balance_dirty_pages(); 2024 * } 2025 * However there is a worst case. If every task exit immediately when dirtied 2026 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2027 * called to throttle the page dirties. The solution is to save the not yet 2028 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2029 * randomly into the running tasks. This works well for the above worst case, 2030 * as the new task will pick up and accumulate the old task's leaked dirty 2031 * count and eventually get throttled. 2032 */ 2033 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2034 2035 /** 2036 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2037 * @mapping: address_space which was dirtied. 2038 * @flags: BDP flags. 2039 * 2040 * Processes which are dirtying memory should call in here once for each page 2041 * which was newly dirtied. The function will periodically check the system's 2042 * dirty state and will initiate writeback if needed. 2043 * 2044 * See balance_dirty_pages_ratelimited() for details. 2045 * 2046 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2047 * indicate that memory is out of balance and the caller must wait 2048 * for I/O to complete. Otherwise, it will return 0 to indicate 2049 * that either memory was already in balance, or it was able to sleep 2050 * until the amount of dirty memory returned to balance. 2051 */ 2052 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2053 unsigned int flags) 2054 { 2055 struct inode *inode = mapping->host; 2056 struct backing_dev_info *bdi = inode_to_bdi(inode); 2057 struct bdi_writeback *wb = NULL; 2058 int ratelimit; 2059 int ret = 0; 2060 int *p; 2061 2062 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2063 return ret; 2064 2065 if (inode_cgwb_enabled(inode)) 2066 wb = wb_get_create_current(bdi, GFP_KERNEL); 2067 if (!wb) 2068 wb = &bdi->wb; 2069 2070 ratelimit = current->nr_dirtied_pause; 2071 if (wb->dirty_exceeded) 2072 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2073 2074 preempt_disable(); 2075 /* 2076 * This prevents one CPU to accumulate too many dirtied pages without 2077 * calling into balance_dirty_pages(), which can happen when there are 2078 * 1000+ tasks, all of them start dirtying pages at exactly the same 2079 * time, hence all honoured too large initial task->nr_dirtied_pause. 2080 */ 2081 p = this_cpu_ptr(&bdp_ratelimits); 2082 if (unlikely(current->nr_dirtied >= ratelimit)) 2083 *p = 0; 2084 else if (unlikely(*p >= ratelimit_pages)) { 2085 *p = 0; 2086 ratelimit = 0; 2087 } 2088 /* 2089 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2090 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2091 * the dirty throttling and livelock other long-run dirtiers. 2092 */ 2093 p = this_cpu_ptr(&dirty_throttle_leaks); 2094 if (*p > 0 && current->nr_dirtied < ratelimit) { 2095 unsigned long nr_pages_dirtied; 2096 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2097 *p -= nr_pages_dirtied; 2098 current->nr_dirtied += nr_pages_dirtied; 2099 } 2100 preempt_enable(); 2101 2102 if (unlikely(current->nr_dirtied >= ratelimit)) 2103 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2104 2105 wb_put(wb); 2106 return ret; 2107 } 2108 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2109 2110 /** 2111 * balance_dirty_pages_ratelimited - balance dirty memory state. 2112 * @mapping: address_space which was dirtied. 2113 * 2114 * Processes which are dirtying memory should call in here once for each page 2115 * which was newly dirtied. The function will periodically check the system's 2116 * dirty state and will initiate writeback if needed. 2117 * 2118 * Once we're over the dirty memory limit we decrease the ratelimiting 2119 * by a lot, to prevent individual processes from overshooting the limit 2120 * by (ratelimit_pages) each. 2121 */ 2122 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2123 { 2124 balance_dirty_pages_ratelimited_flags(mapping, 0); 2125 } 2126 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2127 2128 /* 2129 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2130 * and thresh, but it's for background writeback. 2131 */ 2132 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2133 { 2134 struct bdi_writeback *wb = dtc->wb; 2135 2136 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2137 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2138 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2139 else 2140 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2141 } 2142 2143 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2144 { 2145 domain_dirty_avail(dtc, false); 2146 domain_dirty_limits(dtc); 2147 if (dtc->dirty > dtc->bg_thresh) 2148 return true; 2149 2150 wb_bg_dirty_limits(dtc); 2151 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2152 return true; 2153 2154 return false; 2155 } 2156 2157 /** 2158 * wb_over_bg_thresh - does @wb need to be written back? 2159 * @wb: bdi_writeback of interest 2160 * 2161 * Determines whether background writeback should keep writing @wb or it's 2162 * clean enough. 2163 * 2164 * Return: %true if writeback should continue. 2165 */ 2166 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2167 { 2168 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2169 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2170 2171 if (domain_over_bg_thresh(&gdtc)) 2172 return true; 2173 2174 if (mdtc_valid(&mdtc)) 2175 return domain_over_bg_thresh(&mdtc); 2176 2177 return false; 2178 } 2179 2180 #ifdef CONFIG_SYSCTL 2181 /* 2182 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2183 */ 2184 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2185 void *buffer, size_t *length, loff_t *ppos) 2186 { 2187 unsigned int old_interval = dirty_writeback_interval; 2188 int ret; 2189 2190 ret = proc_dointvec(table, write, buffer, length, ppos); 2191 2192 /* 2193 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2194 * and a different non-zero value will wakeup the writeback threads. 2195 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2196 * iterate over all bdis and wbs. 2197 * The reason we do this is to make the change take effect immediately. 2198 */ 2199 if (!ret && write && dirty_writeback_interval && 2200 dirty_writeback_interval != old_interval) 2201 wakeup_flusher_threads(WB_REASON_PERIODIC); 2202 2203 return ret; 2204 } 2205 #endif 2206 2207 void laptop_mode_timer_fn(struct timer_list *t) 2208 { 2209 struct backing_dev_info *backing_dev_info = 2210 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2211 2212 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2213 } 2214 2215 /* 2216 * We've spun up the disk and we're in laptop mode: schedule writeback 2217 * of all dirty data a few seconds from now. If the flush is already scheduled 2218 * then push it back - the user is still using the disk. 2219 */ 2220 void laptop_io_completion(struct backing_dev_info *info) 2221 { 2222 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2223 } 2224 2225 /* 2226 * We're in laptop mode and we've just synced. The sync's writes will have 2227 * caused another writeback to be scheduled by laptop_io_completion. 2228 * Nothing needs to be written back anymore, so we unschedule the writeback. 2229 */ 2230 void laptop_sync_completion(void) 2231 { 2232 struct backing_dev_info *bdi; 2233 2234 rcu_read_lock(); 2235 2236 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2237 del_timer(&bdi->laptop_mode_wb_timer); 2238 2239 rcu_read_unlock(); 2240 } 2241 2242 /* 2243 * If ratelimit_pages is too high then we can get into dirty-data overload 2244 * if a large number of processes all perform writes at the same time. 2245 * 2246 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2247 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2248 * thresholds. 2249 */ 2250 2251 void writeback_set_ratelimit(void) 2252 { 2253 struct wb_domain *dom = &global_wb_domain; 2254 unsigned long background_thresh; 2255 unsigned long dirty_thresh; 2256 2257 global_dirty_limits(&background_thresh, &dirty_thresh); 2258 dom->dirty_limit = dirty_thresh; 2259 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2260 if (ratelimit_pages < 16) 2261 ratelimit_pages = 16; 2262 } 2263 2264 static int page_writeback_cpu_online(unsigned int cpu) 2265 { 2266 writeback_set_ratelimit(); 2267 return 0; 2268 } 2269 2270 #ifdef CONFIG_SYSCTL 2271 2272 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2273 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2274 2275 static struct ctl_table vm_page_writeback_sysctls[] = { 2276 { 2277 .procname = "dirty_background_ratio", 2278 .data = &dirty_background_ratio, 2279 .maxlen = sizeof(dirty_background_ratio), 2280 .mode = 0644, 2281 .proc_handler = dirty_background_ratio_handler, 2282 .extra1 = SYSCTL_ZERO, 2283 .extra2 = SYSCTL_ONE_HUNDRED, 2284 }, 2285 { 2286 .procname = "dirty_background_bytes", 2287 .data = &dirty_background_bytes, 2288 .maxlen = sizeof(dirty_background_bytes), 2289 .mode = 0644, 2290 .proc_handler = dirty_background_bytes_handler, 2291 .extra1 = SYSCTL_LONG_ONE, 2292 }, 2293 { 2294 .procname = "dirty_ratio", 2295 .data = &vm_dirty_ratio, 2296 .maxlen = sizeof(vm_dirty_ratio), 2297 .mode = 0644, 2298 .proc_handler = dirty_ratio_handler, 2299 .extra1 = SYSCTL_ZERO, 2300 .extra2 = SYSCTL_ONE_HUNDRED, 2301 }, 2302 { 2303 .procname = "dirty_bytes", 2304 .data = &vm_dirty_bytes, 2305 .maxlen = sizeof(vm_dirty_bytes), 2306 .mode = 0644, 2307 .proc_handler = dirty_bytes_handler, 2308 .extra1 = (void *)&dirty_bytes_min, 2309 }, 2310 { 2311 .procname = "dirty_writeback_centisecs", 2312 .data = &dirty_writeback_interval, 2313 .maxlen = sizeof(dirty_writeback_interval), 2314 .mode = 0644, 2315 .proc_handler = dirty_writeback_centisecs_handler, 2316 }, 2317 { 2318 .procname = "dirty_expire_centisecs", 2319 .data = &dirty_expire_interval, 2320 .maxlen = sizeof(dirty_expire_interval), 2321 .mode = 0644, 2322 .proc_handler = proc_dointvec_minmax, 2323 .extra1 = SYSCTL_ZERO, 2324 }, 2325 #ifdef CONFIG_HIGHMEM 2326 { 2327 .procname = "highmem_is_dirtyable", 2328 .data = &vm_highmem_is_dirtyable, 2329 .maxlen = sizeof(vm_highmem_is_dirtyable), 2330 .mode = 0644, 2331 .proc_handler = proc_dointvec_minmax, 2332 .extra1 = SYSCTL_ZERO, 2333 .extra2 = SYSCTL_ONE, 2334 }, 2335 #endif 2336 { 2337 .procname = "laptop_mode", 2338 .data = &laptop_mode, 2339 .maxlen = sizeof(laptop_mode), 2340 .mode = 0644, 2341 .proc_handler = proc_dointvec_jiffies, 2342 }, 2343 }; 2344 #endif 2345 2346 /* 2347 * Called early on to tune the page writeback dirty limits. 2348 * 2349 * We used to scale dirty pages according to how total memory 2350 * related to pages that could be allocated for buffers. 2351 * 2352 * However, that was when we used "dirty_ratio" to scale with 2353 * all memory, and we don't do that any more. "dirty_ratio" 2354 * is now applied to total non-HIGHPAGE memory, and as such we can't 2355 * get into the old insane situation any more where we had 2356 * large amounts of dirty pages compared to a small amount of 2357 * non-HIGHMEM memory. 2358 * 2359 * But we might still want to scale the dirty_ratio by how 2360 * much memory the box has.. 2361 */ 2362 void __init page_writeback_init(void) 2363 { 2364 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2365 2366 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2367 page_writeback_cpu_online, NULL); 2368 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2369 page_writeback_cpu_online); 2370 #ifdef CONFIG_SYSCTL 2371 register_sysctl_init("vm", vm_page_writeback_sysctls); 2372 #endif 2373 } 2374 2375 /** 2376 * tag_pages_for_writeback - tag pages to be written by writeback 2377 * @mapping: address space structure to write 2378 * @start: starting page index 2379 * @end: ending page index (inclusive) 2380 * 2381 * This function scans the page range from @start to @end (inclusive) and tags 2382 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2383 * can then use the TOWRITE tag to identify pages eligible for writeback. 2384 * This mechanism is used to avoid livelocking of writeback by a process 2385 * steadily creating new dirty pages in the file (thus it is important for this 2386 * function to be quick so that it can tag pages faster than a dirtying process 2387 * can create them). 2388 */ 2389 void tag_pages_for_writeback(struct address_space *mapping, 2390 pgoff_t start, pgoff_t end) 2391 { 2392 XA_STATE(xas, &mapping->i_pages, start); 2393 unsigned int tagged = 0; 2394 void *page; 2395 2396 xas_lock_irq(&xas); 2397 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2398 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2399 if (++tagged % XA_CHECK_SCHED) 2400 continue; 2401 2402 xas_pause(&xas); 2403 xas_unlock_irq(&xas); 2404 cond_resched(); 2405 xas_lock_irq(&xas); 2406 } 2407 xas_unlock_irq(&xas); 2408 } 2409 EXPORT_SYMBOL(tag_pages_for_writeback); 2410 2411 static bool folio_prepare_writeback(struct address_space *mapping, 2412 struct writeback_control *wbc, struct folio *folio) 2413 { 2414 /* 2415 * Folio truncated or invalidated. We can freely skip it then, 2416 * even for data integrity operations: the folio has disappeared 2417 * concurrently, so there could be no real expectation of this 2418 * data integrity operation even if there is now a new, dirty 2419 * folio at the same pagecache index. 2420 */ 2421 if (unlikely(folio->mapping != mapping)) 2422 return false; 2423 2424 /* 2425 * Did somebody else write it for us? 2426 */ 2427 if (!folio_test_dirty(folio)) 2428 return false; 2429 2430 if (folio_test_writeback(folio)) { 2431 if (wbc->sync_mode == WB_SYNC_NONE) 2432 return false; 2433 folio_wait_writeback(folio); 2434 } 2435 BUG_ON(folio_test_writeback(folio)); 2436 2437 if (!folio_clear_dirty_for_io(folio)) 2438 return false; 2439 2440 return true; 2441 } 2442 2443 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2444 { 2445 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2446 return PAGECACHE_TAG_TOWRITE; 2447 return PAGECACHE_TAG_DIRTY; 2448 } 2449 2450 static pgoff_t wbc_end(struct writeback_control *wbc) 2451 { 2452 if (wbc->range_cyclic) 2453 return -1; 2454 return wbc->range_end >> PAGE_SHIFT; 2455 } 2456 2457 static struct folio *writeback_get_folio(struct address_space *mapping, 2458 struct writeback_control *wbc) 2459 { 2460 struct folio *folio; 2461 2462 retry: 2463 folio = folio_batch_next(&wbc->fbatch); 2464 if (!folio) { 2465 folio_batch_release(&wbc->fbatch); 2466 cond_resched(); 2467 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2468 wbc_to_tag(wbc), &wbc->fbatch); 2469 folio = folio_batch_next(&wbc->fbatch); 2470 if (!folio) 2471 return NULL; 2472 } 2473 2474 folio_lock(folio); 2475 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2476 folio_unlock(folio); 2477 goto retry; 2478 } 2479 2480 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2481 return folio; 2482 } 2483 2484 /** 2485 * writeback_iter - iterate folio of a mapping for writeback 2486 * @mapping: address space structure to write 2487 * @wbc: writeback context 2488 * @folio: previously iterated folio (%NULL to start) 2489 * @error: in-out pointer for writeback errors (see below) 2490 * 2491 * This function returns the next folio for the writeback operation described by 2492 * @wbc on @mapping and should be called in a while loop in the ->writepages 2493 * implementation. 2494 * 2495 * To start the writeback operation, %NULL is passed in the @folio argument, and 2496 * for every subsequent iteration the folio returned previously should be passed 2497 * back in. 2498 * 2499 * If there was an error in the per-folio writeback inside the writeback_iter() 2500 * loop, @error should be set to the error value. 2501 * 2502 * Once the writeback described in @wbc has finished, this function will return 2503 * %NULL and if there was an error in any iteration restore it to @error. 2504 * 2505 * Note: callers should not manually break out of the loop using break or goto 2506 * but must keep calling writeback_iter() until it returns %NULL. 2507 * 2508 * Return: the folio to write or %NULL if the loop is done. 2509 */ 2510 struct folio *writeback_iter(struct address_space *mapping, 2511 struct writeback_control *wbc, struct folio *folio, int *error) 2512 { 2513 if (!folio) { 2514 folio_batch_init(&wbc->fbatch); 2515 wbc->saved_err = *error = 0; 2516 2517 /* 2518 * For range cyclic writeback we remember where we stopped so 2519 * that we can continue where we stopped. 2520 * 2521 * For non-cyclic writeback we always start at the beginning of 2522 * the passed in range. 2523 */ 2524 if (wbc->range_cyclic) 2525 wbc->index = mapping->writeback_index; 2526 else 2527 wbc->index = wbc->range_start >> PAGE_SHIFT; 2528 2529 /* 2530 * To avoid livelocks when other processes dirty new pages, we 2531 * first tag pages which should be written back and only then 2532 * start writing them. 2533 * 2534 * For data-integrity writeback we have to be careful so that we 2535 * do not miss some pages (e.g., because some other process has 2536 * cleared the TOWRITE tag we set). The rule we follow is that 2537 * TOWRITE tag can be cleared only by the process clearing the 2538 * DIRTY tag (and submitting the page for I/O). 2539 */ 2540 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2541 tag_pages_for_writeback(mapping, wbc->index, 2542 wbc_end(wbc)); 2543 } else { 2544 wbc->nr_to_write -= folio_nr_pages(folio); 2545 2546 WARN_ON_ONCE(*error > 0); 2547 2548 /* 2549 * For integrity writeback we have to keep going until we have 2550 * written all the folios we tagged for writeback above, even if 2551 * we run past wbc->nr_to_write or encounter errors. 2552 * We stash away the first error we encounter in wbc->saved_err 2553 * so that it can be retrieved when we're done. This is because 2554 * the file system may still have state to clear for each folio. 2555 * 2556 * For background writeback we exit as soon as we run past 2557 * wbc->nr_to_write or encounter the first error. 2558 */ 2559 if (wbc->sync_mode == WB_SYNC_ALL) { 2560 if (*error && !wbc->saved_err) 2561 wbc->saved_err = *error; 2562 } else { 2563 if (*error || wbc->nr_to_write <= 0) 2564 goto done; 2565 } 2566 } 2567 2568 folio = writeback_get_folio(mapping, wbc); 2569 if (!folio) { 2570 /* 2571 * To avoid deadlocks between range_cyclic writeback and callers 2572 * that hold pages in PageWriteback to aggregate I/O until 2573 * the writeback iteration finishes, we do not loop back to the 2574 * start of the file. Doing so causes a page lock/page 2575 * writeback access order inversion - we should only ever lock 2576 * multiple pages in ascending page->index order, and looping 2577 * back to the start of the file violates that rule and causes 2578 * deadlocks. 2579 */ 2580 if (wbc->range_cyclic) 2581 mapping->writeback_index = 0; 2582 2583 /* 2584 * Return the first error we encountered (if there was any) to 2585 * the caller. 2586 */ 2587 *error = wbc->saved_err; 2588 } 2589 return folio; 2590 2591 done: 2592 if (wbc->range_cyclic) 2593 mapping->writeback_index = folio->index + folio_nr_pages(folio); 2594 folio_batch_release(&wbc->fbatch); 2595 return NULL; 2596 } 2597 EXPORT_SYMBOL_GPL(writeback_iter); 2598 2599 /** 2600 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2601 * @mapping: address space structure to write 2602 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2603 * @writepage: function called for each page 2604 * @data: data passed to writepage function 2605 * 2606 * Return: %0 on success, negative error code otherwise 2607 * 2608 * Note: please use writeback_iter() instead. 2609 */ 2610 int write_cache_pages(struct address_space *mapping, 2611 struct writeback_control *wbc, writepage_t writepage, 2612 void *data) 2613 { 2614 struct folio *folio = NULL; 2615 int error; 2616 2617 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2618 error = writepage(folio, wbc, data); 2619 if (error == AOP_WRITEPAGE_ACTIVATE) { 2620 folio_unlock(folio); 2621 error = 0; 2622 } 2623 } 2624 2625 return error; 2626 } 2627 EXPORT_SYMBOL(write_cache_pages); 2628 2629 static int writeback_use_writepage(struct address_space *mapping, 2630 struct writeback_control *wbc) 2631 { 2632 struct folio *folio = NULL; 2633 struct blk_plug plug; 2634 int err; 2635 2636 blk_start_plug(&plug); 2637 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2638 err = mapping->a_ops->writepage(&folio->page, wbc); 2639 if (err == AOP_WRITEPAGE_ACTIVATE) { 2640 folio_unlock(folio); 2641 err = 0; 2642 } 2643 mapping_set_error(mapping, err); 2644 } 2645 blk_finish_plug(&plug); 2646 2647 return err; 2648 } 2649 2650 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2651 { 2652 int ret; 2653 struct bdi_writeback *wb; 2654 2655 if (wbc->nr_to_write <= 0) 2656 return 0; 2657 wb = inode_to_wb_wbc(mapping->host, wbc); 2658 wb_bandwidth_estimate_start(wb); 2659 while (1) { 2660 if (mapping->a_ops->writepages) { 2661 ret = mapping->a_ops->writepages(mapping, wbc); 2662 } else if (mapping->a_ops->writepage) { 2663 ret = writeback_use_writepage(mapping, wbc); 2664 } else { 2665 /* deal with chardevs and other special files */ 2666 ret = 0; 2667 } 2668 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2669 break; 2670 2671 /* 2672 * Lacking an allocation context or the locality or writeback 2673 * state of any of the inode's pages, throttle based on 2674 * writeback activity on the local node. It's as good a 2675 * guess as any. 2676 */ 2677 reclaim_throttle(NODE_DATA(numa_node_id()), 2678 VMSCAN_THROTTLE_WRITEBACK); 2679 } 2680 /* 2681 * Usually few pages are written by now from those we've just submitted 2682 * but if there's constant writeback being submitted, this makes sure 2683 * writeback bandwidth is updated once in a while. 2684 */ 2685 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2686 BANDWIDTH_INTERVAL)) 2687 wb_update_bandwidth(wb); 2688 return ret; 2689 } 2690 2691 /* 2692 * For address_spaces which do not use buffers nor write back. 2693 */ 2694 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2695 { 2696 if (!folio_test_dirty(folio)) 2697 return !folio_test_set_dirty(folio); 2698 return false; 2699 } 2700 EXPORT_SYMBOL(noop_dirty_folio); 2701 2702 /* 2703 * Helper function for set_page_dirty family. 2704 * 2705 * Caller must hold folio_memcg_lock(). 2706 * 2707 * NOTE: This relies on being atomic wrt interrupts. 2708 */ 2709 static void folio_account_dirtied(struct folio *folio, 2710 struct address_space *mapping) 2711 { 2712 struct inode *inode = mapping->host; 2713 2714 trace_writeback_dirty_folio(folio, mapping); 2715 2716 if (mapping_can_writeback(mapping)) { 2717 struct bdi_writeback *wb; 2718 long nr = folio_nr_pages(folio); 2719 2720 inode_attach_wb(inode, folio); 2721 wb = inode_to_wb(inode); 2722 2723 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2724 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2725 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2726 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2727 wb_stat_mod(wb, WB_DIRTIED, nr); 2728 task_io_account_write(nr * PAGE_SIZE); 2729 current->nr_dirtied += nr; 2730 __this_cpu_add(bdp_ratelimits, nr); 2731 2732 mem_cgroup_track_foreign_dirty(folio, wb); 2733 } 2734 } 2735 2736 /* 2737 * Helper function for deaccounting dirty page without writeback. 2738 * 2739 * Caller must hold folio_memcg_lock(). 2740 */ 2741 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2742 { 2743 long nr = folio_nr_pages(folio); 2744 2745 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2746 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2747 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2748 task_io_account_cancelled_write(nr * PAGE_SIZE); 2749 } 2750 2751 /* 2752 * Mark the folio dirty, and set it dirty in the page cache. 2753 * 2754 * If warn is true, then emit a warning if the folio is not uptodate and has 2755 * not been truncated. 2756 * 2757 * The caller must hold folio_memcg_lock(). It is the caller's 2758 * responsibility to prevent the folio from being truncated while 2759 * this function is in progress, although it may have been truncated 2760 * before this function is called. Most callers have the folio locked. 2761 * A few have the folio blocked from truncation through other means (e.g. 2762 * zap_vma_pages() has it mapped and is holding the page table lock). 2763 * When called from mark_buffer_dirty(), the filesystem should hold a 2764 * reference to the buffer_head that is being marked dirty, which causes 2765 * try_to_free_buffers() to fail. 2766 */ 2767 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2768 int warn) 2769 { 2770 unsigned long flags; 2771 2772 xa_lock_irqsave(&mapping->i_pages, flags); 2773 if (folio->mapping) { /* Race with truncate? */ 2774 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2775 folio_account_dirtied(folio, mapping); 2776 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2777 PAGECACHE_TAG_DIRTY); 2778 } 2779 xa_unlock_irqrestore(&mapping->i_pages, flags); 2780 } 2781 2782 /** 2783 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2784 * @mapping: Address space this folio belongs to. 2785 * @folio: Folio to be marked as dirty. 2786 * 2787 * Filesystems which do not use buffer heads should call this function 2788 * from their dirty_folio address space operation. It ignores the 2789 * contents of folio_get_private(), so if the filesystem marks individual 2790 * blocks as dirty, the filesystem should handle that itself. 2791 * 2792 * This is also sometimes used by filesystems which use buffer_heads when 2793 * a single buffer is being dirtied: we want to set the folio dirty in 2794 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2795 * whereas block_dirty_folio() is a "top-down" dirtying. 2796 * 2797 * The caller must ensure this doesn't race with truncation. Most will 2798 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2799 * folio mapped and the pte lock held, which also locks out truncation. 2800 */ 2801 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2802 { 2803 folio_memcg_lock(folio); 2804 if (folio_test_set_dirty(folio)) { 2805 folio_memcg_unlock(folio); 2806 return false; 2807 } 2808 2809 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2810 folio_memcg_unlock(folio); 2811 2812 if (mapping->host) { 2813 /* !PageAnon && !swapper_space */ 2814 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2815 } 2816 return true; 2817 } 2818 EXPORT_SYMBOL(filemap_dirty_folio); 2819 2820 /** 2821 * folio_redirty_for_writepage - Decline to write a dirty folio. 2822 * @wbc: The writeback control. 2823 * @folio: The folio. 2824 * 2825 * When a writepage implementation decides that it doesn't want to write 2826 * @folio for some reason, it should call this function, unlock @folio and 2827 * return 0. 2828 * 2829 * Return: True if we redirtied the folio. False if someone else dirtied 2830 * it first. 2831 */ 2832 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2833 struct folio *folio) 2834 { 2835 struct address_space *mapping = folio->mapping; 2836 long nr = folio_nr_pages(folio); 2837 bool ret; 2838 2839 wbc->pages_skipped += nr; 2840 ret = filemap_dirty_folio(mapping, folio); 2841 if (mapping && mapping_can_writeback(mapping)) { 2842 struct inode *inode = mapping->host; 2843 struct bdi_writeback *wb; 2844 struct wb_lock_cookie cookie = {}; 2845 2846 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2847 current->nr_dirtied -= nr; 2848 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2849 wb_stat_mod(wb, WB_DIRTIED, -nr); 2850 unlocked_inode_to_wb_end(inode, &cookie); 2851 } 2852 return ret; 2853 } 2854 EXPORT_SYMBOL(folio_redirty_for_writepage); 2855 2856 /** 2857 * folio_mark_dirty - Mark a folio as being modified. 2858 * @folio: The folio. 2859 * 2860 * The folio may not be truncated while this function is running. 2861 * Holding the folio lock is sufficient to prevent truncation, but some 2862 * callers cannot acquire a sleeping lock. These callers instead hold 2863 * the page table lock for a page table which contains at least one page 2864 * in this folio. Truncation will block on the page table lock as it 2865 * unmaps pages before removing the folio from its mapping. 2866 * 2867 * Return: True if the folio was newly dirtied, false if it was already dirty. 2868 */ 2869 bool folio_mark_dirty(struct folio *folio) 2870 { 2871 struct address_space *mapping = folio_mapping(folio); 2872 2873 if (likely(mapping)) { 2874 /* 2875 * readahead/folio_deactivate could remain 2876 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2877 * About readahead, if the folio is written, the flags would be 2878 * reset. So no problem. 2879 * About folio_deactivate, if the folio is redirtied, 2880 * the flag will be reset. So no problem. but if the 2881 * folio is used by readahead it will confuse readahead 2882 * and make it restart the size rampup process. But it's 2883 * a trivial problem. 2884 */ 2885 if (folio_test_reclaim(folio)) 2886 folio_clear_reclaim(folio); 2887 return mapping->a_ops->dirty_folio(mapping, folio); 2888 } 2889 2890 return noop_dirty_folio(mapping, folio); 2891 } 2892 EXPORT_SYMBOL(folio_mark_dirty); 2893 2894 /* 2895 * set_page_dirty() is racy if the caller has no reference against 2896 * page->mapping->host, and if the page is unlocked. This is because another 2897 * CPU could truncate the page off the mapping and then free the mapping. 2898 * 2899 * Usually, the page _is_ locked, or the caller is a user-space process which 2900 * holds a reference on the inode by having an open file. 2901 * 2902 * In other cases, the page should be locked before running set_page_dirty(). 2903 */ 2904 int set_page_dirty_lock(struct page *page) 2905 { 2906 int ret; 2907 2908 lock_page(page); 2909 ret = set_page_dirty(page); 2910 unlock_page(page); 2911 return ret; 2912 } 2913 EXPORT_SYMBOL(set_page_dirty_lock); 2914 2915 /* 2916 * This cancels just the dirty bit on the kernel page itself, it does NOT 2917 * actually remove dirty bits on any mmap's that may be around. It also 2918 * leaves the page tagged dirty, so any sync activity will still find it on 2919 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2920 * look at the dirty bits in the VM. 2921 * 2922 * Doing this should *normally* only ever be done when a page is truncated, 2923 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2924 * this when it notices that somebody has cleaned out all the buffers on a 2925 * page without actually doing it through the VM. Can you say "ext3 is 2926 * horribly ugly"? Thought you could. 2927 */ 2928 void __folio_cancel_dirty(struct folio *folio) 2929 { 2930 struct address_space *mapping = folio_mapping(folio); 2931 2932 if (mapping_can_writeback(mapping)) { 2933 struct inode *inode = mapping->host; 2934 struct bdi_writeback *wb; 2935 struct wb_lock_cookie cookie = {}; 2936 2937 folio_memcg_lock(folio); 2938 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2939 2940 if (folio_test_clear_dirty(folio)) 2941 folio_account_cleaned(folio, wb); 2942 2943 unlocked_inode_to_wb_end(inode, &cookie); 2944 folio_memcg_unlock(folio); 2945 } else { 2946 folio_clear_dirty(folio); 2947 } 2948 } 2949 EXPORT_SYMBOL(__folio_cancel_dirty); 2950 2951 /* 2952 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2953 * Returns true if the folio was previously dirty. 2954 * 2955 * This is for preparing to put the folio under writeout. We leave 2956 * the folio tagged as dirty in the xarray so that a concurrent 2957 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2958 * The ->writepage implementation will run either folio_start_writeback() 2959 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2960 * and xarray dirty tag back into sync. 2961 * 2962 * This incoherency between the folio's dirty flag and xarray tag is 2963 * unfortunate, but it only exists while the folio is locked. 2964 */ 2965 bool folio_clear_dirty_for_io(struct folio *folio) 2966 { 2967 struct address_space *mapping = folio_mapping(folio); 2968 bool ret = false; 2969 2970 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2971 2972 if (mapping && mapping_can_writeback(mapping)) { 2973 struct inode *inode = mapping->host; 2974 struct bdi_writeback *wb; 2975 struct wb_lock_cookie cookie = {}; 2976 2977 /* 2978 * Yes, Virginia, this is indeed insane. 2979 * 2980 * We use this sequence to make sure that 2981 * (a) we account for dirty stats properly 2982 * (b) we tell the low-level filesystem to 2983 * mark the whole folio dirty if it was 2984 * dirty in a pagetable. Only to then 2985 * (c) clean the folio again and return 1 to 2986 * cause the writeback. 2987 * 2988 * This way we avoid all nasty races with the 2989 * dirty bit in multiple places and clearing 2990 * them concurrently from different threads. 2991 * 2992 * Note! Normally the "folio_mark_dirty(folio)" 2993 * has no effect on the actual dirty bit - since 2994 * that will already usually be set. But we 2995 * need the side effects, and it can help us 2996 * avoid races. 2997 * 2998 * We basically use the folio "master dirty bit" 2999 * as a serialization point for all the different 3000 * threads doing their things. 3001 */ 3002 if (folio_mkclean(folio)) 3003 folio_mark_dirty(folio); 3004 /* 3005 * We carefully synchronise fault handlers against 3006 * installing a dirty pte and marking the folio dirty 3007 * at this point. We do this by having them hold the 3008 * page lock while dirtying the folio, and folios are 3009 * always locked coming in here, so we get the desired 3010 * exclusion. 3011 */ 3012 wb = unlocked_inode_to_wb_begin(inode, &cookie); 3013 if (folio_test_clear_dirty(folio)) { 3014 long nr = folio_nr_pages(folio); 3015 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 3016 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3017 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 3018 ret = true; 3019 } 3020 unlocked_inode_to_wb_end(inode, &cookie); 3021 return ret; 3022 } 3023 return folio_test_clear_dirty(folio); 3024 } 3025 EXPORT_SYMBOL(folio_clear_dirty_for_io); 3026 3027 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3028 { 3029 atomic_inc(&wb->writeback_inodes); 3030 } 3031 3032 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3033 { 3034 unsigned long flags; 3035 atomic_dec(&wb->writeback_inodes); 3036 /* 3037 * Make sure estimate of writeback throughput gets updated after 3038 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3039 * (which is the interval other bandwidth updates use for batching) so 3040 * that if multiple inodes end writeback at a similar time, they get 3041 * batched into one bandwidth update. 3042 */ 3043 spin_lock_irqsave(&wb->work_lock, flags); 3044 if (test_bit(WB_registered, &wb->state)) 3045 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3046 spin_unlock_irqrestore(&wb->work_lock, flags); 3047 } 3048 3049 bool __folio_end_writeback(struct folio *folio) 3050 { 3051 long nr = folio_nr_pages(folio); 3052 struct address_space *mapping = folio_mapping(folio); 3053 bool ret; 3054 3055 folio_memcg_lock(folio); 3056 if (mapping && mapping_use_writeback_tags(mapping)) { 3057 struct inode *inode = mapping->host; 3058 struct backing_dev_info *bdi = inode_to_bdi(inode); 3059 unsigned long flags; 3060 3061 xa_lock_irqsave(&mapping->i_pages, flags); 3062 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3063 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3064 PAGECACHE_TAG_WRITEBACK); 3065 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3066 struct bdi_writeback *wb = inode_to_wb(inode); 3067 3068 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3069 __wb_writeout_add(wb, nr); 3070 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3071 wb_inode_writeback_end(wb); 3072 } 3073 3074 if (mapping->host && !mapping_tagged(mapping, 3075 PAGECACHE_TAG_WRITEBACK)) 3076 sb_clear_inode_writeback(mapping->host); 3077 3078 xa_unlock_irqrestore(&mapping->i_pages, flags); 3079 } else { 3080 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3081 } 3082 3083 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3084 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3085 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3086 folio_memcg_unlock(folio); 3087 3088 return ret; 3089 } 3090 3091 void __folio_start_writeback(struct folio *folio, bool keep_write) 3092 { 3093 long nr = folio_nr_pages(folio); 3094 struct address_space *mapping = folio_mapping(folio); 3095 int access_ret; 3096 3097 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3098 3099 folio_memcg_lock(folio); 3100 if (mapping && mapping_use_writeback_tags(mapping)) { 3101 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3102 struct inode *inode = mapping->host; 3103 struct backing_dev_info *bdi = inode_to_bdi(inode); 3104 unsigned long flags; 3105 bool on_wblist; 3106 3107 xas_lock_irqsave(&xas, flags); 3108 xas_load(&xas); 3109 folio_test_set_writeback(folio); 3110 3111 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3112 3113 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3114 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3115 struct bdi_writeback *wb = inode_to_wb(inode); 3116 3117 wb_stat_mod(wb, WB_WRITEBACK, nr); 3118 if (!on_wblist) 3119 wb_inode_writeback_start(wb); 3120 } 3121 3122 /* 3123 * We can come through here when swapping anonymous 3124 * folios, so we don't necessarily have an inode to 3125 * track for sync. 3126 */ 3127 if (mapping->host && !on_wblist) 3128 sb_mark_inode_writeback(mapping->host); 3129 if (!folio_test_dirty(folio)) 3130 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3131 if (!keep_write) 3132 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3133 xas_unlock_irqrestore(&xas, flags); 3134 } else { 3135 folio_test_set_writeback(folio); 3136 } 3137 3138 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3139 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3140 folio_memcg_unlock(folio); 3141 3142 access_ret = arch_make_folio_accessible(folio); 3143 /* 3144 * If writeback has been triggered on a page that cannot be made 3145 * accessible, it is too late to recover here. 3146 */ 3147 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3148 } 3149 EXPORT_SYMBOL(__folio_start_writeback); 3150 3151 /** 3152 * folio_wait_writeback - Wait for a folio to finish writeback. 3153 * @folio: The folio to wait for. 3154 * 3155 * If the folio is currently being written back to storage, wait for the 3156 * I/O to complete. 3157 * 3158 * Context: Sleeps. Must be called in process context and with 3159 * no spinlocks held. Caller should hold a reference on the folio. 3160 * If the folio is not locked, writeback may start again after writeback 3161 * has finished. 3162 */ 3163 void folio_wait_writeback(struct folio *folio) 3164 { 3165 while (folio_test_writeback(folio)) { 3166 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3167 folio_wait_bit(folio, PG_writeback); 3168 } 3169 } 3170 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3171 3172 /** 3173 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3174 * @folio: The folio to wait for. 3175 * 3176 * If the folio is currently being written back to storage, wait for the 3177 * I/O to complete or a fatal signal to arrive. 3178 * 3179 * Context: Sleeps. Must be called in process context and with 3180 * no spinlocks held. Caller should hold a reference on the folio. 3181 * If the folio is not locked, writeback may start again after writeback 3182 * has finished. 3183 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3184 */ 3185 int folio_wait_writeback_killable(struct folio *folio) 3186 { 3187 while (folio_test_writeback(folio)) { 3188 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3189 if (folio_wait_bit_killable(folio, PG_writeback)) 3190 return -EINTR; 3191 } 3192 3193 return 0; 3194 } 3195 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3196 3197 /** 3198 * folio_wait_stable() - wait for writeback to finish, if necessary. 3199 * @folio: The folio to wait on. 3200 * 3201 * This function determines if the given folio is related to a backing 3202 * device that requires folio contents to be held stable during writeback. 3203 * If so, then it will wait for any pending writeback to complete. 3204 * 3205 * Context: Sleeps. Must be called in process context and with 3206 * no spinlocks held. Caller should hold a reference on the folio. 3207 * If the folio is not locked, writeback may start again after writeback 3208 * has finished. 3209 */ 3210 void folio_wait_stable(struct folio *folio) 3211 { 3212 if (mapping_stable_writes(folio_mapping(folio))) 3213 folio_wait_writeback(folio); 3214 } 3215 EXPORT_SYMBOL_GPL(folio_wait_stable); 3216