1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that makes the machine dump writes/reads and block dirtyings. 113 */ 114 int block_dump; 115 116 /* 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 118 * a full sync is triggered after this time elapses without any disk activity. 119 */ 120 int laptop_mode; 121 122 EXPORT_SYMBOL(laptop_mode); 123 124 /* End of sysctl-exported parameters */ 125 126 struct wb_domain global_wb_domain; 127 128 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 129 struct dirty_throttle_control { 130 #ifdef CONFIG_CGROUP_WRITEBACK 131 struct wb_domain *dom; 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 133 #endif 134 struct bdi_writeback *wb; 135 struct fprop_local_percpu *wb_completions; 136 137 unsigned long avail; /* dirtyable */ 138 unsigned long dirty; /* file_dirty + write + nfs */ 139 unsigned long thresh; /* dirty threshold */ 140 unsigned long bg_thresh; /* dirty background threshold */ 141 142 unsigned long wb_dirty; /* per-wb counterparts */ 143 unsigned long wb_thresh; 144 unsigned long wb_bg_thresh; 145 146 unsigned long pos_ratio; 147 }; 148 149 /* 150 * Length of period for aging writeout fractions of bdis. This is an 151 * arbitrarily chosen number. The longer the period, the slower fractions will 152 * reflect changes in current writeout rate. 153 */ 154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 155 156 #ifdef CONFIG_CGROUP_WRITEBACK 157 158 #define GDTC_INIT(__wb) .wb = (__wb), \ 159 .dom = &global_wb_domain, \ 160 .wb_completions = &(__wb)->completions 161 162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 163 164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 165 .dom = mem_cgroup_wb_domain(__wb), \ 166 .wb_completions = &(__wb)->memcg_completions, \ 167 .gdtc = __gdtc 168 169 static bool mdtc_valid(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 175 { 176 return dtc->dom; 177 } 178 179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 180 { 181 return mdtc->gdtc; 182 } 183 184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 185 { 186 return &wb->memcg_completions; 187 } 188 189 static void wb_min_max_ratio(struct bdi_writeback *wb, 190 unsigned long *minp, unsigned long *maxp) 191 { 192 unsigned long this_bw = wb->avg_write_bandwidth; 193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 194 unsigned long long min = wb->bdi->min_ratio; 195 unsigned long long max = wb->bdi->max_ratio; 196 197 /* 198 * @wb may already be clean by the time control reaches here and 199 * the total may not include its bw. 200 */ 201 if (this_bw < tot_bw) { 202 if (min) { 203 min *= this_bw; 204 min = div64_ul(min, tot_bw); 205 } 206 if (max < 100) { 207 max *= this_bw; 208 max = div64_ul(max, tot_bw); 209 } 210 } 211 212 *minp = min; 213 *maxp = max; 214 } 215 216 #else /* CONFIG_CGROUP_WRITEBACK */ 217 218 #define GDTC_INIT(__wb) .wb = (__wb), \ 219 .wb_completions = &(__wb)->completions 220 #define GDTC_INIT_NO_WB 221 #define MDTC_INIT(__wb, __gdtc) 222 223 static bool mdtc_valid(struct dirty_throttle_control *dtc) 224 { 225 return false; 226 } 227 228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 229 { 230 return &global_wb_domain; 231 } 232 233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 234 { 235 return NULL; 236 } 237 238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 239 { 240 return NULL; 241 } 242 243 static void wb_min_max_ratio(struct bdi_writeback *wb, 244 unsigned long *minp, unsigned long *maxp) 245 { 246 *minp = wb->bdi->min_ratio; 247 *maxp = wb->bdi->max_ratio; 248 } 249 250 #endif /* CONFIG_CGROUP_WRITEBACK */ 251 252 /* 253 * In a memory zone, there is a certain amount of pages we consider 254 * available for the page cache, which is essentially the number of 255 * free and reclaimable pages, minus some zone reserves to protect 256 * lowmem and the ability to uphold the zone's watermarks without 257 * requiring writeback. 258 * 259 * This number of dirtyable pages is the base value of which the 260 * user-configurable dirty ratio is the effictive number of pages that 261 * are allowed to be actually dirtied. Per individual zone, or 262 * globally by using the sum of dirtyable pages over all zones. 263 * 264 * Because the user is allowed to specify the dirty limit globally as 265 * absolute number of bytes, calculating the per-zone dirty limit can 266 * require translating the configured limit into a percentage of 267 * global dirtyable memory first. 268 */ 269 270 /** 271 * node_dirtyable_memory - number of dirtyable pages in a node 272 * @pgdat: the node 273 * 274 * Return: the node's number of pages potentially available for dirty 275 * page cache. This is the base value for the per-node dirty limits. 276 */ 277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 278 { 279 unsigned long nr_pages = 0; 280 int z; 281 282 for (z = 0; z < MAX_NR_ZONES; z++) { 283 struct zone *zone = pgdat->node_zones + z; 284 285 if (!populated_zone(zone)) 286 continue; 287 288 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 289 } 290 291 /* 292 * Pages reserved for the kernel should not be considered 293 * dirtyable, to prevent a situation where reclaim has to 294 * clean pages in order to balance the zones. 295 */ 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 297 298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 300 301 return nr_pages; 302 } 303 304 static unsigned long highmem_dirtyable_memory(unsigned long total) 305 { 306 #ifdef CONFIG_HIGHMEM 307 int node; 308 unsigned long x = 0; 309 int i; 310 311 for_each_node_state(node, N_HIGH_MEMORY) { 312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 313 struct zone *z; 314 unsigned long nr_pages; 315 316 if (!is_highmem_idx(i)) 317 continue; 318 319 z = &NODE_DATA(node)->node_zones[i]; 320 if (!populated_zone(z)) 321 continue; 322 323 nr_pages = zone_page_state(z, NR_FREE_PAGES); 324 /* watch for underflows */ 325 nr_pages -= min(nr_pages, high_wmark_pages(z)); 326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 328 x += nr_pages; 329 } 330 } 331 332 /* 333 * Unreclaimable memory (kernel memory or anonymous memory 334 * without swap) can bring down the dirtyable pages below 335 * the zone's dirty balance reserve and the above calculation 336 * will underflow. However we still want to add in nodes 337 * which are below threshold (negative values) to get a more 338 * accurate calculation but make sure that the total never 339 * underflows. 340 */ 341 if ((long)x < 0) 342 x = 0; 343 344 /* 345 * Make sure that the number of highmem pages is never larger 346 * than the number of the total dirtyable memory. This can only 347 * occur in very strange VM situations but we want to make sure 348 * that this does not occur. 349 */ 350 return min(x, total); 351 #else 352 return 0; 353 #endif 354 } 355 356 /** 357 * global_dirtyable_memory - number of globally dirtyable pages 358 * 359 * Return: the global number of pages potentially available for dirty 360 * page cache. This is the base value for the global dirty limits. 361 */ 362 static unsigned long global_dirtyable_memory(void) 363 { 364 unsigned long x; 365 366 x = global_zone_page_state(NR_FREE_PAGES); 367 /* 368 * Pages reserved for the kernel should not be considered 369 * dirtyable, to prevent a situation where reclaim has to 370 * clean pages in order to balance the zones. 371 */ 372 x -= min(x, totalreserve_pages); 373 374 x += global_node_page_state(NR_INACTIVE_FILE); 375 x += global_node_page_state(NR_ACTIVE_FILE); 376 377 if (!vm_highmem_is_dirtyable) 378 x -= highmem_dirtyable_memory(x); 379 380 return x + 1; /* Ensure that we never return 0 */ 381 } 382 383 /** 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 385 * @dtc: dirty_throttle_control of interest 386 * 387 * Calculate @dtc->thresh and ->bg_thresh considering 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 389 * must ensure that @dtc->avail is set before calling this function. The 390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 391 * real-time tasks. 392 */ 393 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 394 { 395 const unsigned long available_memory = dtc->avail; 396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 397 unsigned long bytes = vm_dirty_bytes; 398 unsigned long bg_bytes = dirty_background_bytes; 399 /* convert ratios to per-PAGE_SIZE for higher precision */ 400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 402 unsigned long thresh; 403 unsigned long bg_thresh; 404 struct task_struct *tsk; 405 406 /* gdtc is !NULL iff @dtc is for memcg domain */ 407 if (gdtc) { 408 unsigned long global_avail = gdtc->avail; 409 410 /* 411 * The byte settings can't be applied directly to memcg 412 * domains. Convert them to ratios by scaling against 413 * globally available memory. As the ratios are in 414 * per-PAGE_SIZE, they can be obtained by dividing bytes by 415 * number of pages. 416 */ 417 if (bytes) 418 ratio = min(DIV_ROUND_UP(bytes, global_avail), 419 PAGE_SIZE); 420 if (bg_bytes) 421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 422 PAGE_SIZE); 423 bytes = bg_bytes = 0; 424 } 425 426 if (bytes) 427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 428 else 429 thresh = (ratio * available_memory) / PAGE_SIZE; 430 431 if (bg_bytes) 432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 433 else 434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 435 436 if (bg_thresh >= thresh) 437 bg_thresh = thresh / 2; 438 tsk = current; 439 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 440 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 441 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 442 } 443 dtc->thresh = thresh; 444 dtc->bg_thresh = bg_thresh; 445 446 /* we should eventually report the domain in the TP */ 447 if (!gdtc) 448 trace_global_dirty_state(bg_thresh, thresh); 449 } 450 451 /** 452 * global_dirty_limits - background-writeback and dirty-throttling thresholds 453 * @pbackground: out parameter for bg_thresh 454 * @pdirty: out parameter for thresh 455 * 456 * Calculate bg_thresh and thresh for global_wb_domain. See 457 * domain_dirty_limits() for details. 458 */ 459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 460 { 461 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 462 463 gdtc.avail = global_dirtyable_memory(); 464 domain_dirty_limits(&gdtc); 465 466 *pbackground = gdtc.bg_thresh; 467 *pdirty = gdtc.thresh; 468 } 469 470 /** 471 * node_dirty_limit - maximum number of dirty pages allowed in a node 472 * @pgdat: the node 473 * 474 * Return: the maximum number of dirty pages allowed in a node, based 475 * on the node's dirtyable memory. 476 */ 477 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 478 { 479 unsigned long node_memory = node_dirtyable_memory(pgdat); 480 struct task_struct *tsk = current; 481 unsigned long dirty; 482 483 if (vm_dirty_bytes) 484 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 485 node_memory / global_dirtyable_memory(); 486 else 487 dirty = vm_dirty_ratio * node_memory / 100; 488 489 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 490 dirty += dirty / 4; 491 492 return dirty; 493 } 494 495 /** 496 * node_dirty_ok - tells whether a node is within its dirty limits 497 * @pgdat: the node to check 498 * 499 * Return: %true when the dirty pages in @pgdat are within the node's 500 * dirty limit, %false if the limit is exceeded. 501 */ 502 bool node_dirty_ok(struct pglist_data *pgdat) 503 { 504 unsigned long limit = node_dirty_limit(pgdat); 505 unsigned long nr_pages = 0; 506 507 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 508 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS); 509 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 510 511 return nr_pages <= limit; 512 } 513 514 int dirty_background_ratio_handler(struct ctl_table *table, int write, 515 void *buffer, size_t *lenp, loff_t *ppos) 516 { 517 int ret; 518 519 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 520 if (ret == 0 && write) 521 dirty_background_bytes = 0; 522 return ret; 523 } 524 525 int dirty_background_bytes_handler(struct ctl_table *table, int write, 526 void *buffer, size_t *lenp, loff_t *ppos) 527 { 528 int ret; 529 530 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 531 if (ret == 0 && write) 532 dirty_background_ratio = 0; 533 return ret; 534 } 535 536 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 537 size_t *lenp, loff_t *ppos) 538 { 539 int old_ratio = vm_dirty_ratio; 540 int ret; 541 542 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 543 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 544 writeback_set_ratelimit(); 545 vm_dirty_bytes = 0; 546 } 547 return ret; 548 } 549 550 int dirty_bytes_handler(struct ctl_table *table, int write, 551 void *buffer, size_t *lenp, loff_t *ppos) 552 { 553 unsigned long old_bytes = vm_dirty_bytes; 554 int ret; 555 556 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 557 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 558 writeback_set_ratelimit(); 559 vm_dirty_ratio = 0; 560 } 561 return ret; 562 } 563 564 static unsigned long wp_next_time(unsigned long cur_time) 565 { 566 cur_time += VM_COMPLETIONS_PERIOD_LEN; 567 /* 0 has a special meaning... */ 568 if (!cur_time) 569 return 1; 570 return cur_time; 571 } 572 573 static void wb_domain_writeout_inc(struct wb_domain *dom, 574 struct fprop_local_percpu *completions, 575 unsigned int max_prop_frac) 576 { 577 __fprop_inc_percpu_max(&dom->completions, completions, 578 max_prop_frac); 579 /* First event after period switching was turned off? */ 580 if (unlikely(!dom->period_time)) { 581 /* 582 * We can race with other __bdi_writeout_inc calls here but 583 * it does not cause any harm since the resulting time when 584 * timer will fire and what is in writeout_period_time will be 585 * roughly the same. 586 */ 587 dom->period_time = wp_next_time(jiffies); 588 mod_timer(&dom->period_timer, dom->period_time); 589 } 590 } 591 592 /* 593 * Increment @wb's writeout completion count and the global writeout 594 * completion count. Called from test_clear_page_writeback(). 595 */ 596 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 597 { 598 struct wb_domain *cgdom; 599 600 inc_wb_stat(wb, WB_WRITTEN); 601 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 602 wb->bdi->max_prop_frac); 603 604 cgdom = mem_cgroup_wb_domain(wb); 605 if (cgdom) 606 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 607 wb->bdi->max_prop_frac); 608 } 609 610 void wb_writeout_inc(struct bdi_writeback *wb) 611 { 612 unsigned long flags; 613 614 local_irq_save(flags); 615 __wb_writeout_inc(wb); 616 local_irq_restore(flags); 617 } 618 EXPORT_SYMBOL_GPL(wb_writeout_inc); 619 620 /* 621 * On idle system, we can be called long after we scheduled because we use 622 * deferred timers so count with missed periods. 623 */ 624 static void writeout_period(struct timer_list *t) 625 { 626 struct wb_domain *dom = from_timer(dom, t, period_timer); 627 int miss_periods = (jiffies - dom->period_time) / 628 VM_COMPLETIONS_PERIOD_LEN; 629 630 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 631 dom->period_time = wp_next_time(dom->period_time + 632 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 633 mod_timer(&dom->period_timer, dom->period_time); 634 } else { 635 /* 636 * Aging has zeroed all fractions. Stop wasting CPU on period 637 * updates. 638 */ 639 dom->period_time = 0; 640 } 641 } 642 643 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 644 { 645 memset(dom, 0, sizeof(*dom)); 646 647 spin_lock_init(&dom->lock); 648 649 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 650 651 dom->dirty_limit_tstamp = jiffies; 652 653 return fprop_global_init(&dom->completions, gfp); 654 } 655 656 #ifdef CONFIG_CGROUP_WRITEBACK 657 void wb_domain_exit(struct wb_domain *dom) 658 { 659 del_timer_sync(&dom->period_timer); 660 fprop_global_destroy(&dom->completions); 661 } 662 #endif 663 664 /* 665 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 666 * registered backing devices, which, for obvious reasons, can not 667 * exceed 100%. 668 */ 669 static unsigned int bdi_min_ratio; 670 671 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 672 { 673 int ret = 0; 674 675 spin_lock_bh(&bdi_lock); 676 if (min_ratio > bdi->max_ratio) { 677 ret = -EINVAL; 678 } else { 679 min_ratio -= bdi->min_ratio; 680 if (bdi_min_ratio + min_ratio < 100) { 681 bdi_min_ratio += min_ratio; 682 bdi->min_ratio += min_ratio; 683 } else { 684 ret = -EINVAL; 685 } 686 } 687 spin_unlock_bh(&bdi_lock); 688 689 return ret; 690 } 691 692 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 693 { 694 int ret = 0; 695 696 if (max_ratio > 100) 697 return -EINVAL; 698 699 spin_lock_bh(&bdi_lock); 700 if (bdi->min_ratio > max_ratio) { 701 ret = -EINVAL; 702 } else { 703 bdi->max_ratio = max_ratio; 704 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 705 } 706 spin_unlock_bh(&bdi_lock); 707 708 return ret; 709 } 710 EXPORT_SYMBOL(bdi_set_max_ratio); 711 712 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 713 unsigned long bg_thresh) 714 { 715 return (thresh + bg_thresh) / 2; 716 } 717 718 static unsigned long hard_dirty_limit(struct wb_domain *dom, 719 unsigned long thresh) 720 { 721 return max(thresh, dom->dirty_limit); 722 } 723 724 /* 725 * Memory which can be further allocated to a memcg domain is capped by 726 * system-wide clean memory excluding the amount being used in the domain. 727 */ 728 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 729 unsigned long filepages, unsigned long headroom) 730 { 731 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 732 unsigned long clean = filepages - min(filepages, mdtc->dirty); 733 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 734 unsigned long other_clean = global_clean - min(global_clean, clean); 735 736 mdtc->avail = filepages + min(headroom, other_clean); 737 } 738 739 /** 740 * __wb_calc_thresh - @wb's share of dirty throttling threshold 741 * @dtc: dirty_throttle_context of interest 742 * 743 * Note that balance_dirty_pages() will only seriously take it as a hard limit 744 * when sleeping max_pause per page is not enough to keep the dirty pages under 745 * control. For example, when the device is completely stalled due to some error 746 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 747 * In the other normal situations, it acts more gently by throttling the tasks 748 * more (rather than completely block them) when the wb dirty pages go high. 749 * 750 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 751 * - starving fast devices 752 * - piling up dirty pages (that will take long time to sync) on slow devices 753 * 754 * The wb's share of dirty limit will be adapting to its throughput and 755 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 756 * 757 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 758 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 759 */ 760 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 761 { 762 struct wb_domain *dom = dtc_dom(dtc); 763 unsigned long thresh = dtc->thresh; 764 u64 wb_thresh; 765 unsigned long numerator, denominator; 766 unsigned long wb_min_ratio, wb_max_ratio; 767 768 /* 769 * Calculate this BDI's share of the thresh ratio. 770 */ 771 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 772 &numerator, &denominator); 773 774 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 775 wb_thresh *= numerator; 776 wb_thresh = div64_ul(wb_thresh, denominator); 777 778 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 779 780 wb_thresh += (thresh * wb_min_ratio) / 100; 781 if (wb_thresh > (thresh * wb_max_ratio) / 100) 782 wb_thresh = thresh * wb_max_ratio / 100; 783 784 return wb_thresh; 785 } 786 787 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 788 { 789 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 790 .thresh = thresh }; 791 return __wb_calc_thresh(&gdtc); 792 } 793 794 /* 795 * setpoint - dirty 3 796 * f(dirty) := 1.0 + (----------------) 797 * limit - setpoint 798 * 799 * it's a 3rd order polynomial that subjects to 800 * 801 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 802 * (2) f(setpoint) = 1.0 => the balance point 803 * (3) f(limit) = 0 => the hard limit 804 * (4) df/dx <= 0 => negative feedback control 805 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 806 * => fast response on large errors; small oscillation near setpoint 807 */ 808 static long long pos_ratio_polynom(unsigned long setpoint, 809 unsigned long dirty, 810 unsigned long limit) 811 { 812 long long pos_ratio; 813 long x; 814 815 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 816 (limit - setpoint) | 1); 817 pos_ratio = x; 818 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 819 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 820 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 821 822 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 823 } 824 825 /* 826 * Dirty position control. 827 * 828 * (o) global/bdi setpoints 829 * 830 * We want the dirty pages be balanced around the global/wb setpoints. 831 * When the number of dirty pages is higher/lower than the setpoint, the 832 * dirty position control ratio (and hence task dirty ratelimit) will be 833 * decreased/increased to bring the dirty pages back to the setpoint. 834 * 835 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 836 * 837 * if (dirty < setpoint) scale up pos_ratio 838 * if (dirty > setpoint) scale down pos_ratio 839 * 840 * if (wb_dirty < wb_setpoint) scale up pos_ratio 841 * if (wb_dirty > wb_setpoint) scale down pos_ratio 842 * 843 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 844 * 845 * (o) global control line 846 * 847 * ^ pos_ratio 848 * | 849 * | |<===== global dirty control scope ======>| 850 * 2.0 .............* 851 * | .* 852 * | . * 853 * | . * 854 * | . * 855 * | . * 856 * | . * 857 * 1.0 ................................* 858 * | . . * 859 * | . . * 860 * | . . * 861 * | . . * 862 * | . . * 863 * 0 +------------.------------------.----------------------*-------------> 864 * freerun^ setpoint^ limit^ dirty pages 865 * 866 * (o) wb control line 867 * 868 * ^ pos_ratio 869 * | 870 * | * 871 * | * 872 * | * 873 * | * 874 * | * |<=========== span ============>| 875 * 1.0 .......................* 876 * | . * 877 * | . * 878 * | . * 879 * | . * 880 * | . * 881 * | . * 882 * | . * 883 * | . * 884 * | . * 885 * | . * 886 * | . * 887 * 1/4 ...............................................* * * * * * * * * * * * 888 * | . . 889 * | . . 890 * | . . 891 * 0 +----------------------.-------------------------------.-------------> 892 * wb_setpoint^ x_intercept^ 893 * 894 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 895 * be smoothly throttled down to normal if it starts high in situations like 896 * - start writing to a slow SD card and a fast disk at the same time. The SD 897 * card's wb_dirty may rush to many times higher than wb_setpoint. 898 * - the wb dirty thresh drops quickly due to change of JBOD workload 899 */ 900 static void wb_position_ratio(struct dirty_throttle_control *dtc) 901 { 902 struct bdi_writeback *wb = dtc->wb; 903 unsigned long write_bw = wb->avg_write_bandwidth; 904 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 905 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 906 unsigned long wb_thresh = dtc->wb_thresh; 907 unsigned long x_intercept; 908 unsigned long setpoint; /* dirty pages' target balance point */ 909 unsigned long wb_setpoint; 910 unsigned long span; 911 long long pos_ratio; /* for scaling up/down the rate limit */ 912 long x; 913 914 dtc->pos_ratio = 0; 915 916 if (unlikely(dtc->dirty >= limit)) 917 return; 918 919 /* 920 * global setpoint 921 * 922 * See comment for pos_ratio_polynom(). 923 */ 924 setpoint = (freerun + limit) / 2; 925 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 926 927 /* 928 * The strictlimit feature is a tool preventing mistrusted filesystems 929 * from growing a large number of dirty pages before throttling. For 930 * such filesystems balance_dirty_pages always checks wb counters 931 * against wb limits. Even if global "nr_dirty" is under "freerun". 932 * This is especially important for fuse which sets bdi->max_ratio to 933 * 1% by default. Without strictlimit feature, fuse writeback may 934 * consume arbitrary amount of RAM because it is accounted in 935 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 936 * 937 * Here, in wb_position_ratio(), we calculate pos_ratio based on 938 * two values: wb_dirty and wb_thresh. Let's consider an example: 939 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 940 * limits are set by default to 10% and 20% (background and throttle). 941 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 942 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 943 * about ~6K pages (as the average of background and throttle wb 944 * limits). The 3rd order polynomial will provide positive feedback if 945 * wb_dirty is under wb_setpoint and vice versa. 946 * 947 * Note, that we cannot use global counters in these calculations 948 * because we want to throttle process writing to a strictlimit wb 949 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 950 * in the example above). 951 */ 952 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 953 long long wb_pos_ratio; 954 955 if (dtc->wb_dirty < 8) { 956 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 957 2 << RATELIMIT_CALC_SHIFT); 958 return; 959 } 960 961 if (dtc->wb_dirty >= wb_thresh) 962 return; 963 964 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 965 dtc->wb_bg_thresh); 966 967 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 968 return; 969 970 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 971 wb_thresh); 972 973 /* 974 * Typically, for strictlimit case, wb_setpoint << setpoint 975 * and pos_ratio >> wb_pos_ratio. In the other words global 976 * state ("dirty") is not limiting factor and we have to 977 * make decision based on wb counters. But there is an 978 * important case when global pos_ratio should get precedence: 979 * global limits are exceeded (e.g. due to activities on other 980 * wb's) while given strictlimit wb is below limit. 981 * 982 * "pos_ratio * wb_pos_ratio" would work for the case above, 983 * but it would look too non-natural for the case of all 984 * activity in the system coming from a single strictlimit wb 985 * with bdi->max_ratio == 100%. 986 * 987 * Note that min() below somewhat changes the dynamics of the 988 * control system. Normally, pos_ratio value can be well over 3 989 * (when globally we are at freerun and wb is well below wb 990 * setpoint). Now the maximum pos_ratio in the same situation 991 * is 2. We might want to tweak this if we observe the control 992 * system is too slow to adapt. 993 */ 994 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 995 return; 996 } 997 998 /* 999 * We have computed basic pos_ratio above based on global situation. If 1000 * the wb is over/under its share of dirty pages, we want to scale 1001 * pos_ratio further down/up. That is done by the following mechanism. 1002 */ 1003 1004 /* 1005 * wb setpoint 1006 * 1007 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1008 * 1009 * x_intercept - wb_dirty 1010 * := -------------------------- 1011 * x_intercept - wb_setpoint 1012 * 1013 * The main wb control line is a linear function that subjects to 1014 * 1015 * (1) f(wb_setpoint) = 1.0 1016 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1017 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1018 * 1019 * For single wb case, the dirty pages are observed to fluctuate 1020 * regularly within range 1021 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1022 * for various filesystems, where (2) can yield in a reasonable 12.5% 1023 * fluctuation range for pos_ratio. 1024 * 1025 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1026 * own size, so move the slope over accordingly and choose a slope that 1027 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1028 */ 1029 if (unlikely(wb_thresh > dtc->thresh)) 1030 wb_thresh = dtc->thresh; 1031 /* 1032 * It's very possible that wb_thresh is close to 0 not because the 1033 * device is slow, but that it has remained inactive for long time. 1034 * Honour such devices a reasonable good (hopefully IO efficient) 1035 * threshold, so that the occasional writes won't be blocked and active 1036 * writes can rampup the threshold quickly. 1037 */ 1038 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1039 /* 1040 * scale global setpoint to wb's: 1041 * wb_setpoint = setpoint * wb_thresh / thresh 1042 */ 1043 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1044 wb_setpoint = setpoint * (u64)x >> 16; 1045 /* 1046 * Use span=(8*write_bw) in single wb case as indicated by 1047 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1048 * 1049 * wb_thresh thresh - wb_thresh 1050 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1051 * thresh thresh 1052 */ 1053 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1054 x_intercept = wb_setpoint + span; 1055 1056 if (dtc->wb_dirty < x_intercept - span / 4) { 1057 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1058 (x_intercept - wb_setpoint) | 1); 1059 } else 1060 pos_ratio /= 4; 1061 1062 /* 1063 * wb reserve area, safeguard against dirty pool underrun and disk idle 1064 * It may push the desired control point of global dirty pages higher 1065 * than setpoint. 1066 */ 1067 x_intercept = wb_thresh / 2; 1068 if (dtc->wb_dirty < x_intercept) { 1069 if (dtc->wb_dirty > x_intercept / 8) 1070 pos_ratio = div_u64(pos_ratio * x_intercept, 1071 dtc->wb_dirty); 1072 else 1073 pos_ratio *= 8; 1074 } 1075 1076 dtc->pos_ratio = pos_ratio; 1077 } 1078 1079 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1080 unsigned long elapsed, 1081 unsigned long written) 1082 { 1083 const unsigned long period = roundup_pow_of_two(3 * HZ); 1084 unsigned long avg = wb->avg_write_bandwidth; 1085 unsigned long old = wb->write_bandwidth; 1086 u64 bw; 1087 1088 /* 1089 * bw = written * HZ / elapsed 1090 * 1091 * bw * elapsed + write_bandwidth * (period - elapsed) 1092 * write_bandwidth = --------------------------------------------------- 1093 * period 1094 * 1095 * @written may have decreased due to account_page_redirty(). 1096 * Avoid underflowing @bw calculation. 1097 */ 1098 bw = written - min(written, wb->written_stamp); 1099 bw *= HZ; 1100 if (unlikely(elapsed > period)) { 1101 bw = div64_ul(bw, elapsed); 1102 avg = bw; 1103 goto out; 1104 } 1105 bw += (u64)wb->write_bandwidth * (period - elapsed); 1106 bw >>= ilog2(period); 1107 1108 /* 1109 * one more level of smoothing, for filtering out sudden spikes 1110 */ 1111 if (avg > old && old >= (unsigned long)bw) 1112 avg -= (avg - old) >> 3; 1113 1114 if (avg < old && old <= (unsigned long)bw) 1115 avg += (old - avg) >> 3; 1116 1117 out: 1118 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1119 avg = max(avg, 1LU); 1120 if (wb_has_dirty_io(wb)) { 1121 long delta = avg - wb->avg_write_bandwidth; 1122 WARN_ON_ONCE(atomic_long_add_return(delta, 1123 &wb->bdi->tot_write_bandwidth) <= 0); 1124 } 1125 wb->write_bandwidth = bw; 1126 wb->avg_write_bandwidth = avg; 1127 } 1128 1129 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1130 { 1131 struct wb_domain *dom = dtc_dom(dtc); 1132 unsigned long thresh = dtc->thresh; 1133 unsigned long limit = dom->dirty_limit; 1134 1135 /* 1136 * Follow up in one step. 1137 */ 1138 if (limit < thresh) { 1139 limit = thresh; 1140 goto update; 1141 } 1142 1143 /* 1144 * Follow down slowly. Use the higher one as the target, because thresh 1145 * may drop below dirty. This is exactly the reason to introduce 1146 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1147 */ 1148 thresh = max(thresh, dtc->dirty); 1149 if (limit > thresh) { 1150 limit -= (limit - thresh) >> 5; 1151 goto update; 1152 } 1153 return; 1154 update: 1155 dom->dirty_limit = limit; 1156 } 1157 1158 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1159 unsigned long now) 1160 { 1161 struct wb_domain *dom = dtc_dom(dtc); 1162 1163 /* 1164 * check locklessly first to optimize away locking for the most time 1165 */ 1166 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1167 return; 1168 1169 spin_lock(&dom->lock); 1170 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1171 update_dirty_limit(dtc); 1172 dom->dirty_limit_tstamp = now; 1173 } 1174 spin_unlock(&dom->lock); 1175 } 1176 1177 /* 1178 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1179 * 1180 * Normal wb tasks will be curbed at or below it in long term. 1181 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1182 */ 1183 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1184 unsigned long dirtied, 1185 unsigned long elapsed) 1186 { 1187 struct bdi_writeback *wb = dtc->wb; 1188 unsigned long dirty = dtc->dirty; 1189 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1190 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1191 unsigned long setpoint = (freerun + limit) / 2; 1192 unsigned long write_bw = wb->avg_write_bandwidth; 1193 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1194 unsigned long dirty_rate; 1195 unsigned long task_ratelimit; 1196 unsigned long balanced_dirty_ratelimit; 1197 unsigned long step; 1198 unsigned long x; 1199 unsigned long shift; 1200 1201 /* 1202 * The dirty rate will match the writeout rate in long term, except 1203 * when dirty pages are truncated by userspace or re-dirtied by FS. 1204 */ 1205 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1206 1207 /* 1208 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1209 */ 1210 task_ratelimit = (u64)dirty_ratelimit * 1211 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1212 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1213 1214 /* 1215 * A linear estimation of the "balanced" throttle rate. The theory is, 1216 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1217 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1218 * formula will yield the balanced rate limit (write_bw / N). 1219 * 1220 * Note that the expanded form is not a pure rate feedback: 1221 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1222 * but also takes pos_ratio into account: 1223 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1224 * 1225 * (1) is not realistic because pos_ratio also takes part in balancing 1226 * the dirty rate. Consider the state 1227 * pos_ratio = 0.5 (3) 1228 * rate = 2 * (write_bw / N) (4) 1229 * If (1) is used, it will stuck in that state! Because each dd will 1230 * be throttled at 1231 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1232 * yielding 1233 * dirty_rate = N * task_ratelimit = write_bw (6) 1234 * put (6) into (1) we get 1235 * rate_(i+1) = rate_(i) (7) 1236 * 1237 * So we end up using (2) to always keep 1238 * rate_(i+1) ~= (write_bw / N) (8) 1239 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1240 * pos_ratio is able to drive itself to 1.0, which is not only where 1241 * the dirty count meet the setpoint, but also where the slope of 1242 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1243 */ 1244 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1245 dirty_rate | 1); 1246 /* 1247 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1248 */ 1249 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1250 balanced_dirty_ratelimit = write_bw; 1251 1252 /* 1253 * We could safely do this and return immediately: 1254 * 1255 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1256 * 1257 * However to get a more stable dirty_ratelimit, the below elaborated 1258 * code makes use of task_ratelimit to filter out singular points and 1259 * limit the step size. 1260 * 1261 * The below code essentially only uses the relative value of 1262 * 1263 * task_ratelimit - dirty_ratelimit 1264 * = (pos_ratio - 1) * dirty_ratelimit 1265 * 1266 * which reflects the direction and size of dirty position error. 1267 */ 1268 1269 /* 1270 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1271 * task_ratelimit is on the same side of dirty_ratelimit, too. 1272 * For example, when 1273 * - dirty_ratelimit > balanced_dirty_ratelimit 1274 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1275 * lowering dirty_ratelimit will help meet both the position and rate 1276 * control targets. Otherwise, don't update dirty_ratelimit if it will 1277 * only help meet the rate target. After all, what the users ultimately 1278 * feel and care are stable dirty rate and small position error. 1279 * 1280 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1281 * and filter out the singular points of balanced_dirty_ratelimit. Which 1282 * keeps jumping around randomly and can even leap far away at times 1283 * due to the small 200ms estimation period of dirty_rate (we want to 1284 * keep that period small to reduce time lags). 1285 */ 1286 step = 0; 1287 1288 /* 1289 * For strictlimit case, calculations above were based on wb counters 1290 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1291 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1292 * Hence, to calculate "step" properly, we have to use wb_dirty as 1293 * "dirty" and wb_setpoint as "setpoint". 1294 * 1295 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1296 * it's possible that wb_thresh is close to zero due to inactivity 1297 * of backing device. 1298 */ 1299 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1300 dirty = dtc->wb_dirty; 1301 if (dtc->wb_dirty < 8) 1302 setpoint = dtc->wb_dirty + 1; 1303 else 1304 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1305 } 1306 1307 if (dirty < setpoint) { 1308 x = min3(wb->balanced_dirty_ratelimit, 1309 balanced_dirty_ratelimit, task_ratelimit); 1310 if (dirty_ratelimit < x) 1311 step = x - dirty_ratelimit; 1312 } else { 1313 x = max3(wb->balanced_dirty_ratelimit, 1314 balanced_dirty_ratelimit, task_ratelimit); 1315 if (dirty_ratelimit > x) 1316 step = dirty_ratelimit - x; 1317 } 1318 1319 /* 1320 * Don't pursue 100% rate matching. It's impossible since the balanced 1321 * rate itself is constantly fluctuating. So decrease the track speed 1322 * when it gets close to the target. Helps eliminate pointless tremors. 1323 */ 1324 shift = dirty_ratelimit / (2 * step + 1); 1325 if (shift < BITS_PER_LONG) 1326 step = DIV_ROUND_UP(step >> shift, 8); 1327 else 1328 step = 0; 1329 1330 if (dirty_ratelimit < balanced_dirty_ratelimit) 1331 dirty_ratelimit += step; 1332 else 1333 dirty_ratelimit -= step; 1334 1335 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1336 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1337 1338 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1339 } 1340 1341 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1342 struct dirty_throttle_control *mdtc, 1343 unsigned long start_time, 1344 bool update_ratelimit) 1345 { 1346 struct bdi_writeback *wb = gdtc->wb; 1347 unsigned long now = jiffies; 1348 unsigned long elapsed = now - wb->bw_time_stamp; 1349 unsigned long dirtied; 1350 unsigned long written; 1351 1352 lockdep_assert_held(&wb->list_lock); 1353 1354 /* 1355 * rate-limit, only update once every 200ms. 1356 */ 1357 if (elapsed < BANDWIDTH_INTERVAL) 1358 return; 1359 1360 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1361 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1362 1363 /* 1364 * Skip quiet periods when disk bandwidth is under-utilized. 1365 * (at least 1s idle time between two flusher runs) 1366 */ 1367 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1368 goto snapshot; 1369 1370 if (update_ratelimit) { 1371 domain_update_bandwidth(gdtc, now); 1372 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1373 1374 /* 1375 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1376 * compiler has no way to figure that out. Help it. 1377 */ 1378 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1379 domain_update_bandwidth(mdtc, now); 1380 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1381 } 1382 } 1383 wb_update_write_bandwidth(wb, elapsed, written); 1384 1385 snapshot: 1386 wb->dirtied_stamp = dirtied; 1387 wb->written_stamp = written; 1388 wb->bw_time_stamp = now; 1389 } 1390 1391 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1392 { 1393 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1394 1395 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1396 } 1397 1398 /* 1399 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1400 * will look to see if it needs to start dirty throttling. 1401 * 1402 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1403 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1404 * (the number of pages we may dirty without exceeding the dirty limits). 1405 */ 1406 static unsigned long dirty_poll_interval(unsigned long dirty, 1407 unsigned long thresh) 1408 { 1409 if (thresh > dirty) 1410 return 1UL << (ilog2(thresh - dirty) >> 1); 1411 1412 return 1; 1413 } 1414 1415 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1416 unsigned long wb_dirty) 1417 { 1418 unsigned long bw = wb->avg_write_bandwidth; 1419 unsigned long t; 1420 1421 /* 1422 * Limit pause time for small memory systems. If sleeping for too long 1423 * time, a small pool of dirty/writeback pages may go empty and disk go 1424 * idle. 1425 * 1426 * 8 serves as the safety ratio. 1427 */ 1428 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1429 t++; 1430 1431 return min_t(unsigned long, t, MAX_PAUSE); 1432 } 1433 1434 static long wb_min_pause(struct bdi_writeback *wb, 1435 long max_pause, 1436 unsigned long task_ratelimit, 1437 unsigned long dirty_ratelimit, 1438 int *nr_dirtied_pause) 1439 { 1440 long hi = ilog2(wb->avg_write_bandwidth); 1441 long lo = ilog2(wb->dirty_ratelimit); 1442 long t; /* target pause */ 1443 long pause; /* estimated next pause */ 1444 int pages; /* target nr_dirtied_pause */ 1445 1446 /* target for 10ms pause on 1-dd case */ 1447 t = max(1, HZ / 100); 1448 1449 /* 1450 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1451 * overheads. 1452 * 1453 * (N * 10ms) on 2^N concurrent tasks. 1454 */ 1455 if (hi > lo) 1456 t += (hi - lo) * (10 * HZ) / 1024; 1457 1458 /* 1459 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1460 * on the much more stable dirty_ratelimit. However the next pause time 1461 * will be computed based on task_ratelimit and the two rate limits may 1462 * depart considerably at some time. Especially if task_ratelimit goes 1463 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1464 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1465 * result task_ratelimit won't be executed faithfully, which could 1466 * eventually bring down dirty_ratelimit. 1467 * 1468 * We apply two rules to fix it up: 1469 * 1) try to estimate the next pause time and if necessary, use a lower 1470 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1471 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1472 * 2) limit the target pause time to max_pause/2, so that the normal 1473 * small fluctuations of task_ratelimit won't trigger rule (1) and 1474 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1475 */ 1476 t = min(t, 1 + max_pause / 2); 1477 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1478 1479 /* 1480 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1481 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1482 * When the 16 consecutive reads are often interrupted by some dirty 1483 * throttling pause during the async writes, cfq will go into idles 1484 * (deadline is fine). So push nr_dirtied_pause as high as possible 1485 * until reaches DIRTY_POLL_THRESH=32 pages. 1486 */ 1487 if (pages < DIRTY_POLL_THRESH) { 1488 t = max_pause; 1489 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1490 if (pages > DIRTY_POLL_THRESH) { 1491 pages = DIRTY_POLL_THRESH; 1492 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1493 } 1494 } 1495 1496 pause = HZ * pages / (task_ratelimit + 1); 1497 if (pause > max_pause) { 1498 t = max_pause; 1499 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1500 } 1501 1502 *nr_dirtied_pause = pages; 1503 /* 1504 * The minimal pause time will normally be half the target pause time. 1505 */ 1506 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1507 } 1508 1509 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1510 { 1511 struct bdi_writeback *wb = dtc->wb; 1512 unsigned long wb_reclaimable; 1513 1514 /* 1515 * wb_thresh is not treated as some limiting factor as 1516 * dirty_thresh, due to reasons 1517 * - in JBOD setup, wb_thresh can fluctuate a lot 1518 * - in a system with HDD and USB key, the USB key may somehow 1519 * go into state (wb_dirty >> wb_thresh) either because 1520 * wb_dirty starts high, or because wb_thresh drops low. 1521 * In this case we don't want to hard throttle the USB key 1522 * dirtiers for 100 seconds until wb_dirty drops under 1523 * wb_thresh. Instead the auxiliary wb control line in 1524 * wb_position_ratio() will let the dirtier task progress 1525 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1526 */ 1527 dtc->wb_thresh = __wb_calc_thresh(dtc); 1528 dtc->wb_bg_thresh = dtc->thresh ? 1529 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1530 1531 /* 1532 * In order to avoid the stacked BDI deadlock we need 1533 * to ensure we accurately count the 'dirty' pages when 1534 * the threshold is low. 1535 * 1536 * Otherwise it would be possible to get thresh+n pages 1537 * reported dirty, even though there are thresh-m pages 1538 * actually dirty; with m+n sitting in the percpu 1539 * deltas. 1540 */ 1541 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1542 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1543 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1544 } else { 1545 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1546 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1547 } 1548 } 1549 1550 /* 1551 * balance_dirty_pages() must be called by processes which are generating dirty 1552 * data. It looks at the number of dirty pages in the machine and will force 1553 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1554 * If we're over `background_thresh' then the writeback threads are woken to 1555 * perform some writeout. 1556 */ 1557 static void balance_dirty_pages(struct bdi_writeback *wb, 1558 unsigned long pages_dirtied) 1559 { 1560 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1561 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1562 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1563 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1564 &mdtc_stor : NULL; 1565 struct dirty_throttle_control *sdtc; 1566 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1567 long period; 1568 long pause; 1569 long max_pause; 1570 long min_pause; 1571 int nr_dirtied_pause; 1572 bool dirty_exceeded = false; 1573 unsigned long task_ratelimit; 1574 unsigned long dirty_ratelimit; 1575 struct backing_dev_info *bdi = wb->bdi; 1576 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1577 unsigned long start_time = jiffies; 1578 1579 for (;;) { 1580 unsigned long now = jiffies; 1581 unsigned long dirty, thresh, bg_thresh; 1582 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1583 unsigned long m_thresh = 0; 1584 unsigned long m_bg_thresh = 0; 1585 1586 /* 1587 * Unstable writes are a feature of certain networked 1588 * filesystems (i.e. NFS) in which data may have been 1589 * written to the server's write cache, but has not yet 1590 * been flushed to permanent storage. 1591 */ 1592 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) + 1593 global_node_page_state(NR_UNSTABLE_NFS); 1594 gdtc->avail = global_dirtyable_memory(); 1595 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1596 1597 domain_dirty_limits(gdtc); 1598 1599 if (unlikely(strictlimit)) { 1600 wb_dirty_limits(gdtc); 1601 1602 dirty = gdtc->wb_dirty; 1603 thresh = gdtc->wb_thresh; 1604 bg_thresh = gdtc->wb_bg_thresh; 1605 } else { 1606 dirty = gdtc->dirty; 1607 thresh = gdtc->thresh; 1608 bg_thresh = gdtc->bg_thresh; 1609 } 1610 1611 if (mdtc) { 1612 unsigned long filepages, headroom, writeback; 1613 1614 /* 1615 * If @wb belongs to !root memcg, repeat the same 1616 * basic calculations for the memcg domain. 1617 */ 1618 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1619 &mdtc->dirty, &writeback); 1620 mdtc->dirty += writeback; 1621 mdtc_calc_avail(mdtc, filepages, headroom); 1622 1623 domain_dirty_limits(mdtc); 1624 1625 if (unlikely(strictlimit)) { 1626 wb_dirty_limits(mdtc); 1627 m_dirty = mdtc->wb_dirty; 1628 m_thresh = mdtc->wb_thresh; 1629 m_bg_thresh = mdtc->wb_bg_thresh; 1630 } else { 1631 m_dirty = mdtc->dirty; 1632 m_thresh = mdtc->thresh; 1633 m_bg_thresh = mdtc->bg_thresh; 1634 } 1635 } 1636 1637 /* 1638 * Throttle it only when the background writeback cannot 1639 * catch-up. This avoids (excessively) small writeouts 1640 * when the wb limits are ramping up in case of !strictlimit. 1641 * 1642 * In strictlimit case make decision based on the wb counters 1643 * and limits. Small writeouts when the wb limits are ramping 1644 * up are the price we consciously pay for strictlimit-ing. 1645 * 1646 * If memcg domain is in effect, @dirty should be under 1647 * both global and memcg freerun ceilings. 1648 */ 1649 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1650 (!mdtc || 1651 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1652 unsigned long intv = dirty_poll_interval(dirty, thresh); 1653 unsigned long m_intv = ULONG_MAX; 1654 1655 current->dirty_paused_when = now; 1656 current->nr_dirtied = 0; 1657 if (mdtc) 1658 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1659 current->nr_dirtied_pause = min(intv, m_intv); 1660 break; 1661 } 1662 1663 if (unlikely(!writeback_in_progress(wb))) 1664 wb_start_background_writeback(wb); 1665 1666 mem_cgroup_flush_foreign(wb); 1667 1668 /* 1669 * Calculate global domain's pos_ratio and select the 1670 * global dtc by default. 1671 */ 1672 if (!strictlimit) 1673 wb_dirty_limits(gdtc); 1674 1675 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1676 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1677 1678 wb_position_ratio(gdtc); 1679 sdtc = gdtc; 1680 1681 if (mdtc) { 1682 /* 1683 * If memcg domain is in effect, calculate its 1684 * pos_ratio. @wb should satisfy constraints from 1685 * both global and memcg domains. Choose the one 1686 * w/ lower pos_ratio. 1687 */ 1688 if (!strictlimit) 1689 wb_dirty_limits(mdtc); 1690 1691 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1692 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1693 1694 wb_position_ratio(mdtc); 1695 if (mdtc->pos_ratio < gdtc->pos_ratio) 1696 sdtc = mdtc; 1697 } 1698 1699 if (dirty_exceeded && !wb->dirty_exceeded) 1700 wb->dirty_exceeded = 1; 1701 1702 if (time_is_before_jiffies(wb->bw_time_stamp + 1703 BANDWIDTH_INTERVAL)) { 1704 spin_lock(&wb->list_lock); 1705 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1706 spin_unlock(&wb->list_lock); 1707 } 1708 1709 /* throttle according to the chosen dtc */ 1710 dirty_ratelimit = wb->dirty_ratelimit; 1711 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1712 RATELIMIT_CALC_SHIFT; 1713 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1714 min_pause = wb_min_pause(wb, max_pause, 1715 task_ratelimit, dirty_ratelimit, 1716 &nr_dirtied_pause); 1717 1718 if (unlikely(task_ratelimit == 0)) { 1719 period = max_pause; 1720 pause = max_pause; 1721 goto pause; 1722 } 1723 period = HZ * pages_dirtied / task_ratelimit; 1724 pause = period; 1725 if (current->dirty_paused_when) 1726 pause -= now - current->dirty_paused_when; 1727 /* 1728 * For less than 1s think time (ext3/4 may block the dirtier 1729 * for up to 800ms from time to time on 1-HDD; so does xfs, 1730 * however at much less frequency), try to compensate it in 1731 * future periods by updating the virtual time; otherwise just 1732 * do a reset, as it may be a light dirtier. 1733 */ 1734 if (pause < min_pause) { 1735 trace_balance_dirty_pages(wb, 1736 sdtc->thresh, 1737 sdtc->bg_thresh, 1738 sdtc->dirty, 1739 sdtc->wb_thresh, 1740 sdtc->wb_dirty, 1741 dirty_ratelimit, 1742 task_ratelimit, 1743 pages_dirtied, 1744 period, 1745 min(pause, 0L), 1746 start_time); 1747 if (pause < -HZ) { 1748 current->dirty_paused_when = now; 1749 current->nr_dirtied = 0; 1750 } else if (period) { 1751 current->dirty_paused_when += period; 1752 current->nr_dirtied = 0; 1753 } else if (current->nr_dirtied_pause <= pages_dirtied) 1754 current->nr_dirtied_pause += pages_dirtied; 1755 break; 1756 } 1757 if (unlikely(pause > max_pause)) { 1758 /* for occasional dropped task_ratelimit */ 1759 now += min(pause - max_pause, max_pause); 1760 pause = max_pause; 1761 } 1762 1763 pause: 1764 trace_balance_dirty_pages(wb, 1765 sdtc->thresh, 1766 sdtc->bg_thresh, 1767 sdtc->dirty, 1768 sdtc->wb_thresh, 1769 sdtc->wb_dirty, 1770 dirty_ratelimit, 1771 task_ratelimit, 1772 pages_dirtied, 1773 period, 1774 pause, 1775 start_time); 1776 __set_current_state(TASK_KILLABLE); 1777 wb->dirty_sleep = now; 1778 io_schedule_timeout(pause); 1779 1780 current->dirty_paused_when = now + pause; 1781 current->nr_dirtied = 0; 1782 current->nr_dirtied_pause = nr_dirtied_pause; 1783 1784 /* 1785 * This is typically equal to (dirty < thresh) and can also 1786 * keep "1000+ dd on a slow USB stick" under control. 1787 */ 1788 if (task_ratelimit) 1789 break; 1790 1791 /* 1792 * In the case of an unresponding NFS server and the NFS dirty 1793 * pages exceeds dirty_thresh, give the other good wb's a pipe 1794 * to go through, so that tasks on them still remain responsive. 1795 * 1796 * In theory 1 page is enough to keep the consumer-producer 1797 * pipe going: the flusher cleans 1 page => the task dirties 1 1798 * more page. However wb_dirty has accounting errors. So use 1799 * the larger and more IO friendly wb_stat_error. 1800 */ 1801 if (sdtc->wb_dirty <= wb_stat_error()) 1802 break; 1803 1804 if (fatal_signal_pending(current)) 1805 break; 1806 } 1807 1808 if (!dirty_exceeded && wb->dirty_exceeded) 1809 wb->dirty_exceeded = 0; 1810 1811 if (writeback_in_progress(wb)) 1812 return; 1813 1814 /* 1815 * In laptop mode, we wait until hitting the higher threshold before 1816 * starting background writeout, and then write out all the way down 1817 * to the lower threshold. So slow writers cause minimal disk activity. 1818 * 1819 * In normal mode, we start background writeout at the lower 1820 * background_thresh, to keep the amount of dirty memory low. 1821 */ 1822 if (laptop_mode) 1823 return; 1824 1825 if (nr_reclaimable > gdtc->bg_thresh) 1826 wb_start_background_writeback(wb); 1827 } 1828 1829 static DEFINE_PER_CPU(int, bdp_ratelimits); 1830 1831 /* 1832 * Normal tasks are throttled by 1833 * loop { 1834 * dirty tsk->nr_dirtied_pause pages; 1835 * take a snap in balance_dirty_pages(); 1836 * } 1837 * However there is a worst case. If every task exit immediately when dirtied 1838 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1839 * called to throttle the page dirties. The solution is to save the not yet 1840 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1841 * randomly into the running tasks. This works well for the above worst case, 1842 * as the new task will pick up and accumulate the old task's leaked dirty 1843 * count and eventually get throttled. 1844 */ 1845 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1846 1847 /** 1848 * balance_dirty_pages_ratelimited - balance dirty memory state 1849 * @mapping: address_space which was dirtied 1850 * 1851 * Processes which are dirtying memory should call in here once for each page 1852 * which was newly dirtied. The function will periodically check the system's 1853 * dirty state and will initiate writeback if needed. 1854 * 1855 * On really big machines, get_writeback_state is expensive, so try to avoid 1856 * calling it too often (ratelimiting). But once we're over the dirty memory 1857 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1858 * from overshooting the limit by (ratelimit_pages) each. 1859 */ 1860 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1861 { 1862 struct inode *inode = mapping->host; 1863 struct backing_dev_info *bdi = inode_to_bdi(inode); 1864 struct bdi_writeback *wb = NULL; 1865 int ratelimit; 1866 int *p; 1867 1868 if (!bdi_cap_account_dirty(bdi)) 1869 return; 1870 1871 if (inode_cgwb_enabled(inode)) 1872 wb = wb_get_create_current(bdi, GFP_KERNEL); 1873 if (!wb) 1874 wb = &bdi->wb; 1875 1876 ratelimit = current->nr_dirtied_pause; 1877 if (wb->dirty_exceeded) 1878 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1879 1880 preempt_disable(); 1881 /* 1882 * This prevents one CPU to accumulate too many dirtied pages without 1883 * calling into balance_dirty_pages(), which can happen when there are 1884 * 1000+ tasks, all of them start dirtying pages at exactly the same 1885 * time, hence all honoured too large initial task->nr_dirtied_pause. 1886 */ 1887 p = this_cpu_ptr(&bdp_ratelimits); 1888 if (unlikely(current->nr_dirtied >= ratelimit)) 1889 *p = 0; 1890 else if (unlikely(*p >= ratelimit_pages)) { 1891 *p = 0; 1892 ratelimit = 0; 1893 } 1894 /* 1895 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1896 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1897 * the dirty throttling and livelock other long-run dirtiers. 1898 */ 1899 p = this_cpu_ptr(&dirty_throttle_leaks); 1900 if (*p > 0 && current->nr_dirtied < ratelimit) { 1901 unsigned long nr_pages_dirtied; 1902 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1903 *p -= nr_pages_dirtied; 1904 current->nr_dirtied += nr_pages_dirtied; 1905 } 1906 preempt_enable(); 1907 1908 if (unlikely(current->nr_dirtied >= ratelimit)) 1909 balance_dirty_pages(wb, current->nr_dirtied); 1910 1911 wb_put(wb); 1912 } 1913 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1914 1915 /** 1916 * wb_over_bg_thresh - does @wb need to be written back? 1917 * @wb: bdi_writeback of interest 1918 * 1919 * Determines whether background writeback should keep writing @wb or it's 1920 * clean enough. 1921 * 1922 * Return: %true if writeback should continue. 1923 */ 1924 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1925 { 1926 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1927 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1928 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1929 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1930 &mdtc_stor : NULL; 1931 1932 /* 1933 * Similar to balance_dirty_pages() but ignores pages being written 1934 * as we're trying to decide whether to put more under writeback. 1935 */ 1936 gdtc->avail = global_dirtyable_memory(); 1937 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) + 1938 global_node_page_state(NR_UNSTABLE_NFS); 1939 domain_dirty_limits(gdtc); 1940 1941 if (gdtc->dirty > gdtc->bg_thresh) 1942 return true; 1943 1944 if (wb_stat(wb, WB_RECLAIMABLE) > 1945 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1946 return true; 1947 1948 if (mdtc) { 1949 unsigned long filepages, headroom, writeback; 1950 1951 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1952 &writeback); 1953 mdtc_calc_avail(mdtc, filepages, headroom); 1954 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1955 1956 if (mdtc->dirty > mdtc->bg_thresh) 1957 return true; 1958 1959 if (wb_stat(wb, WB_RECLAIMABLE) > 1960 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1961 return true; 1962 } 1963 1964 return false; 1965 } 1966 1967 /* 1968 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1969 */ 1970 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1971 void *buffer, size_t *length, loff_t *ppos) 1972 { 1973 unsigned int old_interval = dirty_writeback_interval; 1974 int ret; 1975 1976 ret = proc_dointvec(table, write, buffer, length, ppos); 1977 1978 /* 1979 * Writing 0 to dirty_writeback_interval will disable periodic writeback 1980 * and a different non-zero value will wakeup the writeback threads. 1981 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 1982 * iterate over all bdis and wbs. 1983 * The reason we do this is to make the change take effect immediately. 1984 */ 1985 if (!ret && write && dirty_writeback_interval && 1986 dirty_writeback_interval != old_interval) 1987 wakeup_flusher_threads(WB_REASON_PERIODIC); 1988 1989 return ret; 1990 } 1991 1992 #ifdef CONFIG_BLOCK 1993 void laptop_mode_timer_fn(struct timer_list *t) 1994 { 1995 struct backing_dev_info *backing_dev_info = 1996 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 1997 1998 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 1999 } 2000 2001 /* 2002 * We've spun up the disk and we're in laptop mode: schedule writeback 2003 * of all dirty data a few seconds from now. If the flush is already scheduled 2004 * then push it back - the user is still using the disk. 2005 */ 2006 void laptop_io_completion(struct backing_dev_info *info) 2007 { 2008 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2009 } 2010 2011 /* 2012 * We're in laptop mode and we've just synced. The sync's writes will have 2013 * caused another writeback to be scheduled by laptop_io_completion. 2014 * Nothing needs to be written back anymore, so we unschedule the writeback. 2015 */ 2016 void laptop_sync_completion(void) 2017 { 2018 struct backing_dev_info *bdi; 2019 2020 rcu_read_lock(); 2021 2022 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2023 del_timer(&bdi->laptop_mode_wb_timer); 2024 2025 rcu_read_unlock(); 2026 } 2027 #endif 2028 2029 /* 2030 * If ratelimit_pages is too high then we can get into dirty-data overload 2031 * if a large number of processes all perform writes at the same time. 2032 * If it is too low then SMP machines will call the (expensive) 2033 * get_writeback_state too often. 2034 * 2035 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2036 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2037 * thresholds. 2038 */ 2039 2040 void writeback_set_ratelimit(void) 2041 { 2042 struct wb_domain *dom = &global_wb_domain; 2043 unsigned long background_thresh; 2044 unsigned long dirty_thresh; 2045 2046 global_dirty_limits(&background_thresh, &dirty_thresh); 2047 dom->dirty_limit = dirty_thresh; 2048 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2049 if (ratelimit_pages < 16) 2050 ratelimit_pages = 16; 2051 } 2052 2053 static int page_writeback_cpu_online(unsigned int cpu) 2054 { 2055 writeback_set_ratelimit(); 2056 return 0; 2057 } 2058 2059 /* 2060 * Called early on to tune the page writeback dirty limits. 2061 * 2062 * We used to scale dirty pages according to how total memory 2063 * related to pages that could be allocated for buffers (by 2064 * comparing nr_free_buffer_pages() to vm_total_pages. 2065 * 2066 * However, that was when we used "dirty_ratio" to scale with 2067 * all memory, and we don't do that any more. "dirty_ratio" 2068 * is now applied to total non-HIGHPAGE memory (by subtracting 2069 * totalhigh_pages from vm_total_pages), and as such we can't 2070 * get into the old insane situation any more where we had 2071 * large amounts of dirty pages compared to a small amount of 2072 * non-HIGHMEM memory. 2073 * 2074 * But we might still want to scale the dirty_ratio by how 2075 * much memory the box has.. 2076 */ 2077 void __init page_writeback_init(void) 2078 { 2079 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2080 2081 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2082 page_writeback_cpu_online, NULL); 2083 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2084 page_writeback_cpu_online); 2085 } 2086 2087 /** 2088 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2089 * @mapping: address space structure to write 2090 * @start: starting page index 2091 * @end: ending page index (inclusive) 2092 * 2093 * This function scans the page range from @start to @end (inclusive) and tags 2094 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2095 * that write_cache_pages (or whoever calls this function) will then use 2096 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2097 * used to avoid livelocking of writeback by a process steadily creating new 2098 * dirty pages in the file (thus it is important for this function to be quick 2099 * so that it can tag pages faster than a dirtying process can create them). 2100 */ 2101 void tag_pages_for_writeback(struct address_space *mapping, 2102 pgoff_t start, pgoff_t end) 2103 { 2104 XA_STATE(xas, &mapping->i_pages, start); 2105 unsigned int tagged = 0; 2106 void *page; 2107 2108 xas_lock_irq(&xas); 2109 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2110 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2111 if (++tagged % XA_CHECK_SCHED) 2112 continue; 2113 2114 xas_pause(&xas); 2115 xas_unlock_irq(&xas); 2116 cond_resched(); 2117 xas_lock_irq(&xas); 2118 } 2119 xas_unlock_irq(&xas); 2120 } 2121 EXPORT_SYMBOL(tag_pages_for_writeback); 2122 2123 /** 2124 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2125 * @mapping: address space structure to write 2126 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2127 * @writepage: function called for each page 2128 * @data: data passed to writepage function 2129 * 2130 * If a page is already under I/O, write_cache_pages() skips it, even 2131 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2132 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2133 * and msync() need to guarantee that all the data which was dirty at the time 2134 * the call was made get new I/O started against them. If wbc->sync_mode is 2135 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2136 * existing IO to complete. 2137 * 2138 * To avoid livelocks (when other process dirties new pages), we first tag 2139 * pages which should be written back with TOWRITE tag and only then start 2140 * writing them. For data-integrity sync we have to be careful so that we do 2141 * not miss some pages (e.g., because some other process has cleared TOWRITE 2142 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2143 * by the process clearing the DIRTY tag (and submitting the page for IO). 2144 * 2145 * To avoid deadlocks between range_cyclic writeback and callers that hold 2146 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2147 * we do not loop back to the start of the file. Doing so causes a page 2148 * lock/page writeback access order inversion - we should only ever lock 2149 * multiple pages in ascending page->index order, and looping back to the start 2150 * of the file violates that rule and causes deadlocks. 2151 * 2152 * Return: %0 on success, negative error code otherwise 2153 */ 2154 int write_cache_pages(struct address_space *mapping, 2155 struct writeback_control *wbc, writepage_t writepage, 2156 void *data) 2157 { 2158 int ret = 0; 2159 int done = 0; 2160 int error; 2161 struct pagevec pvec; 2162 int nr_pages; 2163 pgoff_t uninitialized_var(writeback_index); 2164 pgoff_t index; 2165 pgoff_t end; /* Inclusive */ 2166 pgoff_t done_index; 2167 int range_whole = 0; 2168 xa_mark_t tag; 2169 2170 pagevec_init(&pvec); 2171 if (wbc->range_cyclic) { 2172 writeback_index = mapping->writeback_index; /* prev offset */ 2173 index = writeback_index; 2174 end = -1; 2175 } else { 2176 index = wbc->range_start >> PAGE_SHIFT; 2177 end = wbc->range_end >> PAGE_SHIFT; 2178 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2179 range_whole = 1; 2180 } 2181 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2182 tag_pages_for_writeback(mapping, index, end); 2183 tag = PAGECACHE_TAG_TOWRITE; 2184 } else { 2185 tag = PAGECACHE_TAG_DIRTY; 2186 } 2187 done_index = index; 2188 while (!done && (index <= end)) { 2189 int i; 2190 2191 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2192 tag); 2193 if (nr_pages == 0) 2194 break; 2195 2196 for (i = 0; i < nr_pages; i++) { 2197 struct page *page = pvec.pages[i]; 2198 2199 done_index = page->index; 2200 2201 lock_page(page); 2202 2203 /* 2204 * Page truncated or invalidated. We can freely skip it 2205 * then, even for data integrity operations: the page 2206 * has disappeared concurrently, so there could be no 2207 * real expectation of this data interity operation 2208 * even if there is now a new, dirty page at the same 2209 * pagecache address. 2210 */ 2211 if (unlikely(page->mapping != mapping)) { 2212 continue_unlock: 2213 unlock_page(page); 2214 continue; 2215 } 2216 2217 if (!PageDirty(page)) { 2218 /* someone wrote it for us */ 2219 goto continue_unlock; 2220 } 2221 2222 if (PageWriteback(page)) { 2223 if (wbc->sync_mode != WB_SYNC_NONE) 2224 wait_on_page_writeback(page); 2225 else 2226 goto continue_unlock; 2227 } 2228 2229 BUG_ON(PageWriteback(page)); 2230 if (!clear_page_dirty_for_io(page)) 2231 goto continue_unlock; 2232 2233 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2234 error = (*writepage)(page, wbc, data); 2235 if (unlikely(error)) { 2236 /* 2237 * Handle errors according to the type of 2238 * writeback. There's no need to continue for 2239 * background writeback. Just push done_index 2240 * past this page so media errors won't choke 2241 * writeout for the entire file. For integrity 2242 * writeback, we must process the entire dirty 2243 * set regardless of errors because the fs may 2244 * still have state to clear for each page. In 2245 * that case we continue processing and return 2246 * the first error. 2247 */ 2248 if (error == AOP_WRITEPAGE_ACTIVATE) { 2249 unlock_page(page); 2250 error = 0; 2251 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2252 ret = error; 2253 done_index = page->index + 1; 2254 done = 1; 2255 break; 2256 } 2257 if (!ret) 2258 ret = error; 2259 } 2260 2261 /* 2262 * We stop writing back only if we are not doing 2263 * integrity sync. In case of integrity sync we have to 2264 * keep going until we have written all the pages 2265 * we tagged for writeback prior to entering this loop. 2266 */ 2267 if (--wbc->nr_to_write <= 0 && 2268 wbc->sync_mode == WB_SYNC_NONE) { 2269 done = 1; 2270 break; 2271 } 2272 } 2273 pagevec_release(&pvec); 2274 cond_resched(); 2275 } 2276 2277 /* 2278 * If we hit the last page and there is more work to be done: wrap 2279 * back the index back to the start of the file for the next 2280 * time we are called. 2281 */ 2282 if (wbc->range_cyclic && !done) 2283 done_index = 0; 2284 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2285 mapping->writeback_index = done_index; 2286 2287 return ret; 2288 } 2289 EXPORT_SYMBOL(write_cache_pages); 2290 2291 /* 2292 * Function used by generic_writepages to call the real writepage 2293 * function and set the mapping flags on error 2294 */ 2295 static int __writepage(struct page *page, struct writeback_control *wbc, 2296 void *data) 2297 { 2298 struct address_space *mapping = data; 2299 int ret = mapping->a_ops->writepage(page, wbc); 2300 mapping_set_error(mapping, ret); 2301 return ret; 2302 } 2303 2304 /** 2305 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2306 * @mapping: address space structure to write 2307 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2308 * 2309 * This is a library function, which implements the writepages() 2310 * address_space_operation. 2311 * 2312 * Return: %0 on success, negative error code otherwise 2313 */ 2314 int generic_writepages(struct address_space *mapping, 2315 struct writeback_control *wbc) 2316 { 2317 struct blk_plug plug; 2318 int ret; 2319 2320 /* deal with chardevs and other special file */ 2321 if (!mapping->a_ops->writepage) 2322 return 0; 2323 2324 blk_start_plug(&plug); 2325 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2326 blk_finish_plug(&plug); 2327 return ret; 2328 } 2329 2330 EXPORT_SYMBOL(generic_writepages); 2331 2332 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2333 { 2334 int ret; 2335 2336 if (wbc->nr_to_write <= 0) 2337 return 0; 2338 while (1) { 2339 if (mapping->a_ops->writepages) 2340 ret = mapping->a_ops->writepages(mapping, wbc); 2341 else 2342 ret = generic_writepages(mapping, wbc); 2343 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2344 break; 2345 cond_resched(); 2346 congestion_wait(BLK_RW_ASYNC, HZ/50); 2347 } 2348 return ret; 2349 } 2350 2351 /** 2352 * write_one_page - write out a single page and wait on I/O 2353 * @page: the page to write 2354 * 2355 * The page must be locked by the caller and will be unlocked upon return. 2356 * 2357 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2358 * function returns. 2359 * 2360 * Return: %0 on success, negative error code otherwise 2361 */ 2362 int write_one_page(struct page *page) 2363 { 2364 struct address_space *mapping = page->mapping; 2365 int ret = 0; 2366 struct writeback_control wbc = { 2367 .sync_mode = WB_SYNC_ALL, 2368 .nr_to_write = 1, 2369 }; 2370 2371 BUG_ON(!PageLocked(page)); 2372 2373 wait_on_page_writeback(page); 2374 2375 if (clear_page_dirty_for_io(page)) { 2376 get_page(page); 2377 ret = mapping->a_ops->writepage(page, &wbc); 2378 if (ret == 0) 2379 wait_on_page_writeback(page); 2380 put_page(page); 2381 } else { 2382 unlock_page(page); 2383 } 2384 2385 if (!ret) 2386 ret = filemap_check_errors(mapping); 2387 return ret; 2388 } 2389 EXPORT_SYMBOL(write_one_page); 2390 2391 /* 2392 * For address_spaces which do not use buffers nor write back. 2393 */ 2394 int __set_page_dirty_no_writeback(struct page *page) 2395 { 2396 if (!PageDirty(page)) 2397 return !TestSetPageDirty(page); 2398 return 0; 2399 } 2400 2401 /* 2402 * Helper function for set_page_dirty family. 2403 * 2404 * Caller must hold lock_page_memcg(). 2405 * 2406 * NOTE: This relies on being atomic wrt interrupts. 2407 */ 2408 void account_page_dirtied(struct page *page, struct address_space *mapping) 2409 { 2410 struct inode *inode = mapping->host; 2411 2412 trace_writeback_dirty_page(page, mapping); 2413 2414 if (mapping_cap_account_dirty(mapping)) { 2415 struct bdi_writeback *wb; 2416 2417 inode_attach_wb(inode, page); 2418 wb = inode_to_wb(inode); 2419 2420 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2421 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2422 __inc_node_page_state(page, NR_DIRTIED); 2423 inc_wb_stat(wb, WB_RECLAIMABLE); 2424 inc_wb_stat(wb, WB_DIRTIED); 2425 task_io_account_write(PAGE_SIZE); 2426 current->nr_dirtied++; 2427 this_cpu_inc(bdp_ratelimits); 2428 2429 mem_cgroup_track_foreign_dirty(page, wb); 2430 } 2431 } 2432 2433 /* 2434 * Helper function for deaccounting dirty page without writeback. 2435 * 2436 * Caller must hold lock_page_memcg(). 2437 */ 2438 void account_page_cleaned(struct page *page, struct address_space *mapping, 2439 struct bdi_writeback *wb) 2440 { 2441 if (mapping_cap_account_dirty(mapping)) { 2442 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2443 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2444 dec_wb_stat(wb, WB_RECLAIMABLE); 2445 task_io_account_cancelled_write(PAGE_SIZE); 2446 } 2447 } 2448 2449 /* 2450 * For address_spaces which do not use buffers. Just tag the page as dirty in 2451 * the xarray. 2452 * 2453 * This is also used when a single buffer is being dirtied: we want to set the 2454 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2455 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2456 * 2457 * The caller must ensure this doesn't race with truncation. Most will simply 2458 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2459 * the pte lock held, which also locks out truncation. 2460 */ 2461 int __set_page_dirty_nobuffers(struct page *page) 2462 { 2463 lock_page_memcg(page); 2464 if (!TestSetPageDirty(page)) { 2465 struct address_space *mapping = page_mapping(page); 2466 unsigned long flags; 2467 2468 if (!mapping) { 2469 unlock_page_memcg(page); 2470 return 1; 2471 } 2472 2473 xa_lock_irqsave(&mapping->i_pages, flags); 2474 BUG_ON(page_mapping(page) != mapping); 2475 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2476 account_page_dirtied(page, mapping); 2477 __xa_set_mark(&mapping->i_pages, page_index(page), 2478 PAGECACHE_TAG_DIRTY); 2479 xa_unlock_irqrestore(&mapping->i_pages, flags); 2480 unlock_page_memcg(page); 2481 2482 if (mapping->host) { 2483 /* !PageAnon && !swapper_space */ 2484 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2485 } 2486 return 1; 2487 } 2488 unlock_page_memcg(page); 2489 return 0; 2490 } 2491 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2492 2493 /* 2494 * Call this whenever redirtying a page, to de-account the dirty counters 2495 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written 2496 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to 2497 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2498 * control. 2499 */ 2500 void account_page_redirty(struct page *page) 2501 { 2502 struct address_space *mapping = page->mapping; 2503 2504 if (mapping && mapping_cap_account_dirty(mapping)) { 2505 struct inode *inode = mapping->host; 2506 struct bdi_writeback *wb; 2507 struct wb_lock_cookie cookie = {}; 2508 2509 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2510 current->nr_dirtied--; 2511 dec_node_page_state(page, NR_DIRTIED); 2512 dec_wb_stat(wb, WB_DIRTIED); 2513 unlocked_inode_to_wb_end(inode, &cookie); 2514 } 2515 } 2516 EXPORT_SYMBOL(account_page_redirty); 2517 2518 /* 2519 * When a writepage implementation decides that it doesn't want to write this 2520 * page for some reason, it should redirty the locked page via 2521 * redirty_page_for_writepage() and it should then unlock the page and return 0 2522 */ 2523 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2524 { 2525 int ret; 2526 2527 wbc->pages_skipped++; 2528 ret = __set_page_dirty_nobuffers(page); 2529 account_page_redirty(page); 2530 return ret; 2531 } 2532 EXPORT_SYMBOL(redirty_page_for_writepage); 2533 2534 /* 2535 * Dirty a page. 2536 * 2537 * For pages with a mapping this should be done under the page lock 2538 * for the benefit of asynchronous memory errors who prefer a consistent 2539 * dirty state. This rule can be broken in some special cases, 2540 * but should be better not to. 2541 * 2542 * If the mapping doesn't provide a set_page_dirty a_op, then 2543 * just fall through and assume that it wants buffer_heads. 2544 */ 2545 int set_page_dirty(struct page *page) 2546 { 2547 struct address_space *mapping = page_mapping(page); 2548 2549 page = compound_head(page); 2550 if (likely(mapping)) { 2551 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2552 /* 2553 * readahead/lru_deactivate_page could remain 2554 * PG_readahead/PG_reclaim due to race with end_page_writeback 2555 * About readahead, if the page is written, the flags would be 2556 * reset. So no problem. 2557 * About lru_deactivate_page, if the page is redirty, the flag 2558 * will be reset. So no problem. but if the page is used by readahead 2559 * it will confuse readahead and make it restart the size rampup 2560 * process. But it's a trivial problem. 2561 */ 2562 if (PageReclaim(page)) 2563 ClearPageReclaim(page); 2564 #ifdef CONFIG_BLOCK 2565 if (!spd) 2566 spd = __set_page_dirty_buffers; 2567 #endif 2568 return (*spd)(page); 2569 } 2570 if (!PageDirty(page)) { 2571 if (!TestSetPageDirty(page)) 2572 return 1; 2573 } 2574 return 0; 2575 } 2576 EXPORT_SYMBOL(set_page_dirty); 2577 2578 /* 2579 * set_page_dirty() is racy if the caller has no reference against 2580 * page->mapping->host, and if the page is unlocked. This is because another 2581 * CPU could truncate the page off the mapping and then free the mapping. 2582 * 2583 * Usually, the page _is_ locked, or the caller is a user-space process which 2584 * holds a reference on the inode by having an open file. 2585 * 2586 * In other cases, the page should be locked before running set_page_dirty(). 2587 */ 2588 int set_page_dirty_lock(struct page *page) 2589 { 2590 int ret; 2591 2592 lock_page(page); 2593 ret = set_page_dirty(page); 2594 unlock_page(page); 2595 return ret; 2596 } 2597 EXPORT_SYMBOL(set_page_dirty_lock); 2598 2599 /* 2600 * This cancels just the dirty bit on the kernel page itself, it does NOT 2601 * actually remove dirty bits on any mmap's that may be around. It also 2602 * leaves the page tagged dirty, so any sync activity will still find it on 2603 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2604 * look at the dirty bits in the VM. 2605 * 2606 * Doing this should *normally* only ever be done when a page is truncated, 2607 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2608 * this when it notices that somebody has cleaned out all the buffers on a 2609 * page without actually doing it through the VM. Can you say "ext3 is 2610 * horribly ugly"? Thought you could. 2611 */ 2612 void __cancel_dirty_page(struct page *page) 2613 { 2614 struct address_space *mapping = page_mapping(page); 2615 2616 if (mapping_cap_account_dirty(mapping)) { 2617 struct inode *inode = mapping->host; 2618 struct bdi_writeback *wb; 2619 struct wb_lock_cookie cookie = {}; 2620 2621 lock_page_memcg(page); 2622 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2623 2624 if (TestClearPageDirty(page)) 2625 account_page_cleaned(page, mapping, wb); 2626 2627 unlocked_inode_to_wb_end(inode, &cookie); 2628 unlock_page_memcg(page); 2629 } else { 2630 ClearPageDirty(page); 2631 } 2632 } 2633 EXPORT_SYMBOL(__cancel_dirty_page); 2634 2635 /* 2636 * Clear a page's dirty flag, while caring for dirty memory accounting. 2637 * Returns true if the page was previously dirty. 2638 * 2639 * This is for preparing to put the page under writeout. We leave the page 2640 * tagged as dirty in the xarray so that a concurrent write-for-sync 2641 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2642 * implementation will run either set_page_writeback() or set_page_dirty(), 2643 * at which stage we bring the page's dirty flag and xarray dirty tag 2644 * back into sync. 2645 * 2646 * This incoherency between the page's dirty flag and xarray tag is 2647 * unfortunate, but it only exists while the page is locked. 2648 */ 2649 int clear_page_dirty_for_io(struct page *page) 2650 { 2651 struct address_space *mapping = page_mapping(page); 2652 int ret = 0; 2653 2654 VM_BUG_ON_PAGE(!PageLocked(page), page); 2655 2656 if (mapping && mapping_cap_account_dirty(mapping)) { 2657 struct inode *inode = mapping->host; 2658 struct bdi_writeback *wb; 2659 struct wb_lock_cookie cookie = {}; 2660 2661 /* 2662 * Yes, Virginia, this is indeed insane. 2663 * 2664 * We use this sequence to make sure that 2665 * (a) we account for dirty stats properly 2666 * (b) we tell the low-level filesystem to 2667 * mark the whole page dirty if it was 2668 * dirty in a pagetable. Only to then 2669 * (c) clean the page again and return 1 to 2670 * cause the writeback. 2671 * 2672 * This way we avoid all nasty races with the 2673 * dirty bit in multiple places and clearing 2674 * them concurrently from different threads. 2675 * 2676 * Note! Normally the "set_page_dirty(page)" 2677 * has no effect on the actual dirty bit - since 2678 * that will already usually be set. But we 2679 * need the side effects, and it can help us 2680 * avoid races. 2681 * 2682 * We basically use the page "master dirty bit" 2683 * as a serialization point for all the different 2684 * threads doing their things. 2685 */ 2686 if (page_mkclean(page)) 2687 set_page_dirty(page); 2688 /* 2689 * We carefully synchronise fault handlers against 2690 * installing a dirty pte and marking the page dirty 2691 * at this point. We do this by having them hold the 2692 * page lock while dirtying the page, and pages are 2693 * always locked coming in here, so we get the desired 2694 * exclusion. 2695 */ 2696 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2697 if (TestClearPageDirty(page)) { 2698 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2699 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2700 dec_wb_stat(wb, WB_RECLAIMABLE); 2701 ret = 1; 2702 } 2703 unlocked_inode_to_wb_end(inode, &cookie); 2704 return ret; 2705 } 2706 return TestClearPageDirty(page); 2707 } 2708 EXPORT_SYMBOL(clear_page_dirty_for_io); 2709 2710 int test_clear_page_writeback(struct page *page) 2711 { 2712 struct address_space *mapping = page_mapping(page); 2713 struct mem_cgroup *memcg; 2714 struct lruvec *lruvec; 2715 int ret; 2716 2717 memcg = lock_page_memcg(page); 2718 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 2719 if (mapping && mapping_use_writeback_tags(mapping)) { 2720 struct inode *inode = mapping->host; 2721 struct backing_dev_info *bdi = inode_to_bdi(inode); 2722 unsigned long flags; 2723 2724 xa_lock_irqsave(&mapping->i_pages, flags); 2725 ret = TestClearPageWriteback(page); 2726 if (ret) { 2727 __xa_clear_mark(&mapping->i_pages, page_index(page), 2728 PAGECACHE_TAG_WRITEBACK); 2729 if (bdi_cap_account_writeback(bdi)) { 2730 struct bdi_writeback *wb = inode_to_wb(inode); 2731 2732 dec_wb_stat(wb, WB_WRITEBACK); 2733 __wb_writeout_inc(wb); 2734 } 2735 } 2736 2737 if (mapping->host && !mapping_tagged(mapping, 2738 PAGECACHE_TAG_WRITEBACK)) 2739 sb_clear_inode_writeback(mapping->host); 2740 2741 xa_unlock_irqrestore(&mapping->i_pages, flags); 2742 } else { 2743 ret = TestClearPageWriteback(page); 2744 } 2745 /* 2746 * NOTE: Page might be free now! Writeback doesn't hold a page 2747 * reference on its own, it relies on truncation to wait for 2748 * the clearing of PG_writeback. The below can only access 2749 * page state that is static across allocation cycles. 2750 */ 2751 if (ret) { 2752 dec_lruvec_state(lruvec, NR_WRITEBACK); 2753 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2754 inc_node_page_state(page, NR_WRITTEN); 2755 } 2756 __unlock_page_memcg(memcg); 2757 return ret; 2758 } 2759 2760 int __test_set_page_writeback(struct page *page, bool keep_write) 2761 { 2762 struct address_space *mapping = page_mapping(page); 2763 int ret, access_ret; 2764 2765 lock_page_memcg(page); 2766 if (mapping && mapping_use_writeback_tags(mapping)) { 2767 XA_STATE(xas, &mapping->i_pages, page_index(page)); 2768 struct inode *inode = mapping->host; 2769 struct backing_dev_info *bdi = inode_to_bdi(inode); 2770 unsigned long flags; 2771 2772 xas_lock_irqsave(&xas, flags); 2773 xas_load(&xas); 2774 ret = TestSetPageWriteback(page); 2775 if (!ret) { 2776 bool on_wblist; 2777 2778 on_wblist = mapping_tagged(mapping, 2779 PAGECACHE_TAG_WRITEBACK); 2780 2781 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2782 if (bdi_cap_account_writeback(bdi)) 2783 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2784 2785 /* 2786 * We can come through here when swapping anonymous 2787 * pages, so we don't necessarily have an inode to track 2788 * for sync. 2789 */ 2790 if (mapping->host && !on_wblist) 2791 sb_mark_inode_writeback(mapping->host); 2792 } 2793 if (!PageDirty(page)) 2794 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2795 if (!keep_write) 2796 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2797 xas_unlock_irqrestore(&xas, flags); 2798 } else { 2799 ret = TestSetPageWriteback(page); 2800 } 2801 if (!ret) { 2802 inc_lruvec_page_state(page, NR_WRITEBACK); 2803 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2804 } 2805 unlock_page_memcg(page); 2806 access_ret = arch_make_page_accessible(page); 2807 /* 2808 * If writeback has been triggered on a page that cannot be made 2809 * accessible, it is too late to recover here. 2810 */ 2811 VM_BUG_ON_PAGE(access_ret != 0, page); 2812 2813 return ret; 2814 2815 } 2816 EXPORT_SYMBOL(__test_set_page_writeback); 2817 2818 /* 2819 * Wait for a page to complete writeback 2820 */ 2821 void wait_on_page_writeback(struct page *page) 2822 { 2823 if (PageWriteback(page)) { 2824 trace_wait_on_page_writeback(page, page_mapping(page)); 2825 wait_on_page_bit(page, PG_writeback); 2826 } 2827 } 2828 EXPORT_SYMBOL_GPL(wait_on_page_writeback); 2829 2830 /** 2831 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2832 * @page: The page to wait on. 2833 * 2834 * This function determines if the given page is related to a backing device 2835 * that requires page contents to be held stable during writeback. If so, then 2836 * it will wait for any pending writeback to complete. 2837 */ 2838 void wait_for_stable_page(struct page *page) 2839 { 2840 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2841 wait_on_page_writeback(page); 2842 } 2843 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2844