xref: /linux/mm/page-writeback.c (revision 5d085ad2e68cceec8332b23ea8f630a28b506366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115 
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121 
122 EXPORT_SYMBOL(laptop_mode);
123 
124 /* End of sysctl-exported parameters */
125 
126 struct wb_domain global_wb_domain;
127 
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 	struct wb_domain	*dom;
132 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
133 #endif
134 	struct bdi_writeback	*wb;
135 	struct fprop_local_percpu *wb_completions;
136 
137 	unsigned long		avail;		/* dirtyable */
138 	unsigned long		dirty;		/* file_dirty + write + nfs */
139 	unsigned long		thresh;		/* dirty threshold */
140 	unsigned long		bg_thresh;	/* dirty background threshold */
141 
142 	unsigned long		wb_dirty;	/* per-wb counterparts */
143 	unsigned long		wb_thresh;
144 	unsigned long		wb_bg_thresh;
145 
146 	unsigned long		pos_ratio;
147 };
148 
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 
156 #ifdef CONFIG_CGROUP_WRITEBACK
157 
158 #define GDTC_INIT(__wb)		.wb = (__wb),				\
159 				.dom = &global_wb_domain,		\
160 				.wb_completions = &(__wb)->completions
161 
162 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 
164 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
165 				.dom = mem_cgroup_wb_domain(__wb),	\
166 				.wb_completions = &(__wb)->memcg_completions, \
167 				.gdtc = __gdtc
168 
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176 	return dtc->dom;
177 }
178 
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181 	return mdtc->gdtc;
182 }
183 
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186 	return &wb->memcg_completions;
187 }
188 
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 			     unsigned long *minp, unsigned long *maxp)
191 {
192 	unsigned long this_bw = wb->avg_write_bandwidth;
193 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 	unsigned long long min = wb->bdi->min_ratio;
195 	unsigned long long max = wb->bdi->max_ratio;
196 
197 	/*
198 	 * @wb may already be clean by the time control reaches here and
199 	 * the total may not include its bw.
200 	 */
201 	if (this_bw < tot_bw) {
202 		if (min) {
203 			min *= this_bw;
204 			min = div64_ul(min, tot_bw);
205 		}
206 		if (max < 100) {
207 			max *= this_bw;
208 			max = div64_ul(max, tot_bw);
209 		}
210 	}
211 
212 	*minp = min;
213 	*maxp = max;
214 }
215 
216 #else	/* CONFIG_CGROUP_WRITEBACK */
217 
218 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
219 				.wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222 
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225 	return false;
226 }
227 
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230 	return &global_wb_domain;
231 }
232 
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235 	return NULL;
236 }
237 
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240 	return NULL;
241 }
242 
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 			     unsigned long *minp, unsigned long *maxp)
245 {
246 	*minp = wb->bdi->min_ratio;
247 	*maxp = wb->bdi->max_ratio;
248 }
249 
250 #endif	/* CONFIG_CGROUP_WRITEBACK */
251 
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effictive number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269 
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Return: the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279 	unsigned long nr_pages = 0;
280 	int z;
281 
282 	for (z = 0; z < MAX_NR_ZONES; z++) {
283 		struct zone *zone = pgdat->node_zones + z;
284 
285 		if (!populated_zone(zone))
286 			continue;
287 
288 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 	}
290 
291 	/*
292 	 * Pages reserved for the kernel should not be considered
293 	 * dirtyable, to prevent a situation where reclaim has to
294 	 * clean pages in order to balance the zones.
295 	 */
296 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297 
298 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 
301 	return nr_pages;
302 }
303 
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307 	int node;
308 	unsigned long x = 0;
309 	int i;
310 
311 	for_each_node_state(node, N_HIGH_MEMORY) {
312 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 			struct zone *z;
314 			unsigned long nr_pages;
315 
316 			if (!is_highmem_idx(i))
317 				continue;
318 
319 			z = &NODE_DATA(node)->node_zones[i];
320 			if (!populated_zone(z))
321 				continue;
322 
323 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 			/* watch for underflows */
325 			nr_pages -= min(nr_pages, high_wmark_pages(z));
326 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 			x += nr_pages;
329 		}
330 	}
331 
332 	/*
333 	 * Unreclaimable memory (kernel memory or anonymous memory
334 	 * without swap) can bring down the dirtyable pages below
335 	 * the zone's dirty balance reserve and the above calculation
336 	 * will underflow.  However we still want to add in nodes
337 	 * which are below threshold (negative values) to get a more
338 	 * accurate calculation but make sure that the total never
339 	 * underflows.
340 	 */
341 	if ((long)x < 0)
342 		x = 0;
343 
344 	/*
345 	 * Make sure that the number of highmem pages is never larger
346 	 * than the number of the total dirtyable memory. This can only
347 	 * occur in very strange VM situations but we want to make sure
348 	 * that this does not occur.
349 	 */
350 	return min(x, total);
351 #else
352 	return 0;
353 #endif
354 }
355 
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Return: the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364 	unsigned long x;
365 
366 	x = global_zone_page_state(NR_FREE_PAGES);
367 	/*
368 	 * Pages reserved for the kernel should not be considered
369 	 * dirtyable, to prevent a situation where reclaim has to
370 	 * clean pages in order to balance the zones.
371 	 */
372 	x -= min(x, totalreserve_pages);
373 
374 	x += global_node_page_state(NR_INACTIVE_FILE);
375 	x += global_node_page_state(NR_ACTIVE_FILE);
376 
377 	if (!vm_highmem_is_dirtyable)
378 		x -= highmem_dirtyable_memory(x);
379 
380 	return x + 1;	/* Ensure that we never return 0 */
381 }
382 
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391  * real-time tasks.
392  */
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 {
395 	const unsigned long available_memory = dtc->avail;
396 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 	unsigned long bytes = vm_dirty_bytes;
398 	unsigned long bg_bytes = dirty_background_bytes;
399 	/* convert ratios to per-PAGE_SIZE for higher precision */
400 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 	unsigned long thresh;
403 	unsigned long bg_thresh;
404 	struct task_struct *tsk;
405 
406 	/* gdtc is !NULL iff @dtc is for memcg domain */
407 	if (gdtc) {
408 		unsigned long global_avail = gdtc->avail;
409 
410 		/*
411 		 * The byte settings can't be applied directly to memcg
412 		 * domains.  Convert them to ratios by scaling against
413 		 * globally available memory.  As the ratios are in
414 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 		 * number of pages.
416 		 */
417 		if (bytes)
418 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 				    PAGE_SIZE);
420 		if (bg_bytes)
421 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 				       PAGE_SIZE);
423 		bytes = bg_bytes = 0;
424 	}
425 
426 	if (bytes)
427 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 	else
429 		thresh = (ratio * available_memory) / PAGE_SIZE;
430 
431 	if (bg_bytes)
432 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 	else
434 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435 
436 	if (bg_thresh >= thresh)
437 		bg_thresh = thresh / 2;
438 	tsk = current;
439 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442 	}
443 	dtc->thresh = thresh;
444 	dtc->bg_thresh = bg_thresh;
445 
446 	/* we should eventually report the domain in the TP */
447 	if (!gdtc)
448 		trace_global_dirty_state(bg_thresh, thresh);
449 }
450 
451 /**
452  * global_dirty_limits - background-writeback and dirty-throttling thresholds
453  * @pbackground: out parameter for bg_thresh
454  * @pdirty: out parameter for thresh
455  *
456  * Calculate bg_thresh and thresh for global_wb_domain.  See
457  * domain_dirty_limits() for details.
458  */
459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460 {
461 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462 
463 	gdtc.avail = global_dirtyable_memory();
464 	domain_dirty_limits(&gdtc);
465 
466 	*pbackground = gdtc.bg_thresh;
467 	*pdirty = gdtc.thresh;
468 }
469 
470 /**
471  * node_dirty_limit - maximum number of dirty pages allowed in a node
472  * @pgdat: the node
473  *
474  * Return: the maximum number of dirty pages allowed in a node, based
475  * on the node's dirtyable memory.
476  */
477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478 {
479 	unsigned long node_memory = node_dirtyable_memory(pgdat);
480 	struct task_struct *tsk = current;
481 	unsigned long dirty;
482 
483 	if (vm_dirty_bytes)
484 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485 			node_memory / global_dirtyable_memory();
486 	else
487 		dirty = vm_dirty_ratio * node_memory / 100;
488 
489 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490 		dirty += dirty / 4;
491 
492 	return dirty;
493 }
494 
495 /**
496  * node_dirty_ok - tells whether a node is within its dirty limits
497  * @pgdat: the node to check
498  *
499  * Return: %true when the dirty pages in @pgdat are within the node's
500  * dirty limit, %false if the limit is exceeded.
501  */
502 bool node_dirty_ok(struct pglist_data *pgdat)
503 {
504 	unsigned long limit = node_dirty_limit(pgdat);
505 	unsigned long nr_pages = 0;
506 
507 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508 	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510 
511 	return nr_pages <= limit;
512 }
513 
514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
515 		void *buffer, size_t *lenp, loff_t *ppos)
516 {
517 	int ret;
518 
519 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
520 	if (ret == 0 && write)
521 		dirty_background_bytes = 0;
522 	return ret;
523 }
524 
525 int dirty_background_bytes_handler(struct ctl_table *table, int write,
526 		void *buffer, size_t *lenp, loff_t *ppos)
527 {
528 	int ret;
529 
530 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
531 	if (ret == 0 && write)
532 		dirty_background_ratio = 0;
533 	return ret;
534 }
535 
536 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
537 		size_t *lenp, loff_t *ppos)
538 {
539 	int old_ratio = vm_dirty_ratio;
540 	int ret;
541 
542 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
543 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
544 		writeback_set_ratelimit();
545 		vm_dirty_bytes = 0;
546 	}
547 	return ret;
548 }
549 
550 int dirty_bytes_handler(struct ctl_table *table, int write,
551 		void *buffer, size_t *lenp, loff_t *ppos)
552 {
553 	unsigned long old_bytes = vm_dirty_bytes;
554 	int ret;
555 
556 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
557 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
558 		writeback_set_ratelimit();
559 		vm_dirty_ratio = 0;
560 	}
561 	return ret;
562 }
563 
564 static unsigned long wp_next_time(unsigned long cur_time)
565 {
566 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
567 	/* 0 has a special meaning... */
568 	if (!cur_time)
569 		return 1;
570 	return cur_time;
571 }
572 
573 static void wb_domain_writeout_inc(struct wb_domain *dom,
574 				   struct fprop_local_percpu *completions,
575 				   unsigned int max_prop_frac)
576 {
577 	__fprop_inc_percpu_max(&dom->completions, completions,
578 			       max_prop_frac);
579 	/* First event after period switching was turned off? */
580 	if (unlikely(!dom->period_time)) {
581 		/*
582 		 * We can race with other __bdi_writeout_inc calls here but
583 		 * it does not cause any harm since the resulting time when
584 		 * timer will fire and what is in writeout_period_time will be
585 		 * roughly the same.
586 		 */
587 		dom->period_time = wp_next_time(jiffies);
588 		mod_timer(&dom->period_timer, dom->period_time);
589 	}
590 }
591 
592 /*
593  * Increment @wb's writeout completion count and the global writeout
594  * completion count. Called from test_clear_page_writeback().
595  */
596 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
597 {
598 	struct wb_domain *cgdom;
599 
600 	inc_wb_stat(wb, WB_WRITTEN);
601 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
602 			       wb->bdi->max_prop_frac);
603 
604 	cgdom = mem_cgroup_wb_domain(wb);
605 	if (cgdom)
606 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
607 				       wb->bdi->max_prop_frac);
608 }
609 
610 void wb_writeout_inc(struct bdi_writeback *wb)
611 {
612 	unsigned long flags;
613 
614 	local_irq_save(flags);
615 	__wb_writeout_inc(wb);
616 	local_irq_restore(flags);
617 }
618 EXPORT_SYMBOL_GPL(wb_writeout_inc);
619 
620 /*
621  * On idle system, we can be called long after we scheduled because we use
622  * deferred timers so count with missed periods.
623  */
624 static void writeout_period(struct timer_list *t)
625 {
626 	struct wb_domain *dom = from_timer(dom, t, period_timer);
627 	int miss_periods = (jiffies - dom->period_time) /
628 						 VM_COMPLETIONS_PERIOD_LEN;
629 
630 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
631 		dom->period_time = wp_next_time(dom->period_time +
632 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
633 		mod_timer(&dom->period_timer, dom->period_time);
634 	} else {
635 		/*
636 		 * Aging has zeroed all fractions. Stop wasting CPU on period
637 		 * updates.
638 		 */
639 		dom->period_time = 0;
640 	}
641 }
642 
643 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
644 {
645 	memset(dom, 0, sizeof(*dom));
646 
647 	spin_lock_init(&dom->lock);
648 
649 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
650 
651 	dom->dirty_limit_tstamp = jiffies;
652 
653 	return fprop_global_init(&dom->completions, gfp);
654 }
655 
656 #ifdef CONFIG_CGROUP_WRITEBACK
657 void wb_domain_exit(struct wb_domain *dom)
658 {
659 	del_timer_sync(&dom->period_timer);
660 	fprop_global_destroy(&dom->completions);
661 }
662 #endif
663 
664 /*
665  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
666  * registered backing devices, which, for obvious reasons, can not
667  * exceed 100%.
668  */
669 static unsigned int bdi_min_ratio;
670 
671 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
672 {
673 	int ret = 0;
674 
675 	spin_lock_bh(&bdi_lock);
676 	if (min_ratio > bdi->max_ratio) {
677 		ret = -EINVAL;
678 	} else {
679 		min_ratio -= bdi->min_ratio;
680 		if (bdi_min_ratio + min_ratio < 100) {
681 			bdi_min_ratio += min_ratio;
682 			bdi->min_ratio += min_ratio;
683 		} else {
684 			ret = -EINVAL;
685 		}
686 	}
687 	spin_unlock_bh(&bdi_lock);
688 
689 	return ret;
690 }
691 
692 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
693 {
694 	int ret = 0;
695 
696 	if (max_ratio > 100)
697 		return -EINVAL;
698 
699 	spin_lock_bh(&bdi_lock);
700 	if (bdi->min_ratio > max_ratio) {
701 		ret = -EINVAL;
702 	} else {
703 		bdi->max_ratio = max_ratio;
704 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
705 	}
706 	spin_unlock_bh(&bdi_lock);
707 
708 	return ret;
709 }
710 EXPORT_SYMBOL(bdi_set_max_ratio);
711 
712 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
713 					   unsigned long bg_thresh)
714 {
715 	return (thresh + bg_thresh) / 2;
716 }
717 
718 static unsigned long hard_dirty_limit(struct wb_domain *dom,
719 				      unsigned long thresh)
720 {
721 	return max(thresh, dom->dirty_limit);
722 }
723 
724 /*
725  * Memory which can be further allocated to a memcg domain is capped by
726  * system-wide clean memory excluding the amount being used in the domain.
727  */
728 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
729 			    unsigned long filepages, unsigned long headroom)
730 {
731 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
732 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
733 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
734 	unsigned long other_clean = global_clean - min(global_clean, clean);
735 
736 	mdtc->avail = filepages + min(headroom, other_clean);
737 }
738 
739 /**
740  * __wb_calc_thresh - @wb's share of dirty throttling threshold
741  * @dtc: dirty_throttle_context of interest
742  *
743  * Note that balance_dirty_pages() will only seriously take it as a hard limit
744  * when sleeping max_pause per page is not enough to keep the dirty pages under
745  * control. For example, when the device is completely stalled due to some error
746  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
747  * In the other normal situations, it acts more gently by throttling the tasks
748  * more (rather than completely block them) when the wb dirty pages go high.
749  *
750  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
751  * - starving fast devices
752  * - piling up dirty pages (that will take long time to sync) on slow devices
753  *
754  * The wb's share of dirty limit will be adapting to its throughput and
755  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
756  *
757  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
758  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
759  */
760 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
761 {
762 	struct wb_domain *dom = dtc_dom(dtc);
763 	unsigned long thresh = dtc->thresh;
764 	u64 wb_thresh;
765 	unsigned long numerator, denominator;
766 	unsigned long wb_min_ratio, wb_max_ratio;
767 
768 	/*
769 	 * Calculate this BDI's share of the thresh ratio.
770 	 */
771 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
772 			      &numerator, &denominator);
773 
774 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
775 	wb_thresh *= numerator;
776 	wb_thresh = div64_ul(wb_thresh, denominator);
777 
778 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
779 
780 	wb_thresh += (thresh * wb_min_ratio) / 100;
781 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
782 		wb_thresh = thresh * wb_max_ratio / 100;
783 
784 	return wb_thresh;
785 }
786 
787 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
788 {
789 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
790 					       .thresh = thresh };
791 	return __wb_calc_thresh(&gdtc);
792 }
793 
794 /*
795  *                           setpoint - dirty 3
796  *        f(dirty) := 1.0 + (----------------)
797  *                           limit - setpoint
798  *
799  * it's a 3rd order polynomial that subjects to
800  *
801  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
802  * (2) f(setpoint) = 1.0 => the balance point
803  * (3) f(limit)    = 0   => the hard limit
804  * (4) df/dx      <= 0	 => negative feedback control
805  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
806  *     => fast response on large errors; small oscillation near setpoint
807  */
808 static long long pos_ratio_polynom(unsigned long setpoint,
809 					  unsigned long dirty,
810 					  unsigned long limit)
811 {
812 	long long pos_ratio;
813 	long x;
814 
815 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
816 		      (limit - setpoint) | 1);
817 	pos_ratio = x;
818 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
819 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
820 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
821 
822 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
823 }
824 
825 /*
826  * Dirty position control.
827  *
828  * (o) global/bdi setpoints
829  *
830  * We want the dirty pages be balanced around the global/wb setpoints.
831  * When the number of dirty pages is higher/lower than the setpoint, the
832  * dirty position control ratio (and hence task dirty ratelimit) will be
833  * decreased/increased to bring the dirty pages back to the setpoint.
834  *
835  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
836  *
837  *     if (dirty < setpoint) scale up   pos_ratio
838  *     if (dirty > setpoint) scale down pos_ratio
839  *
840  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
841  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
842  *
843  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
844  *
845  * (o) global control line
846  *
847  *     ^ pos_ratio
848  *     |
849  *     |            |<===== global dirty control scope ======>|
850  * 2.0 .............*
851  *     |            .*
852  *     |            . *
853  *     |            .   *
854  *     |            .     *
855  *     |            .        *
856  *     |            .            *
857  * 1.0 ................................*
858  *     |            .                  .     *
859  *     |            .                  .          *
860  *     |            .                  .              *
861  *     |            .                  .                 *
862  *     |            .                  .                    *
863  *   0 +------------.------------------.----------------------*------------->
864  *           freerun^          setpoint^                 limit^   dirty pages
865  *
866  * (o) wb control line
867  *
868  *     ^ pos_ratio
869  *     |
870  *     |            *
871  *     |              *
872  *     |                *
873  *     |                  *
874  *     |                    * |<=========== span ============>|
875  * 1.0 .......................*
876  *     |                      . *
877  *     |                      .   *
878  *     |                      .     *
879  *     |                      .       *
880  *     |                      .         *
881  *     |                      .           *
882  *     |                      .             *
883  *     |                      .               *
884  *     |                      .                 *
885  *     |                      .                   *
886  *     |                      .                     *
887  * 1/4 ...............................................* * * * * * * * * * * *
888  *     |                      .                         .
889  *     |                      .                           .
890  *     |                      .                             .
891  *   0 +----------------------.-------------------------------.------------->
892  *                wb_setpoint^                    x_intercept^
893  *
894  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
895  * be smoothly throttled down to normal if it starts high in situations like
896  * - start writing to a slow SD card and a fast disk at the same time. The SD
897  *   card's wb_dirty may rush to many times higher than wb_setpoint.
898  * - the wb dirty thresh drops quickly due to change of JBOD workload
899  */
900 static void wb_position_ratio(struct dirty_throttle_control *dtc)
901 {
902 	struct bdi_writeback *wb = dtc->wb;
903 	unsigned long write_bw = wb->avg_write_bandwidth;
904 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
905 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
906 	unsigned long wb_thresh = dtc->wb_thresh;
907 	unsigned long x_intercept;
908 	unsigned long setpoint;		/* dirty pages' target balance point */
909 	unsigned long wb_setpoint;
910 	unsigned long span;
911 	long long pos_ratio;		/* for scaling up/down the rate limit */
912 	long x;
913 
914 	dtc->pos_ratio = 0;
915 
916 	if (unlikely(dtc->dirty >= limit))
917 		return;
918 
919 	/*
920 	 * global setpoint
921 	 *
922 	 * See comment for pos_ratio_polynom().
923 	 */
924 	setpoint = (freerun + limit) / 2;
925 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
926 
927 	/*
928 	 * The strictlimit feature is a tool preventing mistrusted filesystems
929 	 * from growing a large number of dirty pages before throttling. For
930 	 * such filesystems balance_dirty_pages always checks wb counters
931 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
932 	 * This is especially important for fuse which sets bdi->max_ratio to
933 	 * 1% by default. Without strictlimit feature, fuse writeback may
934 	 * consume arbitrary amount of RAM because it is accounted in
935 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
936 	 *
937 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
938 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
939 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
940 	 * limits are set by default to 10% and 20% (background and throttle).
941 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
942 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
943 	 * about ~6K pages (as the average of background and throttle wb
944 	 * limits). The 3rd order polynomial will provide positive feedback if
945 	 * wb_dirty is under wb_setpoint and vice versa.
946 	 *
947 	 * Note, that we cannot use global counters in these calculations
948 	 * because we want to throttle process writing to a strictlimit wb
949 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
950 	 * in the example above).
951 	 */
952 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
953 		long long wb_pos_ratio;
954 
955 		if (dtc->wb_dirty < 8) {
956 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
957 					   2 << RATELIMIT_CALC_SHIFT);
958 			return;
959 		}
960 
961 		if (dtc->wb_dirty >= wb_thresh)
962 			return;
963 
964 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
965 						    dtc->wb_bg_thresh);
966 
967 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
968 			return;
969 
970 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
971 						 wb_thresh);
972 
973 		/*
974 		 * Typically, for strictlimit case, wb_setpoint << setpoint
975 		 * and pos_ratio >> wb_pos_ratio. In the other words global
976 		 * state ("dirty") is not limiting factor and we have to
977 		 * make decision based on wb counters. But there is an
978 		 * important case when global pos_ratio should get precedence:
979 		 * global limits are exceeded (e.g. due to activities on other
980 		 * wb's) while given strictlimit wb is below limit.
981 		 *
982 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
983 		 * but it would look too non-natural for the case of all
984 		 * activity in the system coming from a single strictlimit wb
985 		 * with bdi->max_ratio == 100%.
986 		 *
987 		 * Note that min() below somewhat changes the dynamics of the
988 		 * control system. Normally, pos_ratio value can be well over 3
989 		 * (when globally we are at freerun and wb is well below wb
990 		 * setpoint). Now the maximum pos_ratio in the same situation
991 		 * is 2. We might want to tweak this if we observe the control
992 		 * system is too slow to adapt.
993 		 */
994 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
995 		return;
996 	}
997 
998 	/*
999 	 * We have computed basic pos_ratio above based on global situation. If
1000 	 * the wb is over/under its share of dirty pages, we want to scale
1001 	 * pos_ratio further down/up. That is done by the following mechanism.
1002 	 */
1003 
1004 	/*
1005 	 * wb setpoint
1006 	 *
1007 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1008 	 *
1009 	 *                        x_intercept - wb_dirty
1010 	 *                     := --------------------------
1011 	 *                        x_intercept - wb_setpoint
1012 	 *
1013 	 * The main wb control line is a linear function that subjects to
1014 	 *
1015 	 * (1) f(wb_setpoint) = 1.0
1016 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1017 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1018 	 *
1019 	 * For single wb case, the dirty pages are observed to fluctuate
1020 	 * regularly within range
1021 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1022 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1023 	 * fluctuation range for pos_ratio.
1024 	 *
1025 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1026 	 * own size, so move the slope over accordingly and choose a slope that
1027 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1028 	 */
1029 	if (unlikely(wb_thresh > dtc->thresh))
1030 		wb_thresh = dtc->thresh;
1031 	/*
1032 	 * It's very possible that wb_thresh is close to 0 not because the
1033 	 * device is slow, but that it has remained inactive for long time.
1034 	 * Honour such devices a reasonable good (hopefully IO efficient)
1035 	 * threshold, so that the occasional writes won't be blocked and active
1036 	 * writes can rampup the threshold quickly.
1037 	 */
1038 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1039 	/*
1040 	 * scale global setpoint to wb's:
1041 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1042 	 */
1043 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1044 	wb_setpoint = setpoint * (u64)x >> 16;
1045 	/*
1046 	 * Use span=(8*write_bw) in single wb case as indicated by
1047 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1048 	 *
1049 	 *        wb_thresh                    thresh - wb_thresh
1050 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1051 	 *         thresh                           thresh
1052 	 */
1053 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1054 	x_intercept = wb_setpoint + span;
1055 
1056 	if (dtc->wb_dirty < x_intercept - span / 4) {
1057 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1058 				      (x_intercept - wb_setpoint) | 1);
1059 	} else
1060 		pos_ratio /= 4;
1061 
1062 	/*
1063 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1064 	 * It may push the desired control point of global dirty pages higher
1065 	 * than setpoint.
1066 	 */
1067 	x_intercept = wb_thresh / 2;
1068 	if (dtc->wb_dirty < x_intercept) {
1069 		if (dtc->wb_dirty > x_intercept / 8)
1070 			pos_ratio = div_u64(pos_ratio * x_intercept,
1071 					    dtc->wb_dirty);
1072 		else
1073 			pos_ratio *= 8;
1074 	}
1075 
1076 	dtc->pos_ratio = pos_ratio;
1077 }
1078 
1079 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1080 				      unsigned long elapsed,
1081 				      unsigned long written)
1082 {
1083 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1084 	unsigned long avg = wb->avg_write_bandwidth;
1085 	unsigned long old = wb->write_bandwidth;
1086 	u64 bw;
1087 
1088 	/*
1089 	 * bw = written * HZ / elapsed
1090 	 *
1091 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1092 	 * write_bandwidth = ---------------------------------------------------
1093 	 *                                          period
1094 	 *
1095 	 * @written may have decreased due to account_page_redirty().
1096 	 * Avoid underflowing @bw calculation.
1097 	 */
1098 	bw = written - min(written, wb->written_stamp);
1099 	bw *= HZ;
1100 	if (unlikely(elapsed > period)) {
1101 		bw = div64_ul(bw, elapsed);
1102 		avg = bw;
1103 		goto out;
1104 	}
1105 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1106 	bw >>= ilog2(period);
1107 
1108 	/*
1109 	 * one more level of smoothing, for filtering out sudden spikes
1110 	 */
1111 	if (avg > old && old >= (unsigned long)bw)
1112 		avg -= (avg - old) >> 3;
1113 
1114 	if (avg < old && old <= (unsigned long)bw)
1115 		avg += (old - avg) >> 3;
1116 
1117 out:
1118 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1119 	avg = max(avg, 1LU);
1120 	if (wb_has_dirty_io(wb)) {
1121 		long delta = avg - wb->avg_write_bandwidth;
1122 		WARN_ON_ONCE(atomic_long_add_return(delta,
1123 					&wb->bdi->tot_write_bandwidth) <= 0);
1124 	}
1125 	wb->write_bandwidth = bw;
1126 	wb->avg_write_bandwidth = avg;
1127 }
1128 
1129 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1130 {
1131 	struct wb_domain *dom = dtc_dom(dtc);
1132 	unsigned long thresh = dtc->thresh;
1133 	unsigned long limit = dom->dirty_limit;
1134 
1135 	/*
1136 	 * Follow up in one step.
1137 	 */
1138 	if (limit < thresh) {
1139 		limit = thresh;
1140 		goto update;
1141 	}
1142 
1143 	/*
1144 	 * Follow down slowly. Use the higher one as the target, because thresh
1145 	 * may drop below dirty. This is exactly the reason to introduce
1146 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1147 	 */
1148 	thresh = max(thresh, dtc->dirty);
1149 	if (limit > thresh) {
1150 		limit -= (limit - thresh) >> 5;
1151 		goto update;
1152 	}
1153 	return;
1154 update:
1155 	dom->dirty_limit = limit;
1156 }
1157 
1158 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1159 				    unsigned long now)
1160 {
1161 	struct wb_domain *dom = dtc_dom(dtc);
1162 
1163 	/*
1164 	 * check locklessly first to optimize away locking for the most time
1165 	 */
1166 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1167 		return;
1168 
1169 	spin_lock(&dom->lock);
1170 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1171 		update_dirty_limit(dtc);
1172 		dom->dirty_limit_tstamp = now;
1173 	}
1174 	spin_unlock(&dom->lock);
1175 }
1176 
1177 /*
1178  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1179  *
1180  * Normal wb tasks will be curbed at or below it in long term.
1181  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1182  */
1183 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1184 				      unsigned long dirtied,
1185 				      unsigned long elapsed)
1186 {
1187 	struct bdi_writeback *wb = dtc->wb;
1188 	unsigned long dirty = dtc->dirty;
1189 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1190 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1191 	unsigned long setpoint = (freerun + limit) / 2;
1192 	unsigned long write_bw = wb->avg_write_bandwidth;
1193 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1194 	unsigned long dirty_rate;
1195 	unsigned long task_ratelimit;
1196 	unsigned long balanced_dirty_ratelimit;
1197 	unsigned long step;
1198 	unsigned long x;
1199 	unsigned long shift;
1200 
1201 	/*
1202 	 * The dirty rate will match the writeout rate in long term, except
1203 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1204 	 */
1205 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1206 
1207 	/*
1208 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1209 	 */
1210 	task_ratelimit = (u64)dirty_ratelimit *
1211 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1212 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1213 
1214 	/*
1215 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1216 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1217 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1218 	 * formula will yield the balanced rate limit (write_bw / N).
1219 	 *
1220 	 * Note that the expanded form is not a pure rate feedback:
1221 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1222 	 * but also takes pos_ratio into account:
1223 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1224 	 *
1225 	 * (1) is not realistic because pos_ratio also takes part in balancing
1226 	 * the dirty rate.  Consider the state
1227 	 *	pos_ratio = 0.5						     (3)
1228 	 *	rate = 2 * (write_bw / N)				     (4)
1229 	 * If (1) is used, it will stuck in that state! Because each dd will
1230 	 * be throttled at
1231 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1232 	 * yielding
1233 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1234 	 * put (6) into (1) we get
1235 	 *	rate_(i+1) = rate_(i)					     (7)
1236 	 *
1237 	 * So we end up using (2) to always keep
1238 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1239 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1240 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1241 	 * the dirty count meet the setpoint, but also where the slope of
1242 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1243 	 */
1244 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1245 					   dirty_rate | 1);
1246 	/*
1247 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1248 	 */
1249 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1250 		balanced_dirty_ratelimit = write_bw;
1251 
1252 	/*
1253 	 * We could safely do this and return immediately:
1254 	 *
1255 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1256 	 *
1257 	 * However to get a more stable dirty_ratelimit, the below elaborated
1258 	 * code makes use of task_ratelimit to filter out singular points and
1259 	 * limit the step size.
1260 	 *
1261 	 * The below code essentially only uses the relative value of
1262 	 *
1263 	 *	task_ratelimit - dirty_ratelimit
1264 	 *	= (pos_ratio - 1) * dirty_ratelimit
1265 	 *
1266 	 * which reflects the direction and size of dirty position error.
1267 	 */
1268 
1269 	/*
1270 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1271 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1272 	 * For example, when
1273 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1274 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1275 	 * lowering dirty_ratelimit will help meet both the position and rate
1276 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1277 	 * only help meet the rate target. After all, what the users ultimately
1278 	 * feel and care are stable dirty rate and small position error.
1279 	 *
1280 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1281 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1282 	 * keeps jumping around randomly and can even leap far away at times
1283 	 * due to the small 200ms estimation period of dirty_rate (we want to
1284 	 * keep that period small to reduce time lags).
1285 	 */
1286 	step = 0;
1287 
1288 	/*
1289 	 * For strictlimit case, calculations above were based on wb counters
1290 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1291 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1292 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1293 	 * "dirty" and wb_setpoint as "setpoint".
1294 	 *
1295 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1296 	 * it's possible that wb_thresh is close to zero due to inactivity
1297 	 * of backing device.
1298 	 */
1299 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1300 		dirty = dtc->wb_dirty;
1301 		if (dtc->wb_dirty < 8)
1302 			setpoint = dtc->wb_dirty + 1;
1303 		else
1304 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1305 	}
1306 
1307 	if (dirty < setpoint) {
1308 		x = min3(wb->balanced_dirty_ratelimit,
1309 			 balanced_dirty_ratelimit, task_ratelimit);
1310 		if (dirty_ratelimit < x)
1311 			step = x - dirty_ratelimit;
1312 	} else {
1313 		x = max3(wb->balanced_dirty_ratelimit,
1314 			 balanced_dirty_ratelimit, task_ratelimit);
1315 		if (dirty_ratelimit > x)
1316 			step = dirty_ratelimit - x;
1317 	}
1318 
1319 	/*
1320 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1321 	 * rate itself is constantly fluctuating. So decrease the track speed
1322 	 * when it gets close to the target. Helps eliminate pointless tremors.
1323 	 */
1324 	shift = dirty_ratelimit / (2 * step + 1);
1325 	if (shift < BITS_PER_LONG)
1326 		step = DIV_ROUND_UP(step >> shift, 8);
1327 	else
1328 		step = 0;
1329 
1330 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1331 		dirty_ratelimit += step;
1332 	else
1333 		dirty_ratelimit -= step;
1334 
1335 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1336 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1337 
1338 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1339 }
1340 
1341 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1342 				  struct dirty_throttle_control *mdtc,
1343 				  unsigned long start_time,
1344 				  bool update_ratelimit)
1345 {
1346 	struct bdi_writeback *wb = gdtc->wb;
1347 	unsigned long now = jiffies;
1348 	unsigned long elapsed = now - wb->bw_time_stamp;
1349 	unsigned long dirtied;
1350 	unsigned long written;
1351 
1352 	lockdep_assert_held(&wb->list_lock);
1353 
1354 	/*
1355 	 * rate-limit, only update once every 200ms.
1356 	 */
1357 	if (elapsed < BANDWIDTH_INTERVAL)
1358 		return;
1359 
1360 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1361 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1362 
1363 	/*
1364 	 * Skip quiet periods when disk bandwidth is under-utilized.
1365 	 * (at least 1s idle time between two flusher runs)
1366 	 */
1367 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1368 		goto snapshot;
1369 
1370 	if (update_ratelimit) {
1371 		domain_update_bandwidth(gdtc, now);
1372 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1373 
1374 		/*
1375 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1376 		 * compiler has no way to figure that out.  Help it.
1377 		 */
1378 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1379 			domain_update_bandwidth(mdtc, now);
1380 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1381 		}
1382 	}
1383 	wb_update_write_bandwidth(wb, elapsed, written);
1384 
1385 snapshot:
1386 	wb->dirtied_stamp = dirtied;
1387 	wb->written_stamp = written;
1388 	wb->bw_time_stamp = now;
1389 }
1390 
1391 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1392 {
1393 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1394 
1395 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1396 }
1397 
1398 /*
1399  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1400  * will look to see if it needs to start dirty throttling.
1401  *
1402  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1403  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1404  * (the number of pages we may dirty without exceeding the dirty limits).
1405  */
1406 static unsigned long dirty_poll_interval(unsigned long dirty,
1407 					 unsigned long thresh)
1408 {
1409 	if (thresh > dirty)
1410 		return 1UL << (ilog2(thresh - dirty) >> 1);
1411 
1412 	return 1;
1413 }
1414 
1415 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1416 				  unsigned long wb_dirty)
1417 {
1418 	unsigned long bw = wb->avg_write_bandwidth;
1419 	unsigned long t;
1420 
1421 	/*
1422 	 * Limit pause time for small memory systems. If sleeping for too long
1423 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1424 	 * idle.
1425 	 *
1426 	 * 8 serves as the safety ratio.
1427 	 */
1428 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1429 	t++;
1430 
1431 	return min_t(unsigned long, t, MAX_PAUSE);
1432 }
1433 
1434 static long wb_min_pause(struct bdi_writeback *wb,
1435 			 long max_pause,
1436 			 unsigned long task_ratelimit,
1437 			 unsigned long dirty_ratelimit,
1438 			 int *nr_dirtied_pause)
1439 {
1440 	long hi = ilog2(wb->avg_write_bandwidth);
1441 	long lo = ilog2(wb->dirty_ratelimit);
1442 	long t;		/* target pause */
1443 	long pause;	/* estimated next pause */
1444 	int pages;	/* target nr_dirtied_pause */
1445 
1446 	/* target for 10ms pause on 1-dd case */
1447 	t = max(1, HZ / 100);
1448 
1449 	/*
1450 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1451 	 * overheads.
1452 	 *
1453 	 * (N * 10ms) on 2^N concurrent tasks.
1454 	 */
1455 	if (hi > lo)
1456 		t += (hi - lo) * (10 * HZ) / 1024;
1457 
1458 	/*
1459 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1460 	 * on the much more stable dirty_ratelimit. However the next pause time
1461 	 * will be computed based on task_ratelimit and the two rate limits may
1462 	 * depart considerably at some time. Especially if task_ratelimit goes
1463 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1464 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1465 	 * result task_ratelimit won't be executed faithfully, which could
1466 	 * eventually bring down dirty_ratelimit.
1467 	 *
1468 	 * We apply two rules to fix it up:
1469 	 * 1) try to estimate the next pause time and if necessary, use a lower
1470 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1471 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1472 	 * 2) limit the target pause time to max_pause/2, so that the normal
1473 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1474 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1475 	 */
1476 	t = min(t, 1 + max_pause / 2);
1477 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1478 
1479 	/*
1480 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1481 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1482 	 * When the 16 consecutive reads are often interrupted by some dirty
1483 	 * throttling pause during the async writes, cfq will go into idles
1484 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1485 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1486 	 */
1487 	if (pages < DIRTY_POLL_THRESH) {
1488 		t = max_pause;
1489 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1490 		if (pages > DIRTY_POLL_THRESH) {
1491 			pages = DIRTY_POLL_THRESH;
1492 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1493 		}
1494 	}
1495 
1496 	pause = HZ * pages / (task_ratelimit + 1);
1497 	if (pause > max_pause) {
1498 		t = max_pause;
1499 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1500 	}
1501 
1502 	*nr_dirtied_pause = pages;
1503 	/*
1504 	 * The minimal pause time will normally be half the target pause time.
1505 	 */
1506 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1507 }
1508 
1509 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1510 {
1511 	struct bdi_writeback *wb = dtc->wb;
1512 	unsigned long wb_reclaimable;
1513 
1514 	/*
1515 	 * wb_thresh is not treated as some limiting factor as
1516 	 * dirty_thresh, due to reasons
1517 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1518 	 * - in a system with HDD and USB key, the USB key may somehow
1519 	 *   go into state (wb_dirty >> wb_thresh) either because
1520 	 *   wb_dirty starts high, or because wb_thresh drops low.
1521 	 *   In this case we don't want to hard throttle the USB key
1522 	 *   dirtiers for 100 seconds until wb_dirty drops under
1523 	 *   wb_thresh. Instead the auxiliary wb control line in
1524 	 *   wb_position_ratio() will let the dirtier task progress
1525 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1526 	 */
1527 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1528 	dtc->wb_bg_thresh = dtc->thresh ?
1529 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1530 
1531 	/*
1532 	 * In order to avoid the stacked BDI deadlock we need
1533 	 * to ensure we accurately count the 'dirty' pages when
1534 	 * the threshold is low.
1535 	 *
1536 	 * Otherwise it would be possible to get thresh+n pages
1537 	 * reported dirty, even though there are thresh-m pages
1538 	 * actually dirty; with m+n sitting in the percpu
1539 	 * deltas.
1540 	 */
1541 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1542 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1543 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1544 	} else {
1545 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1546 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1547 	}
1548 }
1549 
1550 /*
1551  * balance_dirty_pages() must be called by processes which are generating dirty
1552  * data.  It looks at the number of dirty pages in the machine and will force
1553  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1554  * If we're over `background_thresh' then the writeback threads are woken to
1555  * perform some writeout.
1556  */
1557 static void balance_dirty_pages(struct bdi_writeback *wb,
1558 				unsigned long pages_dirtied)
1559 {
1560 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1561 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1562 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1563 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1564 						     &mdtc_stor : NULL;
1565 	struct dirty_throttle_control *sdtc;
1566 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1567 	long period;
1568 	long pause;
1569 	long max_pause;
1570 	long min_pause;
1571 	int nr_dirtied_pause;
1572 	bool dirty_exceeded = false;
1573 	unsigned long task_ratelimit;
1574 	unsigned long dirty_ratelimit;
1575 	struct backing_dev_info *bdi = wb->bdi;
1576 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1577 	unsigned long start_time = jiffies;
1578 
1579 	for (;;) {
1580 		unsigned long now = jiffies;
1581 		unsigned long dirty, thresh, bg_thresh;
1582 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1583 		unsigned long m_thresh = 0;
1584 		unsigned long m_bg_thresh = 0;
1585 
1586 		/*
1587 		 * Unstable writes are a feature of certain networked
1588 		 * filesystems (i.e. NFS) in which data may have been
1589 		 * written to the server's write cache, but has not yet
1590 		 * been flushed to permanent storage.
1591 		 */
1592 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1593 					global_node_page_state(NR_UNSTABLE_NFS);
1594 		gdtc->avail = global_dirtyable_memory();
1595 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1596 
1597 		domain_dirty_limits(gdtc);
1598 
1599 		if (unlikely(strictlimit)) {
1600 			wb_dirty_limits(gdtc);
1601 
1602 			dirty = gdtc->wb_dirty;
1603 			thresh = gdtc->wb_thresh;
1604 			bg_thresh = gdtc->wb_bg_thresh;
1605 		} else {
1606 			dirty = gdtc->dirty;
1607 			thresh = gdtc->thresh;
1608 			bg_thresh = gdtc->bg_thresh;
1609 		}
1610 
1611 		if (mdtc) {
1612 			unsigned long filepages, headroom, writeback;
1613 
1614 			/*
1615 			 * If @wb belongs to !root memcg, repeat the same
1616 			 * basic calculations for the memcg domain.
1617 			 */
1618 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1619 					    &mdtc->dirty, &writeback);
1620 			mdtc->dirty += writeback;
1621 			mdtc_calc_avail(mdtc, filepages, headroom);
1622 
1623 			domain_dirty_limits(mdtc);
1624 
1625 			if (unlikely(strictlimit)) {
1626 				wb_dirty_limits(mdtc);
1627 				m_dirty = mdtc->wb_dirty;
1628 				m_thresh = mdtc->wb_thresh;
1629 				m_bg_thresh = mdtc->wb_bg_thresh;
1630 			} else {
1631 				m_dirty = mdtc->dirty;
1632 				m_thresh = mdtc->thresh;
1633 				m_bg_thresh = mdtc->bg_thresh;
1634 			}
1635 		}
1636 
1637 		/*
1638 		 * Throttle it only when the background writeback cannot
1639 		 * catch-up. This avoids (excessively) small writeouts
1640 		 * when the wb limits are ramping up in case of !strictlimit.
1641 		 *
1642 		 * In strictlimit case make decision based on the wb counters
1643 		 * and limits. Small writeouts when the wb limits are ramping
1644 		 * up are the price we consciously pay for strictlimit-ing.
1645 		 *
1646 		 * If memcg domain is in effect, @dirty should be under
1647 		 * both global and memcg freerun ceilings.
1648 		 */
1649 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1650 		    (!mdtc ||
1651 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1652 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1653 			unsigned long m_intv = ULONG_MAX;
1654 
1655 			current->dirty_paused_when = now;
1656 			current->nr_dirtied = 0;
1657 			if (mdtc)
1658 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1659 			current->nr_dirtied_pause = min(intv, m_intv);
1660 			break;
1661 		}
1662 
1663 		if (unlikely(!writeback_in_progress(wb)))
1664 			wb_start_background_writeback(wb);
1665 
1666 		mem_cgroup_flush_foreign(wb);
1667 
1668 		/*
1669 		 * Calculate global domain's pos_ratio and select the
1670 		 * global dtc by default.
1671 		 */
1672 		if (!strictlimit)
1673 			wb_dirty_limits(gdtc);
1674 
1675 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1676 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1677 
1678 		wb_position_ratio(gdtc);
1679 		sdtc = gdtc;
1680 
1681 		if (mdtc) {
1682 			/*
1683 			 * If memcg domain is in effect, calculate its
1684 			 * pos_ratio.  @wb should satisfy constraints from
1685 			 * both global and memcg domains.  Choose the one
1686 			 * w/ lower pos_ratio.
1687 			 */
1688 			if (!strictlimit)
1689 				wb_dirty_limits(mdtc);
1690 
1691 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1692 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1693 
1694 			wb_position_ratio(mdtc);
1695 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1696 				sdtc = mdtc;
1697 		}
1698 
1699 		if (dirty_exceeded && !wb->dirty_exceeded)
1700 			wb->dirty_exceeded = 1;
1701 
1702 		if (time_is_before_jiffies(wb->bw_time_stamp +
1703 					   BANDWIDTH_INTERVAL)) {
1704 			spin_lock(&wb->list_lock);
1705 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1706 			spin_unlock(&wb->list_lock);
1707 		}
1708 
1709 		/* throttle according to the chosen dtc */
1710 		dirty_ratelimit = wb->dirty_ratelimit;
1711 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1712 							RATELIMIT_CALC_SHIFT;
1713 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1714 		min_pause = wb_min_pause(wb, max_pause,
1715 					 task_ratelimit, dirty_ratelimit,
1716 					 &nr_dirtied_pause);
1717 
1718 		if (unlikely(task_ratelimit == 0)) {
1719 			period = max_pause;
1720 			pause = max_pause;
1721 			goto pause;
1722 		}
1723 		period = HZ * pages_dirtied / task_ratelimit;
1724 		pause = period;
1725 		if (current->dirty_paused_when)
1726 			pause -= now - current->dirty_paused_when;
1727 		/*
1728 		 * For less than 1s think time (ext3/4 may block the dirtier
1729 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1730 		 * however at much less frequency), try to compensate it in
1731 		 * future periods by updating the virtual time; otherwise just
1732 		 * do a reset, as it may be a light dirtier.
1733 		 */
1734 		if (pause < min_pause) {
1735 			trace_balance_dirty_pages(wb,
1736 						  sdtc->thresh,
1737 						  sdtc->bg_thresh,
1738 						  sdtc->dirty,
1739 						  sdtc->wb_thresh,
1740 						  sdtc->wb_dirty,
1741 						  dirty_ratelimit,
1742 						  task_ratelimit,
1743 						  pages_dirtied,
1744 						  period,
1745 						  min(pause, 0L),
1746 						  start_time);
1747 			if (pause < -HZ) {
1748 				current->dirty_paused_when = now;
1749 				current->nr_dirtied = 0;
1750 			} else if (period) {
1751 				current->dirty_paused_when += period;
1752 				current->nr_dirtied = 0;
1753 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1754 				current->nr_dirtied_pause += pages_dirtied;
1755 			break;
1756 		}
1757 		if (unlikely(pause > max_pause)) {
1758 			/* for occasional dropped task_ratelimit */
1759 			now += min(pause - max_pause, max_pause);
1760 			pause = max_pause;
1761 		}
1762 
1763 pause:
1764 		trace_balance_dirty_pages(wb,
1765 					  sdtc->thresh,
1766 					  sdtc->bg_thresh,
1767 					  sdtc->dirty,
1768 					  sdtc->wb_thresh,
1769 					  sdtc->wb_dirty,
1770 					  dirty_ratelimit,
1771 					  task_ratelimit,
1772 					  pages_dirtied,
1773 					  period,
1774 					  pause,
1775 					  start_time);
1776 		__set_current_state(TASK_KILLABLE);
1777 		wb->dirty_sleep = now;
1778 		io_schedule_timeout(pause);
1779 
1780 		current->dirty_paused_when = now + pause;
1781 		current->nr_dirtied = 0;
1782 		current->nr_dirtied_pause = nr_dirtied_pause;
1783 
1784 		/*
1785 		 * This is typically equal to (dirty < thresh) and can also
1786 		 * keep "1000+ dd on a slow USB stick" under control.
1787 		 */
1788 		if (task_ratelimit)
1789 			break;
1790 
1791 		/*
1792 		 * In the case of an unresponding NFS server and the NFS dirty
1793 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1794 		 * to go through, so that tasks on them still remain responsive.
1795 		 *
1796 		 * In theory 1 page is enough to keep the consumer-producer
1797 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1798 		 * more page. However wb_dirty has accounting errors.  So use
1799 		 * the larger and more IO friendly wb_stat_error.
1800 		 */
1801 		if (sdtc->wb_dirty <= wb_stat_error())
1802 			break;
1803 
1804 		if (fatal_signal_pending(current))
1805 			break;
1806 	}
1807 
1808 	if (!dirty_exceeded && wb->dirty_exceeded)
1809 		wb->dirty_exceeded = 0;
1810 
1811 	if (writeback_in_progress(wb))
1812 		return;
1813 
1814 	/*
1815 	 * In laptop mode, we wait until hitting the higher threshold before
1816 	 * starting background writeout, and then write out all the way down
1817 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1818 	 *
1819 	 * In normal mode, we start background writeout at the lower
1820 	 * background_thresh, to keep the amount of dirty memory low.
1821 	 */
1822 	if (laptop_mode)
1823 		return;
1824 
1825 	if (nr_reclaimable > gdtc->bg_thresh)
1826 		wb_start_background_writeback(wb);
1827 }
1828 
1829 static DEFINE_PER_CPU(int, bdp_ratelimits);
1830 
1831 /*
1832  * Normal tasks are throttled by
1833  *	loop {
1834  *		dirty tsk->nr_dirtied_pause pages;
1835  *		take a snap in balance_dirty_pages();
1836  *	}
1837  * However there is a worst case. If every task exit immediately when dirtied
1838  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1839  * called to throttle the page dirties. The solution is to save the not yet
1840  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1841  * randomly into the running tasks. This works well for the above worst case,
1842  * as the new task will pick up and accumulate the old task's leaked dirty
1843  * count and eventually get throttled.
1844  */
1845 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1846 
1847 /**
1848  * balance_dirty_pages_ratelimited - balance dirty memory state
1849  * @mapping: address_space which was dirtied
1850  *
1851  * Processes which are dirtying memory should call in here once for each page
1852  * which was newly dirtied.  The function will periodically check the system's
1853  * dirty state and will initiate writeback if needed.
1854  *
1855  * On really big machines, get_writeback_state is expensive, so try to avoid
1856  * calling it too often (ratelimiting).  But once we're over the dirty memory
1857  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1858  * from overshooting the limit by (ratelimit_pages) each.
1859  */
1860 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1861 {
1862 	struct inode *inode = mapping->host;
1863 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1864 	struct bdi_writeback *wb = NULL;
1865 	int ratelimit;
1866 	int *p;
1867 
1868 	if (!bdi_cap_account_dirty(bdi))
1869 		return;
1870 
1871 	if (inode_cgwb_enabled(inode))
1872 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1873 	if (!wb)
1874 		wb = &bdi->wb;
1875 
1876 	ratelimit = current->nr_dirtied_pause;
1877 	if (wb->dirty_exceeded)
1878 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1879 
1880 	preempt_disable();
1881 	/*
1882 	 * This prevents one CPU to accumulate too many dirtied pages without
1883 	 * calling into balance_dirty_pages(), which can happen when there are
1884 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1885 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1886 	 */
1887 	p =  this_cpu_ptr(&bdp_ratelimits);
1888 	if (unlikely(current->nr_dirtied >= ratelimit))
1889 		*p = 0;
1890 	else if (unlikely(*p >= ratelimit_pages)) {
1891 		*p = 0;
1892 		ratelimit = 0;
1893 	}
1894 	/*
1895 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1896 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1897 	 * the dirty throttling and livelock other long-run dirtiers.
1898 	 */
1899 	p = this_cpu_ptr(&dirty_throttle_leaks);
1900 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1901 		unsigned long nr_pages_dirtied;
1902 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1903 		*p -= nr_pages_dirtied;
1904 		current->nr_dirtied += nr_pages_dirtied;
1905 	}
1906 	preempt_enable();
1907 
1908 	if (unlikely(current->nr_dirtied >= ratelimit))
1909 		balance_dirty_pages(wb, current->nr_dirtied);
1910 
1911 	wb_put(wb);
1912 }
1913 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1914 
1915 /**
1916  * wb_over_bg_thresh - does @wb need to be written back?
1917  * @wb: bdi_writeback of interest
1918  *
1919  * Determines whether background writeback should keep writing @wb or it's
1920  * clean enough.
1921  *
1922  * Return: %true if writeback should continue.
1923  */
1924 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1925 {
1926 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1927 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1928 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1929 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1930 						     &mdtc_stor : NULL;
1931 
1932 	/*
1933 	 * Similar to balance_dirty_pages() but ignores pages being written
1934 	 * as we're trying to decide whether to put more under writeback.
1935 	 */
1936 	gdtc->avail = global_dirtyable_memory();
1937 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1938 		      global_node_page_state(NR_UNSTABLE_NFS);
1939 	domain_dirty_limits(gdtc);
1940 
1941 	if (gdtc->dirty > gdtc->bg_thresh)
1942 		return true;
1943 
1944 	if (wb_stat(wb, WB_RECLAIMABLE) >
1945 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1946 		return true;
1947 
1948 	if (mdtc) {
1949 		unsigned long filepages, headroom, writeback;
1950 
1951 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1952 				    &writeback);
1953 		mdtc_calc_avail(mdtc, filepages, headroom);
1954 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1955 
1956 		if (mdtc->dirty > mdtc->bg_thresh)
1957 			return true;
1958 
1959 		if (wb_stat(wb, WB_RECLAIMABLE) >
1960 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1961 			return true;
1962 	}
1963 
1964 	return false;
1965 }
1966 
1967 /*
1968  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1969  */
1970 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1971 		void *buffer, size_t *length, loff_t *ppos)
1972 {
1973 	unsigned int old_interval = dirty_writeback_interval;
1974 	int ret;
1975 
1976 	ret = proc_dointvec(table, write, buffer, length, ppos);
1977 
1978 	/*
1979 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1980 	 * and a different non-zero value will wakeup the writeback threads.
1981 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1982 	 * iterate over all bdis and wbs.
1983 	 * The reason we do this is to make the change take effect immediately.
1984 	 */
1985 	if (!ret && write && dirty_writeback_interval &&
1986 		dirty_writeback_interval != old_interval)
1987 		wakeup_flusher_threads(WB_REASON_PERIODIC);
1988 
1989 	return ret;
1990 }
1991 
1992 #ifdef CONFIG_BLOCK
1993 void laptop_mode_timer_fn(struct timer_list *t)
1994 {
1995 	struct backing_dev_info *backing_dev_info =
1996 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1997 
1998 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1999 }
2000 
2001 /*
2002  * We've spun up the disk and we're in laptop mode: schedule writeback
2003  * of all dirty data a few seconds from now.  If the flush is already scheduled
2004  * then push it back - the user is still using the disk.
2005  */
2006 void laptop_io_completion(struct backing_dev_info *info)
2007 {
2008 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2009 }
2010 
2011 /*
2012  * We're in laptop mode and we've just synced. The sync's writes will have
2013  * caused another writeback to be scheduled by laptop_io_completion.
2014  * Nothing needs to be written back anymore, so we unschedule the writeback.
2015  */
2016 void laptop_sync_completion(void)
2017 {
2018 	struct backing_dev_info *bdi;
2019 
2020 	rcu_read_lock();
2021 
2022 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2023 		del_timer(&bdi->laptop_mode_wb_timer);
2024 
2025 	rcu_read_unlock();
2026 }
2027 #endif
2028 
2029 /*
2030  * If ratelimit_pages is too high then we can get into dirty-data overload
2031  * if a large number of processes all perform writes at the same time.
2032  * If it is too low then SMP machines will call the (expensive)
2033  * get_writeback_state too often.
2034  *
2035  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2036  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2037  * thresholds.
2038  */
2039 
2040 void writeback_set_ratelimit(void)
2041 {
2042 	struct wb_domain *dom = &global_wb_domain;
2043 	unsigned long background_thresh;
2044 	unsigned long dirty_thresh;
2045 
2046 	global_dirty_limits(&background_thresh, &dirty_thresh);
2047 	dom->dirty_limit = dirty_thresh;
2048 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2049 	if (ratelimit_pages < 16)
2050 		ratelimit_pages = 16;
2051 }
2052 
2053 static int page_writeback_cpu_online(unsigned int cpu)
2054 {
2055 	writeback_set_ratelimit();
2056 	return 0;
2057 }
2058 
2059 /*
2060  * Called early on to tune the page writeback dirty limits.
2061  *
2062  * We used to scale dirty pages according to how total memory
2063  * related to pages that could be allocated for buffers (by
2064  * comparing nr_free_buffer_pages() to vm_total_pages.
2065  *
2066  * However, that was when we used "dirty_ratio" to scale with
2067  * all memory, and we don't do that any more. "dirty_ratio"
2068  * is now applied to total non-HIGHPAGE memory (by subtracting
2069  * totalhigh_pages from vm_total_pages), and as such we can't
2070  * get into the old insane situation any more where we had
2071  * large amounts of dirty pages compared to a small amount of
2072  * non-HIGHMEM memory.
2073  *
2074  * But we might still want to scale the dirty_ratio by how
2075  * much memory the box has..
2076  */
2077 void __init page_writeback_init(void)
2078 {
2079 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2080 
2081 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2082 			  page_writeback_cpu_online, NULL);
2083 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2084 			  page_writeback_cpu_online);
2085 }
2086 
2087 /**
2088  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2089  * @mapping: address space structure to write
2090  * @start: starting page index
2091  * @end: ending page index (inclusive)
2092  *
2093  * This function scans the page range from @start to @end (inclusive) and tags
2094  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2095  * that write_cache_pages (or whoever calls this function) will then use
2096  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2097  * used to avoid livelocking of writeback by a process steadily creating new
2098  * dirty pages in the file (thus it is important for this function to be quick
2099  * so that it can tag pages faster than a dirtying process can create them).
2100  */
2101 void tag_pages_for_writeback(struct address_space *mapping,
2102 			     pgoff_t start, pgoff_t end)
2103 {
2104 	XA_STATE(xas, &mapping->i_pages, start);
2105 	unsigned int tagged = 0;
2106 	void *page;
2107 
2108 	xas_lock_irq(&xas);
2109 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2110 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2111 		if (++tagged % XA_CHECK_SCHED)
2112 			continue;
2113 
2114 		xas_pause(&xas);
2115 		xas_unlock_irq(&xas);
2116 		cond_resched();
2117 		xas_lock_irq(&xas);
2118 	}
2119 	xas_unlock_irq(&xas);
2120 }
2121 EXPORT_SYMBOL(tag_pages_for_writeback);
2122 
2123 /**
2124  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2125  * @mapping: address space structure to write
2126  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2127  * @writepage: function called for each page
2128  * @data: data passed to writepage function
2129  *
2130  * If a page is already under I/O, write_cache_pages() skips it, even
2131  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2132  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2133  * and msync() need to guarantee that all the data which was dirty at the time
2134  * the call was made get new I/O started against them.  If wbc->sync_mode is
2135  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2136  * existing IO to complete.
2137  *
2138  * To avoid livelocks (when other process dirties new pages), we first tag
2139  * pages which should be written back with TOWRITE tag and only then start
2140  * writing them. For data-integrity sync we have to be careful so that we do
2141  * not miss some pages (e.g., because some other process has cleared TOWRITE
2142  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2143  * by the process clearing the DIRTY tag (and submitting the page for IO).
2144  *
2145  * To avoid deadlocks between range_cyclic writeback and callers that hold
2146  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2147  * we do not loop back to the start of the file. Doing so causes a page
2148  * lock/page writeback access order inversion - we should only ever lock
2149  * multiple pages in ascending page->index order, and looping back to the start
2150  * of the file violates that rule and causes deadlocks.
2151  *
2152  * Return: %0 on success, negative error code otherwise
2153  */
2154 int write_cache_pages(struct address_space *mapping,
2155 		      struct writeback_control *wbc, writepage_t writepage,
2156 		      void *data)
2157 {
2158 	int ret = 0;
2159 	int done = 0;
2160 	int error;
2161 	struct pagevec pvec;
2162 	int nr_pages;
2163 	pgoff_t uninitialized_var(writeback_index);
2164 	pgoff_t index;
2165 	pgoff_t end;		/* Inclusive */
2166 	pgoff_t done_index;
2167 	int range_whole = 0;
2168 	xa_mark_t tag;
2169 
2170 	pagevec_init(&pvec);
2171 	if (wbc->range_cyclic) {
2172 		writeback_index = mapping->writeback_index; /* prev offset */
2173 		index = writeback_index;
2174 		end = -1;
2175 	} else {
2176 		index = wbc->range_start >> PAGE_SHIFT;
2177 		end = wbc->range_end >> PAGE_SHIFT;
2178 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2179 			range_whole = 1;
2180 	}
2181 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2182 		tag_pages_for_writeback(mapping, index, end);
2183 		tag = PAGECACHE_TAG_TOWRITE;
2184 	} else {
2185 		tag = PAGECACHE_TAG_DIRTY;
2186 	}
2187 	done_index = index;
2188 	while (!done && (index <= end)) {
2189 		int i;
2190 
2191 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2192 				tag);
2193 		if (nr_pages == 0)
2194 			break;
2195 
2196 		for (i = 0; i < nr_pages; i++) {
2197 			struct page *page = pvec.pages[i];
2198 
2199 			done_index = page->index;
2200 
2201 			lock_page(page);
2202 
2203 			/*
2204 			 * Page truncated or invalidated. We can freely skip it
2205 			 * then, even for data integrity operations: the page
2206 			 * has disappeared concurrently, so there could be no
2207 			 * real expectation of this data interity operation
2208 			 * even if there is now a new, dirty page at the same
2209 			 * pagecache address.
2210 			 */
2211 			if (unlikely(page->mapping != mapping)) {
2212 continue_unlock:
2213 				unlock_page(page);
2214 				continue;
2215 			}
2216 
2217 			if (!PageDirty(page)) {
2218 				/* someone wrote it for us */
2219 				goto continue_unlock;
2220 			}
2221 
2222 			if (PageWriteback(page)) {
2223 				if (wbc->sync_mode != WB_SYNC_NONE)
2224 					wait_on_page_writeback(page);
2225 				else
2226 					goto continue_unlock;
2227 			}
2228 
2229 			BUG_ON(PageWriteback(page));
2230 			if (!clear_page_dirty_for_io(page))
2231 				goto continue_unlock;
2232 
2233 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2234 			error = (*writepage)(page, wbc, data);
2235 			if (unlikely(error)) {
2236 				/*
2237 				 * Handle errors according to the type of
2238 				 * writeback. There's no need to continue for
2239 				 * background writeback. Just push done_index
2240 				 * past this page so media errors won't choke
2241 				 * writeout for the entire file. For integrity
2242 				 * writeback, we must process the entire dirty
2243 				 * set regardless of errors because the fs may
2244 				 * still have state to clear for each page. In
2245 				 * that case we continue processing and return
2246 				 * the first error.
2247 				 */
2248 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2249 					unlock_page(page);
2250 					error = 0;
2251 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2252 					ret = error;
2253 					done_index = page->index + 1;
2254 					done = 1;
2255 					break;
2256 				}
2257 				if (!ret)
2258 					ret = error;
2259 			}
2260 
2261 			/*
2262 			 * We stop writing back only if we are not doing
2263 			 * integrity sync. In case of integrity sync we have to
2264 			 * keep going until we have written all the pages
2265 			 * we tagged for writeback prior to entering this loop.
2266 			 */
2267 			if (--wbc->nr_to_write <= 0 &&
2268 			    wbc->sync_mode == WB_SYNC_NONE) {
2269 				done = 1;
2270 				break;
2271 			}
2272 		}
2273 		pagevec_release(&pvec);
2274 		cond_resched();
2275 	}
2276 
2277 	/*
2278 	 * If we hit the last page and there is more work to be done: wrap
2279 	 * back the index back to the start of the file for the next
2280 	 * time we are called.
2281 	 */
2282 	if (wbc->range_cyclic && !done)
2283 		done_index = 0;
2284 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2285 		mapping->writeback_index = done_index;
2286 
2287 	return ret;
2288 }
2289 EXPORT_SYMBOL(write_cache_pages);
2290 
2291 /*
2292  * Function used by generic_writepages to call the real writepage
2293  * function and set the mapping flags on error
2294  */
2295 static int __writepage(struct page *page, struct writeback_control *wbc,
2296 		       void *data)
2297 {
2298 	struct address_space *mapping = data;
2299 	int ret = mapping->a_ops->writepage(page, wbc);
2300 	mapping_set_error(mapping, ret);
2301 	return ret;
2302 }
2303 
2304 /**
2305  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2306  * @mapping: address space structure to write
2307  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2308  *
2309  * This is a library function, which implements the writepages()
2310  * address_space_operation.
2311  *
2312  * Return: %0 on success, negative error code otherwise
2313  */
2314 int generic_writepages(struct address_space *mapping,
2315 		       struct writeback_control *wbc)
2316 {
2317 	struct blk_plug plug;
2318 	int ret;
2319 
2320 	/* deal with chardevs and other special file */
2321 	if (!mapping->a_ops->writepage)
2322 		return 0;
2323 
2324 	blk_start_plug(&plug);
2325 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2326 	blk_finish_plug(&plug);
2327 	return ret;
2328 }
2329 
2330 EXPORT_SYMBOL(generic_writepages);
2331 
2332 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2333 {
2334 	int ret;
2335 
2336 	if (wbc->nr_to_write <= 0)
2337 		return 0;
2338 	while (1) {
2339 		if (mapping->a_ops->writepages)
2340 			ret = mapping->a_ops->writepages(mapping, wbc);
2341 		else
2342 			ret = generic_writepages(mapping, wbc);
2343 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2344 			break;
2345 		cond_resched();
2346 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2347 	}
2348 	return ret;
2349 }
2350 
2351 /**
2352  * write_one_page - write out a single page and wait on I/O
2353  * @page: the page to write
2354  *
2355  * The page must be locked by the caller and will be unlocked upon return.
2356  *
2357  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2358  * function returns.
2359  *
2360  * Return: %0 on success, negative error code otherwise
2361  */
2362 int write_one_page(struct page *page)
2363 {
2364 	struct address_space *mapping = page->mapping;
2365 	int ret = 0;
2366 	struct writeback_control wbc = {
2367 		.sync_mode = WB_SYNC_ALL,
2368 		.nr_to_write = 1,
2369 	};
2370 
2371 	BUG_ON(!PageLocked(page));
2372 
2373 	wait_on_page_writeback(page);
2374 
2375 	if (clear_page_dirty_for_io(page)) {
2376 		get_page(page);
2377 		ret = mapping->a_ops->writepage(page, &wbc);
2378 		if (ret == 0)
2379 			wait_on_page_writeback(page);
2380 		put_page(page);
2381 	} else {
2382 		unlock_page(page);
2383 	}
2384 
2385 	if (!ret)
2386 		ret = filemap_check_errors(mapping);
2387 	return ret;
2388 }
2389 EXPORT_SYMBOL(write_one_page);
2390 
2391 /*
2392  * For address_spaces which do not use buffers nor write back.
2393  */
2394 int __set_page_dirty_no_writeback(struct page *page)
2395 {
2396 	if (!PageDirty(page))
2397 		return !TestSetPageDirty(page);
2398 	return 0;
2399 }
2400 
2401 /*
2402  * Helper function for set_page_dirty family.
2403  *
2404  * Caller must hold lock_page_memcg().
2405  *
2406  * NOTE: This relies on being atomic wrt interrupts.
2407  */
2408 void account_page_dirtied(struct page *page, struct address_space *mapping)
2409 {
2410 	struct inode *inode = mapping->host;
2411 
2412 	trace_writeback_dirty_page(page, mapping);
2413 
2414 	if (mapping_cap_account_dirty(mapping)) {
2415 		struct bdi_writeback *wb;
2416 
2417 		inode_attach_wb(inode, page);
2418 		wb = inode_to_wb(inode);
2419 
2420 		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2421 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2422 		__inc_node_page_state(page, NR_DIRTIED);
2423 		inc_wb_stat(wb, WB_RECLAIMABLE);
2424 		inc_wb_stat(wb, WB_DIRTIED);
2425 		task_io_account_write(PAGE_SIZE);
2426 		current->nr_dirtied++;
2427 		this_cpu_inc(bdp_ratelimits);
2428 
2429 		mem_cgroup_track_foreign_dirty(page, wb);
2430 	}
2431 }
2432 
2433 /*
2434  * Helper function for deaccounting dirty page without writeback.
2435  *
2436  * Caller must hold lock_page_memcg().
2437  */
2438 void account_page_cleaned(struct page *page, struct address_space *mapping,
2439 			  struct bdi_writeback *wb)
2440 {
2441 	if (mapping_cap_account_dirty(mapping)) {
2442 		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2443 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2444 		dec_wb_stat(wb, WB_RECLAIMABLE);
2445 		task_io_account_cancelled_write(PAGE_SIZE);
2446 	}
2447 }
2448 
2449 /*
2450  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2451  * the xarray.
2452  *
2453  * This is also used when a single buffer is being dirtied: we want to set the
2454  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2455  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2456  *
2457  * The caller must ensure this doesn't race with truncation.  Most will simply
2458  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2459  * the pte lock held, which also locks out truncation.
2460  */
2461 int __set_page_dirty_nobuffers(struct page *page)
2462 {
2463 	lock_page_memcg(page);
2464 	if (!TestSetPageDirty(page)) {
2465 		struct address_space *mapping = page_mapping(page);
2466 		unsigned long flags;
2467 
2468 		if (!mapping) {
2469 			unlock_page_memcg(page);
2470 			return 1;
2471 		}
2472 
2473 		xa_lock_irqsave(&mapping->i_pages, flags);
2474 		BUG_ON(page_mapping(page) != mapping);
2475 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2476 		account_page_dirtied(page, mapping);
2477 		__xa_set_mark(&mapping->i_pages, page_index(page),
2478 				   PAGECACHE_TAG_DIRTY);
2479 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2480 		unlock_page_memcg(page);
2481 
2482 		if (mapping->host) {
2483 			/* !PageAnon && !swapper_space */
2484 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2485 		}
2486 		return 1;
2487 	}
2488 	unlock_page_memcg(page);
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2492 
2493 /*
2494  * Call this whenever redirtying a page, to de-account the dirty counters
2495  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2496  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2497  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2498  * control.
2499  */
2500 void account_page_redirty(struct page *page)
2501 {
2502 	struct address_space *mapping = page->mapping;
2503 
2504 	if (mapping && mapping_cap_account_dirty(mapping)) {
2505 		struct inode *inode = mapping->host;
2506 		struct bdi_writeback *wb;
2507 		struct wb_lock_cookie cookie = {};
2508 
2509 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2510 		current->nr_dirtied--;
2511 		dec_node_page_state(page, NR_DIRTIED);
2512 		dec_wb_stat(wb, WB_DIRTIED);
2513 		unlocked_inode_to_wb_end(inode, &cookie);
2514 	}
2515 }
2516 EXPORT_SYMBOL(account_page_redirty);
2517 
2518 /*
2519  * When a writepage implementation decides that it doesn't want to write this
2520  * page for some reason, it should redirty the locked page via
2521  * redirty_page_for_writepage() and it should then unlock the page and return 0
2522  */
2523 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2524 {
2525 	int ret;
2526 
2527 	wbc->pages_skipped++;
2528 	ret = __set_page_dirty_nobuffers(page);
2529 	account_page_redirty(page);
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL(redirty_page_for_writepage);
2533 
2534 /*
2535  * Dirty a page.
2536  *
2537  * For pages with a mapping this should be done under the page lock
2538  * for the benefit of asynchronous memory errors who prefer a consistent
2539  * dirty state. This rule can be broken in some special cases,
2540  * but should be better not to.
2541  *
2542  * If the mapping doesn't provide a set_page_dirty a_op, then
2543  * just fall through and assume that it wants buffer_heads.
2544  */
2545 int set_page_dirty(struct page *page)
2546 {
2547 	struct address_space *mapping = page_mapping(page);
2548 
2549 	page = compound_head(page);
2550 	if (likely(mapping)) {
2551 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2552 		/*
2553 		 * readahead/lru_deactivate_page could remain
2554 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2555 		 * About readahead, if the page is written, the flags would be
2556 		 * reset. So no problem.
2557 		 * About lru_deactivate_page, if the page is redirty, the flag
2558 		 * will be reset. So no problem. but if the page is used by readahead
2559 		 * it will confuse readahead and make it restart the size rampup
2560 		 * process. But it's a trivial problem.
2561 		 */
2562 		if (PageReclaim(page))
2563 			ClearPageReclaim(page);
2564 #ifdef CONFIG_BLOCK
2565 		if (!spd)
2566 			spd = __set_page_dirty_buffers;
2567 #endif
2568 		return (*spd)(page);
2569 	}
2570 	if (!PageDirty(page)) {
2571 		if (!TestSetPageDirty(page))
2572 			return 1;
2573 	}
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(set_page_dirty);
2577 
2578 /*
2579  * set_page_dirty() is racy if the caller has no reference against
2580  * page->mapping->host, and if the page is unlocked.  This is because another
2581  * CPU could truncate the page off the mapping and then free the mapping.
2582  *
2583  * Usually, the page _is_ locked, or the caller is a user-space process which
2584  * holds a reference on the inode by having an open file.
2585  *
2586  * In other cases, the page should be locked before running set_page_dirty().
2587  */
2588 int set_page_dirty_lock(struct page *page)
2589 {
2590 	int ret;
2591 
2592 	lock_page(page);
2593 	ret = set_page_dirty(page);
2594 	unlock_page(page);
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL(set_page_dirty_lock);
2598 
2599 /*
2600  * This cancels just the dirty bit on the kernel page itself, it does NOT
2601  * actually remove dirty bits on any mmap's that may be around. It also
2602  * leaves the page tagged dirty, so any sync activity will still find it on
2603  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2604  * look at the dirty bits in the VM.
2605  *
2606  * Doing this should *normally* only ever be done when a page is truncated,
2607  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2608  * this when it notices that somebody has cleaned out all the buffers on a
2609  * page without actually doing it through the VM. Can you say "ext3 is
2610  * horribly ugly"? Thought you could.
2611  */
2612 void __cancel_dirty_page(struct page *page)
2613 {
2614 	struct address_space *mapping = page_mapping(page);
2615 
2616 	if (mapping_cap_account_dirty(mapping)) {
2617 		struct inode *inode = mapping->host;
2618 		struct bdi_writeback *wb;
2619 		struct wb_lock_cookie cookie = {};
2620 
2621 		lock_page_memcg(page);
2622 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2623 
2624 		if (TestClearPageDirty(page))
2625 			account_page_cleaned(page, mapping, wb);
2626 
2627 		unlocked_inode_to_wb_end(inode, &cookie);
2628 		unlock_page_memcg(page);
2629 	} else {
2630 		ClearPageDirty(page);
2631 	}
2632 }
2633 EXPORT_SYMBOL(__cancel_dirty_page);
2634 
2635 /*
2636  * Clear a page's dirty flag, while caring for dirty memory accounting.
2637  * Returns true if the page was previously dirty.
2638  *
2639  * This is for preparing to put the page under writeout.  We leave the page
2640  * tagged as dirty in the xarray so that a concurrent write-for-sync
2641  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2642  * implementation will run either set_page_writeback() or set_page_dirty(),
2643  * at which stage we bring the page's dirty flag and xarray dirty tag
2644  * back into sync.
2645  *
2646  * This incoherency between the page's dirty flag and xarray tag is
2647  * unfortunate, but it only exists while the page is locked.
2648  */
2649 int clear_page_dirty_for_io(struct page *page)
2650 {
2651 	struct address_space *mapping = page_mapping(page);
2652 	int ret = 0;
2653 
2654 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2655 
2656 	if (mapping && mapping_cap_account_dirty(mapping)) {
2657 		struct inode *inode = mapping->host;
2658 		struct bdi_writeback *wb;
2659 		struct wb_lock_cookie cookie = {};
2660 
2661 		/*
2662 		 * Yes, Virginia, this is indeed insane.
2663 		 *
2664 		 * We use this sequence to make sure that
2665 		 *  (a) we account for dirty stats properly
2666 		 *  (b) we tell the low-level filesystem to
2667 		 *      mark the whole page dirty if it was
2668 		 *      dirty in a pagetable. Only to then
2669 		 *  (c) clean the page again and return 1 to
2670 		 *      cause the writeback.
2671 		 *
2672 		 * This way we avoid all nasty races with the
2673 		 * dirty bit in multiple places and clearing
2674 		 * them concurrently from different threads.
2675 		 *
2676 		 * Note! Normally the "set_page_dirty(page)"
2677 		 * has no effect on the actual dirty bit - since
2678 		 * that will already usually be set. But we
2679 		 * need the side effects, and it can help us
2680 		 * avoid races.
2681 		 *
2682 		 * We basically use the page "master dirty bit"
2683 		 * as a serialization point for all the different
2684 		 * threads doing their things.
2685 		 */
2686 		if (page_mkclean(page))
2687 			set_page_dirty(page);
2688 		/*
2689 		 * We carefully synchronise fault handlers against
2690 		 * installing a dirty pte and marking the page dirty
2691 		 * at this point.  We do this by having them hold the
2692 		 * page lock while dirtying the page, and pages are
2693 		 * always locked coming in here, so we get the desired
2694 		 * exclusion.
2695 		 */
2696 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2697 		if (TestClearPageDirty(page)) {
2698 			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2699 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2700 			dec_wb_stat(wb, WB_RECLAIMABLE);
2701 			ret = 1;
2702 		}
2703 		unlocked_inode_to_wb_end(inode, &cookie);
2704 		return ret;
2705 	}
2706 	return TestClearPageDirty(page);
2707 }
2708 EXPORT_SYMBOL(clear_page_dirty_for_io);
2709 
2710 int test_clear_page_writeback(struct page *page)
2711 {
2712 	struct address_space *mapping = page_mapping(page);
2713 	struct mem_cgroup *memcg;
2714 	struct lruvec *lruvec;
2715 	int ret;
2716 
2717 	memcg = lock_page_memcg(page);
2718 	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2719 	if (mapping && mapping_use_writeback_tags(mapping)) {
2720 		struct inode *inode = mapping->host;
2721 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2722 		unsigned long flags;
2723 
2724 		xa_lock_irqsave(&mapping->i_pages, flags);
2725 		ret = TestClearPageWriteback(page);
2726 		if (ret) {
2727 			__xa_clear_mark(&mapping->i_pages, page_index(page),
2728 						PAGECACHE_TAG_WRITEBACK);
2729 			if (bdi_cap_account_writeback(bdi)) {
2730 				struct bdi_writeback *wb = inode_to_wb(inode);
2731 
2732 				dec_wb_stat(wb, WB_WRITEBACK);
2733 				__wb_writeout_inc(wb);
2734 			}
2735 		}
2736 
2737 		if (mapping->host && !mapping_tagged(mapping,
2738 						     PAGECACHE_TAG_WRITEBACK))
2739 			sb_clear_inode_writeback(mapping->host);
2740 
2741 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2742 	} else {
2743 		ret = TestClearPageWriteback(page);
2744 	}
2745 	/*
2746 	 * NOTE: Page might be free now! Writeback doesn't hold a page
2747 	 * reference on its own, it relies on truncation to wait for
2748 	 * the clearing of PG_writeback. The below can only access
2749 	 * page state that is static across allocation cycles.
2750 	 */
2751 	if (ret) {
2752 		dec_lruvec_state(lruvec, NR_WRITEBACK);
2753 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2754 		inc_node_page_state(page, NR_WRITTEN);
2755 	}
2756 	__unlock_page_memcg(memcg);
2757 	return ret;
2758 }
2759 
2760 int __test_set_page_writeback(struct page *page, bool keep_write)
2761 {
2762 	struct address_space *mapping = page_mapping(page);
2763 	int ret, access_ret;
2764 
2765 	lock_page_memcg(page);
2766 	if (mapping && mapping_use_writeback_tags(mapping)) {
2767 		XA_STATE(xas, &mapping->i_pages, page_index(page));
2768 		struct inode *inode = mapping->host;
2769 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2770 		unsigned long flags;
2771 
2772 		xas_lock_irqsave(&xas, flags);
2773 		xas_load(&xas);
2774 		ret = TestSetPageWriteback(page);
2775 		if (!ret) {
2776 			bool on_wblist;
2777 
2778 			on_wblist = mapping_tagged(mapping,
2779 						   PAGECACHE_TAG_WRITEBACK);
2780 
2781 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2782 			if (bdi_cap_account_writeback(bdi))
2783 				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2784 
2785 			/*
2786 			 * We can come through here when swapping anonymous
2787 			 * pages, so we don't necessarily have an inode to track
2788 			 * for sync.
2789 			 */
2790 			if (mapping->host && !on_wblist)
2791 				sb_mark_inode_writeback(mapping->host);
2792 		}
2793 		if (!PageDirty(page))
2794 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2795 		if (!keep_write)
2796 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2797 		xas_unlock_irqrestore(&xas, flags);
2798 	} else {
2799 		ret = TestSetPageWriteback(page);
2800 	}
2801 	if (!ret) {
2802 		inc_lruvec_page_state(page, NR_WRITEBACK);
2803 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2804 	}
2805 	unlock_page_memcg(page);
2806 	access_ret = arch_make_page_accessible(page);
2807 	/*
2808 	 * If writeback has been triggered on a page that cannot be made
2809 	 * accessible, it is too late to recover here.
2810 	 */
2811 	VM_BUG_ON_PAGE(access_ret != 0, page);
2812 
2813 	return ret;
2814 
2815 }
2816 EXPORT_SYMBOL(__test_set_page_writeback);
2817 
2818 /*
2819  * Wait for a page to complete writeback
2820  */
2821 void wait_on_page_writeback(struct page *page)
2822 {
2823 	if (PageWriteback(page)) {
2824 		trace_wait_on_page_writeback(page, page_mapping(page));
2825 		wait_on_page_bit(page, PG_writeback);
2826 	}
2827 }
2828 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2829 
2830 /**
2831  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2832  * @page:	The page to wait on.
2833  *
2834  * This function determines if the given page is related to a backing device
2835  * that requires page contents to be held stable during writeback.  If so, then
2836  * it will wait for any pending writeback to complete.
2837  */
2838 void wait_for_stable_page(struct page *page)
2839 {
2840 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2841 		wait_on_page_writeback(page);
2842 }
2843 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2844