xref: /linux/mm/page-writeback.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 10;
70 
71 /*
72  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73  * dirty_background_ratio * the amount of dirtyable memory
74  */
75 unsigned long dirty_background_bytes;
76 
77 /*
78  * free highmem will not be subtracted from the total free memory
79  * for calculating free ratios if vm_highmem_is_dirtyable is true
80  */
81 int vm_highmem_is_dirtyable;
82 
83 /*
84  * The generator of dirty data starts writeback at this percentage
85  */
86 int vm_dirty_ratio = 20;
87 
88 /*
89  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90  * vm_dirty_ratio * the amount of dirtyable memory
91  */
92 unsigned long vm_dirty_bytes;
93 
94 /*
95  * The interval between `kupdate'-style writebacks
96  */
97 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
98 
99 /*
100  * The longest time for which data is allowed to remain dirty
101  */
102 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
103 
104 /*
105  * Flag that makes the machine dump writes/reads and block dirtyings.
106  */
107 int block_dump;
108 
109 /*
110  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111  * a full sync is triggered after this time elapses without any disk activity.
112  */
113 int laptop_mode;
114 
115 EXPORT_SYMBOL(laptop_mode);
116 
117 /* End of sysctl-exported parameters */
118 
119 
120 static void background_writeout(unsigned long _min_pages);
121 
122 /*
123  * Scale the writeback cache size proportional to the relative writeout speeds.
124  *
125  * We do this by keeping a floating proportion between BDIs, based on page
126  * writeback completions [end_page_writeback()]. Those devices that write out
127  * pages fastest will get the larger share, while the slower will get a smaller
128  * share.
129  *
130  * We use page writeout completions because we are interested in getting rid of
131  * dirty pages. Having them written out is the primary goal.
132  *
133  * We introduce a concept of time, a period over which we measure these events,
134  * because demand can/will vary over time. The length of this period itself is
135  * measured in page writeback completions.
136  *
137  */
138 static struct prop_descriptor vm_completions;
139 static struct prop_descriptor vm_dirties;
140 
141 /*
142  * couple the period to the dirty_ratio:
143  *
144  *   period/2 ~ roundup_pow_of_two(dirty limit)
145  */
146 static int calc_period_shift(void)
147 {
148 	unsigned long dirty_total;
149 
150 	if (vm_dirty_bytes)
151 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
152 	else
153 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
154 				100;
155 	return 2 + ilog2(dirty_total - 1);
156 }
157 
158 /*
159  * update the period when the dirty threshold changes.
160  */
161 static void update_completion_period(void)
162 {
163 	int shift = calc_period_shift();
164 	prop_change_shift(&vm_completions, shift);
165 	prop_change_shift(&vm_dirties, shift);
166 }
167 
168 int dirty_background_ratio_handler(struct ctl_table *table, int write,
169 		struct file *filp, void __user *buffer, size_t *lenp,
170 		loff_t *ppos)
171 {
172 	int ret;
173 
174 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
175 	if (ret == 0 && write)
176 		dirty_background_bytes = 0;
177 	return ret;
178 }
179 
180 int dirty_background_bytes_handler(struct ctl_table *table, int write,
181 		struct file *filp, void __user *buffer, size_t *lenp,
182 		loff_t *ppos)
183 {
184 	int ret;
185 
186 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
187 	if (ret == 0 && write)
188 		dirty_background_ratio = 0;
189 	return ret;
190 }
191 
192 int dirty_ratio_handler(struct ctl_table *table, int write,
193 		struct file *filp, void __user *buffer, size_t *lenp,
194 		loff_t *ppos)
195 {
196 	int old_ratio = vm_dirty_ratio;
197 	int ret;
198 
199 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
200 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
201 		update_completion_period();
202 		vm_dirty_bytes = 0;
203 	}
204 	return ret;
205 }
206 
207 
208 int dirty_bytes_handler(struct ctl_table *table, int write,
209 		struct file *filp, void __user *buffer, size_t *lenp,
210 		loff_t *ppos)
211 {
212 	unsigned long old_bytes = vm_dirty_bytes;
213 	int ret;
214 
215 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
216 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
217 		update_completion_period();
218 		vm_dirty_ratio = 0;
219 	}
220 	return ret;
221 }
222 
223 /*
224  * Increment the BDI's writeout completion count and the global writeout
225  * completion count. Called from test_clear_page_writeback().
226  */
227 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
228 {
229 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
230 			      bdi->max_prop_frac);
231 }
232 
233 void bdi_writeout_inc(struct backing_dev_info *bdi)
234 {
235 	unsigned long flags;
236 
237 	local_irq_save(flags);
238 	__bdi_writeout_inc(bdi);
239 	local_irq_restore(flags);
240 }
241 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
242 
243 void task_dirty_inc(struct task_struct *tsk)
244 {
245 	prop_inc_single(&vm_dirties, &tsk->dirties);
246 }
247 
248 /*
249  * Obtain an accurate fraction of the BDI's portion.
250  */
251 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
252 		long *numerator, long *denominator)
253 {
254 	if (bdi_cap_writeback_dirty(bdi)) {
255 		prop_fraction_percpu(&vm_completions, &bdi->completions,
256 				numerator, denominator);
257 	} else {
258 		*numerator = 0;
259 		*denominator = 1;
260 	}
261 }
262 
263 /*
264  * Clip the earned share of dirty pages to that which is actually available.
265  * This avoids exceeding the total dirty_limit when the floating averages
266  * fluctuate too quickly.
267  */
268 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
269 		unsigned long dirty, unsigned long *pbdi_dirty)
270 {
271 	unsigned long avail_dirty;
272 
273 	avail_dirty = global_page_state(NR_FILE_DIRTY) +
274 		 global_page_state(NR_WRITEBACK) +
275 		 global_page_state(NR_UNSTABLE_NFS) +
276 		 global_page_state(NR_WRITEBACK_TEMP);
277 
278 	if (avail_dirty < dirty)
279 		avail_dirty = dirty - avail_dirty;
280 	else
281 		avail_dirty = 0;
282 
283 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
284 		bdi_stat(bdi, BDI_WRITEBACK);
285 
286 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
287 }
288 
289 static inline void task_dirties_fraction(struct task_struct *tsk,
290 		long *numerator, long *denominator)
291 {
292 	prop_fraction_single(&vm_dirties, &tsk->dirties,
293 				numerator, denominator);
294 }
295 
296 /*
297  * scale the dirty limit
298  *
299  * task specific dirty limit:
300  *
301  *   dirty -= (dirty/8) * p_{t}
302  */
303 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
304 {
305 	long numerator, denominator;
306 	unsigned long dirty = *pdirty;
307 	u64 inv = dirty >> 3;
308 
309 	task_dirties_fraction(tsk, &numerator, &denominator);
310 	inv *= numerator;
311 	do_div(inv, denominator);
312 
313 	dirty -= inv;
314 	if (dirty < *pdirty/2)
315 		dirty = *pdirty/2;
316 
317 	*pdirty = dirty;
318 }
319 
320 /*
321  *
322  */
323 static DEFINE_SPINLOCK(bdi_lock);
324 static unsigned int bdi_min_ratio;
325 
326 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
327 {
328 	int ret = 0;
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&bdi_lock, flags);
332 	if (min_ratio > bdi->max_ratio) {
333 		ret = -EINVAL;
334 	} else {
335 		min_ratio -= bdi->min_ratio;
336 		if (bdi_min_ratio + min_ratio < 100) {
337 			bdi_min_ratio += min_ratio;
338 			bdi->min_ratio += min_ratio;
339 		} else {
340 			ret = -EINVAL;
341 		}
342 	}
343 	spin_unlock_irqrestore(&bdi_lock, flags);
344 
345 	return ret;
346 }
347 
348 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
349 {
350 	unsigned long flags;
351 	int ret = 0;
352 
353 	if (max_ratio > 100)
354 		return -EINVAL;
355 
356 	spin_lock_irqsave(&bdi_lock, flags);
357 	if (bdi->min_ratio > max_ratio) {
358 		ret = -EINVAL;
359 	} else {
360 		bdi->max_ratio = max_ratio;
361 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
362 	}
363 	spin_unlock_irqrestore(&bdi_lock, flags);
364 
365 	return ret;
366 }
367 EXPORT_SYMBOL(bdi_set_max_ratio);
368 
369 /*
370  * Work out the current dirty-memory clamping and background writeout
371  * thresholds.
372  *
373  * The main aim here is to lower them aggressively if there is a lot of mapped
374  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
375  * pages.  It is better to clamp down on writers than to start swapping, and
376  * performing lots of scanning.
377  *
378  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
379  *
380  * We don't permit the clamping level to fall below 5% - that is getting rather
381  * excessive.
382  *
383  * We make sure that the background writeout level is below the adjusted
384  * clamping level.
385  */
386 
387 static unsigned long highmem_dirtyable_memory(unsigned long total)
388 {
389 #ifdef CONFIG_HIGHMEM
390 	int node;
391 	unsigned long x = 0;
392 
393 	for_each_node_state(node, N_HIGH_MEMORY) {
394 		struct zone *z =
395 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
396 
397 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
398 	}
399 	/*
400 	 * Make sure that the number of highmem pages is never larger
401 	 * than the number of the total dirtyable memory. This can only
402 	 * occur in very strange VM situations but we want to make sure
403 	 * that this does not occur.
404 	 */
405 	return min(x, total);
406 #else
407 	return 0;
408 #endif
409 }
410 
411 /**
412  * determine_dirtyable_memory - amount of memory that may be used
413  *
414  * Returns the numebr of pages that can currently be freed and used
415  * by the kernel for direct mappings.
416  */
417 unsigned long determine_dirtyable_memory(void)
418 {
419 	unsigned long x;
420 
421 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
422 
423 	if (!vm_highmem_is_dirtyable)
424 		x -= highmem_dirtyable_memory(x);
425 
426 	return x + 1;	/* Ensure that we never return 0 */
427 }
428 
429 void
430 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
431 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
432 {
433 	unsigned long background;
434 	unsigned long dirty;
435 	unsigned long available_memory = determine_dirtyable_memory();
436 	struct task_struct *tsk;
437 
438 	if (vm_dirty_bytes)
439 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
440 	else {
441 		int dirty_ratio;
442 
443 		dirty_ratio = vm_dirty_ratio;
444 		if (dirty_ratio < 5)
445 			dirty_ratio = 5;
446 		dirty = (dirty_ratio * available_memory) / 100;
447 	}
448 
449 	if (dirty_background_bytes)
450 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
451 	else
452 		background = (dirty_background_ratio * available_memory) / 100;
453 
454 	if (background >= dirty)
455 		background = dirty / 2;
456 	tsk = current;
457 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
458 		background += background / 4;
459 		dirty += dirty / 4;
460 	}
461 	*pbackground = background;
462 	*pdirty = dirty;
463 
464 	if (bdi) {
465 		u64 bdi_dirty;
466 		long numerator, denominator;
467 
468 		/*
469 		 * Calculate this BDI's share of the dirty ratio.
470 		 */
471 		bdi_writeout_fraction(bdi, &numerator, &denominator);
472 
473 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
474 		bdi_dirty *= numerator;
475 		do_div(bdi_dirty, denominator);
476 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
477 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
478 			bdi_dirty = dirty * bdi->max_ratio / 100;
479 
480 		*pbdi_dirty = bdi_dirty;
481 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
482 		task_dirty_limit(current, pbdi_dirty);
483 	}
484 }
485 
486 /*
487  * balance_dirty_pages() must be called by processes which are generating dirty
488  * data.  It looks at the number of dirty pages in the machine and will force
489  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
490  * If we're over `background_thresh' then pdflush is woken to perform some
491  * writeout.
492  */
493 static void balance_dirty_pages(struct address_space *mapping)
494 {
495 	long nr_reclaimable, bdi_nr_reclaimable;
496 	long nr_writeback, bdi_nr_writeback;
497 	unsigned long background_thresh;
498 	unsigned long dirty_thresh;
499 	unsigned long bdi_thresh;
500 	unsigned long pages_written = 0;
501 	unsigned long write_chunk = sync_writeback_pages();
502 
503 	struct backing_dev_info *bdi = mapping->backing_dev_info;
504 
505 	for (;;) {
506 		struct writeback_control wbc = {
507 			.bdi		= bdi,
508 			.sync_mode	= WB_SYNC_NONE,
509 			.older_than_this = NULL,
510 			.nr_to_write	= write_chunk,
511 			.range_cyclic	= 1,
512 		};
513 
514 		get_dirty_limits(&background_thresh, &dirty_thresh,
515 				&bdi_thresh, bdi);
516 
517 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
518 					global_page_state(NR_UNSTABLE_NFS);
519 		nr_writeback = global_page_state(NR_WRITEBACK);
520 
521 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
522 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
523 
524 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
525 			break;
526 
527 		/*
528 		 * Throttle it only when the background writeback cannot
529 		 * catch-up. This avoids (excessively) small writeouts
530 		 * when the bdi limits are ramping up.
531 		 */
532 		if (nr_reclaimable + nr_writeback <
533 				(background_thresh + dirty_thresh) / 2)
534 			break;
535 
536 		if (!bdi->dirty_exceeded)
537 			bdi->dirty_exceeded = 1;
538 
539 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
540 		 * Unstable writes are a feature of certain networked
541 		 * filesystems (i.e. NFS) in which data may have been
542 		 * written to the server's write cache, but has not yet
543 		 * been flushed to permanent storage.
544 		 * Only move pages to writeback if this bdi is over its
545 		 * threshold otherwise wait until the disk writes catch
546 		 * up.
547 		 */
548 		if (bdi_nr_reclaimable > bdi_thresh) {
549 			writeback_inodes(&wbc);
550 			pages_written += write_chunk - wbc.nr_to_write;
551 			get_dirty_limits(&background_thresh, &dirty_thresh,
552 				       &bdi_thresh, bdi);
553 		}
554 
555 		/*
556 		 * In order to avoid the stacked BDI deadlock we need
557 		 * to ensure we accurately count the 'dirty' pages when
558 		 * the threshold is low.
559 		 *
560 		 * Otherwise it would be possible to get thresh+n pages
561 		 * reported dirty, even though there are thresh-m pages
562 		 * actually dirty; with m+n sitting in the percpu
563 		 * deltas.
564 		 */
565 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
566 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
567 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
568 		} else if (bdi_nr_reclaimable) {
569 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
570 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
571 		}
572 
573 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
574 			break;
575 		if (pages_written >= write_chunk)
576 			break;		/* We've done our duty */
577 
578 		congestion_wait(BLK_RW_ASYNC, HZ/10);
579 	}
580 
581 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
582 			bdi->dirty_exceeded)
583 		bdi->dirty_exceeded = 0;
584 
585 	if (writeback_in_progress(bdi))
586 		return;		/* pdflush is already working this queue */
587 
588 	/*
589 	 * In laptop mode, we wait until hitting the higher threshold before
590 	 * starting background writeout, and then write out all the way down
591 	 * to the lower threshold.  So slow writers cause minimal disk activity.
592 	 *
593 	 * In normal mode, we start background writeout at the lower
594 	 * background_thresh, to keep the amount of dirty memory low.
595 	 */
596 	if ((laptop_mode && pages_written) ||
597 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
598 					  + global_page_state(NR_UNSTABLE_NFS)
599 					  > background_thresh)))
600 		pdflush_operation(background_writeout, 0);
601 }
602 
603 void set_page_dirty_balance(struct page *page, int page_mkwrite)
604 {
605 	if (set_page_dirty(page) || page_mkwrite) {
606 		struct address_space *mapping = page_mapping(page);
607 
608 		if (mapping)
609 			balance_dirty_pages_ratelimited(mapping);
610 	}
611 }
612 
613 /**
614  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
615  * @mapping: address_space which was dirtied
616  * @nr_pages_dirtied: number of pages which the caller has just dirtied
617  *
618  * Processes which are dirtying memory should call in here once for each page
619  * which was newly dirtied.  The function will periodically check the system's
620  * dirty state and will initiate writeback if needed.
621  *
622  * On really big machines, get_writeback_state is expensive, so try to avoid
623  * calling it too often (ratelimiting).  But once we're over the dirty memory
624  * limit we decrease the ratelimiting by a lot, to prevent individual processes
625  * from overshooting the limit by (ratelimit_pages) each.
626  */
627 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
628 					unsigned long nr_pages_dirtied)
629 {
630 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
631 	unsigned long ratelimit;
632 	unsigned long *p;
633 
634 	ratelimit = ratelimit_pages;
635 	if (mapping->backing_dev_info->dirty_exceeded)
636 		ratelimit = 8;
637 
638 	/*
639 	 * Check the rate limiting. Also, we do not want to throttle real-time
640 	 * tasks in balance_dirty_pages(). Period.
641 	 */
642 	preempt_disable();
643 	p =  &__get_cpu_var(ratelimits);
644 	*p += nr_pages_dirtied;
645 	if (unlikely(*p >= ratelimit)) {
646 		*p = 0;
647 		preempt_enable();
648 		balance_dirty_pages(mapping);
649 		return;
650 	}
651 	preempt_enable();
652 }
653 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
654 
655 void throttle_vm_writeout(gfp_t gfp_mask)
656 {
657 	unsigned long background_thresh;
658 	unsigned long dirty_thresh;
659 
660         for ( ; ; ) {
661 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
662 
663                 /*
664                  * Boost the allowable dirty threshold a bit for page
665                  * allocators so they don't get DoS'ed by heavy writers
666                  */
667                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
668 
669                 if (global_page_state(NR_UNSTABLE_NFS) +
670 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
671                         	break;
672                 congestion_wait(BLK_RW_ASYNC, HZ/10);
673 
674 		/*
675 		 * The caller might hold locks which can prevent IO completion
676 		 * or progress in the filesystem.  So we cannot just sit here
677 		 * waiting for IO to complete.
678 		 */
679 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
680 			break;
681         }
682 }
683 
684 /*
685  * writeback at least _min_pages, and keep writing until the amount of dirty
686  * memory is less than the background threshold, or until we're all clean.
687  */
688 static void background_writeout(unsigned long _min_pages)
689 {
690 	long min_pages = _min_pages;
691 	struct writeback_control wbc = {
692 		.bdi		= NULL,
693 		.sync_mode	= WB_SYNC_NONE,
694 		.older_than_this = NULL,
695 		.nr_to_write	= 0,
696 		.nonblocking	= 1,
697 		.range_cyclic	= 1,
698 	};
699 
700 	for ( ; ; ) {
701 		unsigned long background_thresh;
702 		unsigned long dirty_thresh;
703 
704 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
705 		if (global_page_state(NR_FILE_DIRTY) +
706 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
707 				&& min_pages <= 0)
708 			break;
709 		wbc.more_io = 0;
710 		wbc.encountered_congestion = 0;
711 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
712 		wbc.pages_skipped = 0;
713 		writeback_inodes(&wbc);
714 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
715 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
716 			/* Wrote less than expected */
717 			if (wbc.encountered_congestion || wbc.more_io)
718 				congestion_wait(BLK_RW_ASYNC, HZ/10);
719 			else
720 				break;
721 		}
722 	}
723 }
724 
725 /*
726  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
727  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
728  * -1 if all pdflush threads were busy.
729  */
730 int wakeup_pdflush(long nr_pages)
731 {
732 	if (nr_pages == 0)
733 		nr_pages = global_page_state(NR_FILE_DIRTY) +
734 				global_page_state(NR_UNSTABLE_NFS);
735 	return pdflush_operation(background_writeout, nr_pages);
736 }
737 
738 static void wb_timer_fn(unsigned long unused);
739 static void laptop_timer_fn(unsigned long unused);
740 
741 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
742 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
743 
744 /*
745  * Periodic writeback of "old" data.
746  *
747  * Define "old": the first time one of an inode's pages is dirtied, we mark the
748  * dirtying-time in the inode's address_space.  So this periodic writeback code
749  * just walks the superblock inode list, writing back any inodes which are
750  * older than a specific point in time.
751  *
752  * Try to run once per dirty_writeback_interval.  But if a writeback event
753  * takes longer than a dirty_writeback_interval interval, then leave a
754  * one-second gap.
755  *
756  * older_than_this takes precedence over nr_to_write.  So we'll only write back
757  * all dirty pages if they are all attached to "old" mappings.
758  */
759 static void wb_kupdate(unsigned long arg)
760 {
761 	unsigned long oldest_jif;
762 	unsigned long start_jif;
763 	unsigned long next_jif;
764 	long nr_to_write;
765 	struct writeback_control wbc = {
766 		.bdi		= NULL,
767 		.sync_mode	= WB_SYNC_NONE,
768 		.older_than_this = &oldest_jif,
769 		.nr_to_write	= 0,
770 		.nonblocking	= 1,
771 		.for_kupdate	= 1,
772 		.range_cyclic	= 1,
773 	};
774 
775 	sync_supers();
776 
777 	oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval * 10);
778 	start_jif = jiffies;
779 	next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10);
780 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
781 			global_page_state(NR_UNSTABLE_NFS) +
782 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
783 	while (nr_to_write > 0) {
784 		wbc.more_io = 0;
785 		wbc.encountered_congestion = 0;
786 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
787 		writeback_inodes(&wbc);
788 		if (wbc.nr_to_write > 0) {
789 			if (wbc.encountered_congestion || wbc.more_io)
790 				congestion_wait(BLK_RW_ASYNC, HZ/10);
791 			else
792 				break;	/* All the old data is written */
793 		}
794 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
795 	}
796 	if (time_before(next_jif, jiffies + HZ))
797 		next_jif = jiffies + HZ;
798 	if (dirty_writeback_interval)
799 		mod_timer(&wb_timer, next_jif);
800 }
801 
802 /*
803  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
804  */
805 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
806 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
807 {
808 	proc_dointvec(table, write, file, buffer, length, ppos);
809 	if (dirty_writeback_interval)
810 		mod_timer(&wb_timer, jiffies +
811 			msecs_to_jiffies(dirty_writeback_interval * 10));
812 	else
813 		del_timer(&wb_timer);
814 	return 0;
815 }
816 
817 static void wb_timer_fn(unsigned long unused)
818 {
819 	if (pdflush_operation(wb_kupdate, 0) < 0)
820 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
821 }
822 
823 static void laptop_flush(unsigned long unused)
824 {
825 	sys_sync();
826 }
827 
828 static void laptop_timer_fn(unsigned long unused)
829 {
830 	pdflush_operation(laptop_flush, 0);
831 }
832 
833 /*
834  * We've spun up the disk and we're in laptop mode: schedule writeback
835  * of all dirty data a few seconds from now.  If the flush is already scheduled
836  * then push it back - the user is still using the disk.
837  */
838 void laptop_io_completion(void)
839 {
840 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
841 }
842 
843 /*
844  * We're in laptop mode and we've just synced. The sync's writes will have
845  * caused another writeback to be scheduled by laptop_io_completion.
846  * Nothing needs to be written back anymore, so we unschedule the writeback.
847  */
848 void laptop_sync_completion(void)
849 {
850 	del_timer(&laptop_mode_wb_timer);
851 }
852 
853 /*
854  * If ratelimit_pages is too high then we can get into dirty-data overload
855  * if a large number of processes all perform writes at the same time.
856  * If it is too low then SMP machines will call the (expensive)
857  * get_writeback_state too often.
858  *
859  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
860  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
861  * thresholds before writeback cuts in.
862  *
863  * But the limit should not be set too high.  Because it also controls the
864  * amount of memory which the balance_dirty_pages() caller has to write back.
865  * If this is too large then the caller will block on the IO queue all the
866  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
867  * will write six megabyte chunks, max.
868  */
869 
870 void writeback_set_ratelimit(void)
871 {
872 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
873 	if (ratelimit_pages < 16)
874 		ratelimit_pages = 16;
875 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
876 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
877 }
878 
879 static int __cpuinit
880 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
881 {
882 	writeback_set_ratelimit();
883 	return NOTIFY_DONE;
884 }
885 
886 static struct notifier_block __cpuinitdata ratelimit_nb = {
887 	.notifier_call	= ratelimit_handler,
888 	.next		= NULL,
889 };
890 
891 /*
892  * Called early on to tune the page writeback dirty limits.
893  *
894  * We used to scale dirty pages according to how total memory
895  * related to pages that could be allocated for buffers (by
896  * comparing nr_free_buffer_pages() to vm_total_pages.
897  *
898  * However, that was when we used "dirty_ratio" to scale with
899  * all memory, and we don't do that any more. "dirty_ratio"
900  * is now applied to total non-HIGHPAGE memory (by subtracting
901  * totalhigh_pages from vm_total_pages), and as such we can't
902  * get into the old insane situation any more where we had
903  * large amounts of dirty pages compared to a small amount of
904  * non-HIGHMEM memory.
905  *
906  * But we might still want to scale the dirty_ratio by how
907  * much memory the box has..
908  */
909 void __init page_writeback_init(void)
910 {
911 	int shift;
912 
913 	mod_timer(&wb_timer,
914 		  jiffies + msecs_to_jiffies(dirty_writeback_interval * 10));
915 	writeback_set_ratelimit();
916 	register_cpu_notifier(&ratelimit_nb);
917 
918 	shift = calc_period_shift();
919 	prop_descriptor_init(&vm_completions, shift);
920 	prop_descriptor_init(&vm_dirties, shift);
921 }
922 
923 /**
924  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
925  * @mapping: address space structure to write
926  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
927  * @writepage: function called for each page
928  * @data: data passed to writepage function
929  *
930  * If a page is already under I/O, write_cache_pages() skips it, even
931  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
932  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
933  * and msync() need to guarantee that all the data which was dirty at the time
934  * the call was made get new I/O started against them.  If wbc->sync_mode is
935  * WB_SYNC_ALL then we were called for data integrity and we must wait for
936  * existing IO to complete.
937  */
938 int write_cache_pages(struct address_space *mapping,
939 		      struct writeback_control *wbc, writepage_t writepage,
940 		      void *data)
941 {
942 	struct backing_dev_info *bdi = mapping->backing_dev_info;
943 	int ret = 0;
944 	int done = 0;
945 	struct pagevec pvec;
946 	int nr_pages;
947 	pgoff_t uninitialized_var(writeback_index);
948 	pgoff_t index;
949 	pgoff_t end;		/* Inclusive */
950 	pgoff_t done_index;
951 	int cycled;
952 	int range_whole = 0;
953 	long nr_to_write = wbc->nr_to_write;
954 
955 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
956 		wbc->encountered_congestion = 1;
957 		return 0;
958 	}
959 
960 	pagevec_init(&pvec, 0);
961 	if (wbc->range_cyclic) {
962 		writeback_index = mapping->writeback_index; /* prev offset */
963 		index = writeback_index;
964 		if (index == 0)
965 			cycled = 1;
966 		else
967 			cycled = 0;
968 		end = -1;
969 	} else {
970 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
971 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
972 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
973 			range_whole = 1;
974 		cycled = 1; /* ignore range_cyclic tests */
975 	}
976 retry:
977 	done_index = index;
978 	while (!done && (index <= end)) {
979 		int i;
980 
981 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
982 			      PAGECACHE_TAG_DIRTY,
983 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
984 		if (nr_pages == 0)
985 			break;
986 
987 		for (i = 0; i < nr_pages; i++) {
988 			struct page *page = pvec.pages[i];
989 
990 			/*
991 			 * At this point, the page may be truncated or
992 			 * invalidated (changing page->mapping to NULL), or
993 			 * even swizzled back from swapper_space to tmpfs file
994 			 * mapping. However, page->index will not change
995 			 * because we have a reference on the page.
996 			 */
997 			if (page->index > end) {
998 				/*
999 				 * can't be range_cyclic (1st pass) because
1000 				 * end == -1 in that case.
1001 				 */
1002 				done = 1;
1003 				break;
1004 			}
1005 
1006 			done_index = page->index + 1;
1007 
1008 			lock_page(page);
1009 
1010 			/*
1011 			 * Page truncated or invalidated. We can freely skip it
1012 			 * then, even for data integrity operations: the page
1013 			 * has disappeared concurrently, so there could be no
1014 			 * real expectation of this data interity operation
1015 			 * even if there is now a new, dirty page at the same
1016 			 * pagecache address.
1017 			 */
1018 			if (unlikely(page->mapping != mapping)) {
1019 continue_unlock:
1020 				unlock_page(page);
1021 				continue;
1022 			}
1023 
1024 			if (!PageDirty(page)) {
1025 				/* someone wrote it for us */
1026 				goto continue_unlock;
1027 			}
1028 
1029 			if (PageWriteback(page)) {
1030 				if (wbc->sync_mode != WB_SYNC_NONE)
1031 					wait_on_page_writeback(page);
1032 				else
1033 					goto continue_unlock;
1034 			}
1035 
1036 			BUG_ON(PageWriteback(page));
1037 			if (!clear_page_dirty_for_io(page))
1038 				goto continue_unlock;
1039 
1040 			ret = (*writepage)(page, wbc, data);
1041 			if (unlikely(ret)) {
1042 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1043 					unlock_page(page);
1044 					ret = 0;
1045 				} else {
1046 					/*
1047 					 * done_index is set past this page,
1048 					 * so media errors will not choke
1049 					 * background writeout for the entire
1050 					 * file. This has consequences for
1051 					 * range_cyclic semantics (ie. it may
1052 					 * not be suitable for data integrity
1053 					 * writeout).
1054 					 */
1055 					done = 1;
1056 					break;
1057 				}
1058  			}
1059 
1060 			if (nr_to_write > 0) {
1061 				nr_to_write--;
1062 				if (nr_to_write == 0 &&
1063 				    wbc->sync_mode == WB_SYNC_NONE) {
1064 					/*
1065 					 * We stop writing back only if we are
1066 					 * not doing integrity sync. In case of
1067 					 * integrity sync we have to keep going
1068 					 * because someone may be concurrently
1069 					 * dirtying pages, and we might have
1070 					 * synced a lot of newly appeared dirty
1071 					 * pages, but have not synced all of the
1072 					 * old dirty pages.
1073 					 */
1074 					done = 1;
1075 					break;
1076 				}
1077 			}
1078 
1079 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
1080 				wbc->encountered_congestion = 1;
1081 				done = 1;
1082 				break;
1083 			}
1084 		}
1085 		pagevec_release(&pvec);
1086 		cond_resched();
1087 	}
1088 	if (!cycled && !done) {
1089 		/*
1090 		 * range_cyclic:
1091 		 * We hit the last page and there is more work to be done: wrap
1092 		 * back to the start of the file
1093 		 */
1094 		cycled = 1;
1095 		index = 0;
1096 		end = writeback_index - 1;
1097 		goto retry;
1098 	}
1099 	if (!wbc->no_nrwrite_index_update) {
1100 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
1101 			mapping->writeback_index = done_index;
1102 		wbc->nr_to_write = nr_to_write;
1103 	}
1104 
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(write_cache_pages);
1108 
1109 /*
1110  * Function used by generic_writepages to call the real writepage
1111  * function and set the mapping flags on error
1112  */
1113 static int __writepage(struct page *page, struct writeback_control *wbc,
1114 		       void *data)
1115 {
1116 	struct address_space *mapping = data;
1117 	int ret = mapping->a_ops->writepage(page, wbc);
1118 	mapping_set_error(mapping, ret);
1119 	return ret;
1120 }
1121 
1122 /**
1123  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1124  * @mapping: address space structure to write
1125  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1126  *
1127  * This is a library function, which implements the writepages()
1128  * address_space_operation.
1129  */
1130 int generic_writepages(struct address_space *mapping,
1131 		       struct writeback_control *wbc)
1132 {
1133 	/* deal with chardevs and other special file */
1134 	if (!mapping->a_ops->writepage)
1135 		return 0;
1136 
1137 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1138 }
1139 
1140 EXPORT_SYMBOL(generic_writepages);
1141 
1142 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1143 {
1144 	int ret;
1145 
1146 	if (wbc->nr_to_write <= 0)
1147 		return 0;
1148 	wbc->for_writepages = 1;
1149 	if (mapping->a_ops->writepages)
1150 		ret = mapping->a_ops->writepages(mapping, wbc);
1151 	else
1152 		ret = generic_writepages(mapping, wbc);
1153 	wbc->for_writepages = 0;
1154 	return ret;
1155 }
1156 
1157 /**
1158  * write_one_page - write out a single page and optionally wait on I/O
1159  * @page: the page to write
1160  * @wait: if true, wait on writeout
1161  *
1162  * The page must be locked by the caller and will be unlocked upon return.
1163  *
1164  * write_one_page() returns a negative error code if I/O failed.
1165  */
1166 int write_one_page(struct page *page, int wait)
1167 {
1168 	struct address_space *mapping = page->mapping;
1169 	int ret = 0;
1170 	struct writeback_control wbc = {
1171 		.sync_mode = WB_SYNC_ALL,
1172 		.nr_to_write = 1,
1173 	};
1174 
1175 	BUG_ON(!PageLocked(page));
1176 
1177 	if (wait)
1178 		wait_on_page_writeback(page);
1179 
1180 	if (clear_page_dirty_for_io(page)) {
1181 		page_cache_get(page);
1182 		ret = mapping->a_ops->writepage(page, &wbc);
1183 		if (ret == 0 && wait) {
1184 			wait_on_page_writeback(page);
1185 			if (PageError(page))
1186 				ret = -EIO;
1187 		}
1188 		page_cache_release(page);
1189 	} else {
1190 		unlock_page(page);
1191 	}
1192 	return ret;
1193 }
1194 EXPORT_SYMBOL(write_one_page);
1195 
1196 /*
1197  * For address_spaces which do not use buffers nor write back.
1198  */
1199 int __set_page_dirty_no_writeback(struct page *page)
1200 {
1201 	if (!PageDirty(page))
1202 		SetPageDirty(page);
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Helper function for set_page_dirty family.
1208  * NOTE: This relies on being atomic wrt interrupts.
1209  */
1210 void account_page_dirtied(struct page *page, struct address_space *mapping)
1211 {
1212 	if (mapping_cap_account_dirty(mapping)) {
1213 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1214 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1215 		task_dirty_inc(current);
1216 		task_io_account_write(PAGE_CACHE_SIZE);
1217 	}
1218 }
1219 
1220 /*
1221  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1222  * its radix tree.
1223  *
1224  * This is also used when a single buffer is being dirtied: we want to set the
1225  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1226  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1227  *
1228  * Most callers have locked the page, which pins the address_space in memory.
1229  * But zap_pte_range() does not lock the page, however in that case the
1230  * mapping is pinned by the vma's ->vm_file reference.
1231  *
1232  * We take care to handle the case where the page was truncated from the
1233  * mapping by re-checking page_mapping() inside tree_lock.
1234  */
1235 int __set_page_dirty_nobuffers(struct page *page)
1236 {
1237 	if (!TestSetPageDirty(page)) {
1238 		struct address_space *mapping = page_mapping(page);
1239 		struct address_space *mapping2;
1240 
1241 		if (!mapping)
1242 			return 1;
1243 
1244 		spin_lock_irq(&mapping->tree_lock);
1245 		mapping2 = page_mapping(page);
1246 		if (mapping2) { /* Race with truncate? */
1247 			BUG_ON(mapping2 != mapping);
1248 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1249 			account_page_dirtied(page, mapping);
1250 			radix_tree_tag_set(&mapping->page_tree,
1251 				page_index(page), PAGECACHE_TAG_DIRTY);
1252 		}
1253 		spin_unlock_irq(&mapping->tree_lock);
1254 		if (mapping->host) {
1255 			/* !PageAnon && !swapper_space */
1256 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1257 		}
1258 		return 1;
1259 	}
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1263 
1264 /*
1265  * When a writepage implementation decides that it doesn't want to write this
1266  * page for some reason, it should redirty the locked page via
1267  * redirty_page_for_writepage() and it should then unlock the page and return 0
1268  */
1269 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1270 {
1271 	wbc->pages_skipped++;
1272 	return __set_page_dirty_nobuffers(page);
1273 }
1274 EXPORT_SYMBOL(redirty_page_for_writepage);
1275 
1276 /*
1277  * If the mapping doesn't provide a set_page_dirty a_op, then
1278  * just fall through and assume that it wants buffer_heads.
1279  */
1280 int set_page_dirty(struct page *page)
1281 {
1282 	struct address_space *mapping = page_mapping(page);
1283 
1284 	if (likely(mapping)) {
1285 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1286 #ifdef CONFIG_BLOCK
1287 		if (!spd)
1288 			spd = __set_page_dirty_buffers;
1289 #endif
1290 		return (*spd)(page);
1291 	}
1292 	if (!PageDirty(page)) {
1293 		if (!TestSetPageDirty(page))
1294 			return 1;
1295 	}
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL(set_page_dirty);
1299 
1300 /*
1301  * set_page_dirty() is racy if the caller has no reference against
1302  * page->mapping->host, and if the page is unlocked.  This is because another
1303  * CPU could truncate the page off the mapping and then free the mapping.
1304  *
1305  * Usually, the page _is_ locked, or the caller is a user-space process which
1306  * holds a reference on the inode by having an open file.
1307  *
1308  * In other cases, the page should be locked before running set_page_dirty().
1309  */
1310 int set_page_dirty_lock(struct page *page)
1311 {
1312 	int ret;
1313 
1314 	lock_page_nosync(page);
1315 	ret = set_page_dirty(page);
1316 	unlock_page(page);
1317 	return ret;
1318 }
1319 EXPORT_SYMBOL(set_page_dirty_lock);
1320 
1321 /*
1322  * Clear a page's dirty flag, while caring for dirty memory accounting.
1323  * Returns true if the page was previously dirty.
1324  *
1325  * This is for preparing to put the page under writeout.  We leave the page
1326  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1327  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1328  * implementation will run either set_page_writeback() or set_page_dirty(),
1329  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1330  * back into sync.
1331  *
1332  * This incoherency between the page's dirty flag and radix-tree tag is
1333  * unfortunate, but it only exists while the page is locked.
1334  */
1335 int clear_page_dirty_for_io(struct page *page)
1336 {
1337 	struct address_space *mapping = page_mapping(page);
1338 
1339 	BUG_ON(!PageLocked(page));
1340 
1341 	ClearPageReclaim(page);
1342 	if (mapping && mapping_cap_account_dirty(mapping)) {
1343 		/*
1344 		 * Yes, Virginia, this is indeed insane.
1345 		 *
1346 		 * We use this sequence to make sure that
1347 		 *  (a) we account for dirty stats properly
1348 		 *  (b) we tell the low-level filesystem to
1349 		 *      mark the whole page dirty if it was
1350 		 *      dirty in a pagetable. Only to then
1351 		 *  (c) clean the page again and return 1 to
1352 		 *      cause the writeback.
1353 		 *
1354 		 * This way we avoid all nasty races with the
1355 		 * dirty bit in multiple places and clearing
1356 		 * them concurrently from different threads.
1357 		 *
1358 		 * Note! Normally the "set_page_dirty(page)"
1359 		 * has no effect on the actual dirty bit - since
1360 		 * that will already usually be set. But we
1361 		 * need the side effects, and it can help us
1362 		 * avoid races.
1363 		 *
1364 		 * We basically use the page "master dirty bit"
1365 		 * as a serialization point for all the different
1366 		 * threads doing their things.
1367 		 */
1368 		if (page_mkclean(page))
1369 			set_page_dirty(page);
1370 		/*
1371 		 * We carefully synchronise fault handlers against
1372 		 * installing a dirty pte and marking the page dirty
1373 		 * at this point. We do this by having them hold the
1374 		 * page lock at some point after installing their
1375 		 * pte, but before marking the page dirty.
1376 		 * Pages are always locked coming in here, so we get
1377 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1378 		 * for more comments.
1379 		 */
1380 		if (TestClearPageDirty(page)) {
1381 			dec_zone_page_state(page, NR_FILE_DIRTY);
1382 			dec_bdi_stat(mapping->backing_dev_info,
1383 					BDI_RECLAIMABLE);
1384 			return 1;
1385 		}
1386 		return 0;
1387 	}
1388 	return TestClearPageDirty(page);
1389 }
1390 EXPORT_SYMBOL(clear_page_dirty_for_io);
1391 
1392 int test_clear_page_writeback(struct page *page)
1393 {
1394 	struct address_space *mapping = page_mapping(page);
1395 	int ret;
1396 
1397 	if (mapping) {
1398 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1399 		unsigned long flags;
1400 
1401 		spin_lock_irqsave(&mapping->tree_lock, flags);
1402 		ret = TestClearPageWriteback(page);
1403 		if (ret) {
1404 			radix_tree_tag_clear(&mapping->page_tree,
1405 						page_index(page),
1406 						PAGECACHE_TAG_WRITEBACK);
1407 			if (bdi_cap_account_writeback(bdi)) {
1408 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1409 				__bdi_writeout_inc(bdi);
1410 			}
1411 		}
1412 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1413 	} else {
1414 		ret = TestClearPageWriteback(page);
1415 	}
1416 	if (ret)
1417 		dec_zone_page_state(page, NR_WRITEBACK);
1418 	return ret;
1419 }
1420 
1421 int test_set_page_writeback(struct page *page)
1422 {
1423 	struct address_space *mapping = page_mapping(page);
1424 	int ret;
1425 
1426 	if (mapping) {
1427 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1428 		unsigned long flags;
1429 
1430 		spin_lock_irqsave(&mapping->tree_lock, flags);
1431 		ret = TestSetPageWriteback(page);
1432 		if (!ret) {
1433 			radix_tree_tag_set(&mapping->page_tree,
1434 						page_index(page),
1435 						PAGECACHE_TAG_WRITEBACK);
1436 			if (bdi_cap_account_writeback(bdi))
1437 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1438 		}
1439 		if (!PageDirty(page))
1440 			radix_tree_tag_clear(&mapping->page_tree,
1441 						page_index(page),
1442 						PAGECACHE_TAG_DIRTY);
1443 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1444 	} else {
1445 		ret = TestSetPageWriteback(page);
1446 	}
1447 	if (!ret)
1448 		inc_zone_page_state(page, NR_WRITEBACK);
1449 	return ret;
1450 
1451 }
1452 EXPORT_SYMBOL(test_set_page_writeback);
1453 
1454 /*
1455  * Return true if any of the pages in the mapping are marked with the
1456  * passed tag.
1457  */
1458 int mapping_tagged(struct address_space *mapping, int tag)
1459 {
1460 	int ret;
1461 	rcu_read_lock();
1462 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1463 	rcu_read_unlock();
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL(mapping_tagged);
1467