1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 }; 143 144 /* 145 * Length of period for aging writeout fractions of bdis. This is an 146 * arbitrarily chosen number. The longer the period, the slower fractions will 147 * reflect changes in current writeout rate. 148 */ 149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 150 151 #ifdef CONFIG_CGROUP_WRITEBACK 152 153 #define GDTC_INIT(__wb) .wb = (__wb), \ 154 .dom = &global_wb_domain, \ 155 .wb_completions = &(__wb)->completions 156 157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 158 159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 160 .dom = mem_cgroup_wb_domain(__wb), \ 161 .wb_completions = &(__wb)->memcg_completions, \ 162 .gdtc = __gdtc 163 164 static bool mdtc_valid(struct dirty_throttle_control *dtc) 165 { 166 return dtc->dom; 167 } 168 169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 175 { 176 return mdtc->gdtc; 177 } 178 179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 180 { 181 return &wb->memcg_completions; 182 } 183 184 static void wb_min_max_ratio(struct bdi_writeback *wb, 185 unsigned long *minp, unsigned long *maxp) 186 { 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 189 unsigned long long min = wb->bdi->min_ratio; 190 unsigned long long max = wb->bdi->max_ratio; 191 192 /* 193 * @wb may already be clean by the time control reaches here and 194 * the total may not include its bw. 195 */ 196 if (this_bw < tot_bw) { 197 if (min) { 198 min *= this_bw; 199 min = div64_ul(min, tot_bw); 200 } 201 if (max < 100 * BDI_RATIO_SCALE) { 202 max *= this_bw; 203 max = div64_ul(max, tot_bw); 204 } 205 } 206 207 *minp = min; 208 *maxp = max; 209 } 210 211 #else /* CONFIG_CGROUP_WRITEBACK */ 212 213 #define GDTC_INIT(__wb) .wb = (__wb), \ 214 .wb_completions = &(__wb)->completions 215 #define GDTC_INIT_NO_WB 216 #define MDTC_INIT(__wb, __gdtc) 217 218 static bool mdtc_valid(struct dirty_throttle_control *dtc) 219 { 220 return false; 221 } 222 223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 224 { 225 return &global_wb_domain; 226 } 227 228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 229 { 230 return NULL; 231 } 232 233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 234 { 235 return NULL; 236 } 237 238 static void wb_min_max_ratio(struct bdi_writeback *wb, 239 unsigned long *minp, unsigned long *maxp) 240 { 241 *minp = wb->bdi->min_ratio; 242 *maxp = wb->bdi->max_ratio; 243 } 244 245 #endif /* CONFIG_CGROUP_WRITEBACK */ 246 247 /* 248 * In a memory zone, there is a certain amount of pages we consider 249 * available for the page cache, which is essentially the number of 250 * free and reclaimable pages, minus some zone reserves to protect 251 * lowmem and the ability to uphold the zone's watermarks without 252 * requiring writeback. 253 * 254 * This number of dirtyable pages is the base value of which the 255 * user-configurable dirty ratio is the effective number of pages that 256 * are allowed to be actually dirtied. Per individual zone, or 257 * globally by using the sum of dirtyable pages over all zones. 258 * 259 * Because the user is allowed to specify the dirty limit globally as 260 * absolute number of bytes, calculating the per-zone dirty limit can 261 * require translating the configured limit into a percentage of 262 * global dirtyable memory first. 263 */ 264 265 /** 266 * node_dirtyable_memory - number of dirtyable pages in a node 267 * @pgdat: the node 268 * 269 * Return: the node's number of pages potentially available for dirty 270 * page cache. This is the base value for the per-node dirty limits. 271 */ 272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 273 { 274 unsigned long nr_pages = 0; 275 int z; 276 277 for (z = 0; z < MAX_NR_ZONES; z++) { 278 struct zone *zone = pgdat->node_zones + z; 279 280 if (!populated_zone(zone)) 281 continue; 282 283 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 284 } 285 286 /* 287 * Pages reserved for the kernel should not be considered 288 * dirtyable, to prevent a situation where reclaim has to 289 * clean pages in order to balance the zones. 290 */ 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 292 293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 295 296 return nr_pages; 297 } 298 299 static unsigned long highmem_dirtyable_memory(unsigned long total) 300 { 301 #ifdef CONFIG_HIGHMEM 302 int node; 303 unsigned long x = 0; 304 int i; 305 306 for_each_node_state(node, N_HIGH_MEMORY) { 307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 308 struct zone *z; 309 unsigned long nr_pages; 310 311 if (!is_highmem_idx(i)) 312 continue; 313 314 z = &NODE_DATA(node)->node_zones[i]; 315 if (!populated_zone(z)) 316 continue; 317 318 nr_pages = zone_page_state(z, NR_FREE_PAGES); 319 /* watch for underflows */ 320 nr_pages -= min(nr_pages, high_wmark_pages(z)); 321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 323 x += nr_pages; 324 } 325 } 326 327 /* 328 * Make sure that the number of highmem pages is never larger 329 * than the number of the total dirtyable memory. This can only 330 * occur in very strange VM situations but we want to make sure 331 * that this does not occur. 332 */ 333 return min(x, total); 334 #else 335 return 0; 336 #endif 337 } 338 339 /** 340 * global_dirtyable_memory - number of globally dirtyable pages 341 * 342 * Return: the global number of pages potentially available for dirty 343 * page cache. This is the base value for the global dirty limits. 344 */ 345 static unsigned long global_dirtyable_memory(void) 346 { 347 unsigned long x; 348 349 x = global_zone_page_state(NR_FREE_PAGES); 350 /* 351 * Pages reserved for the kernel should not be considered 352 * dirtyable, to prevent a situation where reclaim has to 353 * clean pages in order to balance the zones. 354 */ 355 x -= min(x, totalreserve_pages); 356 357 x += global_node_page_state(NR_INACTIVE_FILE); 358 x += global_node_page_state(NR_ACTIVE_FILE); 359 360 if (!vm_highmem_is_dirtyable) 361 x -= highmem_dirtyable_memory(x); 362 363 return x + 1; /* Ensure that we never return 0 */ 364 } 365 366 /** 367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 368 * @dtc: dirty_throttle_control of interest 369 * 370 * Calculate @dtc->thresh and ->bg_thresh considering 371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 372 * must ensure that @dtc->avail is set before calling this function. The 373 * dirty limits will be lifted by 1/4 for real-time tasks. 374 */ 375 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 376 { 377 const unsigned long available_memory = dtc->avail; 378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 379 unsigned long bytes = vm_dirty_bytes; 380 unsigned long bg_bytes = dirty_background_bytes; 381 /* convert ratios to per-PAGE_SIZE for higher precision */ 382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 384 unsigned long thresh; 385 unsigned long bg_thresh; 386 struct task_struct *tsk; 387 388 /* gdtc is !NULL iff @dtc is for memcg domain */ 389 if (gdtc) { 390 unsigned long global_avail = gdtc->avail; 391 392 /* 393 * The byte settings can't be applied directly to memcg 394 * domains. Convert them to ratios by scaling against 395 * globally available memory. As the ratios are in 396 * per-PAGE_SIZE, they can be obtained by dividing bytes by 397 * number of pages. 398 */ 399 if (bytes) 400 ratio = min(DIV_ROUND_UP(bytes, global_avail), 401 PAGE_SIZE); 402 if (bg_bytes) 403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 404 PAGE_SIZE); 405 bytes = bg_bytes = 0; 406 } 407 408 if (bytes) 409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 410 else 411 thresh = (ratio * available_memory) / PAGE_SIZE; 412 413 if (bg_bytes) 414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 415 else 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 417 418 tsk = current; 419 if (rt_task(tsk)) { 420 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 421 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 422 } 423 /* 424 * Dirty throttling logic assumes the limits in page units fit into 425 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 426 */ 427 if (thresh > UINT_MAX) 428 thresh = UINT_MAX; 429 /* This makes sure bg_thresh is within 32-bits as well */ 430 if (bg_thresh >= thresh) 431 bg_thresh = thresh / 2; 432 dtc->thresh = thresh; 433 dtc->bg_thresh = bg_thresh; 434 435 /* we should eventually report the domain in the TP */ 436 if (!gdtc) 437 trace_global_dirty_state(bg_thresh, thresh); 438 } 439 440 /** 441 * global_dirty_limits - background-writeback and dirty-throttling thresholds 442 * @pbackground: out parameter for bg_thresh 443 * @pdirty: out parameter for thresh 444 * 445 * Calculate bg_thresh and thresh for global_wb_domain. See 446 * domain_dirty_limits() for details. 447 */ 448 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 449 { 450 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 451 452 gdtc.avail = global_dirtyable_memory(); 453 domain_dirty_limits(&gdtc); 454 455 *pbackground = gdtc.bg_thresh; 456 *pdirty = gdtc.thresh; 457 } 458 459 /** 460 * node_dirty_limit - maximum number of dirty pages allowed in a node 461 * @pgdat: the node 462 * 463 * Return: the maximum number of dirty pages allowed in a node, based 464 * on the node's dirtyable memory. 465 */ 466 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 467 { 468 unsigned long node_memory = node_dirtyable_memory(pgdat); 469 struct task_struct *tsk = current; 470 unsigned long dirty; 471 472 if (vm_dirty_bytes) 473 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 474 node_memory / global_dirtyable_memory(); 475 else 476 dirty = vm_dirty_ratio * node_memory / 100; 477 478 if (rt_task(tsk)) 479 dirty += dirty / 4; 480 481 /* 482 * Dirty throttling logic assumes the limits in page units fit into 483 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 484 */ 485 return min_t(unsigned long, dirty, UINT_MAX); 486 } 487 488 /** 489 * node_dirty_ok - tells whether a node is within its dirty limits 490 * @pgdat: the node to check 491 * 492 * Return: %true when the dirty pages in @pgdat are within the node's 493 * dirty limit, %false if the limit is exceeded. 494 */ 495 bool node_dirty_ok(struct pglist_data *pgdat) 496 { 497 unsigned long limit = node_dirty_limit(pgdat); 498 unsigned long nr_pages = 0; 499 500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 501 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 502 503 return nr_pages <= limit; 504 } 505 506 #ifdef CONFIG_SYSCTL 507 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 508 void *buffer, size_t *lenp, loff_t *ppos) 509 { 510 int ret; 511 512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write) 514 dirty_background_bytes = 0; 515 return ret; 516 } 517 518 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 519 void *buffer, size_t *lenp, loff_t *ppos) 520 { 521 int ret; 522 unsigned long old_bytes = dirty_background_bytes; 523 524 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 525 if (ret == 0 && write) { 526 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 527 UINT_MAX) { 528 dirty_background_bytes = old_bytes; 529 return -ERANGE; 530 } 531 dirty_background_ratio = 0; 532 } 533 return ret; 534 } 535 536 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 537 size_t *lenp, loff_t *ppos) 538 { 539 int old_ratio = vm_dirty_ratio; 540 int ret; 541 542 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 543 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 544 writeback_set_ratelimit(); 545 vm_dirty_bytes = 0; 546 } 547 return ret; 548 } 549 550 static int dirty_bytes_handler(struct ctl_table *table, int write, 551 void *buffer, size_t *lenp, loff_t *ppos) 552 { 553 unsigned long old_bytes = vm_dirty_bytes; 554 int ret; 555 556 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 557 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 558 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 559 vm_dirty_bytes = old_bytes; 560 return -ERANGE; 561 } 562 writeback_set_ratelimit(); 563 vm_dirty_ratio = 0; 564 } 565 return ret; 566 } 567 #endif 568 569 static unsigned long wp_next_time(unsigned long cur_time) 570 { 571 cur_time += VM_COMPLETIONS_PERIOD_LEN; 572 /* 0 has a special meaning... */ 573 if (!cur_time) 574 return 1; 575 return cur_time; 576 } 577 578 static void wb_domain_writeout_add(struct wb_domain *dom, 579 struct fprop_local_percpu *completions, 580 unsigned int max_prop_frac, long nr) 581 { 582 __fprop_add_percpu_max(&dom->completions, completions, 583 max_prop_frac, nr); 584 /* First event after period switching was turned off? */ 585 if (unlikely(!dom->period_time)) { 586 /* 587 * We can race with other __bdi_writeout_inc calls here but 588 * it does not cause any harm since the resulting time when 589 * timer will fire and what is in writeout_period_time will be 590 * roughly the same. 591 */ 592 dom->period_time = wp_next_time(jiffies); 593 mod_timer(&dom->period_timer, dom->period_time); 594 } 595 } 596 597 /* 598 * Increment @wb's writeout completion count and the global writeout 599 * completion count. Called from __folio_end_writeback(). 600 */ 601 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 602 { 603 struct wb_domain *cgdom; 604 605 wb_stat_mod(wb, WB_WRITTEN, nr); 606 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 607 wb->bdi->max_prop_frac, nr); 608 609 cgdom = mem_cgroup_wb_domain(wb); 610 if (cgdom) 611 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 612 wb->bdi->max_prop_frac, nr); 613 } 614 615 void wb_writeout_inc(struct bdi_writeback *wb) 616 { 617 unsigned long flags; 618 619 local_irq_save(flags); 620 __wb_writeout_add(wb, 1); 621 local_irq_restore(flags); 622 } 623 EXPORT_SYMBOL_GPL(wb_writeout_inc); 624 625 /* 626 * On idle system, we can be called long after we scheduled because we use 627 * deferred timers so count with missed periods. 628 */ 629 static void writeout_period(struct timer_list *t) 630 { 631 struct wb_domain *dom = from_timer(dom, t, period_timer); 632 int miss_periods = (jiffies - dom->period_time) / 633 VM_COMPLETIONS_PERIOD_LEN; 634 635 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 636 dom->period_time = wp_next_time(dom->period_time + 637 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 638 mod_timer(&dom->period_timer, dom->period_time); 639 } else { 640 /* 641 * Aging has zeroed all fractions. Stop wasting CPU on period 642 * updates. 643 */ 644 dom->period_time = 0; 645 } 646 } 647 648 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 649 { 650 memset(dom, 0, sizeof(*dom)); 651 652 spin_lock_init(&dom->lock); 653 654 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 655 656 dom->dirty_limit_tstamp = jiffies; 657 658 return fprop_global_init(&dom->completions, gfp); 659 } 660 661 #ifdef CONFIG_CGROUP_WRITEBACK 662 void wb_domain_exit(struct wb_domain *dom) 663 { 664 del_timer_sync(&dom->period_timer); 665 fprop_global_destroy(&dom->completions); 666 } 667 #endif 668 669 /* 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 671 * registered backing devices, which, for obvious reasons, can not 672 * exceed 100%. 673 */ 674 static unsigned int bdi_min_ratio; 675 676 static int bdi_check_pages_limit(unsigned long pages) 677 { 678 unsigned long max_dirty_pages = global_dirtyable_memory(); 679 680 if (pages > max_dirty_pages) 681 return -EINVAL; 682 683 return 0; 684 } 685 686 static unsigned long bdi_ratio_from_pages(unsigned long pages) 687 { 688 unsigned long background_thresh; 689 unsigned long dirty_thresh; 690 unsigned long ratio; 691 692 global_dirty_limits(&background_thresh, &dirty_thresh); 693 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 694 695 return ratio; 696 } 697 698 static u64 bdi_get_bytes(unsigned int ratio) 699 { 700 unsigned long background_thresh; 701 unsigned long dirty_thresh; 702 u64 bytes; 703 704 global_dirty_limits(&background_thresh, &dirty_thresh); 705 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 706 707 return bytes; 708 } 709 710 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 711 { 712 unsigned int delta; 713 int ret = 0; 714 715 if (min_ratio > 100 * BDI_RATIO_SCALE) 716 return -EINVAL; 717 718 spin_lock_bh(&bdi_lock); 719 if (min_ratio > bdi->max_ratio) { 720 ret = -EINVAL; 721 } else { 722 if (min_ratio < bdi->min_ratio) { 723 delta = bdi->min_ratio - min_ratio; 724 bdi_min_ratio -= delta; 725 bdi->min_ratio = min_ratio; 726 } else { 727 delta = min_ratio - bdi->min_ratio; 728 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 729 bdi_min_ratio += delta; 730 bdi->min_ratio = min_ratio; 731 } else { 732 ret = -EINVAL; 733 } 734 } 735 } 736 spin_unlock_bh(&bdi_lock); 737 738 return ret; 739 } 740 741 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 742 { 743 int ret = 0; 744 745 if (max_ratio > 100 * BDI_RATIO_SCALE) 746 return -EINVAL; 747 748 spin_lock_bh(&bdi_lock); 749 if (bdi->min_ratio > max_ratio) { 750 ret = -EINVAL; 751 } else { 752 bdi->max_ratio = max_ratio; 753 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 754 (100 * BDI_RATIO_SCALE); 755 } 756 spin_unlock_bh(&bdi_lock); 757 758 return ret; 759 } 760 761 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 762 { 763 return __bdi_set_min_ratio(bdi, min_ratio); 764 } 765 766 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 767 { 768 return __bdi_set_max_ratio(bdi, max_ratio); 769 } 770 771 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 772 { 773 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 774 } 775 776 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 777 { 778 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 779 } 780 EXPORT_SYMBOL(bdi_set_max_ratio); 781 782 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 783 { 784 return bdi_get_bytes(bdi->min_ratio); 785 } 786 787 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 788 { 789 int ret; 790 unsigned long pages = min_bytes >> PAGE_SHIFT; 791 unsigned long min_ratio; 792 793 ret = bdi_check_pages_limit(pages); 794 if (ret) 795 return ret; 796 797 min_ratio = bdi_ratio_from_pages(pages); 798 return __bdi_set_min_ratio(bdi, min_ratio); 799 } 800 801 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 802 { 803 return bdi_get_bytes(bdi->max_ratio); 804 } 805 806 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 807 { 808 int ret; 809 unsigned long pages = max_bytes >> PAGE_SHIFT; 810 unsigned long max_ratio; 811 812 ret = bdi_check_pages_limit(pages); 813 if (ret) 814 return ret; 815 816 max_ratio = bdi_ratio_from_pages(pages); 817 return __bdi_set_max_ratio(bdi, max_ratio); 818 } 819 820 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 821 { 822 if (strict_limit > 1) 823 return -EINVAL; 824 825 spin_lock_bh(&bdi_lock); 826 if (strict_limit) 827 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 828 else 829 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 830 spin_unlock_bh(&bdi_lock); 831 832 return 0; 833 } 834 835 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 836 unsigned long bg_thresh) 837 { 838 return (thresh + bg_thresh) / 2; 839 } 840 841 static unsigned long hard_dirty_limit(struct wb_domain *dom, 842 unsigned long thresh) 843 { 844 return max(thresh, dom->dirty_limit); 845 } 846 847 /* 848 * Memory which can be further allocated to a memcg domain is capped by 849 * system-wide clean memory excluding the amount being used in the domain. 850 */ 851 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 852 unsigned long filepages, unsigned long headroom) 853 { 854 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 855 unsigned long clean = filepages - min(filepages, mdtc->dirty); 856 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 857 unsigned long other_clean = global_clean - min(global_clean, clean); 858 859 mdtc->avail = filepages + min(headroom, other_clean); 860 } 861 862 /** 863 * __wb_calc_thresh - @wb's share of dirty threshold 864 * @dtc: dirty_throttle_context of interest 865 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 866 * 867 * Note that balance_dirty_pages() will only seriously take dirty throttling 868 * threshold as a hard limit when sleeping max_pause per page is not enough 869 * to keep the dirty pages under control. For example, when the device is 870 * completely stalled due to some error conditions, or when there are 1000 871 * dd tasks writing to a slow 10MB/s USB key. 872 * In the other normal situations, it acts more gently by throttling the tasks 873 * more (rather than completely block them) when the wb dirty pages go high. 874 * 875 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 876 * - starving fast devices 877 * - piling up dirty pages (that will take long time to sync) on slow devices 878 * 879 * The wb's share of dirty limit will be adapting to its throughput and 880 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 881 * 882 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 883 * "dirty" in the context of dirty balancing includes all PG_dirty and 884 * PG_writeback pages. 885 */ 886 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 887 unsigned long thresh) 888 { 889 struct wb_domain *dom = dtc_dom(dtc); 890 u64 wb_thresh; 891 unsigned long numerator, denominator; 892 unsigned long wb_min_ratio, wb_max_ratio; 893 894 /* 895 * Calculate this wb's share of the thresh ratio. 896 */ 897 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 898 &numerator, &denominator); 899 900 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 901 wb_thresh *= numerator; 902 wb_thresh = div64_ul(wb_thresh, denominator); 903 904 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 905 906 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 907 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 908 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 909 910 return wb_thresh; 911 } 912 913 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 914 { 915 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 916 917 return __wb_calc_thresh(&gdtc, thresh); 918 } 919 920 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 921 { 922 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 923 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 924 unsigned long filepages = 0, headroom = 0, writeback = 0; 925 926 gdtc.avail = global_dirtyable_memory(); 927 gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) + 928 global_node_page_state(NR_WRITEBACK); 929 930 mem_cgroup_wb_stats(wb, &filepages, &headroom, 931 &mdtc.dirty, &writeback); 932 mdtc.dirty += writeback; 933 mdtc_calc_avail(&mdtc, filepages, headroom); 934 domain_dirty_limits(&mdtc); 935 936 return __wb_calc_thresh(&mdtc, mdtc.thresh); 937 } 938 939 /* 940 * setpoint - dirty 3 941 * f(dirty) := 1.0 + (----------------) 942 * limit - setpoint 943 * 944 * it's a 3rd order polynomial that subjects to 945 * 946 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 947 * (2) f(setpoint) = 1.0 => the balance point 948 * (3) f(limit) = 0 => the hard limit 949 * (4) df/dx <= 0 => negative feedback control 950 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 951 * => fast response on large errors; small oscillation near setpoint 952 */ 953 static long long pos_ratio_polynom(unsigned long setpoint, 954 unsigned long dirty, 955 unsigned long limit) 956 { 957 long long pos_ratio; 958 long x; 959 960 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 961 (limit - setpoint) | 1); 962 pos_ratio = x; 963 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 964 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 965 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 966 967 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 968 } 969 970 /* 971 * Dirty position control. 972 * 973 * (o) global/bdi setpoints 974 * 975 * We want the dirty pages be balanced around the global/wb setpoints. 976 * When the number of dirty pages is higher/lower than the setpoint, the 977 * dirty position control ratio (and hence task dirty ratelimit) will be 978 * decreased/increased to bring the dirty pages back to the setpoint. 979 * 980 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 981 * 982 * if (dirty < setpoint) scale up pos_ratio 983 * if (dirty > setpoint) scale down pos_ratio 984 * 985 * if (wb_dirty < wb_setpoint) scale up pos_ratio 986 * if (wb_dirty > wb_setpoint) scale down pos_ratio 987 * 988 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 989 * 990 * (o) global control line 991 * 992 * ^ pos_ratio 993 * | 994 * | |<===== global dirty control scope ======>| 995 * 2.0 * * * * * * * 996 * | .* 997 * | . * 998 * | . * 999 * | . * 1000 * | . * 1001 * | . * 1002 * 1.0 ................................* 1003 * | . . * 1004 * | . . * 1005 * | . . * 1006 * | . . * 1007 * | . . * 1008 * 0 +------------.------------------.----------------------*-------------> 1009 * freerun^ setpoint^ limit^ dirty pages 1010 * 1011 * (o) wb control line 1012 * 1013 * ^ pos_ratio 1014 * | 1015 * | * 1016 * | * 1017 * | * 1018 * | * 1019 * | * |<=========== span ============>| 1020 * 1.0 .......................* 1021 * | . * 1022 * | . * 1023 * | . * 1024 * | . * 1025 * | . * 1026 * | . * 1027 * | . * 1028 * | . * 1029 * | . * 1030 * | . * 1031 * | . * 1032 * 1/4 ...............................................* * * * * * * * * * * * 1033 * | . . 1034 * | . . 1035 * | . . 1036 * 0 +----------------------.-------------------------------.-------------> 1037 * wb_setpoint^ x_intercept^ 1038 * 1039 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1040 * be smoothly throttled down to normal if it starts high in situations like 1041 * - start writing to a slow SD card and a fast disk at the same time. The SD 1042 * card's wb_dirty may rush to many times higher than wb_setpoint. 1043 * - the wb dirty thresh drops quickly due to change of JBOD workload 1044 */ 1045 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1046 { 1047 struct bdi_writeback *wb = dtc->wb; 1048 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1049 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1050 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1051 unsigned long wb_thresh = dtc->wb_thresh; 1052 unsigned long x_intercept; 1053 unsigned long setpoint; /* dirty pages' target balance point */ 1054 unsigned long wb_setpoint; 1055 unsigned long span; 1056 long long pos_ratio; /* for scaling up/down the rate limit */ 1057 long x; 1058 1059 dtc->pos_ratio = 0; 1060 1061 if (unlikely(dtc->dirty >= limit)) 1062 return; 1063 1064 /* 1065 * global setpoint 1066 * 1067 * See comment for pos_ratio_polynom(). 1068 */ 1069 setpoint = (freerun + limit) / 2; 1070 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1071 1072 /* 1073 * The strictlimit feature is a tool preventing mistrusted filesystems 1074 * from growing a large number of dirty pages before throttling. For 1075 * such filesystems balance_dirty_pages always checks wb counters 1076 * against wb limits. Even if global "nr_dirty" is under "freerun". 1077 * This is especially important for fuse which sets bdi->max_ratio to 1078 * 1% by default. Without strictlimit feature, fuse writeback may 1079 * consume arbitrary amount of RAM because it is accounted in 1080 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1081 * 1082 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1083 * two values: wb_dirty and wb_thresh. Let's consider an example: 1084 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1085 * limits are set by default to 10% and 20% (background and throttle). 1086 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1087 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1088 * about ~6K pages (as the average of background and throttle wb 1089 * limits). The 3rd order polynomial will provide positive feedback if 1090 * wb_dirty is under wb_setpoint and vice versa. 1091 * 1092 * Note, that we cannot use global counters in these calculations 1093 * because we want to throttle process writing to a strictlimit wb 1094 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1095 * in the example above). 1096 */ 1097 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1098 long long wb_pos_ratio; 1099 1100 if (dtc->wb_dirty < 8) { 1101 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1102 2 << RATELIMIT_CALC_SHIFT); 1103 return; 1104 } 1105 1106 if (dtc->wb_dirty >= wb_thresh) 1107 return; 1108 1109 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1110 dtc->wb_bg_thresh); 1111 1112 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1113 return; 1114 1115 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1116 wb_thresh); 1117 1118 /* 1119 * Typically, for strictlimit case, wb_setpoint << setpoint 1120 * and pos_ratio >> wb_pos_ratio. In the other words global 1121 * state ("dirty") is not limiting factor and we have to 1122 * make decision based on wb counters. But there is an 1123 * important case when global pos_ratio should get precedence: 1124 * global limits are exceeded (e.g. due to activities on other 1125 * wb's) while given strictlimit wb is below limit. 1126 * 1127 * "pos_ratio * wb_pos_ratio" would work for the case above, 1128 * but it would look too non-natural for the case of all 1129 * activity in the system coming from a single strictlimit wb 1130 * with bdi->max_ratio == 100%. 1131 * 1132 * Note that min() below somewhat changes the dynamics of the 1133 * control system. Normally, pos_ratio value can be well over 3 1134 * (when globally we are at freerun and wb is well below wb 1135 * setpoint). Now the maximum pos_ratio in the same situation 1136 * is 2. We might want to tweak this if we observe the control 1137 * system is too slow to adapt. 1138 */ 1139 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1140 return; 1141 } 1142 1143 /* 1144 * We have computed basic pos_ratio above based on global situation. If 1145 * the wb is over/under its share of dirty pages, we want to scale 1146 * pos_ratio further down/up. That is done by the following mechanism. 1147 */ 1148 1149 /* 1150 * wb setpoint 1151 * 1152 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1153 * 1154 * x_intercept - wb_dirty 1155 * := -------------------------- 1156 * x_intercept - wb_setpoint 1157 * 1158 * The main wb control line is a linear function that subjects to 1159 * 1160 * (1) f(wb_setpoint) = 1.0 1161 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1162 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1163 * 1164 * For single wb case, the dirty pages are observed to fluctuate 1165 * regularly within range 1166 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1167 * for various filesystems, where (2) can yield in a reasonable 12.5% 1168 * fluctuation range for pos_ratio. 1169 * 1170 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1171 * own size, so move the slope over accordingly and choose a slope that 1172 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1173 */ 1174 if (unlikely(wb_thresh > dtc->thresh)) 1175 wb_thresh = dtc->thresh; 1176 /* 1177 * It's very possible that wb_thresh is close to 0 not because the 1178 * device is slow, but that it has remained inactive for long time. 1179 * Honour such devices a reasonable good (hopefully IO efficient) 1180 * threshold, so that the occasional writes won't be blocked and active 1181 * writes can rampup the threshold quickly. 1182 */ 1183 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1184 /* 1185 * scale global setpoint to wb's: 1186 * wb_setpoint = setpoint * wb_thresh / thresh 1187 */ 1188 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1189 wb_setpoint = setpoint * (u64)x >> 16; 1190 /* 1191 * Use span=(8*write_bw) in single wb case as indicated by 1192 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1193 * 1194 * wb_thresh thresh - wb_thresh 1195 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1196 * thresh thresh 1197 */ 1198 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1199 x_intercept = wb_setpoint + span; 1200 1201 if (dtc->wb_dirty < x_intercept - span / 4) { 1202 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1203 (x_intercept - wb_setpoint) | 1); 1204 } else 1205 pos_ratio /= 4; 1206 1207 /* 1208 * wb reserve area, safeguard against dirty pool underrun and disk idle 1209 * It may push the desired control point of global dirty pages higher 1210 * than setpoint. 1211 */ 1212 x_intercept = wb_thresh / 2; 1213 if (dtc->wb_dirty < x_intercept) { 1214 if (dtc->wb_dirty > x_intercept / 8) 1215 pos_ratio = div_u64(pos_ratio * x_intercept, 1216 dtc->wb_dirty); 1217 else 1218 pos_ratio *= 8; 1219 } 1220 1221 dtc->pos_ratio = pos_ratio; 1222 } 1223 1224 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1225 unsigned long elapsed, 1226 unsigned long written) 1227 { 1228 const unsigned long period = roundup_pow_of_two(3 * HZ); 1229 unsigned long avg = wb->avg_write_bandwidth; 1230 unsigned long old = wb->write_bandwidth; 1231 u64 bw; 1232 1233 /* 1234 * bw = written * HZ / elapsed 1235 * 1236 * bw * elapsed + write_bandwidth * (period - elapsed) 1237 * write_bandwidth = --------------------------------------------------- 1238 * period 1239 * 1240 * @written may have decreased due to folio_redirty_for_writepage(). 1241 * Avoid underflowing @bw calculation. 1242 */ 1243 bw = written - min(written, wb->written_stamp); 1244 bw *= HZ; 1245 if (unlikely(elapsed > period)) { 1246 bw = div64_ul(bw, elapsed); 1247 avg = bw; 1248 goto out; 1249 } 1250 bw += (u64)wb->write_bandwidth * (period - elapsed); 1251 bw >>= ilog2(period); 1252 1253 /* 1254 * one more level of smoothing, for filtering out sudden spikes 1255 */ 1256 if (avg > old && old >= (unsigned long)bw) 1257 avg -= (avg - old) >> 3; 1258 1259 if (avg < old && old <= (unsigned long)bw) 1260 avg += (old - avg) >> 3; 1261 1262 out: 1263 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1264 avg = max(avg, 1LU); 1265 if (wb_has_dirty_io(wb)) { 1266 long delta = avg - wb->avg_write_bandwidth; 1267 WARN_ON_ONCE(atomic_long_add_return(delta, 1268 &wb->bdi->tot_write_bandwidth) <= 0); 1269 } 1270 wb->write_bandwidth = bw; 1271 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1272 } 1273 1274 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1275 { 1276 struct wb_domain *dom = dtc_dom(dtc); 1277 unsigned long thresh = dtc->thresh; 1278 unsigned long limit = dom->dirty_limit; 1279 1280 /* 1281 * Follow up in one step. 1282 */ 1283 if (limit < thresh) { 1284 limit = thresh; 1285 goto update; 1286 } 1287 1288 /* 1289 * Follow down slowly. Use the higher one as the target, because thresh 1290 * may drop below dirty. This is exactly the reason to introduce 1291 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1292 */ 1293 thresh = max(thresh, dtc->dirty); 1294 if (limit > thresh) { 1295 limit -= (limit - thresh) >> 5; 1296 goto update; 1297 } 1298 return; 1299 update: 1300 dom->dirty_limit = limit; 1301 } 1302 1303 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1304 unsigned long now) 1305 { 1306 struct wb_domain *dom = dtc_dom(dtc); 1307 1308 /* 1309 * check locklessly first to optimize away locking for the most time 1310 */ 1311 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1312 return; 1313 1314 spin_lock(&dom->lock); 1315 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1316 update_dirty_limit(dtc); 1317 dom->dirty_limit_tstamp = now; 1318 } 1319 spin_unlock(&dom->lock); 1320 } 1321 1322 /* 1323 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1324 * 1325 * Normal wb tasks will be curbed at or below it in long term. 1326 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1327 */ 1328 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1329 unsigned long dirtied, 1330 unsigned long elapsed) 1331 { 1332 struct bdi_writeback *wb = dtc->wb; 1333 unsigned long dirty = dtc->dirty; 1334 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1335 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1336 unsigned long setpoint = (freerun + limit) / 2; 1337 unsigned long write_bw = wb->avg_write_bandwidth; 1338 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1339 unsigned long dirty_rate; 1340 unsigned long task_ratelimit; 1341 unsigned long balanced_dirty_ratelimit; 1342 unsigned long step; 1343 unsigned long x; 1344 unsigned long shift; 1345 1346 /* 1347 * The dirty rate will match the writeout rate in long term, except 1348 * when dirty pages are truncated by userspace or re-dirtied by FS. 1349 */ 1350 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1351 1352 /* 1353 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1354 */ 1355 task_ratelimit = (u64)dirty_ratelimit * 1356 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1357 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1358 1359 /* 1360 * A linear estimation of the "balanced" throttle rate. The theory is, 1361 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1362 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1363 * formula will yield the balanced rate limit (write_bw / N). 1364 * 1365 * Note that the expanded form is not a pure rate feedback: 1366 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1367 * but also takes pos_ratio into account: 1368 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1369 * 1370 * (1) is not realistic because pos_ratio also takes part in balancing 1371 * the dirty rate. Consider the state 1372 * pos_ratio = 0.5 (3) 1373 * rate = 2 * (write_bw / N) (4) 1374 * If (1) is used, it will stuck in that state! Because each dd will 1375 * be throttled at 1376 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1377 * yielding 1378 * dirty_rate = N * task_ratelimit = write_bw (6) 1379 * put (6) into (1) we get 1380 * rate_(i+1) = rate_(i) (7) 1381 * 1382 * So we end up using (2) to always keep 1383 * rate_(i+1) ~= (write_bw / N) (8) 1384 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1385 * pos_ratio is able to drive itself to 1.0, which is not only where 1386 * the dirty count meet the setpoint, but also where the slope of 1387 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1388 */ 1389 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1390 dirty_rate | 1); 1391 /* 1392 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1393 */ 1394 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1395 balanced_dirty_ratelimit = write_bw; 1396 1397 /* 1398 * We could safely do this and return immediately: 1399 * 1400 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1401 * 1402 * However to get a more stable dirty_ratelimit, the below elaborated 1403 * code makes use of task_ratelimit to filter out singular points and 1404 * limit the step size. 1405 * 1406 * The below code essentially only uses the relative value of 1407 * 1408 * task_ratelimit - dirty_ratelimit 1409 * = (pos_ratio - 1) * dirty_ratelimit 1410 * 1411 * which reflects the direction and size of dirty position error. 1412 */ 1413 1414 /* 1415 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1416 * task_ratelimit is on the same side of dirty_ratelimit, too. 1417 * For example, when 1418 * - dirty_ratelimit > balanced_dirty_ratelimit 1419 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1420 * lowering dirty_ratelimit will help meet both the position and rate 1421 * control targets. Otherwise, don't update dirty_ratelimit if it will 1422 * only help meet the rate target. After all, what the users ultimately 1423 * feel and care are stable dirty rate and small position error. 1424 * 1425 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1426 * and filter out the singular points of balanced_dirty_ratelimit. Which 1427 * keeps jumping around randomly and can even leap far away at times 1428 * due to the small 200ms estimation period of dirty_rate (we want to 1429 * keep that period small to reduce time lags). 1430 */ 1431 step = 0; 1432 1433 /* 1434 * For strictlimit case, calculations above were based on wb counters 1435 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1436 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1437 * Hence, to calculate "step" properly, we have to use wb_dirty as 1438 * "dirty" and wb_setpoint as "setpoint". 1439 * 1440 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1441 * it's possible that wb_thresh is close to zero due to inactivity 1442 * of backing device. 1443 */ 1444 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1445 dirty = dtc->wb_dirty; 1446 if (dtc->wb_dirty < 8) 1447 setpoint = dtc->wb_dirty + 1; 1448 else 1449 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1450 } 1451 1452 if (dirty < setpoint) { 1453 x = min3(wb->balanced_dirty_ratelimit, 1454 balanced_dirty_ratelimit, task_ratelimit); 1455 if (dirty_ratelimit < x) 1456 step = x - dirty_ratelimit; 1457 } else { 1458 x = max3(wb->balanced_dirty_ratelimit, 1459 balanced_dirty_ratelimit, task_ratelimit); 1460 if (dirty_ratelimit > x) 1461 step = dirty_ratelimit - x; 1462 } 1463 1464 /* 1465 * Don't pursue 100% rate matching. It's impossible since the balanced 1466 * rate itself is constantly fluctuating. So decrease the track speed 1467 * when it gets close to the target. Helps eliminate pointless tremors. 1468 */ 1469 shift = dirty_ratelimit / (2 * step + 1); 1470 if (shift < BITS_PER_LONG) 1471 step = DIV_ROUND_UP(step >> shift, 8); 1472 else 1473 step = 0; 1474 1475 if (dirty_ratelimit < balanced_dirty_ratelimit) 1476 dirty_ratelimit += step; 1477 else 1478 dirty_ratelimit -= step; 1479 1480 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1481 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1482 1483 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1484 } 1485 1486 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1487 struct dirty_throttle_control *mdtc, 1488 bool update_ratelimit) 1489 { 1490 struct bdi_writeback *wb = gdtc->wb; 1491 unsigned long now = jiffies; 1492 unsigned long elapsed; 1493 unsigned long dirtied; 1494 unsigned long written; 1495 1496 spin_lock(&wb->list_lock); 1497 1498 /* 1499 * Lockless checks for elapsed time are racy and delayed update after 1500 * IO completion doesn't do it at all (to make sure written pages are 1501 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1502 * division errors. 1503 */ 1504 elapsed = max(now - wb->bw_time_stamp, 1UL); 1505 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1506 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1507 1508 if (update_ratelimit) { 1509 domain_update_dirty_limit(gdtc, now); 1510 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1511 1512 /* 1513 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1514 * compiler has no way to figure that out. Help it. 1515 */ 1516 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1517 domain_update_dirty_limit(mdtc, now); 1518 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1519 } 1520 } 1521 wb_update_write_bandwidth(wb, elapsed, written); 1522 1523 wb->dirtied_stamp = dirtied; 1524 wb->written_stamp = written; 1525 WRITE_ONCE(wb->bw_time_stamp, now); 1526 spin_unlock(&wb->list_lock); 1527 } 1528 1529 void wb_update_bandwidth(struct bdi_writeback *wb) 1530 { 1531 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1532 1533 __wb_update_bandwidth(&gdtc, NULL, false); 1534 } 1535 1536 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1537 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1538 1539 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1540 { 1541 unsigned long now = jiffies; 1542 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1543 1544 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1545 !atomic_read(&wb->writeback_inodes)) { 1546 spin_lock(&wb->list_lock); 1547 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1548 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1549 WRITE_ONCE(wb->bw_time_stamp, now); 1550 spin_unlock(&wb->list_lock); 1551 } 1552 } 1553 1554 /* 1555 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1556 * will look to see if it needs to start dirty throttling. 1557 * 1558 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1559 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1560 * (the number of pages we may dirty without exceeding the dirty limits). 1561 */ 1562 static unsigned long dirty_poll_interval(unsigned long dirty, 1563 unsigned long thresh) 1564 { 1565 if (thresh > dirty) 1566 return 1UL << (ilog2(thresh - dirty) >> 1); 1567 1568 return 1; 1569 } 1570 1571 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1572 unsigned long wb_dirty) 1573 { 1574 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1575 unsigned long t; 1576 1577 /* 1578 * Limit pause time for small memory systems. If sleeping for too long 1579 * time, a small pool of dirty/writeback pages may go empty and disk go 1580 * idle. 1581 * 1582 * 8 serves as the safety ratio. 1583 */ 1584 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1585 t++; 1586 1587 return min_t(unsigned long, t, MAX_PAUSE); 1588 } 1589 1590 static long wb_min_pause(struct bdi_writeback *wb, 1591 long max_pause, 1592 unsigned long task_ratelimit, 1593 unsigned long dirty_ratelimit, 1594 int *nr_dirtied_pause) 1595 { 1596 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1597 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1598 long t; /* target pause */ 1599 long pause; /* estimated next pause */ 1600 int pages; /* target nr_dirtied_pause */ 1601 1602 /* target for 10ms pause on 1-dd case */ 1603 t = max(1, HZ / 100); 1604 1605 /* 1606 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1607 * overheads. 1608 * 1609 * (N * 10ms) on 2^N concurrent tasks. 1610 */ 1611 if (hi > lo) 1612 t += (hi - lo) * (10 * HZ) / 1024; 1613 1614 /* 1615 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1616 * on the much more stable dirty_ratelimit. However the next pause time 1617 * will be computed based on task_ratelimit and the two rate limits may 1618 * depart considerably at some time. Especially if task_ratelimit goes 1619 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1620 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1621 * result task_ratelimit won't be executed faithfully, which could 1622 * eventually bring down dirty_ratelimit. 1623 * 1624 * We apply two rules to fix it up: 1625 * 1) try to estimate the next pause time and if necessary, use a lower 1626 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1627 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1628 * 2) limit the target pause time to max_pause/2, so that the normal 1629 * small fluctuations of task_ratelimit won't trigger rule (1) and 1630 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1631 */ 1632 t = min(t, 1 + max_pause / 2); 1633 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1634 1635 /* 1636 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1637 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1638 * When the 16 consecutive reads are often interrupted by some dirty 1639 * throttling pause during the async writes, cfq will go into idles 1640 * (deadline is fine). So push nr_dirtied_pause as high as possible 1641 * until reaches DIRTY_POLL_THRESH=32 pages. 1642 */ 1643 if (pages < DIRTY_POLL_THRESH) { 1644 t = max_pause; 1645 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1646 if (pages > DIRTY_POLL_THRESH) { 1647 pages = DIRTY_POLL_THRESH; 1648 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1649 } 1650 } 1651 1652 pause = HZ * pages / (task_ratelimit + 1); 1653 if (pause > max_pause) { 1654 t = max_pause; 1655 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1656 } 1657 1658 *nr_dirtied_pause = pages; 1659 /* 1660 * The minimal pause time will normally be half the target pause time. 1661 */ 1662 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1663 } 1664 1665 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1666 { 1667 struct bdi_writeback *wb = dtc->wb; 1668 unsigned long wb_reclaimable; 1669 1670 /* 1671 * wb_thresh is not treated as some limiting factor as 1672 * dirty_thresh, due to reasons 1673 * - in JBOD setup, wb_thresh can fluctuate a lot 1674 * - in a system with HDD and USB key, the USB key may somehow 1675 * go into state (wb_dirty >> wb_thresh) either because 1676 * wb_dirty starts high, or because wb_thresh drops low. 1677 * In this case we don't want to hard throttle the USB key 1678 * dirtiers for 100 seconds until wb_dirty drops under 1679 * wb_thresh. Instead the auxiliary wb control line in 1680 * wb_position_ratio() will let the dirtier task progress 1681 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1682 */ 1683 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1684 dtc->wb_bg_thresh = dtc->thresh ? 1685 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1686 1687 /* 1688 * In order to avoid the stacked BDI deadlock we need 1689 * to ensure we accurately count the 'dirty' pages when 1690 * the threshold is low. 1691 * 1692 * Otherwise it would be possible to get thresh+n pages 1693 * reported dirty, even though there are thresh-m pages 1694 * actually dirty; with m+n sitting in the percpu 1695 * deltas. 1696 */ 1697 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1698 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1699 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1700 } else { 1701 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1702 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1703 } 1704 } 1705 1706 /* 1707 * balance_dirty_pages() must be called by processes which are generating dirty 1708 * data. It looks at the number of dirty pages in the machine and will force 1709 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1710 * If we're over `background_thresh' then the writeback threads are woken to 1711 * perform some writeout. 1712 */ 1713 static int balance_dirty_pages(struct bdi_writeback *wb, 1714 unsigned long pages_dirtied, unsigned int flags) 1715 { 1716 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1717 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1718 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1719 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1720 &mdtc_stor : NULL; 1721 struct dirty_throttle_control *sdtc; 1722 unsigned long nr_dirty; 1723 long period; 1724 long pause; 1725 long max_pause; 1726 long min_pause; 1727 int nr_dirtied_pause; 1728 bool dirty_exceeded = false; 1729 unsigned long task_ratelimit; 1730 unsigned long dirty_ratelimit; 1731 struct backing_dev_info *bdi = wb->bdi; 1732 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1733 unsigned long start_time = jiffies; 1734 int ret = 0; 1735 1736 for (;;) { 1737 unsigned long now = jiffies; 1738 unsigned long dirty, thresh, bg_thresh; 1739 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1740 unsigned long m_thresh = 0; 1741 unsigned long m_bg_thresh = 0; 1742 1743 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1744 gdtc->avail = global_dirtyable_memory(); 1745 gdtc->dirty = nr_dirty + global_node_page_state(NR_WRITEBACK); 1746 1747 domain_dirty_limits(gdtc); 1748 1749 if (unlikely(strictlimit)) { 1750 wb_dirty_limits(gdtc); 1751 1752 dirty = gdtc->wb_dirty; 1753 thresh = gdtc->wb_thresh; 1754 bg_thresh = gdtc->wb_bg_thresh; 1755 } else { 1756 dirty = gdtc->dirty; 1757 thresh = gdtc->thresh; 1758 bg_thresh = gdtc->bg_thresh; 1759 } 1760 1761 if (mdtc) { 1762 unsigned long filepages, headroom, writeback; 1763 1764 /* 1765 * If @wb belongs to !root memcg, repeat the same 1766 * basic calculations for the memcg domain. 1767 */ 1768 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1769 &mdtc->dirty, &writeback); 1770 mdtc->dirty += writeback; 1771 mdtc_calc_avail(mdtc, filepages, headroom); 1772 1773 domain_dirty_limits(mdtc); 1774 1775 if (unlikely(strictlimit)) { 1776 wb_dirty_limits(mdtc); 1777 m_dirty = mdtc->wb_dirty; 1778 m_thresh = mdtc->wb_thresh; 1779 m_bg_thresh = mdtc->wb_bg_thresh; 1780 } else { 1781 m_dirty = mdtc->dirty; 1782 m_thresh = mdtc->thresh; 1783 m_bg_thresh = mdtc->bg_thresh; 1784 } 1785 } 1786 1787 /* 1788 * In laptop mode, we wait until hitting the higher threshold 1789 * before starting background writeout, and then write out all 1790 * the way down to the lower threshold. So slow writers cause 1791 * minimal disk activity. 1792 * 1793 * In normal mode, we start background writeout at the lower 1794 * background_thresh, to keep the amount of dirty memory low. 1795 */ 1796 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1797 !writeback_in_progress(wb)) 1798 wb_start_background_writeback(wb); 1799 1800 /* 1801 * Throttle it only when the background writeback cannot 1802 * catch-up. This avoids (excessively) small writeouts 1803 * when the wb limits are ramping up in case of !strictlimit. 1804 * 1805 * In strictlimit case make decision based on the wb counters 1806 * and limits. Small writeouts when the wb limits are ramping 1807 * up are the price we consciously pay for strictlimit-ing. 1808 * 1809 * If memcg domain is in effect, @dirty should be under 1810 * both global and memcg freerun ceilings. 1811 */ 1812 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1813 (!mdtc || 1814 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1815 unsigned long intv; 1816 unsigned long m_intv; 1817 1818 free_running: 1819 intv = dirty_poll_interval(dirty, thresh); 1820 m_intv = ULONG_MAX; 1821 1822 current->dirty_paused_when = now; 1823 current->nr_dirtied = 0; 1824 if (mdtc) 1825 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1826 current->nr_dirtied_pause = min(intv, m_intv); 1827 break; 1828 } 1829 1830 /* Start writeback even when in laptop mode */ 1831 if (unlikely(!writeback_in_progress(wb))) 1832 wb_start_background_writeback(wb); 1833 1834 mem_cgroup_flush_foreign(wb); 1835 1836 /* 1837 * Calculate global domain's pos_ratio and select the 1838 * global dtc by default. 1839 */ 1840 if (!strictlimit) { 1841 wb_dirty_limits(gdtc); 1842 1843 if ((current->flags & PF_LOCAL_THROTTLE) && 1844 gdtc->wb_dirty < 1845 dirty_freerun_ceiling(gdtc->wb_thresh, 1846 gdtc->wb_bg_thresh)) 1847 /* 1848 * LOCAL_THROTTLE tasks must not be throttled 1849 * when below the per-wb freerun ceiling. 1850 */ 1851 goto free_running; 1852 } 1853 1854 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1855 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1856 1857 wb_position_ratio(gdtc); 1858 sdtc = gdtc; 1859 1860 if (mdtc) { 1861 /* 1862 * If memcg domain is in effect, calculate its 1863 * pos_ratio. @wb should satisfy constraints from 1864 * both global and memcg domains. Choose the one 1865 * w/ lower pos_ratio. 1866 */ 1867 if (!strictlimit) { 1868 wb_dirty_limits(mdtc); 1869 1870 if ((current->flags & PF_LOCAL_THROTTLE) && 1871 mdtc->wb_dirty < 1872 dirty_freerun_ceiling(mdtc->wb_thresh, 1873 mdtc->wb_bg_thresh)) 1874 /* 1875 * LOCAL_THROTTLE tasks must not be 1876 * throttled when below the per-wb 1877 * freerun ceiling. 1878 */ 1879 goto free_running; 1880 } 1881 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1882 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1883 1884 wb_position_ratio(mdtc); 1885 if (mdtc->pos_ratio < gdtc->pos_ratio) 1886 sdtc = mdtc; 1887 } 1888 1889 if (dirty_exceeded != wb->dirty_exceeded) 1890 wb->dirty_exceeded = dirty_exceeded; 1891 1892 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1893 BANDWIDTH_INTERVAL)) 1894 __wb_update_bandwidth(gdtc, mdtc, true); 1895 1896 /* throttle according to the chosen dtc */ 1897 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1898 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1899 RATELIMIT_CALC_SHIFT; 1900 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1901 min_pause = wb_min_pause(wb, max_pause, 1902 task_ratelimit, dirty_ratelimit, 1903 &nr_dirtied_pause); 1904 1905 if (unlikely(task_ratelimit == 0)) { 1906 period = max_pause; 1907 pause = max_pause; 1908 goto pause; 1909 } 1910 period = HZ * pages_dirtied / task_ratelimit; 1911 pause = period; 1912 if (current->dirty_paused_when) 1913 pause -= now - current->dirty_paused_when; 1914 /* 1915 * For less than 1s think time (ext3/4 may block the dirtier 1916 * for up to 800ms from time to time on 1-HDD; so does xfs, 1917 * however at much less frequency), try to compensate it in 1918 * future periods by updating the virtual time; otherwise just 1919 * do a reset, as it may be a light dirtier. 1920 */ 1921 if (pause < min_pause) { 1922 trace_balance_dirty_pages(wb, 1923 sdtc->thresh, 1924 sdtc->bg_thresh, 1925 sdtc->dirty, 1926 sdtc->wb_thresh, 1927 sdtc->wb_dirty, 1928 dirty_ratelimit, 1929 task_ratelimit, 1930 pages_dirtied, 1931 period, 1932 min(pause, 0L), 1933 start_time); 1934 if (pause < -HZ) { 1935 current->dirty_paused_when = now; 1936 current->nr_dirtied = 0; 1937 } else if (period) { 1938 current->dirty_paused_when += period; 1939 current->nr_dirtied = 0; 1940 } else if (current->nr_dirtied_pause <= pages_dirtied) 1941 current->nr_dirtied_pause += pages_dirtied; 1942 break; 1943 } 1944 if (unlikely(pause > max_pause)) { 1945 /* for occasional dropped task_ratelimit */ 1946 now += min(pause - max_pause, max_pause); 1947 pause = max_pause; 1948 } 1949 1950 pause: 1951 trace_balance_dirty_pages(wb, 1952 sdtc->thresh, 1953 sdtc->bg_thresh, 1954 sdtc->dirty, 1955 sdtc->wb_thresh, 1956 sdtc->wb_dirty, 1957 dirty_ratelimit, 1958 task_ratelimit, 1959 pages_dirtied, 1960 period, 1961 pause, 1962 start_time); 1963 if (flags & BDP_ASYNC) { 1964 ret = -EAGAIN; 1965 break; 1966 } 1967 __set_current_state(TASK_KILLABLE); 1968 bdi->last_bdp_sleep = jiffies; 1969 io_schedule_timeout(pause); 1970 1971 current->dirty_paused_when = now + pause; 1972 current->nr_dirtied = 0; 1973 current->nr_dirtied_pause = nr_dirtied_pause; 1974 1975 /* 1976 * This is typically equal to (dirty < thresh) and can also 1977 * keep "1000+ dd on a slow USB stick" under control. 1978 */ 1979 if (task_ratelimit) 1980 break; 1981 1982 /* 1983 * In the case of an unresponsive NFS server and the NFS dirty 1984 * pages exceeds dirty_thresh, give the other good wb's a pipe 1985 * to go through, so that tasks on them still remain responsive. 1986 * 1987 * In theory 1 page is enough to keep the consumer-producer 1988 * pipe going: the flusher cleans 1 page => the task dirties 1 1989 * more page. However wb_dirty has accounting errors. So use 1990 * the larger and more IO friendly wb_stat_error. 1991 */ 1992 if (sdtc->wb_dirty <= wb_stat_error()) 1993 break; 1994 1995 if (fatal_signal_pending(current)) 1996 break; 1997 } 1998 return ret; 1999 } 2000 2001 static DEFINE_PER_CPU(int, bdp_ratelimits); 2002 2003 /* 2004 * Normal tasks are throttled by 2005 * loop { 2006 * dirty tsk->nr_dirtied_pause pages; 2007 * take a snap in balance_dirty_pages(); 2008 * } 2009 * However there is a worst case. If every task exit immediately when dirtied 2010 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2011 * called to throttle the page dirties. The solution is to save the not yet 2012 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2013 * randomly into the running tasks. This works well for the above worst case, 2014 * as the new task will pick up and accumulate the old task's leaked dirty 2015 * count and eventually get throttled. 2016 */ 2017 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2018 2019 /** 2020 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2021 * @mapping: address_space which was dirtied. 2022 * @flags: BDP flags. 2023 * 2024 * Processes which are dirtying memory should call in here once for each page 2025 * which was newly dirtied. The function will periodically check the system's 2026 * dirty state and will initiate writeback if needed. 2027 * 2028 * See balance_dirty_pages_ratelimited() for details. 2029 * 2030 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2031 * indicate that memory is out of balance and the caller must wait 2032 * for I/O to complete. Otherwise, it will return 0 to indicate 2033 * that either memory was already in balance, or it was able to sleep 2034 * until the amount of dirty memory returned to balance. 2035 */ 2036 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2037 unsigned int flags) 2038 { 2039 struct inode *inode = mapping->host; 2040 struct backing_dev_info *bdi = inode_to_bdi(inode); 2041 struct bdi_writeback *wb = NULL; 2042 int ratelimit; 2043 int ret = 0; 2044 int *p; 2045 2046 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2047 return ret; 2048 2049 if (inode_cgwb_enabled(inode)) 2050 wb = wb_get_create_current(bdi, GFP_KERNEL); 2051 if (!wb) 2052 wb = &bdi->wb; 2053 2054 ratelimit = current->nr_dirtied_pause; 2055 if (wb->dirty_exceeded) 2056 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2057 2058 preempt_disable(); 2059 /* 2060 * This prevents one CPU to accumulate too many dirtied pages without 2061 * calling into balance_dirty_pages(), which can happen when there are 2062 * 1000+ tasks, all of them start dirtying pages at exactly the same 2063 * time, hence all honoured too large initial task->nr_dirtied_pause. 2064 */ 2065 p = this_cpu_ptr(&bdp_ratelimits); 2066 if (unlikely(current->nr_dirtied >= ratelimit)) 2067 *p = 0; 2068 else if (unlikely(*p >= ratelimit_pages)) { 2069 *p = 0; 2070 ratelimit = 0; 2071 } 2072 /* 2073 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2074 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2075 * the dirty throttling and livelock other long-run dirtiers. 2076 */ 2077 p = this_cpu_ptr(&dirty_throttle_leaks); 2078 if (*p > 0 && current->nr_dirtied < ratelimit) { 2079 unsigned long nr_pages_dirtied; 2080 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2081 *p -= nr_pages_dirtied; 2082 current->nr_dirtied += nr_pages_dirtied; 2083 } 2084 preempt_enable(); 2085 2086 if (unlikely(current->nr_dirtied >= ratelimit)) 2087 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2088 2089 wb_put(wb); 2090 return ret; 2091 } 2092 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2093 2094 /** 2095 * balance_dirty_pages_ratelimited - balance dirty memory state. 2096 * @mapping: address_space which was dirtied. 2097 * 2098 * Processes which are dirtying memory should call in here once for each page 2099 * which was newly dirtied. The function will periodically check the system's 2100 * dirty state and will initiate writeback if needed. 2101 * 2102 * Once we're over the dirty memory limit we decrease the ratelimiting 2103 * by a lot, to prevent individual processes from overshooting the limit 2104 * by (ratelimit_pages) each. 2105 */ 2106 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2107 { 2108 balance_dirty_pages_ratelimited_flags(mapping, 0); 2109 } 2110 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2111 2112 /** 2113 * wb_over_bg_thresh - does @wb need to be written back? 2114 * @wb: bdi_writeback of interest 2115 * 2116 * Determines whether background writeback should keep writing @wb or it's 2117 * clean enough. 2118 * 2119 * Return: %true if writeback should continue. 2120 */ 2121 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2122 { 2123 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 2124 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 2125 struct dirty_throttle_control * const gdtc = &gdtc_stor; 2126 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 2127 &mdtc_stor : NULL; 2128 unsigned long reclaimable; 2129 unsigned long thresh; 2130 2131 /* 2132 * Similar to balance_dirty_pages() but ignores pages being written 2133 * as we're trying to decide whether to put more under writeback. 2134 */ 2135 gdtc->avail = global_dirtyable_memory(); 2136 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 2137 domain_dirty_limits(gdtc); 2138 2139 if (gdtc->dirty > gdtc->bg_thresh) 2140 return true; 2141 2142 thresh = __wb_calc_thresh(gdtc, gdtc->bg_thresh); 2143 if (thresh < 2 * wb_stat_error()) 2144 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2145 else 2146 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2147 2148 if (reclaimable > thresh) 2149 return true; 2150 2151 if (mdtc) { 2152 unsigned long filepages, headroom, writeback; 2153 2154 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 2155 &writeback); 2156 mdtc_calc_avail(mdtc, filepages, headroom); 2157 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 2158 2159 if (mdtc->dirty > mdtc->bg_thresh) 2160 return true; 2161 2162 thresh = __wb_calc_thresh(mdtc, mdtc->bg_thresh); 2163 if (thresh < 2 * wb_stat_error()) 2164 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2165 else 2166 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2167 2168 if (reclaimable > thresh) 2169 return true; 2170 } 2171 2172 return false; 2173 } 2174 2175 #ifdef CONFIG_SYSCTL 2176 /* 2177 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2178 */ 2179 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2180 void *buffer, size_t *length, loff_t *ppos) 2181 { 2182 unsigned int old_interval = dirty_writeback_interval; 2183 int ret; 2184 2185 ret = proc_dointvec(table, write, buffer, length, ppos); 2186 2187 /* 2188 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2189 * and a different non-zero value will wakeup the writeback threads. 2190 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2191 * iterate over all bdis and wbs. 2192 * The reason we do this is to make the change take effect immediately. 2193 */ 2194 if (!ret && write && dirty_writeback_interval && 2195 dirty_writeback_interval != old_interval) 2196 wakeup_flusher_threads(WB_REASON_PERIODIC); 2197 2198 return ret; 2199 } 2200 #endif 2201 2202 void laptop_mode_timer_fn(struct timer_list *t) 2203 { 2204 struct backing_dev_info *backing_dev_info = 2205 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2206 2207 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2208 } 2209 2210 /* 2211 * We've spun up the disk and we're in laptop mode: schedule writeback 2212 * of all dirty data a few seconds from now. If the flush is already scheduled 2213 * then push it back - the user is still using the disk. 2214 */ 2215 void laptop_io_completion(struct backing_dev_info *info) 2216 { 2217 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2218 } 2219 2220 /* 2221 * We're in laptop mode and we've just synced. The sync's writes will have 2222 * caused another writeback to be scheduled by laptop_io_completion. 2223 * Nothing needs to be written back anymore, so we unschedule the writeback. 2224 */ 2225 void laptop_sync_completion(void) 2226 { 2227 struct backing_dev_info *bdi; 2228 2229 rcu_read_lock(); 2230 2231 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2232 del_timer(&bdi->laptop_mode_wb_timer); 2233 2234 rcu_read_unlock(); 2235 } 2236 2237 /* 2238 * If ratelimit_pages is too high then we can get into dirty-data overload 2239 * if a large number of processes all perform writes at the same time. 2240 * 2241 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2242 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2243 * thresholds. 2244 */ 2245 2246 void writeback_set_ratelimit(void) 2247 { 2248 struct wb_domain *dom = &global_wb_domain; 2249 unsigned long background_thresh; 2250 unsigned long dirty_thresh; 2251 2252 global_dirty_limits(&background_thresh, &dirty_thresh); 2253 dom->dirty_limit = dirty_thresh; 2254 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2255 if (ratelimit_pages < 16) 2256 ratelimit_pages = 16; 2257 } 2258 2259 static int page_writeback_cpu_online(unsigned int cpu) 2260 { 2261 writeback_set_ratelimit(); 2262 return 0; 2263 } 2264 2265 #ifdef CONFIG_SYSCTL 2266 2267 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2268 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2269 2270 static struct ctl_table vm_page_writeback_sysctls[] = { 2271 { 2272 .procname = "dirty_background_ratio", 2273 .data = &dirty_background_ratio, 2274 .maxlen = sizeof(dirty_background_ratio), 2275 .mode = 0644, 2276 .proc_handler = dirty_background_ratio_handler, 2277 .extra1 = SYSCTL_ZERO, 2278 .extra2 = SYSCTL_ONE_HUNDRED, 2279 }, 2280 { 2281 .procname = "dirty_background_bytes", 2282 .data = &dirty_background_bytes, 2283 .maxlen = sizeof(dirty_background_bytes), 2284 .mode = 0644, 2285 .proc_handler = dirty_background_bytes_handler, 2286 .extra1 = SYSCTL_LONG_ONE, 2287 }, 2288 { 2289 .procname = "dirty_ratio", 2290 .data = &vm_dirty_ratio, 2291 .maxlen = sizeof(vm_dirty_ratio), 2292 .mode = 0644, 2293 .proc_handler = dirty_ratio_handler, 2294 .extra1 = SYSCTL_ZERO, 2295 .extra2 = SYSCTL_ONE_HUNDRED, 2296 }, 2297 { 2298 .procname = "dirty_bytes", 2299 .data = &vm_dirty_bytes, 2300 .maxlen = sizeof(vm_dirty_bytes), 2301 .mode = 0644, 2302 .proc_handler = dirty_bytes_handler, 2303 .extra1 = (void *)&dirty_bytes_min, 2304 }, 2305 { 2306 .procname = "dirty_writeback_centisecs", 2307 .data = &dirty_writeback_interval, 2308 .maxlen = sizeof(dirty_writeback_interval), 2309 .mode = 0644, 2310 .proc_handler = dirty_writeback_centisecs_handler, 2311 }, 2312 { 2313 .procname = "dirty_expire_centisecs", 2314 .data = &dirty_expire_interval, 2315 .maxlen = sizeof(dirty_expire_interval), 2316 .mode = 0644, 2317 .proc_handler = proc_dointvec_minmax, 2318 .extra1 = SYSCTL_ZERO, 2319 }, 2320 #ifdef CONFIG_HIGHMEM 2321 { 2322 .procname = "highmem_is_dirtyable", 2323 .data = &vm_highmem_is_dirtyable, 2324 .maxlen = sizeof(vm_highmem_is_dirtyable), 2325 .mode = 0644, 2326 .proc_handler = proc_dointvec_minmax, 2327 .extra1 = SYSCTL_ZERO, 2328 .extra2 = SYSCTL_ONE, 2329 }, 2330 #endif 2331 { 2332 .procname = "laptop_mode", 2333 .data = &laptop_mode, 2334 .maxlen = sizeof(laptop_mode), 2335 .mode = 0644, 2336 .proc_handler = proc_dointvec_jiffies, 2337 }, 2338 }; 2339 #endif 2340 2341 /* 2342 * Called early on to tune the page writeback dirty limits. 2343 * 2344 * We used to scale dirty pages according to how total memory 2345 * related to pages that could be allocated for buffers. 2346 * 2347 * However, that was when we used "dirty_ratio" to scale with 2348 * all memory, and we don't do that any more. "dirty_ratio" 2349 * is now applied to total non-HIGHPAGE memory, and as such we can't 2350 * get into the old insane situation any more where we had 2351 * large amounts of dirty pages compared to a small amount of 2352 * non-HIGHMEM memory. 2353 * 2354 * But we might still want to scale the dirty_ratio by how 2355 * much memory the box has.. 2356 */ 2357 void __init page_writeback_init(void) 2358 { 2359 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2360 2361 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2362 page_writeback_cpu_online, NULL); 2363 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2364 page_writeback_cpu_online); 2365 #ifdef CONFIG_SYSCTL 2366 register_sysctl_init("vm", vm_page_writeback_sysctls); 2367 #endif 2368 } 2369 2370 /** 2371 * tag_pages_for_writeback - tag pages to be written by writeback 2372 * @mapping: address space structure to write 2373 * @start: starting page index 2374 * @end: ending page index (inclusive) 2375 * 2376 * This function scans the page range from @start to @end (inclusive) and tags 2377 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2378 * can then use the TOWRITE tag to identify pages eligible for writeback. 2379 * This mechanism is used to avoid livelocking of writeback by a process 2380 * steadily creating new dirty pages in the file (thus it is important for this 2381 * function to be quick so that it can tag pages faster than a dirtying process 2382 * can create them). 2383 */ 2384 void tag_pages_for_writeback(struct address_space *mapping, 2385 pgoff_t start, pgoff_t end) 2386 { 2387 XA_STATE(xas, &mapping->i_pages, start); 2388 unsigned int tagged = 0; 2389 void *page; 2390 2391 xas_lock_irq(&xas); 2392 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2393 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2394 if (++tagged % XA_CHECK_SCHED) 2395 continue; 2396 2397 xas_pause(&xas); 2398 xas_unlock_irq(&xas); 2399 cond_resched(); 2400 xas_lock_irq(&xas); 2401 } 2402 xas_unlock_irq(&xas); 2403 } 2404 EXPORT_SYMBOL(tag_pages_for_writeback); 2405 2406 static bool folio_prepare_writeback(struct address_space *mapping, 2407 struct writeback_control *wbc, struct folio *folio) 2408 { 2409 /* 2410 * Folio truncated or invalidated. We can freely skip it then, 2411 * even for data integrity operations: the folio has disappeared 2412 * concurrently, so there could be no real expectation of this 2413 * data integrity operation even if there is now a new, dirty 2414 * folio at the same pagecache index. 2415 */ 2416 if (unlikely(folio->mapping != mapping)) 2417 return false; 2418 2419 /* 2420 * Did somebody else write it for us? 2421 */ 2422 if (!folio_test_dirty(folio)) 2423 return false; 2424 2425 if (folio_test_writeback(folio)) { 2426 if (wbc->sync_mode == WB_SYNC_NONE) 2427 return false; 2428 folio_wait_writeback(folio); 2429 } 2430 BUG_ON(folio_test_writeback(folio)); 2431 2432 if (!folio_clear_dirty_for_io(folio)) 2433 return false; 2434 2435 return true; 2436 } 2437 2438 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2439 { 2440 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2441 return PAGECACHE_TAG_TOWRITE; 2442 return PAGECACHE_TAG_DIRTY; 2443 } 2444 2445 static pgoff_t wbc_end(struct writeback_control *wbc) 2446 { 2447 if (wbc->range_cyclic) 2448 return -1; 2449 return wbc->range_end >> PAGE_SHIFT; 2450 } 2451 2452 static struct folio *writeback_get_folio(struct address_space *mapping, 2453 struct writeback_control *wbc) 2454 { 2455 struct folio *folio; 2456 2457 retry: 2458 folio = folio_batch_next(&wbc->fbatch); 2459 if (!folio) { 2460 folio_batch_release(&wbc->fbatch); 2461 cond_resched(); 2462 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2463 wbc_to_tag(wbc), &wbc->fbatch); 2464 folio = folio_batch_next(&wbc->fbatch); 2465 if (!folio) 2466 return NULL; 2467 } 2468 2469 folio_lock(folio); 2470 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2471 folio_unlock(folio); 2472 goto retry; 2473 } 2474 2475 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2476 return folio; 2477 } 2478 2479 /** 2480 * writeback_iter - iterate folio of a mapping for writeback 2481 * @mapping: address space structure to write 2482 * @wbc: writeback context 2483 * @folio: previously iterated folio (%NULL to start) 2484 * @error: in-out pointer for writeback errors (see below) 2485 * 2486 * This function returns the next folio for the writeback operation described by 2487 * @wbc on @mapping and should be called in a while loop in the ->writepages 2488 * implementation. 2489 * 2490 * To start the writeback operation, %NULL is passed in the @folio argument, and 2491 * for every subsequent iteration the folio returned previously should be passed 2492 * back in. 2493 * 2494 * If there was an error in the per-folio writeback inside the writeback_iter() 2495 * loop, @error should be set to the error value. 2496 * 2497 * Once the writeback described in @wbc has finished, this function will return 2498 * %NULL and if there was an error in any iteration restore it to @error. 2499 * 2500 * Note: callers should not manually break out of the loop using break or goto 2501 * but must keep calling writeback_iter() until it returns %NULL. 2502 * 2503 * Return: the folio to write or %NULL if the loop is done. 2504 */ 2505 struct folio *writeback_iter(struct address_space *mapping, 2506 struct writeback_control *wbc, struct folio *folio, int *error) 2507 { 2508 if (!folio) { 2509 folio_batch_init(&wbc->fbatch); 2510 wbc->saved_err = *error = 0; 2511 2512 /* 2513 * For range cyclic writeback we remember where we stopped so 2514 * that we can continue where we stopped. 2515 * 2516 * For non-cyclic writeback we always start at the beginning of 2517 * the passed in range. 2518 */ 2519 if (wbc->range_cyclic) 2520 wbc->index = mapping->writeback_index; 2521 else 2522 wbc->index = wbc->range_start >> PAGE_SHIFT; 2523 2524 /* 2525 * To avoid livelocks when other processes dirty new pages, we 2526 * first tag pages which should be written back and only then 2527 * start writing them. 2528 * 2529 * For data-integrity writeback we have to be careful so that we 2530 * do not miss some pages (e.g., because some other process has 2531 * cleared the TOWRITE tag we set). The rule we follow is that 2532 * TOWRITE tag can be cleared only by the process clearing the 2533 * DIRTY tag (and submitting the page for I/O). 2534 */ 2535 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2536 tag_pages_for_writeback(mapping, wbc->index, 2537 wbc_end(wbc)); 2538 } else { 2539 wbc->nr_to_write -= folio_nr_pages(folio); 2540 2541 WARN_ON_ONCE(*error > 0); 2542 2543 /* 2544 * For integrity writeback we have to keep going until we have 2545 * written all the folios we tagged for writeback above, even if 2546 * we run past wbc->nr_to_write or encounter errors. 2547 * We stash away the first error we encounter in wbc->saved_err 2548 * so that it can be retrieved when we're done. This is because 2549 * the file system may still have state to clear for each folio. 2550 * 2551 * For background writeback we exit as soon as we run past 2552 * wbc->nr_to_write or encounter the first error. 2553 */ 2554 if (wbc->sync_mode == WB_SYNC_ALL) { 2555 if (*error && !wbc->saved_err) 2556 wbc->saved_err = *error; 2557 } else { 2558 if (*error || wbc->nr_to_write <= 0) 2559 goto done; 2560 } 2561 } 2562 2563 folio = writeback_get_folio(mapping, wbc); 2564 if (!folio) { 2565 /* 2566 * To avoid deadlocks between range_cyclic writeback and callers 2567 * that hold pages in PageWriteback to aggregate I/O until 2568 * the writeback iteration finishes, we do not loop back to the 2569 * start of the file. Doing so causes a page lock/page 2570 * writeback access order inversion - we should only ever lock 2571 * multiple pages in ascending page->index order, and looping 2572 * back to the start of the file violates that rule and causes 2573 * deadlocks. 2574 */ 2575 if (wbc->range_cyclic) 2576 mapping->writeback_index = 0; 2577 2578 /* 2579 * Return the first error we encountered (if there was any) to 2580 * the caller. 2581 */ 2582 *error = wbc->saved_err; 2583 } 2584 return folio; 2585 2586 done: 2587 if (wbc->range_cyclic) 2588 mapping->writeback_index = folio->index + folio_nr_pages(folio); 2589 folio_batch_release(&wbc->fbatch); 2590 return NULL; 2591 } 2592 EXPORT_SYMBOL_GPL(writeback_iter); 2593 2594 /** 2595 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2596 * @mapping: address space structure to write 2597 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2598 * @writepage: function called for each page 2599 * @data: data passed to writepage function 2600 * 2601 * Return: %0 on success, negative error code otherwise 2602 * 2603 * Note: please use writeback_iter() instead. 2604 */ 2605 int write_cache_pages(struct address_space *mapping, 2606 struct writeback_control *wbc, writepage_t writepage, 2607 void *data) 2608 { 2609 struct folio *folio = NULL; 2610 int error; 2611 2612 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2613 error = writepage(folio, wbc, data); 2614 if (error == AOP_WRITEPAGE_ACTIVATE) { 2615 folio_unlock(folio); 2616 error = 0; 2617 } 2618 } 2619 2620 return error; 2621 } 2622 EXPORT_SYMBOL(write_cache_pages); 2623 2624 static int writeback_use_writepage(struct address_space *mapping, 2625 struct writeback_control *wbc) 2626 { 2627 struct folio *folio = NULL; 2628 struct blk_plug plug; 2629 int err; 2630 2631 blk_start_plug(&plug); 2632 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2633 err = mapping->a_ops->writepage(&folio->page, wbc); 2634 if (err == AOP_WRITEPAGE_ACTIVATE) { 2635 folio_unlock(folio); 2636 err = 0; 2637 } 2638 mapping_set_error(mapping, err); 2639 } 2640 blk_finish_plug(&plug); 2641 2642 return err; 2643 } 2644 2645 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2646 { 2647 int ret; 2648 struct bdi_writeback *wb; 2649 2650 if (wbc->nr_to_write <= 0) 2651 return 0; 2652 wb = inode_to_wb_wbc(mapping->host, wbc); 2653 wb_bandwidth_estimate_start(wb); 2654 while (1) { 2655 if (mapping->a_ops->writepages) { 2656 ret = mapping->a_ops->writepages(mapping, wbc); 2657 } else if (mapping->a_ops->writepage) { 2658 ret = writeback_use_writepage(mapping, wbc); 2659 } else { 2660 /* deal with chardevs and other special files */ 2661 ret = 0; 2662 } 2663 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2664 break; 2665 2666 /* 2667 * Lacking an allocation context or the locality or writeback 2668 * state of any of the inode's pages, throttle based on 2669 * writeback activity on the local node. It's as good a 2670 * guess as any. 2671 */ 2672 reclaim_throttle(NODE_DATA(numa_node_id()), 2673 VMSCAN_THROTTLE_WRITEBACK); 2674 } 2675 /* 2676 * Usually few pages are written by now from those we've just submitted 2677 * but if there's constant writeback being submitted, this makes sure 2678 * writeback bandwidth is updated once in a while. 2679 */ 2680 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2681 BANDWIDTH_INTERVAL)) 2682 wb_update_bandwidth(wb); 2683 return ret; 2684 } 2685 2686 /* 2687 * For address_spaces which do not use buffers nor write back. 2688 */ 2689 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2690 { 2691 if (!folio_test_dirty(folio)) 2692 return !folio_test_set_dirty(folio); 2693 return false; 2694 } 2695 EXPORT_SYMBOL(noop_dirty_folio); 2696 2697 /* 2698 * Helper function for set_page_dirty family. 2699 * 2700 * Caller must hold folio_memcg_lock(). 2701 * 2702 * NOTE: This relies on being atomic wrt interrupts. 2703 */ 2704 static void folio_account_dirtied(struct folio *folio, 2705 struct address_space *mapping) 2706 { 2707 struct inode *inode = mapping->host; 2708 2709 trace_writeback_dirty_folio(folio, mapping); 2710 2711 if (mapping_can_writeback(mapping)) { 2712 struct bdi_writeback *wb; 2713 long nr = folio_nr_pages(folio); 2714 2715 inode_attach_wb(inode, folio); 2716 wb = inode_to_wb(inode); 2717 2718 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2719 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2720 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2721 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2722 wb_stat_mod(wb, WB_DIRTIED, nr); 2723 task_io_account_write(nr * PAGE_SIZE); 2724 current->nr_dirtied += nr; 2725 __this_cpu_add(bdp_ratelimits, nr); 2726 2727 mem_cgroup_track_foreign_dirty(folio, wb); 2728 } 2729 } 2730 2731 /* 2732 * Helper function for deaccounting dirty page without writeback. 2733 * 2734 * Caller must hold folio_memcg_lock(). 2735 */ 2736 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2737 { 2738 long nr = folio_nr_pages(folio); 2739 2740 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2741 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2742 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2743 task_io_account_cancelled_write(nr * PAGE_SIZE); 2744 } 2745 2746 /* 2747 * Mark the folio dirty, and set it dirty in the page cache. 2748 * 2749 * If warn is true, then emit a warning if the folio is not uptodate and has 2750 * not been truncated. 2751 * 2752 * The caller must hold folio_memcg_lock(). It is the caller's 2753 * responsibility to prevent the folio from being truncated while 2754 * this function is in progress, although it may have been truncated 2755 * before this function is called. Most callers have the folio locked. 2756 * A few have the folio blocked from truncation through other means (e.g. 2757 * zap_vma_pages() has it mapped and is holding the page table lock). 2758 * When called from mark_buffer_dirty(), the filesystem should hold a 2759 * reference to the buffer_head that is being marked dirty, which causes 2760 * try_to_free_buffers() to fail. 2761 */ 2762 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2763 int warn) 2764 { 2765 unsigned long flags; 2766 2767 xa_lock_irqsave(&mapping->i_pages, flags); 2768 if (folio->mapping) { /* Race with truncate? */ 2769 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2770 folio_account_dirtied(folio, mapping); 2771 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2772 PAGECACHE_TAG_DIRTY); 2773 } 2774 xa_unlock_irqrestore(&mapping->i_pages, flags); 2775 } 2776 2777 /** 2778 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2779 * @mapping: Address space this folio belongs to. 2780 * @folio: Folio to be marked as dirty. 2781 * 2782 * Filesystems which do not use buffer heads should call this function 2783 * from their dirty_folio address space operation. It ignores the 2784 * contents of folio_get_private(), so if the filesystem marks individual 2785 * blocks as dirty, the filesystem should handle that itself. 2786 * 2787 * This is also sometimes used by filesystems which use buffer_heads when 2788 * a single buffer is being dirtied: we want to set the folio dirty in 2789 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2790 * whereas block_dirty_folio() is a "top-down" dirtying. 2791 * 2792 * The caller must ensure this doesn't race with truncation. Most will 2793 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2794 * folio mapped and the pte lock held, which also locks out truncation. 2795 */ 2796 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2797 { 2798 folio_memcg_lock(folio); 2799 if (folio_test_set_dirty(folio)) { 2800 folio_memcg_unlock(folio); 2801 return false; 2802 } 2803 2804 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2805 folio_memcg_unlock(folio); 2806 2807 if (mapping->host) { 2808 /* !PageAnon && !swapper_space */ 2809 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2810 } 2811 return true; 2812 } 2813 EXPORT_SYMBOL(filemap_dirty_folio); 2814 2815 /** 2816 * folio_redirty_for_writepage - Decline to write a dirty folio. 2817 * @wbc: The writeback control. 2818 * @folio: The folio. 2819 * 2820 * When a writepage implementation decides that it doesn't want to write 2821 * @folio for some reason, it should call this function, unlock @folio and 2822 * return 0. 2823 * 2824 * Return: True if we redirtied the folio. False if someone else dirtied 2825 * it first. 2826 */ 2827 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2828 struct folio *folio) 2829 { 2830 struct address_space *mapping = folio->mapping; 2831 long nr = folio_nr_pages(folio); 2832 bool ret; 2833 2834 wbc->pages_skipped += nr; 2835 ret = filemap_dirty_folio(mapping, folio); 2836 if (mapping && mapping_can_writeback(mapping)) { 2837 struct inode *inode = mapping->host; 2838 struct bdi_writeback *wb; 2839 struct wb_lock_cookie cookie = {}; 2840 2841 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2842 current->nr_dirtied -= nr; 2843 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2844 wb_stat_mod(wb, WB_DIRTIED, -nr); 2845 unlocked_inode_to_wb_end(inode, &cookie); 2846 } 2847 return ret; 2848 } 2849 EXPORT_SYMBOL(folio_redirty_for_writepage); 2850 2851 /** 2852 * folio_mark_dirty - Mark a folio as being modified. 2853 * @folio: The folio. 2854 * 2855 * The folio may not be truncated while this function is running. 2856 * Holding the folio lock is sufficient to prevent truncation, but some 2857 * callers cannot acquire a sleeping lock. These callers instead hold 2858 * the page table lock for a page table which contains at least one page 2859 * in this folio. Truncation will block on the page table lock as it 2860 * unmaps pages before removing the folio from its mapping. 2861 * 2862 * Return: True if the folio was newly dirtied, false if it was already dirty. 2863 */ 2864 bool folio_mark_dirty(struct folio *folio) 2865 { 2866 struct address_space *mapping = folio_mapping(folio); 2867 2868 if (likely(mapping)) { 2869 /* 2870 * readahead/folio_deactivate could remain 2871 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2872 * About readahead, if the folio is written, the flags would be 2873 * reset. So no problem. 2874 * About folio_deactivate, if the folio is redirtied, 2875 * the flag will be reset. So no problem. but if the 2876 * folio is used by readahead it will confuse readahead 2877 * and make it restart the size rampup process. But it's 2878 * a trivial problem. 2879 */ 2880 if (folio_test_reclaim(folio)) 2881 folio_clear_reclaim(folio); 2882 return mapping->a_ops->dirty_folio(mapping, folio); 2883 } 2884 2885 return noop_dirty_folio(mapping, folio); 2886 } 2887 EXPORT_SYMBOL(folio_mark_dirty); 2888 2889 /* 2890 * set_page_dirty() is racy if the caller has no reference against 2891 * page->mapping->host, and if the page is unlocked. This is because another 2892 * CPU could truncate the page off the mapping and then free the mapping. 2893 * 2894 * Usually, the page _is_ locked, or the caller is a user-space process which 2895 * holds a reference on the inode by having an open file. 2896 * 2897 * In other cases, the page should be locked before running set_page_dirty(). 2898 */ 2899 int set_page_dirty_lock(struct page *page) 2900 { 2901 int ret; 2902 2903 lock_page(page); 2904 ret = set_page_dirty(page); 2905 unlock_page(page); 2906 return ret; 2907 } 2908 EXPORT_SYMBOL(set_page_dirty_lock); 2909 2910 /* 2911 * This cancels just the dirty bit on the kernel page itself, it does NOT 2912 * actually remove dirty bits on any mmap's that may be around. It also 2913 * leaves the page tagged dirty, so any sync activity will still find it on 2914 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2915 * look at the dirty bits in the VM. 2916 * 2917 * Doing this should *normally* only ever be done when a page is truncated, 2918 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2919 * this when it notices that somebody has cleaned out all the buffers on a 2920 * page without actually doing it through the VM. Can you say "ext3 is 2921 * horribly ugly"? Thought you could. 2922 */ 2923 void __folio_cancel_dirty(struct folio *folio) 2924 { 2925 struct address_space *mapping = folio_mapping(folio); 2926 2927 if (mapping_can_writeback(mapping)) { 2928 struct inode *inode = mapping->host; 2929 struct bdi_writeback *wb; 2930 struct wb_lock_cookie cookie = {}; 2931 2932 folio_memcg_lock(folio); 2933 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2934 2935 if (folio_test_clear_dirty(folio)) 2936 folio_account_cleaned(folio, wb); 2937 2938 unlocked_inode_to_wb_end(inode, &cookie); 2939 folio_memcg_unlock(folio); 2940 } else { 2941 folio_clear_dirty(folio); 2942 } 2943 } 2944 EXPORT_SYMBOL(__folio_cancel_dirty); 2945 2946 /* 2947 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2948 * Returns true if the folio was previously dirty. 2949 * 2950 * This is for preparing to put the folio under writeout. We leave 2951 * the folio tagged as dirty in the xarray so that a concurrent 2952 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2953 * The ->writepage implementation will run either folio_start_writeback() 2954 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2955 * and xarray dirty tag back into sync. 2956 * 2957 * This incoherency between the folio's dirty flag and xarray tag is 2958 * unfortunate, but it only exists while the folio is locked. 2959 */ 2960 bool folio_clear_dirty_for_io(struct folio *folio) 2961 { 2962 struct address_space *mapping = folio_mapping(folio); 2963 bool ret = false; 2964 2965 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2966 2967 if (mapping && mapping_can_writeback(mapping)) { 2968 struct inode *inode = mapping->host; 2969 struct bdi_writeback *wb; 2970 struct wb_lock_cookie cookie = {}; 2971 2972 /* 2973 * Yes, Virginia, this is indeed insane. 2974 * 2975 * We use this sequence to make sure that 2976 * (a) we account for dirty stats properly 2977 * (b) we tell the low-level filesystem to 2978 * mark the whole folio dirty if it was 2979 * dirty in a pagetable. Only to then 2980 * (c) clean the folio again and return 1 to 2981 * cause the writeback. 2982 * 2983 * This way we avoid all nasty races with the 2984 * dirty bit in multiple places and clearing 2985 * them concurrently from different threads. 2986 * 2987 * Note! Normally the "folio_mark_dirty(folio)" 2988 * has no effect on the actual dirty bit - since 2989 * that will already usually be set. But we 2990 * need the side effects, and it can help us 2991 * avoid races. 2992 * 2993 * We basically use the folio "master dirty bit" 2994 * as a serialization point for all the different 2995 * threads doing their things. 2996 */ 2997 if (folio_mkclean(folio)) 2998 folio_mark_dirty(folio); 2999 /* 3000 * We carefully synchronise fault handlers against 3001 * installing a dirty pte and marking the folio dirty 3002 * at this point. We do this by having them hold the 3003 * page lock while dirtying the folio, and folios are 3004 * always locked coming in here, so we get the desired 3005 * exclusion. 3006 */ 3007 wb = unlocked_inode_to_wb_begin(inode, &cookie); 3008 if (folio_test_clear_dirty(folio)) { 3009 long nr = folio_nr_pages(folio); 3010 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 3011 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3012 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 3013 ret = true; 3014 } 3015 unlocked_inode_to_wb_end(inode, &cookie); 3016 return ret; 3017 } 3018 return folio_test_clear_dirty(folio); 3019 } 3020 EXPORT_SYMBOL(folio_clear_dirty_for_io); 3021 3022 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3023 { 3024 atomic_inc(&wb->writeback_inodes); 3025 } 3026 3027 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3028 { 3029 unsigned long flags; 3030 atomic_dec(&wb->writeback_inodes); 3031 /* 3032 * Make sure estimate of writeback throughput gets updated after 3033 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3034 * (which is the interval other bandwidth updates use for batching) so 3035 * that if multiple inodes end writeback at a similar time, they get 3036 * batched into one bandwidth update. 3037 */ 3038 spin_lock_irqsave(&wb->work_lock, flags); 3039 if (test_bit(WB_registered, &wb->state)) 3040 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3041 spin_unlock_irqrestore(&wb->work_lock, flags); 3042 } 3043 3044 bool __folio_end_writeback(struct folio *folio) 3045 { 3046 long nr = folio_nr_pages(folio); 3047 struct address_space *mapping = folio_mapping(folio); 3048 bool ret; 3049 3050 folio_memcg_lock(folio); 3051 if (mapping && mapping_use_writeback_tags(mapping)) { 3052 struct inode *inode = mapping->host; 3053 struct backing_dev_info *bdi = inode_to_bdi(inode); 3054 unsigned long flags; 3055 3056 xa_lock_irqsave(&mapping->i_pages, flags); 3057 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3058 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3059 PAGECACHE_TAG_WRITEBACK); 3060 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3061 struct bdi_writeback *wb = inode_to_wb(inode); 3062 3063 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3064 __wb_writeout_add(wb, nr); 3065 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3066 wb_inode_writeback_end(wb); 3067 } 3068 3069 if (mapping->host && !mapping_tagged(mapping, 3070 PAGECACHE_TAG_WRITEBACK)) 3071 sb_clear_inode_writeback(mapping->host); 3072 3073 xa_unlock_irqrestore(&mapping->i_pages, flags); 3074 } else { 3075 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3076 } 3077 3078 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3079 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3080 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3081 folio_memcg_unlock(folio); 3082 3083 return ret; 3084 } 3085 3086 void __folio_start_writeback(struct folio *folio, bool keep_write) 3087 { 3088 long nr = folio_nr_pages(folio); 3089 struct address_space *mapping = folio_mapping(folio); 3090 int access_ret; 3091 3092 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3093 3094 folio_memcg_lock(folio); 3095 if (mapping && mapping_use_writeback_tags(mapping)) { 3096 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3097 struct inode *inode = mapping->host; 3098 struct backing_dev_info *bdi = inode_to_bdi(inode); 3099 unsigned long flags; 3100 bool on_wblist; 3101 3102 xas_lock_irqsave(&xas, flags); 3103 xas_load(&xas); 3104 folio_test_set_writeback(folio); 3105 3106 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3107 3108 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3109 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3110 struct bdi_writeback *wb = inode_to_wb(inode); 3111 3112 wb_stat_mod(wb, WB_WRITEBACK, nr); 3113 if (!on_wblist) 3114 wb_inode_writeback_start(wb); 3115 } 3116 3117 /* 3118 * We can come through here when swapping anonymous 3119 * folios, so we don't necessarily have an inode to 3120 * track for sync. 3121 */ 3122 if (mapping->host && !on_wblist) 3123 sb_mark_inode_writeback(mapping->host); 3124 if (!folio_test_dirty(folio)) 3125 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3126 if (!keep_write) 3127 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3128 xas_unlock_irqrestore(&xas, flags); 3129 } else { 3130 folio_test_set_writeback(folio); 3131 } 3132 3133 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3134 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3135 folio_memcg_unlock(folio); 3136 3137 access_ret = arch_make_folio_accessible(folio); 3138 /* 3139 * If writeback has been triggered on a page that cannot be made 3140 * accessible, it is too late to recover here. 3141 */ 3142 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3143 } 3144 EXPORT_SYMBOL(__folio_start_writeback); 3145 3146 /** 3147 * folio_wait_writeback - Wait for a folio to finish writeback. 3148 * @folio: The folio to wait for. 3149 * 3150 * If the folio is currently being written back to storage, wait for the 3151 * I/O to complete. 3152 * 3153 * Context: Sleeps. Must be called in process context and with 3154 * no spinlocks held. Caller should hold a reference on the folio. 3155 * If the folio is not locked, writeback may start again after writeback 3156 * has finished. 3157 */ 3158 void folio_wait_writeback(struct folio *folio) 3159 { 3160 while (folio_test_writeback(folio)) { 3161 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3162 folio_wait_bit(folio, PG_writeback); 3163 } 3164 } 3165 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3166 3167 /** 3168 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3169 * @folio: The folio to wait for. 3170 * 3171 * If the folio is currently being written back to storage, wait for the 3172 * I/O to complete or a fatal signal to arrive. 3173 * 3174 * Context: Sleeps. Must be called in process context and with 3175 * no spinlocks held. Caller should hold a reference on the folio. 3176 * If the folio is not locked, writeback may start again after writeback 3177 * has finished. 3178 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3179 */ 3180 int folio_wait_writeback_killable(struct folio *folio) 3181 { 3182 while (folio_test_writeback(folio)) { 3183 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3184 if (folio_wait_bit_killable(folio, PG_writeback)) 3185 return -EINTR; 3186 } 3187 3188 return 0; 3189 } 3190 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3191 3192 /** 3193 * folio_wait_stable() - wait for writeback to finish, if necessary. 3194 * @folio: The folio to wait on. 3195 * 3196 * This function determines if the given folio is related to a backing 3197 * device that requires folio contents to be held stable during writeback. 3198 * If so, then it will wait for any pending writeback to complete. 3199 * 3200 * Context: Sleeps. Must be called in process context and with 3201 * no spinlocks held. Caller should hold a reference on the folio. 3202 * If the folio is not locked, writeback may start again after writeback 3203 * has finished. 3204 */ 3205 void folio_wait_stable(struct folio *folio) 3206 { 3207 if (mapping_stable_writes(folio_mapping(folio))) 3208 folio_wait_writeback(folio); 3209 } 3210 EXPORT_SYMBOL_GPL(folio_wait_stable); 3211