xref: /linux/mm/page-writeback.c (revision 3e7819886281e077e82006fe4804b0d6b0f5643b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 };
143 
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150 
151 #ifdef CONFIG_CGROUP_WRITEBACK
152 
153 #define GDTC_INIT(__wb)		.wb = (__wb),				\
154 				.dom = &global_wb_domain,		\
155 				.wb_completions = &(__wb)->completions
156 
157 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
158 
159 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
160 				.dom = mem_cgroup_wb_domain(__wb),	\
161 				.wb_completions = &(__wb)->memcg_completions, \
162 				.gdtc = __gdtc
163 
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166 	return dtc->dom;
167 }
168 
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176 	return mdtc->gdtc;
177 }
178 
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181 	return &wb->memcg_completions;
182 }
183 
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 			     unsigned long *minp, unsigned long *maxp)
186 {
187 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 	unsigned long long min = wb->bdi->min_ratio;
190 	unsigned long long max = wb->bdi->max_ratio;
191 
192 	/*
193 	 * @wb may already be clean by the time control reaches here and
194 	 * the total may not include its bw.
195 	 */
196 	if (this_bw < tot_bw) {
197 		if (min) {
198 			min *= this_bw;
199 			min = div64_ul(min, tot_bw);
200 		}
201 		if (max < 100 * BDI_RATIO_SCALE) {
202 			max *= this_bw;
203 			max = div64_ul(max, tot_bw);
204 		}
205 	}
206 
207 	*minp = min;
208 	*maxp = max;
209 }
210 
211 #else	/* CONFIG_CGROUP_WRITEBACK */
212 
213 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
214 				.wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217 
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220 	return false;
221 }
222 
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225 	return &global_wb_domain;
226 }
227 
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230 	return NULL;
231 }
232 
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235 	return NULL;
236 }
237 
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 			     unsigned long *minp, unsigned long *maxp)
240 {
241 	*minp = wb->bdi->min_ratio;
242 	*maxp = wb->bdi->max_ratio;
243 }
244 
245 #endif	/* CONFIG_CGROUP_WRITEBACK */
246 
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264 
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274 	unsigned long nr_pages = 0;
275 	int z;
276 
277 	for (z = 0; z < MAX_NR_ZONES; z++) {
278 		struct zone *zone = pgdat->node_zones + z;
279 
280 		if (!populated_zone(zone))
281 			continue;
282 
283 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 	}
285 
286 	/*
287 	 * Pages reserved for the kernel should not be considered
288 	 * dirtyable, to prevent a situation where reclaim has to
289 	 * clean pages in order to balance the zones.
290 	 */
291 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292 
293 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295 
296 	return nr_pages;
297 }
298 
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302 	int node;
303 	unsigned long x = 0;
304 	int i;
305 
306 	for_each_node_state(node, N_HIGH_MEMORY) {
307 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 			struct zone *z;
309 			unsigned long nr_pages;
310 
311 			if (!is_highmem_idx(i))
312 				continue;
313 
314 			z = &NODE_DATA(node)->node_zones[i];
315 			if (!populated_zone(z))
316 				continue;
317 
318 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 			/* watch for underflows */
320 			nr_pages -= min(nr_pages, high_wmark_pages(z));
321 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 			x += nr_pages;
324 		}
325 	}
326 
327 	/*
328 	 * Make sure that the number of highmem pages is never larger
329 	 * than the number of the total dirtyable memory. This can only
330 	 * occur in very strange VM situations but we want to make sure
331 	 * that this does not occur.
332 	 */
333 	return min(x, total);
334 #else
335 	return 0;
336 #endif
337 }
338 
339 /**
340  * global_dirtyable_memory - number of globally dirtyable pages
341  *
342  * Return: the global number of pages potentially available for dirty
343  * page cache.  This is the base value for the global dirty limits.
344  */
345 static unsigned long global_dirtyable_memory(void)
346 {
347 	unsigned long x;
348 
349 	x = global_zone_page_state(NR_FREE_PAGES);
350 	/*
351 	 * Pages reserved for the kernel should not be considered
352 	 * dirtyable, to prevent a situation where reclaim has to
353 	 * clean pages in order to balance the zones.
354 	 */
355 	x -= min(x, totalreserve_pages);
356 
357 	x += global_node_page_state(NR_INACTIVE_FILE);
358 	x += global_node_page_state(NR_ACTIVE_FILE);
359 
360 	if (!vm_highmem_is_dirtyable)
361 		x -= highmem_dirtyable_memory(x);
362 
363 	return x + 1;	/* Ensure that we never return 0 */
364 }
365 
366 /**
367  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368  * @dtc: dirty_throttle_control of interest
369  *
370  * Calculate @dtc->thresh and ->bg_thresh considering
371  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
372  * must ensure that @dtc->avail is set before calling this function.  The
373  * dirty limits will be lifted by 1/4 for real-time tasks.
374  */
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377 	const unsigned long available_memory = dtc->avail;
378 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 	unsigned long bytes = vm_dirty_bytes;
380 	unsigned long bg_bytes = dirty_background_bytes;
381 	/* convert ratios to per-PAGE_SIZE for higher precision */
382 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384 	unsigned long thresh;
385 	unsigned long bg_thresh;
386 	struct task_struct *tsk;
387 
388 	/* gdtc is !NULL iff @dtc is for memcg domain */
389 	if (gdtc) {
390 		unsigned long global_avail = gdtc->avail;
391 
392 		/*
393 		 * The byte settings can't be applied directly to memcg
394 		 * domains.  Convert them to ratios by scaling against
395 		 * globally available memory.  As the ratios are in
396 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 		 * number of pages.
398 		 */
399 		if (bytes)
400 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 				    PAGE_SIZE);
402 		if (bg_bytes)
403 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 				       PAGE_SIZE);
405 		bytes = bg_bytes = 0;
406 	}
407 
408 	if (bytes)
409 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410 	else
411 		thresh = (ratio * available_memory) / PAGE_SIZE;
412 
413 	if (bg_bytes)
414 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415 	else
416 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417 
418 	tsk = current;
419 	if (rt_task(tsk)) {
420 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
421 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
422 	}
423 	/*
424 	 * Dirty throttling logic assumes the limits in page units fit into
425 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
426 	 */
427 	if (thresh > UINT_MAX)
428 		thresh = UINT_MAX;
429 	/* This makes sure bg_thresh is within 32-bits as well */
430 	if (bg_thresh >= thresh)
431 		bg_thresh = thresh / 2;
432 	dtc->thresh = thresh;
433 	dtc->bg_thresh = bg_thresh;
434 
435 	/* we should eventually report the domain in the TP */
436 	if (!gdtc)
437 		trace_global_dirty_state(bg_thresh, thresh);
438 }
439 
440 /**
441  * global_dirty_limits - background-writeback and dirty-throttling thresholds
442  * @pbackground: out parameter for bg_thresh
443  * @pdirty: out parameter for thresh
444  *
445  * Calculate bg_thresh and thresh for global_wb_domain.  See
446  * domain_dirty_limits() for details.
447  */
448 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
449 {
450 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
451 
452 	gdtc.avail = global_dirtyable_memory();
453 	domain_dirty_limits(&gdtc);
454 
455 	*pbackground = gdtc.bg_thresh;
456 	*pdirty = gdtc.thresh;
457 }
458 
459 /**
460  * node_dirty_limit - maximum number of dirty pages allowed in a node
461  * @pgdat: the node
462  *
463  * Return: the maximum number of dirty pages allowed in a node, based
464  * on the node's dirtyable memory.
465  */
466 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
467 {
468 	unsigned long node_memory = node_dirtyable_memory(pgdat);
469 	struct task_struct *tsk = current;
470 	unsigned long dirty;
471 
472 	if (vm_dirty_bytes)
473 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
474 			node_memory / global_dirtyable_memory();
475 	else
476 		dirty = vm_dirty_ratio * node_memory / 100;
477 
478 	if (rt_task(tsk))
479 		dirty += dirty / 4;
480 
481 	/*
482 	 * Dirty throttling logic assumes the limits in page units fit into
483 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
484 	 */
485 	return min_t(unsigned long, dirty, UINT_MAX);
486 }
487 
488 /**
489  * node_dirty_ok - tells whether a node is within its dirty limits
490  * @pgdat: the node to check
491  *
492  * Return: %true when the dirty pages in @pgdat are within the node's
493  * dirty limit, %false if the limit is exceeded.
494  */
495 bool node_dirty_ok(struct pglist_data *pgdat)
496 {
497 	unsigned long limit = node_dirty_limit(pgdat);
498 	unsigned long nr_pages = 0;
499 
500 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
501 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
502 
503 	return nr_pages <= limit;
504 }
505 
506 #ifdef CONFIG_SYSCTL
507 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
508 		void *buffer, size_t *lenp, loff_t *ppos)
509 {
510 	int ret;
511 
512 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 	if (ret == 0 && write)
514 		dirty_background_bytes = 0;
515 	return ret;
516 }
517 
518 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
519 		void *buffer, size_t *lenp, loff_t *ppos)
520 {
521 	int ret;
522 	unsigned long old_bytes = dirty_background_bytes;
523 
524 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
525 	if (ret == 0 && write) {
526 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
527 								UINT_MAX) {
528 			dirty_background_bytes = old_bytes;
529 			return -ERANGE;
530 		}
531 		dirty_background_ratio = 0;
532 	}
533 	return ret;
534 }
535 
536 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
537 		size_t *lenp, loff_t *ppos)
538 {
539 	int old_ratio = vm_dirty_ratio;
540 	int ret;
541 
542 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
543 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
544 		writeback_set_ratelimit();
545 		vm_dirty_bytes = 0;
546 	}
547 	return ret;
548 }
549 
550 static int dirty_bytes_handler(struct ctl_table *table, int write,
551 		void *buffer, size_t *lenp, loff_t *ppos)
552 {
553 	unsigned long old_bytes = vm_dirty_bytes;
554 	int ret;
555 
556 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
557 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
558 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
559 			vm_dirty_bytes = old_bytes;
560 			return -ERANGE;
561 		}
562 		writeback_set_ratelimit();
563 		vm_dirty_ratio = 0;
564 	}
565 	return ret;
566 }
567 #endif
568 
569 static unsigned long wp_next_time(unsigned long cur_time)
570 {
571 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
572 	/* 0 has a special meaning... */
573 	if (!cur_time)
574 		return 1;
575 	return cur_time;
576 }
577 
578 static void wb_domain_writeout_add(struct wb_domain *dom,
579 				   struct fprop_local_percpu *completions,
580 				   unsigned int max_prop_frac, long nr)
581 {
582 	__fprop_add_percpu_max(&dom->completions, completions,
583 			       max_prop_frac, nr);
584 	/* First event after period switching was turned off? */
585 	if (unlikely(!dom->period_time)) {
586 		/*
587 		 * We can race with other __bdi_writeout_inc calls here but
588 		 * it does not cause any harm since the resulting time when
589 		 * timer will fire and what is in writeout_period_time will be
590 		 * roughly the same.
591 		 */
592 		dom->period_time = wp_next_time(jiffies);
593 		mod_timer(&dom->period_timer, dom->period_time);
594 	}
595 }
596 
597 /*
598  * Increment @wb's writeout completion count and the global writeout
599  * completion count. Called from __folio_end_writeback().
600  */
601 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
602 {
603 	struct wb_domain *cgdom;
604 
605 	wb_stat_mod(wb, WB_WRITTEN, nr);
606 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
607 			       wb->bdi->max_prop_frac, nr);
608 
609 	cgdom = mem_cgroup_wb_domain(wb);
610 	if (cgdom)
611 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
612 				       wb->bdi->max_prop_frac, nr);
613 }
614 
615 void wb_writeout_inc(struct bdi_writeback *wb)
616 {
617 	unsigned long flags;
618 
619 	local_irq_save(flags);
620 	__wb_writeout_add(wb, 1);
621 	local_irq_restore(flags);
622 }
623 EXPORT_SYMBOL_GPL(wb_writeout_inc);
624 
625 /*
626  * On idle system, we can be called long after we scheduled because we use
627  * deferred timers so count with missed periods.
628  */
629 static void writeout_period(struct timer_list *t)
630 {
631 	struct wb_domain *dom = from_timer(dom, t, period_timer);
632 	int miss_periods = (jiffies - dom->period_time) /
633 						 VM_COMPLETIONS_PERIOD_LEN;
634 
635 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
636 		dom->period_time = wp_next_time(dom->period_time +
637 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
638 		mod_timer(&dom->period_timer, dom->period_time);
639 	} else {
640 		/*
641 		 * Aging has zeroed all fractions. Stop wasting CPU on period
642 		 * updates.
643 		 */
644 		dom->period_time = 0;
645 	}
646 }
647 
648 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
649 {
650 	memset(dom, 0, sizeof(*dom));
651 
652 	spin_lock_init(&dom->lock);
653 
654 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
655 
656 	dom->dirty_limit_tstamp = jiffies;
657 
658 	return fprop_global_init(&dom->completions, gfp);
659 }
660 
661 #ifdef CONFIG_CGROUP_WRITEBACK
662 void wb_domain_exit(struct wb_domain *dom)
663 {
664 	del_timer_sync(&dom->period_timer);
665 	fprop_global_destroy(&dom->completions);
666 }
667 #endif
668 
669 /*
670  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
671  * registered backing devices, which, for obvious reasons, can not
672  * exceed 100%.
673  */
674 static unsigned int bdi_min_ratio;
675 
676 static int bdi_check_pages_limit(unsigned long pages)
677 {
678 	unsigned long max_dirty_pages = global_dirtyable_memory();
679 
680 	if (pages > max_dirty_pages)
681 		return -EINVAL;
682 
683 	return 0;
684 }
685 
686 static unsigned long bdi_ratio_from_pages(unsigned long pages)
687 {
688 	unsigned long background_thresh;
689 	unsigned long dirty_thresh;
690 	unsigned long ratio;
691 
692 	global_dirty_limits(&background_thresh, &dirty_thresh);
693 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
694 
695 	return ratio;
696 }
697 
698 static u64 bdi_get_bytes(unsigned int ratio)
699 {
700 	unsigned long background_thresh;
701 	unsigned long dirty_thresh;
702 	u64 bytes;
703 
704 	global_dirty_limits(&background_thresh, &dirty_thresh);
705 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
706 
707 	return bytes;
708 }
709 
710 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
711 {
712 	unsigned int delta;
713 	int ret = 0;
714 
715 	if (min_ratio > 100 * BDI_RATIO_SCALE)
716 		return -EINVAL;
717 
718 	spin_lock_bh(&bdi_lock);
719 	if (min_ratio > bdi->max_ratio) {
720 		ret = -EINVAL;
721 	} else {
722 		if (min_ratio < bdi->min_ratio) {
723 			delta = bdi->min_ratio - min_ratio;
724 			bdi_min_ratio -= delta;
725 			bdi->min_ratio = min_ratio;
726 		} else {
727 			delta = min_ratio - bdi->min_ratio;
728 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
729 				bdi_min_ratio += delta;
730 				bdi->min_ratio = min_ratio;
731 			} else {
732 				ret = -EINVAL;
733 			}
734 		}
735 	}
736 	spin_unlock_bh(&bdi_lock);
737 
738 	return ret;
739 }
740 
741 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
742 {
743 	int ret = 0;
744 
745 	if (max_ratio > 100 * BDI_RATIO_SCALE)
746 		return -EINVAL;
747 
748 	spin_lock_bh(&bdi_lock);
749 	if (bdi->min_ratio > max_ratio) {
750 		ret = -EINVAL;
751 	} else {
752 		bdi->max_ratio = max_ratio;
753 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
754 						(100 * BDI_RATIO_SCALE);
755 	}
756 	spin_unlock_bh(&bdi_lock);
757 
758 	return ret;
759 }
760 
761 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
762 {
763 	return __bdi_set_min_ratio(bdi, min_ratio);
764 }
765 
766 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
767 {
768 	return __bdi_set_max_ratio(bdi, max_ratio);
769 }
770 
771 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
772 {
773 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
774 }
775 
776 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
777 {
778 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
779 }
780 EXPORT_SYMBOL(bdi_set_max_ratio);
781 
782 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
783 {
784 	return bdi_get_bytes(bdi->min_ratio);
785 }
786 
787 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
788 {
789 	int ret;
790 	unsigned long pages = min_bytes >> PAGE_SHIFT;
791 	unsigned long min_ratio;
792 
793 	ret = bdi_check_pages_limit(pages);
794 	if (ret)
795 		return ret;
796 
797 	min_ratio = bdi_ratio_from_pages(pages);
798 	return __bdi_set_min_ratio(bdi, min_ratio);
799 }
800 
801 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
802 {
803 	return bdi_get_bytes(bdi->max_ratio);
804 }
805 
806 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
807 {
808 	int ret;
809 	unsigned long pages = max_bytes >> PAGE_SHIFT;
810 	unsigned long max_ratio;
811 
812 	ret = bdi_check_pages_limit(pages);
813 	if (ret)
814 		return ret;
815 
816 	max_ratio = bdi_ratio_from_pages(pages);
817 	return __bdi_set_max_ratio(bdi, max_ratio);
818 }
819 
820 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
821 {
822 	if (strict_limit > 1)
823 		return -EINVAL;
824 
825 	spin_lock_bh(&bdi_lock);
826 	if (strict_limit)
827 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
828 	else
829 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
830 	spin_unlock_bh(&bdi_lock);
831 
832 	return 0;
833 }
834 
835 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
836 					   unsigned long bg_thresh)
837 {
838 	return (thresh + bg_thresh) / 2;
839 }
840 
841 static unsigned long hard_dirty_limit(struct wb_domain *dom,
842 				      unsigned long thresh)
843 {
844 	return max(thresh, dom->dirty_limit);
845 }
846 
847 /*
848  * Memory which can be further allocated to a memcg domain is capped by
849  * system-wide clean memory excluding the amount being used in the domain.
850  */
851 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
852 			    unsigned long filepages, unsigned long headroom)
853 {
854 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
855 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
856 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
857 	unsigned long other_clean = global_clean - min(global_clean, clean);
858 
859 	mdtc->avail = filepages + min(headroom, other_clean);
860 }
861 
862 /**
863  * __wb_calc_thresh - @wb's share of dirty threshold
864  * @dtc: dirty_throttle_context of interest
865  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
866  *
867  * Note that balance_dirty_pages() will only seriously take dirty throttling
868  * threshold as a hard limit when sleeping max_pause per page is not enough
869  * to keep the dirty pages under control. For example, when the device is
870  * completely stalled due to some error conditions, or when there are 1000
871  * dd tasks writing to a slow 10MB/s USB key.
872  * In the other normal situations, it acts more gently by throttling the tasks
873  * more (rather than completely block them) when the wb dirty pages go high.
874  *
875  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
876  * - starving fast devices
877  * - piling up dirty pages (that will take long time to sync) on slow devices
878  *
879  * The wb's share of dirty limit will be adapting to its throughput and
880  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
881  *
882  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
883  * "dirty" in the context of dirty balancing includes all PG_dirty and
884  * PG_writeback pages.
885  */
886 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
887 				      unsigned long thresh)
888 {
889 	struct wb_domain *dom = dtc_dom(dtc);
890 	u64 wb_thresh;
891 	unsigned long numerator, denominator;
892 	unsigned long wb_min_ratio, wb_max_ratio;
893 
894 	/*
895 	 * Calculate this wb's share of the thresh ratio.
896 	 */
897 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
898 			      &numerator, &denominator);
899 
900 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
901 	wb_thresh *= numerator;
902 	wb_thresh = div64_ul(wb_thresh, denominator);
903 
904 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
905 
906 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
907 	if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
908 		wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
909 
910 	return wb_thresh;
911 }
912 
913 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
914 {
915 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
916 
917 	return __wb_calc_thresh(&gdtc, thresh);
918 }
919 
920 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
921 {
922 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
923 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
924 	unsigned long filepages = 0, headroom = 0, writeback = 0;
925 
926 	gdtc.avail = global_dirtyable_memory();
927 	gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) +
928 		     global_node_page_state(NR_WRITEBACK);
929 
930 	mem_cgroup_wb_stats(wb, &filepages, &headroom,
931 			    &mdtc.dirty, &writeback);
932 	mdtc.dirty += writeback;
933 	mdtc_calc_avail(&mdtc, filepages, headroom);
934 	domain_dirty_limits(&mdtc);
935 
936 	return __wb_calc_thresh(&mdtc, mdtc.thresh);
937 }
938 
939 /*
940  *                           setpoint - dirty 3
941  *        f(dirty) := 1.0 + (----------------)
942  *                           limit - setpoint
943  *
944  * it's a 3rd order polynomial that subjects to
945  *
946  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
947  * (2) f(setpoint) = 1.0 => the balance point
948  * (3) f(limit)    = 0   => the hard limit
949  * (4) df/dx      <= 0	 => negative feedback control
950  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
951  *     => fast response on large errors; small oscillation near setpoint
952  */
953 static long long pos_ratio_polynom(unsigned long setpoint,
954 					  unsigned long dirty,
955 					  unsigned long limit)
956 {
957 	long long pos_ratio;
958 	long x;
959 
960 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
961 		      (limit - setpoint) | 1);
962 	pos_ratio = x;
963 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
964 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
965 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
966 
967 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
968 }
969 
970 /*
971  * Dirty position control.
972  *
973  * (o) global/bdi setpoints
974  *
975  * We want the dirty pages be balanced around the global/wb setpoints.
976  * When the number of dirty pages is higher/lower than the setpoint, the
977  * dirty position control ratio (and hence task dirty ratelimit) will be
978  * decreased/increased to bring the dirty pages back to the setpoint.
979  *
980  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
981  *
982  *     if (dirty < setpoint) scale up   pos_ratio
983  *     if (dirty > setpoint) scale down pos_ratio
984  *
985  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
986  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
987  *
988  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
989  *
990  * (o) global control line
991  *
992  *     ^ pos_ratio
993  *     |
994  *     |            |<===== global dirty control scope ======>|
995  * 2.0  * * * * * * *
996  *     |            .*
997  *     |            . *
998  *     |            .   *
999  *     |            .     *
1000  *     |            .        *
1001  *     |            .            *
1002  * 1.0 ................................*
1003  *     |            .                  .     *
1004  *     |            .                  .          *
1005  *     |            .                  .              *
1006  *     |            .                  .                 *
1007  *     |            .                  .                    *
1008  *   0 +------------.------------------.----------------------*------------->
1009  *           freerun^          setpoint^                 limit^   dirty pages
1010  *
1011  * (o) wb control line
1012  *
1013  *     ^ pos_ratio
1014  *     |
1015  *     |            *
1016  *     |              *
1017  *     |                *
1018  *     |                  *
1019  *     |                    * |<=========== span ============>|
1020  * 1.0 .......................*
1021  *     |                      . *
1022  *     |                      .   *
1023  *     |                      .     *
1024  *     |                      .       *
1025  *     |                      .         *
1026  *     |                      .           *
1027  *     |                      .             *
1028  *     |                      .               *
1029  *     |                      .                 *
1030  *     |                      .                   *
1031  *     |                      .                     *
1032  * 1/4 ...............................................* * * * * * * * * * * *
1033  *     |                      .                         .
1034  *     |                      .                           .
1035  *     |                      .                             .
1036  *   0 +----------------------.-------------------------------.------------->
1037  *                wb_setpoint^                    x_intercept^
1038  *
1039  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1040  * be smoothly throttled down to normal if it starts high in situations like
1041  * - start writing to a slow SD card and a fast disk at the same time. The SD
1042  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1043  * - the wb dirty thresh drops quickly due to change of JBOD workload
1044  */
1045 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1046 {
1047 	struct bdi_writeback *wb = dtc->wb;
1048 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1049 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1050 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1051 	unsigned long wb_thresh = dtc->wb_thresh;
1052 	unsigned long x_intercept;
1053 	unsigned long setpoint;		/* dirty pages' target balance point */
1054 	unsigned long wb_setpoint;
1055 	unsigned long span;
1056 	long long pos_ratio;		/* for scaling up/down the rate limit */
1057 	long x;
1058 
1059 	dtc->pos_ratio = 0;
1060 
1061 	if (unlikely(dtc->dirty >= limit))
1062 		return;
1063 
1064 	/*
1065 	 * global setpoint
1066 	 *
1067 	 * See comment for pos_ratio_polynom().
1068 	 */
1069 	setpoint = (freerun + limit) / 2;
1070 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1071 
1072 	/*
1073 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1074 	 * from growing a large number of dirty pages before throttling. For
1075 	 * such filesystems balance_dirty_pages always checks wb counters
1076 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1077 	 * This is especially important for fuse which sets bdi->max_ratio to
1078 	 * 1% by default. Without strictlimit feature, fuse writeback may
1079 	 * consume arbitrary amount of RAM because it is accounted in
1080 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1081 	 *
1082 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1083 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1084 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1085 	 * limits are set by default to 10% and 20% (background and throttle).
1086 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1087 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1088 	 * about ~6K pages (as the average of background and throttle wb
1089 	 * limits). The 3rd order polynomial will provide positive feedback if
1090 	 * wb_dirty is under wb_setpoint and vice versa.
1091 	 *
1092 	 * Note, that we cannot use global counters in these calculations
1093 	 * because we want to throttle process writing to a strictlimit wb
1094 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1095 	 * in the example above).
1096 	 */
1097 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1098 		long long wb_pos_ratio;
1099 
1100 		if (dtc->wb_dirty < 8) {
1101 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1102 					   2 << RATELIMIT_CALC_SHIFT);
1103 			return;
1104 		}
1105 
1106 		if (dtc->wb_dirty >= wb_thresh)
1107 			return;
1108 
1109 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1110 						    dtc->wb_bg_thresh);
1111 
1112 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1113 			return;
1114 
1115 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1116 						 wb_thresh);
1117 
1118 		/*
1119 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1120 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1121 		 * state ("dirty") is not limiting factor and we have to
1122 		 * make decision based on wb counters. But there is an
1123 		 * important case when global pos_ratio should get precedence:
1124 		 * global limits are exceeded (e.g. due to activities on other
1125 		 * wb's) while given strictlimit wb is below limit.
1126 		 *
1127 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1128 		 * but it would look too non-natural for the case of all
1129 		 * activity in the system coming from a single strictlimit wb
1130 		 * with bdi->max_ratio == 100%.
1131 		 *
1132 		 * Note that min() below somewhat changes the dynamics of the
1133 		 * control system. Normally, pos_ratio value can be well over 3
1134 		 * (when globally we are at freerun and wb is well below wb
1135 		 * setpoint). Now the maximum pos_ratio in the same situation
1136 		 * is 2. We might want to tweak this if we observe the control
1137 		 * system is too slow to adapt.
1138 		 */
1139 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * We have computed basic pos_ratio above based on global situation. If
1145 	 * the wb is over/under its share of dirty pages, we want to scale
1146 	 * pos_ratio further down/up. That is done by the following mechanism.
1147 	 */
1148 
1149 	/*
1150 	 * wb setpoint
1151 	 *
1152 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1153 	 *
1154 	 *                        x_intercept - wb_dirty
1155 	 *                     := --------------------------
1156 	 *                        x_intercept - wb_setpoint
1157 	 *
1158 	 * The main wb control line is a linear function that subjects to
1159 	 *
1160 	 * (1) f(wb_setpoint) = 1.0
1161 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1162 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1163 	 *
1164 	 * For single wb case, the dirty pages are observed to fluctuate
1165 	 * regularly within range
1166 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1167 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1168 	 * fluctuation range for pos_ratio.
1169 	 *
1170 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1171 	 * own size, so move the slope over accordingly and choose a slope that
1172 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1173 	 */
1174 	if (unlikely(wb_thresh > dtc->thresh))
1175 		wb_thresh = dtc->thresh;
1176 	/*
1177 	 * It's very possible that wb_thresh is close to 0 not because the
1178 	 * device is slow, but that it has remained inactive for long time.
1179 	 * Honour such devices a reasonable good (hopefully IO efficient)
1180 	 * threshold, so that the occasional writes won't be blocked and active
1181 	 * writes can rampup the threshold quickly.
1182 	 */
1183 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1184 	/*
1185 	 * scale global setpoint to wb's:
1186 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1187 	 */
1188 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1189 	wb_setpoint = setpoint * (u64)x >> 16;
1190 	/*
1191 	 * Use span=(8*write_bw) in single wb case as indicated by
1192 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1193 	 *
1194 	 *        wb_thresh                    thresh - wb_thresh
1195 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1196 	 *         thresh                           thresh
1197 	 */
1198 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1199 	x_intercept = wb_setpoint + span;
1200 
1201 	if (dtc->wb_dirty < x_intercept - span / 4) {
1202 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1203 				      (x_intercept - wb_setpoint) | 1);
1204 	} else
1205 		pos_ratio /= 4;
1206 
1207 	/*
1208 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1209 	 * It may push the desired control point of global dirty pages higher
1210 	 * than setpoint.
1211 	 */
1212 	x_intercept = wb_thresh / 2;
1213 	if (dtc->wb_dirty < x_intercept) {
1214 		if (dtc->wb_dirty > x_intercept / 8)
1215 			pos_ratio = div_u64(pos_ratio * x_intercept,
1216 					    dtc->wb_dirty);
1217 		else
1218 			pos_ratio *= 8;
1219 	}
1220 
1221 	dtc->pos_ratio = pos_ratio;
1222 }
1223 
1224 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1225 				      unsigned long elapsed,
1226 				      unsigned long written)
1227 {
1228 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1229 	unsigned long avg = wb->avg_write_bandwidth;
1230 	unsigned long old = wb->write_bandwidth;
1231 	u64 bw;
1232 
1233 	/*
1234 	 * bw = written * HZ / elapsed
1235 	 *
1236 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1237 	 * write_bandwidth = ---------------------------------------------------
1238 	 *                                          period
1239 	 *
1240 	 * @written may have decreased due to folio_redirty_for_writepage().
1241 	 * Avoid underflowing @bw calculation.
1242 	 */
1243 	bw = written - min(written, wb->written_stamp);
1244 	bw *= HZ;
1245 	if (unlikely(elapsed > period)) {
1246 		bw = div64_ul(bw, elapsed);
1247 		avg = bw;
1248 		goto out;
1249 	}
1250 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1251 	bw >>= ilog2(period);
1252 
1253 	/*
1254 	 * one more level of smoothing, for filtering out sudden spikes
1255 	 */
1256 	if (avg > old && old >= (unsigned long)bw)
1257 		avg -= (avg - old) >> 3;
1258 
1259 	if (avg < old && old <= (unsigned long)bw)
1260 		avg += (old - avg) >> 3;
1261 
1262 out:
1263 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1264 	avg = max(avg, 1LU);
1265 	if (wb_has_dirty_io(wb)) {
1266 		long delta = avg - wb->avg_write_bandwidth;
1267 		WARN_ON_ONCE(atomic_long_add_return(delta,
1268 					&wb->bdi->tot_write_bandwidth) <= 0);
1269 	}
1270 	wb->write_bandwidth = bw;
1271 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1272 }
1273 
1274 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1275 {
1276 	struct wb_domain *dom = dtc_dom(dtc);
1277 	unsigned long thresh = dtc->thresh;
1278 	unsigned long limit = dom->dirty_limit;
1279 
1280 	/*
1281 	 * Follow up in one step.
1282 	 */
1283 	if (limit < thresh) {
1284 		limit = thresh;
1285 		goto update;
1286 	}
1287 
1288 	/*
1289 	 * Follow down slowly. Use the higher one as the target, because thresh
1290 	 * may drop below dirty. This is exactly the reason to introduce
1291 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1292 	 */
1293 	thresh = max(thresh, dtc->dirty);
1294 	if (limit > thresh) {
1295 		limit -= (limit - thresh) >> 5;
1296 		goto update;
1297 	}
1298 	return;
1299 update:
1300 	dom->dirty_limit = limit;
1301 }
1302 
1303 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1304 				      unsigned long now)
1305 {
1306 	struct wb_domain *dom = dtc_dom(dtc);
1307 
1308 	/*
1309 	 * check locklessly first to optimize away locking for the most time
1310 	 */
1311 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1312 		return;
1313 
1314 	spin_lock(&dom->lock);
1315 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1316 		update_dirty_limit(dtc);
1317 		dom->dirty_limit_tstamp = now;
1318 	}
1319 	spin_unlock(&dom->lock);
1320 }
1321 
1322 /*
1323  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1324  *
1325  * Normal wb tasks will be curbed at or below it in long term.
1326  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1327  */
1328 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1329 				      unsigned long dirtied,
1330 				      unsigned long elapsed)
1331 {
1332 	struct bdi_writeback *wb = dtc->wb;
1333 	unsigned long dirty = dtc->dirty;
1334 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1335 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1336 	unsigned long setpoint = (freerun + limit) / 2;
1337 	unsigned long write_bw = wb->avg_write_bandwidth;
1338 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1339 	unsigned long dirty_rate;
1340 	unsigned long task_ratelimit;
1341 	unsigned long balanced_dirty_ratelimit;
1342 	unsigned long step;
1343 	unsigned long x;
1344 	unsigned long shift;
1345 
1346 	/*
1347 	 * The dirty rate will match the writeout rate in long term, except
1348 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1349 	 */
1350 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1351 
1352 	/*
1353 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1354 	 */
1355 	task_ratelimit = (u64)dirty_ratelimit *
1356 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1357 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1358 
1359 	/*
1360 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1361 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1362 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1363 	 * formula will yield the balanced rate limit (write_bw / N).
1364 	 *
1365 	 * Note that the expanded form is not a pure rate feedback:
1366 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1367 	 * but also takes pos_ratio into account:
1368 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1369 	 *
1370 	 * (1) is not realistic because pos_ratio also takes part in balancing
1371 	 * the dirty rate.  Consider the state
1372 	 *	pos_ratio = 0.5						     (3)
1373 	 *	rate = 2 * (write_bw / N)				     (4)
1374 	 * If (1) is used, it will stuck in that state! Because each dd will
1375 	 * be throttled at
1376 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1377 	 * yielding
1378 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1379 	 * put (6) into (1) we get
1380 	 *	rate_(i+1) = rate_(i)					     (7)
1381 	 *
1382 	 * So we end up using (2) to always keep
1383 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1384 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1385 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1386 	 * the dirty count meet the setpoint, but also where the slope of
1387 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1388 	 */
1389 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1390 					   dirty_rate | 1);
1391 	/*
1392 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1393 	 */
1394 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1395 		balanced_dirty_ratelimit = write_bw;
1396 
1397 	/*
1398 	 * We could safely do this and return immediately:
1399 	 *
1400 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1401 	 *
1402 	 * However to get a more stable dirty_ratelimit, the below elaborated
1403 	 * code makes use of task_ratelimit to filter out singular points and
1404 	 * limit the step size.
1405 	 *
1406 	 * The below code essentially only uses the relative value of
1407 	 *
1408 	 *	task_ratelimit - dirty_ratelimit
1409 	 *	= (pos_ratio - 1) * dirty_ratelimit
1410 	 *
1411 	 * which reflects the direction and size of dirty position error.
1412 	 */
1413 
1414 	/*
1415 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1416 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1417 	 * For example, when
1418 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1419 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1420 	 * lowering dirty_ratelimit will help meet both the position and rate
1421 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1422 	 * only help meet the rate target. After all, what the users ultimately
1423 	 * feel and care are stable dirty rate and small position error.
1424 	 *
1425 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1426 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1427 	 * keeps jumping around randomly and can even leap far away at times
1428 	 * due to the small 200ms estimation period of dirty_rate (we want to
1429 	 * keep that period small to reduce time lags).
1430 	 */
1431 	step = 0;
1432 
1433 	/*
1434 	 * For strictlimit case, calculations above were based on wb counters
1435 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1436 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1437 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1438 	 * "dirty" and wb_setpoint as "setpoint".
1439 	 *
1440 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1441 	 * it's possible that wb_thresh is close to zero due to inactivity
1442 	 * of backing device.
1443 	 */
1444 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1445 		dirty = dtc->wb_dirty;
1446 		if (dtc->wb_dirty < 8)
1447 			setpoint = dtc->wb_dirty + 1;
1448 		else
1449 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1450 	}
1451 
1452 	if (dirty < setpoint) {
1453 		x = min3(wb->balanced_dirty_ratelimit,
1454 			 balanced_dirty_ratelimit, task_ratelimit);
1455 		if (dirty_ratelimit < x)
1456 			step = x - dirty_ratelimit;
1457 	} else {
1458 		x = max3(wb->balanced_dirty_ratelimit,
1459 			 balanced_dirty_ratelimit, task_ratelimit);
1460 		if (dirty_ratelimit > x)
1461 			step = dirty_ratelimit - x;
1462 	}
1463 
1464 	/*
1465 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1466 	 * rate itself is constantly fluctuating. So decrease the track speed
1467 	 * when it gets close to the target. Helps eliminate pointless tremors.
1468 	 */
1469 	shift = dirty_ratelimit / (2 * step + 1);
1470 	if (shift < BITS_PER_LONG)
1471 		step = DIV_ROUND_UP(step >> shift, 8);
1472 	else
1473 		step = 0;
1474 
1475 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1476 		dirty_ratelimit += step;
1477 	else
1478 		dirty_ratelimit -= step;
1479 
1480 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1481 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1482 
1483 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1484 }
1485 
1486 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1487 				  struct dirty_throttle_control *mdtc,
1488 				  bool update_ratelimit)
1489 {
1490 	struct bdi_writeback *wb = gdtc->wb;
1491 	unsigned long now = jiffies;
1492 	unsigned long elapsed;
1493 	unsigned long dirtied;
1494 	unsigned long written;
1495 
1496 	spin_lock(&wb->list_lock);
1497 
1498 	/*
1499 	 * Lockless checks for elapsed time are racy and delayed update after
1500 	 * IO completion doesn't do it at all (to make sure written pages are
1501 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1502 	 * division errors.
1503 	 */
1504 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1505 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1506 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1507 
1508 	if (update_ratelimit) {
1509 		domain_update_dirty_limit(gdtc, now);
1510 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1511 
1512 		/*
1513 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1514 		 * compiler has no way to figure that out.  Help it.
1515 		 */
1516 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1517 			domain_update_dirty_limit(mdtc, now);
1518 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1519 		}
1520 	}
1521 	wb_update_write_bandwidth(wb, elapsed, written);
1522 
1523 	wb->dirtied_stamp = dirtied;
1524 	wb->written_stamp = written;
1525 	WRITE_ONCE(wb->bw_time_stamp, now);
1526 	spin_unlock(&wb->list_lock);
1527 }
1528 
1529 void wb_update_bandwidth(struct bdi_writeback *wb)
1530 {
1531 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1532 
1533 	__wb_update_bandwidth(&gdtc, NULL, false);
1534 }
1535 
1536 /* Interval after which we consider wb idle and don't estimate bandwidth */
1537 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1538 
1539 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1540 {
1541 	unsigned long now = jiffies;
1542 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1543 
1544 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1545 	    !atomic_read(&wb->writeback_inodes)) {
1546 		spin_lock(&wb->list_lock);
1547 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1548 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1549 		WRITE_ONCE(wb->bw_time_stamp, now);
1550 		spin_unlock(&wb->list_lock);
1551 	}
1552 }
1553 
1554 /*
1555  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1556  * will look to see if it needs to start dirty throttling.
1557  *
1558  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1559  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1560  * (the number of pages we may dirty without exceeding the dirty limits).
1561  */
1562 static unsigned long dirty_poll_interval(unsigned long dirty,
1563 					 unsigned long thresh)
1564 {
1565 	if (thresh > dirty)
1566 		return 1UL << (ilog2(thresh - dirty) >> 1);
1567 
1568 	return 1;
1569 }
1570 
1571 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1572 				  unsigned long wb_dirty)
1573 {
1574 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1575 	unsigned long t;
1576 
1577 	/*
1578 	 * Limit pause time for small memory systems. If sleeping for too long
1579 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1580 	 * idle.
1581 	 *
1582 	 * 8 serves as the safety ratio.
1583 	 */
1584 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1585 	t++;
1586 
1587 	return min_t(unsigned long, t, MAX_PAUSE);
1588 }
1589 
1590 static long wb_min_pause(struct bdi_writeback *wb,
1591 			 long max_pause,
1592 			 unsigned long task_ratelimit,
1593 			 unsigned long dirty_ratelimit,
1594 			 int *nr_dirtied_pause)
1595 {
1596 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1597 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1598 	long t;		/* target pause */
1599 	long pause;	/* estimated next pause */
1600 	int pages;	/* target nr_dirtied_pause */
1601 
1602 	/* target for 10ms pause on 1-dd case */
1603 	t = max(1, HZ / 100);
1604 
1605 	/*
1606 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1607 	 * overheads.
1608 	 *
1609 	 * (N * 10ms) on 2^N concurrent tasks.
1610 	 */
1611 	if (hi > lo)
1612 		t += (hi - lo) * (10 * HZ) / 1024;
1613 
1614 	/*
1615 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1616 	 * on the much more stable dirty_ratelimit. However the next pause time
1617 	 * will be computed based on task_ratelimit and the two rate limits may
1618 	 * depart considerably at some time. Especially if task_ratelimit goes
1619 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1620 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1621 	 * result task_ratelimit won't be executed faithfully, which could
1622 	 * eventually bring down dirty_ratelimit.
1623 	 *
1624 	 * We apply two rules to fix it up:
1625 	 * 1) try to estimate the next pause time and if necessary, use a lower
1626 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1627 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1628 	 * 2) limit the target pause time to max_pause/2, so that the normal
1629 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1630 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1631 	 */
1632 	t = min(t, 1 + max_pause / 2);
1633 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1634 
1635 	/*
1636 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1637 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1638 	 * When the 16 consecutive reads are often interrupted by some dirty
1639 	 * throttling pause during the async writes, cfq will go into idles
1640 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1641 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1642 	 */
1643 	if (pages < DIRTY_POLL_THRESH) {
1644 		t = max_pause;
1645 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1646 		if (pages > DIRTY_POLL_THRESH) {
1647 			pages = DIRTY_POLL_THRESH;
1648 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1649 		}
1650 	}
1651 
1652 	pause = HZ * pages / (task_ratelimit + 1);
1653 	if (pause > max_pause) {
1654 		t = max_pause;
1655 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1656 	}
1657 
1658 	*nr_dirtied_pause = pages;
1659 	/*
1660 	 * The minimal pause time will normally be half the target pause time.
1661 	 */
1662 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1663 }
1664 
1665 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1666 {
1667 	struct bdi_writeback *wb = dtc->wb;
1668 	unsigned long wb_reclaimable;
1669 
1670 	/*
1671 	 * wb_thresh is not treated as some limiting factor as
1672 	 * dirty_thresh, due to reasons
1673 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1674 	 * - in a system with HDD and USB key, the USB key may somehow
1675 	 *   go into state (wb_dirty >> wb_thresh) either because
1676 	 *   wb_dirty starts high, or because wb_thresh drops low.
1677 	 *   In this case we don't want to hard throttle the USB key
1678 	 *   dirtiers for 100 seconds until wb_dirty drops under
1679 	 *   wb_thresh. Instead the auxiliary wb control line in
1680 	 *   wb_position_ratio() will let the dirtier task progress
1681 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1682 	 */
1683 	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1684 	dtc->wb_bg_thresh = dtc->thresh ?
1685 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1686 
1687 	/*
1688 	 * In order to avoid the stacked BDI deadlock we need
1689 	 * to ensure we accurately count the 'dirty' pages when
1690 	 * the threshold is low.
1691 	 *
1692 	 * Otherwise it would be possible to get thresh+n pages
1693 	 * reported dirty, even though there are thresh-m pages
1694 	 * actually dirty; with m+n sitting in the percpu
1695 	 * deltas.
1696 	 */
1697 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1698 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1699 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1700 	} else {
1701 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1702 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1703 	}
1704 }
1705 
1706 /*
1707  * balance_dirty_pages() must be called by processes which are generating dirty
1708  * data.  It looks at the number of dirty pages in the machine and will force
1709  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1710  * If we're over `background_thresh' then the writeback threads are woken to
1711  * perform some writeout.
1712  */
1713 static int balance_dirty_pages(struct bdi_writeback *wb,
1714 			       unsigned long pages_dirtied, unsigned int flags)
1715 {
1716 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1717 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1718 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1719 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1720 						     &mdtc_stor : NULL;
1721 	struct dirty_throttle_control *sdtc;
1722 	unsigned long nr_dirty;
1723 	long period;
1724 	long pause;
1725 	long max_pause;
1726 	long min_pause;
1727 	int nr_dirtied_pause;
1728 	bool dirty_exceeded = false;
1729 	unsigned long task_ratelimit;
1730 	unsigned long dirty_ratelimit;
1731 	struct backing_dev_info *bdi = wb->bdi;
1732 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1733 	unsigned long start_time = jiffies;
1734 	int ret = 0;
1735 
1736 	for (;;) {
1737 		unsigned long now = jiffies;
1738 		unsigned long dirty, thresh, bg_thresh;
1739 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1740 		unsigned long m_thresh = 0;
1741 		unsigned long m_bg_thresh = 0;
1742 
1743 		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1744 		gdtc->avail = global_dirtyable_memory();
1745 		gdtc->dirty = nr_dirty + global_node_page_state(NR_WRITEBACK);
1746 
1747 		domain_dirty_limits(gdtc);
1748 
1749 		if (unlikely(strictlimit)) {
1750 			wb_dirty_limits(gdtc);
1751 
1752 			dirty = gdtc->wb_dirty;
1753 			thresh = gdtc->wb_thresh;
1754 			bg_thresh = gdtc->wb_bg_thresh;
1755 		} else {
1756 			dirty = gdtc->dirty;
1757 			thresh = gdtc->thresh;
1758 			bg_thresh = gdtc->bg_thresh;
1759 		}
1760 
1761 		if (mdtc) {
1762 			unsigned long filepages, headroom, writeback;
1763 
1764 			/*
1765 			 * If @wb belongs to !root memcg, repeat the same
1766 			 * basic calculations for the memcg domain.
1767 			 */
1768 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1769 					    &mdtc->dirty, &writeback);
1770 			mdtc->dirty += writeback;
1771 			mdtc_calc_avail(mdtc, filepages, headroom);
1772 
1773 			domain_dirty_limits(mdtc);
1774 
1775 			if (unlikely(strictlimit)) {
1776 				wb_dirty_limits(mdtc);
1777 				m_dirty = mdtc->wb_dirty;
1778 				m_thresh = mdtc->wb_thresh;
1779 				m_bg_thresh = mdtc->wb_bg_thresh;
1780 			} else {
1781 				m_dirty = mdtc->dirty;
1782 				m_thresh = mdtc->thresh;
1783 				m_bg_thresh = mdtc->bg_thresh;
1784 			}
1785 		}
1786 
1787 		/*
1788 		 * In laptop mode, we wait until hitting the higher threshold
1789 		 * before starting background writeout, and then write out all
1790 		 * the way down to the lower threshold.  So slow writers cause
1791 		 * minimal disk activity.
1792 		 *
1793 		 * In normal mode, we start background writeout at the lower
1794 		 * background_thresh, to keep the amount of dirty memory low.
1795 		 */
1796 		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1797 		    !writeback_in_progress(wb))
1798 			wb_start_background_writeback(wb);
1799 
1800 		/*
1801 		 * Throttle it only when the background writeback cannot
1802 		 * catch-up. This avoids (excessively) small writeouts
1803 		 * when the wb limits are ramping up in case of !strictlimit.
1804 		 *
1805 		 * In strictlimit case make decision based on the wb counters
1806 		 * and limits. Small writeouts when the wb limits are ramping
1807 		 * up are the price we consciously pay for strictlimit-ing.
1808 		 *
1809 		 * If memcg domain is in effect, @dirty should be under
1810 		 * both global and memcg freerun ceilings.
1811 		 */
1812 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1813 		    (!mdtc ||
1814 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1815 			unsigned long intv;
1816 			unsigned long m_intv;
1817 
1818 free_running:
1819 			intv = dirty_poll_interval(dirty, thresh);
1820 			m_intv = ULONG_MAX;
1821 
1822 			current->dirty_paused_when = now;
1823 			current->nr_dirtied = 0;
1824 			if (mdtc)
1825 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1826 			current->nr_dirtied_pause = min(intv, m_intv);
1827 			break;
1828 		}
1829 
1830 		/* Start writeback even when in laptop mode */
1831 		if (unlikely(!writeback_in_progress(wb)))
1832 			wb_start_background_writeback(wb);
1833 
1834 		mem_cgroup_flush_foreign(wb);
1835 
1836 		/*
1837 		 * Calculate global domain's pos_ratio and select the
1838 		 * global dtc by default.
1839 		 */
1840 		if (!strictlimit) {
1841 			wb_dirty_limits(gdtc);
1842 
1843 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1844 			    gdtc->wb_dirty <
1845 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1846 						  gdtc->wb_bg_thresh))
1847 				/*
1848 				 * LOCAL_THROTTLE tasks must not be throttled
1849 				 * when below the per-wb freerun ceiling.
1850 				 */
1851 				goto free_running;
1852 		}
1853 
1854 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1855 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1856 
1857 		wb_position_ratio(gdtc);
1858 		sdtc = gdtc;
1859 
1860 		if (mdtc) {
1861 			/*
1862 			 * If memcg domain is in effect, calculate its
1863 			 * pos_ratio.  @wb should satisfy constraints from
1864 			 * both global and memcg domains.  Choose the one
1865 			 * w/ lower pos_ratio.
1866 			 */
1867 			if (!strictlimit) {
1868 				wb_dirty_limits(mdtc);
1869 
1870 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1871 				    mdtc->wb_dirty <
1872 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1873 							  mdtc->wb_bg_thresh))
1874 					/*
1875 					 * LOCAL_THROTTLE tasks must not be
1876 					 * throttled when below the per-wb
1877 					 * freerun ceiling.
1878 					 */
1879 					goto free_running;
1880 			}
1881 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1882 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1883 
1884 			wb_position_ratio(mdtc);
1885 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1886 				sdtc = mdtc;
1887 		}
1888 
1889 		if (dirty_exceeded != wb->dirty_exceeded)
1890 			wb->dirty_exceeded = dirty_exceeded;
1891 
1892 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1893 					   BANDWIDTH_INTERVAL))
1894 			__wb_update_bandwidth(gdtc, mdtc, true);
1895 
1896 		/* throttle according to the chosen dtc */
1897 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1898 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1899 							RATELIMIT_CALC_SHIFT;
1900 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1901 		min_pause = wb_min_pause(wb, max_pause,
1902 					 task_ratelimit, dirty_ratelimit,
1903 					 &nr_dirtied_pause);
1904 
1905 		if (unlikely(task_ratelimit == 0)) {
1906 			period = max_pause;
1907 			pause = max_pause;
1908 			goto pause;
1909 		}
1910 		period = HZ * pages_dirtied / task_ratelimit;
1911 		pause = period;
1912 		if (current->dirty_paused_when)
1913 			pause -= now - current->dirty_paused_when;
1914 		/*
1915 		 * For less than 1s think time (ext3/4 may block the dirtier
1916 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1917 		 * however at much less frequency), try to compensate it in
1918 		 * future periods by updating the virtual time; otherwise just
1919 		 * do a reset, as it may be a light dirtier.
1920 		 */
1921 		if (pause < min_pause) {
1922 			trace_balance_dirty_pages(wb,
1923 						  sdtc->thresh,
1924 						  sdtc->bg_thresh,
1925 						  sdtc->dirty,
1926 						  sdtc->wb_thresh,
1927 						  sdtc->wb_dirty,
1928 						  dirty_ratelimit,
1929 						  task_ratelimit,
1930 						  pages_dirtied,
1931 						  period,
1932 						  min(pause, 0L),
1933 						  start_time);
1934 			if (pause < -HZ) {
1935 				current->dirty_paused_when = now;
1936 				current->nr_dirtied = 0;
1937 			} else if (period) {
1938 				current->dirty_paused_when += period;
1939 				current->nr_dirtied = 0;
1940 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1941 				current->nr_dirtied_pause += pages_dirtied;
1942 			break;
1943 		}
1944 		if (unlikely(pause > max_pause)) {
1945 			/* for occasional dropped task_ratelimit */
1946 			now += min(pause - max_pause, max_pause);
1947 			pause = max_pause;
1948 		}
1949 
1950 pause:
1951 		trace_balance_dirty_pages(wb,
1952 					  sdtc->thresh,
1953 					  sdtc->bg_thresh,
1954 					  sdtc->dirty,
1955 					  sdtc->wb_thresh,
1956 					  sdtc->wb_dirty,
1957 					  dirty_ratelimit,
1958 					  task_ratelimit,
1959 					  pages_dirtied,
1960 					  period,
1961 					  pause,
1962 					  start_time);
1963 		if (flags & BDP_ASYNC) {
1964 			ret = -EAGAIN;
1965 			break;
1966 		}
1967 		__set_current_state(TASK_KILLABLE);
1968 		bdi->last_bdp_sleep = jiffies;
1969 		io_schedule_timeout(pause);
1970 
1971 		current->dirty_paused_when = now + pause;
1972 		current->nr_dirtied = 0;
1973 		current->nr_dirtied_pause = nr_dirtied_pause;
1974 
1975 		/*
1976 		 * This is typically equal to (dirty < thresh) and can also
1977 		 * keep "1000+ dd on a slow USB stick" under control.
1978 		 */
1979 		if (task_ratelimit)
1980 			break;
1981 
1982 		/*
1983 		 * In the case of an unresponsive NFS server and the NFS dirty
1984 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1985 		 * to go through, so that tasks on them still remain responsive.
1986 		 *
1987 		 * In theory 1 page is enough to keep the consumer-producer
1988 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1989 		 * more page. However wb_dirty has accounting errors.  So use
1990 		 * the larger and more IO friendly wb_stat_error.
1991 		 */
1992 		if (sdtc->wb_dirty <= wb_stat_error())
1993 			break;
1994 
1995 		if (fatal_signal_pending(current))
1996 			break;
1997 	}
1998 	return ret;
1999 }
2000 
2001 static DEFINE_PER_CPU(int, bdp_ratelimits);
2002 
2003 /*
2004  * Normal tasks are throttled by
2005  *	loop {
2006  *		dirty tsk->nr_dirtied_pause pages;
2007  *		take a snap in balance_dirty_pages();
2008  *	}
2009  * However there is a worst case. If every task exit immediately when dirtied
2010  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2011  * called to throttle the page dirties. The solution is to save the not yet
2012  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2013  * randomly into the running tasks. This works well for the above worst case,
2014  * as the new task will pick up and accumulate the old task's leaked dirty
2015  * count and eventually get throttled.
2016  */
2017 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2018 
2019 /**
2020  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2021  * @mapping: address_space which was dirtied.
2022  * @flags: BDP flags.
2023  *
2024  * Processes which are dirtying memory should call in here once for each page
2025  * which was newly dirtied.  The function will periodically check the system's
2026  * dirty state and will initiate writeback if needed.
2027  *
2028  * See balance_dirty_pages_ratelimited() for details.
2029  *
2030  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2031  * indicate that memory is out of balance and the caller must wait
2032  * for I/O to complete.  Otherwise, it will return 0 to indicate
2033  * that either memory was already in balance, or it was able to sleep
2034  * until the amount of dirty memory returned to balance.
2035  */
2036 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2037 					unsigned int flags)
2038 {
2039 	struct inode *inode = mapping->host;
2040 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2041 	struct bdi_writeback *wb = NULL;
2042 	int ratelimit;
2043 	int ret = 0;
2044 	int *p;
2045 
2046 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2047 		return ret;
2048 
2049 	if (inode_cgwb_enabled(inode))
2050 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2051 	if (!wb)
2052 		wb = &bdi->wb;
2053 
2054 	ratelimit = current->nr_dirtied_pause;
2055 	if (wb->dirty_exceeded)
2056 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2057 
2058 	preempt_disable();
2059 	/*
2060 	 * This prevents one CPU to accumulate too many dirtied pages without
2061 	 * calling into balance_dirty_pages(), which can happen when there are
2062 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2063 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2064 	 */
2065 	p =  this_cpu_ptr(&bdp_ratelimits);
2066 	if (unlikely(current->nr_dirtied >= ratelimit))
2067 		*p = 0;
2068 	else if (unlikely(*p >= ratelimit_pages)) {
2069 		*p = 0;
2070 		ratelimit = 0;
2071 	}
2072 	/*
2073 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2074 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2075 	 * the dirty throttling and livelock other long-run dirtiers.
2076 	 */
2077 	p = this_cpu_ptr(&dirty_throttle_leaks);
2078 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2079 		unsigned long nr_pages_dirtied;
2080 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2081 		*p -= nr_pages_dirtied;
2082 		current->nr_dirtied += nr_pages_dirtied;
2083 	}
2084 	preempt_enable();
2085 
2086 	if (unlikely(current->nr_dirtied >= ratelimit))
2087 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2088 
2089 	wb_put(wb);
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2093 
2094 /**
2095  * balance_dirty_pages_ratelimited - balance dirty memory state.
2096  * @mapping: address_space which was dirtied.
2097  *
2098  * Processes which are dirtying memory should call in here once for each page
2099  * which was newly dirtied.  The function will periodically check the system's
2100  * dirty state and will initiate writeback if needed.
2101  *
2102  * Once we're over the dirty memory limit we decrease the ratelimiting
2103  * by a lot, to prevent individual processes from overshooting the limit
2104  * by (ratelimit_pages) each.
2105  */
2106 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2107 {
2108 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2109 }
2110 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2111 
2112 /**
2113  * wb_over_bg_thresh - does @wb need to be written back?
2114  * @wb: bdi_writeback of interest
2115  *
2116  * Determines whether background writeback should keep writing @wb or it's
2117  * clean enough.
2118  *
2119  * Return: %true if writeback should continue.
2120  */
2121 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2122 {
2123 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2124 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2125 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
2126 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2127 						     &mdtc_stor : NULL;
2128 	unsigned long reclaimable;
2129 	unsigned long thresh;
2130 
2131 	/*
2132 	 * Similar to balance_dirty_pages() but ignores pages being written
2133 	 * as we're trying to decide whether to put more under writeback.
2134 	 */
2135 	gdtc->avail = global_dirtyable_memory();
2136 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2137 	domain_dirty_limits(gdtc);
2138 
2139 	if (gdtc->dirty > gdtc->bg_thresh)
2140 		return true;
2141 
2142 	thresh = __wb_calc_thresh(gdtc, gdtc->bg_thresh);
2143 	if (thresh < 2 * wb_stat_error())
2144 		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2145 	else
2146 		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2147 
2148 	if (reclaimable > thresh)
2149 		return true;
2150 
2151 	if (mdtc) {
2152 		unsigned long filepages, headroom, writeback;
2153 
2154 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2155 				    &writeback);
2156 		mdtc_calc_avail(mdtc, filepages, headroom);
2157 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
2158 
2159 		if (mdtc->dirty > mdtc->bg_thresh)
2160 			return true;
2161 
2162 		thresh = __wb_calc_thresh(mdtc, mdtc->bg_thresh);
2163 		if (thresh < 2 * wb_stat_error())
2164 			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2165 		else
2166 			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2167 
2168 		if (reclaimable > thresh)
2169 			return true;
2170 	}
2171 
2172 	return false;
2173 }
2174 
2175 #ifdef CONFIG_SYSCTL
2176 /*
2177  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2178  */
2179 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2180 		void *buffer, size_t *length, loff_t *ppos)
2181 {
2182 	unsigned int old_interval = dirty_writeback_interval;
2183 	int ret;
2184 
2185 	ret = proc_dointvec(table, write, buffer, length, ppos);
2186 
2187 	/*
2188 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2189 	 * and a different non-zero value will wakeup the writeback threads.
2190 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2191 	 * iterate over all bdis and wbs.
2192 	 * The reason we do this is to make the change take effect immediately.
2193 	 */
2194 	if (!ret && write && dirty_writeback_interval &&
2195 		dirty_writeback_interval != old_interval)
2196 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2197 
2198 	return ret;
2199 }
2200 #endif
2201 
2202 void laptop_mode_timer_fn(struct timer_list *t)
2203 {
2204 	struct backing_dev_info *backing_dev_info =
2205 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2206 
2207 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2208 }
2209 
2210 /*
2211  * We've spun up the disk and we're in laptop mode: schedule writeback
2212  * of all dirty data a few seconds from now.  If the flush is already scheduled
2213  * then push it back - the user is still using the disk.
2214  */
2215 void laptop_io_completion(struct backing_dev_info *info)
2216 {
2217 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2218 }
2219 
2220 /*
2221  * We're in laptop mode and we've just synced. The sync's writes will have
2222  * caused another writeback to be scheduled by laptop_io_completion.
2223  * Nothing needs to be written back anymore, so we unschedule the writeback.
2224  */
2225 void laptop_sync_completion(void)
2226 {
2227 	struct backing_dev_info *bdi;
2228 
2229 	rcu_read_lock();
2230 
2231 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2232 		del_timer(&bdi->laptop_mode_wb_timer);
2233 
2234 	rcu_read_unlock();
2235 }
2236 
2237 /*
2238  * If ratelimit_pages is too high then we can get into dirty-data overload
2239  * if a large number of processes all perform writes at the same time.
2240  *
2241  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2242  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2243  * thresholds.
2244  */
2245 
2246 void writeback_set_ratelimit(void)
2247 {
2248 	struct wb_domain *dom = &global_wb_domain;
2249 	unsigned long background_thresh;
2250 	unsigned long dirty_thresh;
2251 
2252 	global_dirty_limits(&background_thresh, &dirty_thresh);
2253 	dom->dirty_limit = dirty_thresh;
2254 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2255 	if (ratelimit_pages < 16)
2256 		ratelimit_pages = 16;
2257 }
2258 
2259 static int page_writeback_cpu_online(unsigned int cpu)
2260 {
2261 	writeback_set_ratelimit();
2262 	return 0;
2263 }
2264 
2265 #ifdef CONFIG_SYSCTL
2266 
2267 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2268 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2269 
2270 static struct ctl_table vm_page_writeback_sysctls[] = {
2271 	{
2272 		.procname   = "dirty_background_ratio",
2273 		.data       = &dirty_background_ratio,
2274 		.maxlen     = sizeof(dirty_background_ratio),
2275 		.mode       = 0644,
2276 		.proc_handler   = dirty_background_ratio_handler,
2277 		.extra1     = SYSCTL_ZERO,
2278 		.extra2     = SYSCTL_ONE_HUNDRED,
2279 	},
2280 	{
2281 		.procname   = "dirty_background_bytes",
2282 		.data       = &dirty_background_bytes,
2283 		.maxlen     = sizeof(dirty_background_bytes),
2284 		.mode       = 0644,
2285 		.proc_handler   = dirty_background_bytes_handler,
2286 		.extra1     = SYSCTL_LONG_ONE,
2287 	},
2288 	{
2289 		.procname   = "dirty_ratio",
2290 		.data       = &vm_dirty_ratio,
2291 		.maxlen     = sizeof(vm_dirty_ratio),
2292 		.mode       = 0644,
2293 		.proc_handler   = dirty_ratio_handler,
2294 		.extra1     = SYSCTL_ZERO,
2295 		.extra2     = SYSCTL_ONE_HUNDRED,
2296 	},
2297 	{
2298 		.procname   = "dirty_bytes",
2299 		.data       = &vm_dirty_bytes,
2300 		.maxlen     = sizeof(vm_dirty_bytes),
2301 		.mode       = 0644,
2302 		.proc_handler   = dirty_bytes_handler,
2303 		.extra1     = (void *)&dirty_bytes_min,
2304 	},
2305 	{
2306 		.procname   = "dirty_writeback_centisecs",
2307 		.data       = &dirty_writeback_interval,
2308 		.maxlen     = sizeof(dirty_writeback_interval),
2309 		.mode       = 0644,
2310 		.proc_handler   = dirty_writeback_centisecs_handler,
2311 	},
2312 	{
2313 		.procname   = "dirty_expire_centisecs",
2314 		.data       = &dirty_expire_interval,
2315 		.maxlen     = sizeof(dirty_expire_interval),
2316 		.mode       = 0644,
2317 		.proc_handler   = proc_dointvec_minmax,
2318 		.extra1     = SYSCTL_ZERO,
2319 	},
2320 #ifdef CONFIG_HIGHMEM
2321 	{
2322 		.procname	= "highmem_is_dirtyable",
2323 		.data		= &vm_highmem_is_dirtyable,
2324 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2325 		.mode		= 0644,
2326 		.proc_handler	= proc_dointvec_minmax,
2327 		.extra1		= SYSCTL_ZERO,
2328 		.extra2		= SYSCTL_ONE,
2329 	},
2330 #endif
2331 	{
2332 		.procname	= "laptop_mode",
2333 		.data		= &laptop_mode,
2334 		.maxlen		= sizeof(laptop_mode),
2335 		.mode		= 0644,
2336 		.proc_handler	= proc_dointvec_jiffies,
2337 	},
2338 };
2339 #endif
2340 
2341 /*
2342  * Called early on to tune the page writeback dirty limits.
2343  *
2344  * We used to scale dirty pages according to how total memory
2345  * related to pages that could be allocated for buffers.
2346  *
2347  * However, that was when we used "dirty_ratio" to scale with
2348  * all memory, and we don't do that any more. "dirty_ratio"
2349  * is now applied to total non-HIGHPAGE memory, and as such we can't
2350  * get into the old insane situation any more where we had
2351  * large amounts of dirty pages compared to a small amount of
2352  * non-HIGHMEM memory.
2353  *
2354  * But we might still want to scale the dirty_ratio by how
2355  * much memory the box has..
2356  */
2357 void __init page_writeback_init(void)
2358 {
2359 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2360 
2361 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2362 			  page_writeback_cpu_online, NULL);
2363 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2364 			  page_writeback_cpu_online);
2365 #ifdef CONFIG_SYSCTL
2366 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2367 #endif
2368 }
2369 
2370 /**
2371  * tag_pages_for_writeback - tag pages to be written by writeback
2372  * @mapping: address space structure to write
2373  * @start: starting page index
2374  * @end: ending page index (inclusive)
2375  *
2376  * This function scans the page range from @start to @end (inclusive) and tags
2377  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2378  * can then use the TOWRITE tag to identify pages eligible for writeback.
2379  * This mechanism is used to avoid livelocking of writeback by a process
2380  * steadily creating new dirty pages in the file (thus it is important for this
2381  * function to be quick so that it can tag pages faster than a dirtying process
2382  * can create them).
2383  */
2384 void tag_pages_for_writeback(struct address_space *mapping,
2385 			     pgoff_t start, pgoff_t end)
2386 {
2387 	XA_STATE(xas, &mapping->i_pages, start);
2388 	unsigned int tagged = 0;
2389 	void *page;
2390 
2391 	xas_lock_irq(&xas);
2392 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2393 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2394 		if (++tagged % XA_CHECK_SCHED)
2395 			continue;
2396 
2397 		xas_pause(&xas);
2398 		xas_unlock_irq(&xas);
2399 		cond_resched();
2400 		xas_lock_irq(&xas);
2401 	}
2402 	xas_unlock_irq(&xas);
2403 }
2404 EXPORT_SYMBOL(tag_pages_for_writeback);
2405 
2406 static bool folio_prepare_writeback(struct address_space *mapping,
2407 		struct writeback_control *wbc, struct folio *folio)
2408 {
2409 	/*
2410 	 * Folio truncated or invalidated. We can freely skip it then,
2411 	 * even for data integrity operations: the folio has disappeared
2412 	 * concurrently, so there could be no real expectation of this
2413 	 * data integrity operation even if there is now a new, dirty
2414 	 * folio at the same pagecache index.
2415 	 */
2416 	if (unlikely(folio->mapping != mapping))
2417 		return false;
2418 
2419 	/*
2420 	 * Did somebody else write it for us?
2421 	 */
2422 	if (!folio_test_dirty(folio))
2423 		return false;
2424 
2425 	if (folio_test_writeback(folio)) {
2426 		if (wbc->sync_mode == WB_SYNC_NONE)
2427 			return false;
2428 		folio_wait_writeback(folio);
2429 	}
2430 	BUG_ON(folio_test_writeback(folio));
2431 
2432 	if (!folio_clear_dirty_for_io(folio))
2433 		return false;
2434 
2435 	return true;
2436 }
2437 
2438 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2439 {
2440 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2441 		return PAGECACHE_TAG_TOWRITE;
2442 	return PAGECACHE_TAG_DIRTY;
2443 }
2444 
2445 static pgoff_t wbc_end(struct writeback_control *wbc)
2446 {
2447 	if (wbc->range_cyclic)
2448 		return -1;
2449 	return wbc->range_end >> PAGE_SHIFT;
2450 }
2451 
2452 static struct folio *writeback_get_folio(struct address_space *mapping,
2453 		struct writeback_control *wbc)
2454 {
2455 	struct folio *folio;
2456 
2457 retry:
2458 	folio = folio_batch_next(&wbc->fbatch);
2459 	if (!folio) {
2460 		folio_batch_release(&wbc->fbatch);
2461 		cond_resched();
2462 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2463 				wbc_to_tag(wbc), &wbc->fbatch);
2464 		folio = folio_batch_next(&wbc->fbatch);
2465 		if (!folio)
2466 			return NULL;
2467 	}
2468 
2469 	folio_lock(folio);
2470 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2471 		folio_unlock(folio);
2472 		goto retry;
2473 	}
2474 
2475 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2476 	return folio;
2477 }
2478 
2479 /**
2480  * writeback_iter - iterate folio of a mapping for writeback
2481  * @mapping: address space structure to write
2482  * @wbc: writeback context
2483  * @folio: previously iterated folio (%NULL to start)
2484  * @error: in-out pointer for writeback errors (see below)
2485  *
2486  * This function returns the next folio for the writeback operation described by
2487  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2488  * implementation.
2489  *
2490  * To start the writeback operation, %NULL is passed in the @folio argument, and
2491  * for every subsequent iteration the folio returned previously should be passed
2492  * back in.
2493  *
2494  * If there was an error in the per-folio writeback inside the writeback_iter()
2495  * loop, @error should be set to the error value.
2496  *
2497  * Once the writeback described in @wbc has finished, this function will return
2498  * %NULL and if there was an error in any iteration restore it to @error.
2499  *
2500  * Note: callers should not manually break out of the loop using break or goto
2501  * but must keep calling writeback_iter() until it returns %NULL.
2502  *
2503  * Return: the folio to write or %NULL if the loop is done.
2504  */
2505 struct folio *writeback_iter(struct address_space *mapping,
2506 		struct writeback_control *wbc, struct folio *folio, int *error)
2507 {
2508 	if (!folio) {
2509 		folio_batch_init(&wbc->fbatch);
2510 		wbc->saved_err = *error = 0;
2511 
2512 		/*
2513 		 * For range cyclic writeback we remember where we stopped so
2514 		 * that we can continue where we stopped.
2515 		 *
2516 		 * For non-cyclic writeback we always start at the beginning of
2517 		 * the passed in range.
2518 		 */
2519 		if (wbc->range_cyclic)
2520 			wbc->index = mapping->writeback_index;
2521 		else
2522 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2523 
2524 		/*
2525 		 * To avoid livelocks when other processes dirty new pages, we
2526 		 * first tag pages which should be written back and only then
2527 		 * start writing them.
2528 		 *
2529 		 * For data-integrity writeback we have to be careful so that we
2530 		 * do not miss some pages (e.g., because some other process has
2531 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2532 		 * TOWRITE tag can be cleared only by the process clearing the
2533 		 * DIRTY tag (and submitting the page for I/O).
2534 		 */
2535 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2536 			tag_pages_for_writeback(mapping, wbc->index,
2537 					wbc_end(wbc));
2538 	} else {
2539 		wbc->nr_to_write -= folio_nr_pages(folio);
2540 
2541 		WARN_ON_ONCE(*error > 0);
2542 
2543 		/*
2544 		 * For integrity writeback we have to keep going until we have
2545 		 * written all the folios we tagged for writeback above, even if
2546 		 * we run past wbc->nr_to_write or encounter errors.
2547 		 * We stash away the first error we encounter in wbc->saved_err
2548 		 * so that it can be retrieved when we're done.  This is because
2549 		 * the file system may still have state to clear for each folio.
2550 		 *
2551 		 * For background writeback we exit as soon as we run past
2552 		 * wbc->nr_to_write or encounter the first error.
2553 		 */
2554 		if (wbc->sync_mode == WB_SYNC_ALL) {
2555 			if (*error && !wbc->saved_err)
2556 				wbc->saved_err = *error;
2557 		} else {
2558 			if (*error || wbc->nr_to_write <= 0)
2559 				goto done;
2560 		}
2561 	}
2562 
2563 	folio = writeback_get_folio(mapping, wbc);
2564 	if (!folio) {
2565 		/*
2566 		 * To avoid deadlocks between range_cyclic writeback and callers
2567 		 * that hold pages in PageWriteback to aggregate I/O until
2568 		 * the writeback iteration finishes, we do not loop back to the
2569 		 * start of the file.  Doing so causes a page lock/page
2570 		 * writeback access order inversion - we should only ever lock
2571 		 * multiple pages in ascending page->index order, and looping
2572 		 * back to the start of the file violates that rule and causes
2573 		 * deadlocks.
2574 		 */
2575 		if (wbc->range_cyclic)
2576 			mapping->writeback_index = 0;
2577 
2578 		/*
2579 		 * Return the first error we encountered (if there was any) to
2580 		 * the caller.
2581 		 */
2582 		*error = wbc->saved_err;
2583 	}
2584 	return folio;
2585 
2586 done:
2587 	if (wbc->range_cyclic)
2588 		mapping->writeback_index = folio->index + folio_nr_pages(folio);
2589 	folio_batch_release(&wbc->fbatch);
2590 	return NULL;
2591 }
2592 EXPORT_SYMBOL_GPL(writeback_iter);
2593 
2594 /**
2595  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2596  * @mapping: address space structure to write
2597  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2598  * @writepage: function called for each page
2599  * @data: data passed to writepage function
2600  *
2601  * Return: %0 on success, negative error code otherwise
2602  *
2603  * Note: please use writeback_iter() instead.
2604  */
2605 int write_cache_pages(struct address_space *mapping,
2606 		      struct writeback_control *wbc, writepage_t writepage,
2607 		      void *data)
2608 {
2609 	struct folio *folio = NULL;
2610 	int error;
2611 
2612 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2613 		error = writepage(folio, wbc, data);
2614 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2615 			folio_unlock(folio);
2616 			error = 0;
2617 		}
2618 	}
2619 
2620 	return error;
2621 }
2622 EXPORT_SYMBOL(write_cache_pages);
2623 
2624 static int writeback_use_writepage(struct address_space *mapping,
2625 		struct writeback_control *wbc)
2626 {
2627 	struct folio *folio = NULL;
2628 	struct blk_plug plug;
2629 	int err;
2630 
2631 	blk_start_plug(&plug);
2632 	while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2633 		err = mapping->a_ops->writepage(&folio->page, wbc);
2634 		if (err == AOP_WRITEPAGE_ACTIVATE) {
2635 			folio_unlock(folio);
2636 			err = 0;
2637 		}
2638 		mapping_set_error(mapping, err);
2639 	}
2640 	blk_finish_plug(&plug);
2641 
2642 	return err;
2643 }
2644 
2645 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2646 {
2647 	int ret;
2648 	struct bdi_writeback *wb;
2649 
2650 	if (wbc->nr_to_write <= 0)
2651 		return 0;
2652 	wb = inode_to_wb_wbc(mapping->host, wbc);
2653 	wb_bandwidth_estimate_start(wb);
2654 	while (1) {
2655 		if (mapping->a_ops->writepages) {
2656 			ret = mapping->a_ops->writepages(mapping, wbc);
2657 		} else if (mapping->a_ops->writepage) {
2658 			ret = writeback_use_writepage(mapping, wbc);
2659 		} else {
2660 			/* deal with chardevs and other special files */
2661 			ret = 0;
2662 		}
2663 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2664 			break;
2665 
2666 		/*
2667 		 * Lacking an allocation context or the locality or writeback
2668 		 * state of any of the inode's pages, throttle based on
2669 		 * writeback activity on the local node. It's as good a
2670 		 * guess as any.
2671 		 */
2672 		reclaim_throttle(NODE_DATA(numa_node_id()),
2673 			VMSCAN_THROTTLE_WRITEBACK);
2674 	}
2675 	/*
2676 	 * Usually few pages are written by now from those we've just submitted
2677 	 * but if there's constant writeback being submitted, this makes sure
2678 	 * writeback bandwidth is updated once in a while.
2679 	 */
2680 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2681 				   BANDWIDTH_INTERVAL))
2682 		wb_update_bandwidth(wb);
2683 	return ret;
2684 }
2685 
2686 /*
2687  * For address_spaces which do not use buffers nor write back.
2688  */
2689 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2690 {
2691 	if (!folio_test_dirty(folio))
2692 		return !folio_test_set_dirty(folio);
2693 	return false;
2694 }
2695 EXPORT_SYMBOL(noop_dirty_folio);
2696 
2697 /*
2698  * Helper function for set_page_dirty family.
2699  *
2700  * Caller must hold folio_memcg_lock().
2701  *
2702  * NOTE: This relies on being atomic wrt interrupts.
2703  */
2704 static void folio_account_dirtied(struct folio *folio,
2705 		struct address_space *mapping)
2706 {
2707 	struct inode *inode = mapping->host;
2708 
2709 	trace_writeback_dirty_folio(folio, mapping);
2710 
2711 	if (mapping_can_writeback(mapping)) {
2712 		struct bdi_writeback *wb;
2713 		long nr = folio_nr_pages(folio);
2714 
2715 		inode_attach_wb(inode, folio);
2716 		wb = inode_to_wb(inode);
2717 
2718 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2719 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2720 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2721 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2722 		wb_stat_mod(wb, WB_DIRTIED, nr);
2723 		task_io_account_write(nr * PAGE_SIZE);
2724 		current->nr_dirtied += nr;
2725 		__this_cpu_add(bdp_ratelimits, nr);
2726 
2727 		mem_cgroup_track_foreign_dirty(folio, wb);
2728 	}
2729 }
2730 
2731 /*
2732  * Helper function for deaccounting dirty page without writeback.
2733  *
2734  * Caller must hold folio_memcg_lock().
2735  */
2736 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2737 {
2738 	long nr = folio_nr_pages(folio);
2739 
2740 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2741 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2742 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2743 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2744 }
2745 
2746 /*
2747  * Mark the folio dirty, and set it dirty in the page cache.
2748  *
2749  * If warn is true, then emit a warning if the folio is not uptodate and has
2750  * not been truncated.
2751  *
2752  * The caller must hold folio_memcg_lock().  It is the caller's
2753  * responsibility to prevent the folio from being truncated while
2754  * this function is in progress, although it may have been truncated
2755  * before this function is called.  Most callers have the folio locked.
2756  * A few have the folio blocked from truncation through other means (e.g.
2757  * zap_vma_pages() has it mapped and is holding the page table lock).
2758  * When called from mark_buffer_dirty(), the filesystem should hold a
2759  * reference to the buffer_head that is being marked dirty, which causes
2760  * try_to_free_buffers() to fail.
2761  */
2762 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2763 			     int warn)
2764 {
2765 	unsigned long flags;
2766 
2767 	xa_lock_irqsave(&mapping->i_pages, flags);
2768 	if (folio->mapping) {	/* Race with truncate? */
2769 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2770 		folio_account_dirtied(folio, mapping);
2771 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2772 				PAGECACHE_TAG_DIRTY);
2773 	}
2774 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2775 }
2776 
2777 /**
2778  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2779  * @mapping: Address space this folio belongs to.
2780  * @folio: Folio to be marked as dirty.
2781  *
2782  * Filesystems which do not use buffer heads should call this function
2783  * from their dirty_folio address space operation.  It ignores the
2784  * contents of folio_get_private(), so if the filesystem marks individual
2785  * blocks as dirty, the filesystem should handle that itself.
2786  *
2787  * This is also sometimes used by filesystems which use buffer_heads when
2788  * a single buffer is being dirtied: we want to set the folio dirty in
2789  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2790  * whereas block_dirty_folio() is a "top-down" dirtying.
2791  *
2792  * The caller must ensure this doesn't race with truncation.  Most will
2793  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2794  * folio mapped and the pte lock held, which also locks out truncation.
2795  */
2796 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2797 {
2798 	folio_memcg_lock(folio);
2799 	if (folio_test_set_dirty(folio)) {
2800 		folio_memcg_unlock(folio);
2801 		return false;
2802 	}
2803 
2804 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2805 	folio_memcg_unlock(folio);
2806 
2807 	if (mapping->host) {
2808 		/* !PageAnon && !swapper_space */
2809 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2810 	}
2811 	return true;
2812 }
2813 EXPORT_SYMBOL(filemap_dirty_folio);
2814 
2815 /**
2816  * folio_redirty_for_writepage - Decline to write a dirty folio.
2817  * @wbc: The writeback control.
2818  * @folio: The folio.
2819  *
2820  * When a writepage implementation decides that it doesn't want to write
2821  * @folio for some reason, it should call this function, unlock @folio and
2822  * return 0.
2823  *
2824  * Return: True if we redirtied the folio.  False if someone else dirtied
2825  * it first.
2826  */
2827 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2828 		struct folio *folio)
2829 {
2830 	struct address_space *mapping = folio->mapping;
2831 	long nr = folio_nr_pages(folio);
2832 	bool ret;
2833 
2834 	wbc->pages_skipped += nr;
2835 	ret = filemap_dirty_folio(mapping, folio);
2836 	if (mapping && mapping_can_writeback(mapping)) {
2837 		struct inode *inode = mapping->host;
2838 		struct bdi_writeback *wb;
2839 		struct wb_lock_cookie cookie = {};
2840 
2841 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2842 		current->nr_dirtied -= nr;
2843 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2844 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2845 		unlocked_inode_to_wb_end(inode, &cookie);
2846 	}
2847 	return ret;
2848 }
2849 EXPORT_SYMBOL(folio_redirty_for_writepage);
2850 
2851 /**
2852  * folio_mark_dirty - Mark a folio as being modified.
2853  * @folio: The folio.
2854  *
2855  * The folio may not be truncated while this function is running.
2856  * Holding the folio lock is sufficient to prevent truncation, but some
2857  * callers cannot acquire a sleeping lock.  These callers instead hold
2858  * the page table lock for a page table which contains at least one page
2859  * in this folio.  Truncation will block on the page table lock as it
2860  * unmaps pages before removing the folio from its mapping.
2861  *
2862  * Return: True if the folio was newly dirtied, false if it was already dirty.
2863  */
2864 bool folio_mark_dirty(struct folio *folio)
2865 {
2866 	struct address_space *mapping = folio_mapping(folio);
2867 
2868 	if (likely(mapping)) {
2869 		/*
2870 		 * readahead/folio_deactivate could remain
2871 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2872 		 * About readahead, if the folio is written, the flags would be
2873 		 * reset. So no problem.
2874 		 * About folio_deactivate, if the folio is redirtied,
2875 		 * the flag will be reset. So no problem. but if the
2876 		 * folio is used by readahead it will confuse readahead
2877 		 * and make it restart the size rampup process. But it's
2878 		 * a trivial problem.
2879 		 */
2880 		if (folio_test_reclaim(folio))
2881 			folio_clear_reclaim(folio);
2882 		return mapping->a_ops->dirty_folio(mapping, folio);
2883 	}
2884 
2885 	return noop_dirty_folio(mapping, folio);
2886 }
2887 EXPORT_SYMBOL(folio_mark_dirty);
2888 
2889 /*
2890  * set_page_dirty() is racy if the caller has no reference against
2891  * page->mapping->host, and if the page is unlocked.  This is because another
2892  * CPU could truncate the page off the mapping and then free the mapping.
2893  *
2894  * Usually, the page _is_ locked, or the caller is a user-space process which
2895  * holds a reference on the inode by having an open file.
2896  *
2897  * In other cases, the page should be locked before running set_page_dirty().
2898  */
2899 int set_page_dirty_lock(struct page *page)
2900 {
2901 	int ret;
2902 
2903 	lock_page(page);
2904 	ret = set_page_dirty(page);
2905 	unlock_page(page);
2906 	return ret;
2907 }
2908 EXPORT_SYMBOL(set_page_dirty_lock);
2909 
2910 /*
2911  * This cancels just the dirty bit on the kernel page itself, it does NOT
2912  * actually remove dirty bits on any mmap's that may be around. It also
2913  * leaves the page tagged dirty, so any sync activity will still find it on
2914  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2915  * look at the dirty bits in the VM.
2916  *
2917  * Doing this should *normally* only ever be done when a page is truncated,
2918  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2919  * this when it notices that somebody has cleaned out all the buffers on a
2920  * page without actually doing it through the VM. Can you say "ext3 is
2921  * horribly ugly"? Thought you could.
2922  */
2923 void __folio_cancel_dirty(struct folio *folio)
2924 {
2925 	struct address_space *mapping = folio_mapping(folio);
2926 
2927 	if (mapping_can_writeback(mapping)) {
2928 		struct inode *inode = mapping->host;
2929 		struct bdi_writeback *wb;
2930 		struct wb_lock_cookie cookie = {};
2931 
2932 		folio_memcg_lock(folio);
2933 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2934 
2935 		if (folio_test_clear_dirty(folio))
2936 			folio_account_cleaned(folio, wb);
2937 
2938 		unlocked_inode_to_wb_end(inode, &cookie);
2939 		folio_memcg_unlock(folio);
2940 	} else {
2941 		folio_clear_dirty(folio);
2942 	}
2943 }
2944 EXPORT_SYMBOL(__folio_cancel_dirty);
2945 
2946 /*
2947  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2948  * Returns true if the folio was previously dirty.
2949  *
2950  * This is for preparing to put the folio under writeout.  We leave
2951  * the folio tagged as dirty in the xarray so that a concurrent
2952  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2953  * The ->writepage implementation will run either folio_start_writeback()
2954  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2955  * and xarray dirty tag back into sync.
2956  *
2957  * This incoherency between the folio's dirty flag and xarray tag is
2958  * unfortunate, but it only exists while the folio is locked.
2959  */
2960 bool folio_clear_dirty_for_io(struct folio *folio)
2961 {
2962 	struct address_space *mapping = folio_mapping(folio);
2963 	bool ret = false;
2964 
2965 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2966 
2967 	if (mapping && mapping_can_writeback(mapping)) {
2968 		struct inode *inode = mapping->host;
2969 		struct bdi_writeback *wb;
2970 		struct wb_lock_cookie cookie = {};
2971 
2972 		/*
2973 		 * Yes, Virginia, this is indeed insane.
2974 		 *
2975 		 * We use this sequence to make sure that
2976 		 *  (a) we account for dirty stats properly
2977 		 *  (b) we tell the low-level filesystem to
2978 		 *      mark the whole folio dirty if it was
2979 		 *      dirty in a pagetable. Only to then
2980 		 *  (c) clean the folio again and return 1 to
2981 		 *      cause the writeback.
2982 		 *
2983 		 * This way we avoid all nasty races with the
2984 		 * dirty bit in multiple places and clearing
2985 		 * them concurrently from different threads.
2986 		 *
2987 		 * Note! Normally the "folio_mark_dirty(folio)"
2988 		 * has no effect on the actual dirty bit - since
2989 		 * that will already usually be set. But we
2990 		 * need the side effects, and it can help us
2991 		 * avoid races.
2992 		 *
2993 		 * We basically use the folio "master dirty bit"
2994 		 * as a serialization point for all the different
2995 		 * threads doing their things.
2996 		 */
2997 		if (folio_mkclean(folio))
2998 			folio_mark_dirty(folio);
2999 		/*
3000 		 * We carefully synchronise fault handlers against
3001 		 * installing a dirty pte and marking the folio dirty
3002 		 * at this point.  We do this by having them hold the
3003 		 * page lock while dirtying the folio, and folios are
3004 		 * always locked coming in here, so we get the desired
3005 		 * exclusion.
3006 		 */
3007 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
3008 		if (folio_test_clear_dirty(folio)) {
3009 			long nr = folio_nr_pages(folio);
3010 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3011 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3012 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3013 			ret = true;
3014 		}
3015 		unlocked_inode_to_wb_end(inode, &cookie);
3016 		return ret;
3017 	}
3018 	return folio_test_clear_dirty(folio);
3019 }
3020 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3021 
3022 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3023 {
3024 	atomic_inc(&wb->writeback_inodes);
3025 }
3026 
3027 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3028 {
3029 	unsigned long flags;
3030 	atomic_dec(&wb->writeback_inodes);
3031 	/*
3032 	 * Make sure estimate of writeback throughput gets updated after
3033 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3034 	 * (which is the interval other bandwidth updates use for batching) so
3035 	 * that if multiple inodes end writeback at a similar time, they get
3036 	 * batched into one bandwidth update.
3037 	 */
3038 	spin_lock_irqsave(&wb->work_lock, flags);
3039 	if (test_bit(WB_registered, &wb->state))
3040 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3041 	spin_unlock_irqrestore(&wb->work_lock, flags);
3042 }
3043 
3044 bool __folio_end_writeback(struct folio *folio)
3045 {
3046 	long nr = folio_nr_pages(folio);
3047 	struct address_space *mapping = folio_mapping(folio);
3048 	bool ret;
3049 
3050 	folio_memcg_lock(folio);
3051 	if (mapping && mapping_use_writeback_tags(mapping)) {
3052 		struct inode *inode = mapping->host;
3053 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3054 		unsigned long flags;
3055 
3056 		xa_lock_irqsave(&mapping->i_pages, flags);
3057 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3058 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3059 					PAGECACHE_TAG_WRITEBACK);
3060 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3061 			struct bdi_writeback *wb = inode_to_wb(inode);
3062 
3063 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3064 			__wb_writeout_add(wb, nr);
3065 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3066 				wb_inode_writeback_end(wb);
3067 		}
3068 
3069 		if (mapping->host && !mapping_tagged(mapping,
3070 						     PAGECACHE_TAG_WRITEBACK))
3071 			sb_clear_inode_writeback(mapping->host);
3072 
3073 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3074 	} else {
3075 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3076 	}
3077 
3078 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3079 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3080 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3081 	folio_memcg_unlock(folio);
3082 
3083 	return ret;
3084 }
3085 
3086 void __folio_start_writeback(struct folio *folio, bool keep_write)
3087 {
3088 	long nr = folio_nr_pages(folio);
3089 	struct address_space *mapping = folio_mapping(folio);
3090 	int access_ret;
3091 
3092 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3093 
3094 	folio_memcg_lock(folio);
3095 	if (mapping && mapping_use_writeback_tags(mapping)) {
3096 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3097 		struct inode *inode = mapping->host;
3098 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3099 		unsigned long flags;
3100 		bool on_wblist;
3101 
3102 		xas_lock_irqsave(&xas, flags);
3103 		xas_load(&xas);
3104 		folio_test_set_writeback(folio);
3105 
3106 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3107 
3108 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3109 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3110 			struct bdi_writeback *wb = inode_to_wb(inode);
3111 
3112 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3113 			if (!on_wblist)
3114 				wb_inode_writeback_start(wb);
3115 		}
3116 
3117 		/*
3118 		 * We can come through here when swapping anonymous
3119 		 * folios, so we don't necessarily have an inode to
3120 		 * track for sync.
3121 		 */
3122 		if (mapping->host && !on_wblist)
3123 			sb_mark_inode_writeback(mapping->host);
3124 		if (!folio_test_dirty(folio))
3125 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3126 		if (!keep_write)
3127 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3128 		xas_unlock_irqrestore(&xas, flags);
3129 	} else {
3130 		folio_test_set_writeback(folio);
3131 	}
3132 
3133 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3134 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3135 	folio_memcg_unlock(folio);
3136 
3137 	access_ret = arch_make_folio_accessible(folio);
3138 	/*
3139 	 * If writeback has been triggered on a page that cannot be made
3140 	 * accessible, it is too late to recover here.
3141 	 */
3142 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3143 }
3144 EXPORT_SYMBOL(__folio_start_writeback);
3145 
3146 /**
3147  * folio_wait_writeback - Wait for a folio to finish writeback.
3148  * @folio: The folio to wait for.
3149  *
3150  * If the folio is currently being written back to storage, wait for the
3151  * I/O to complete.
3152  *
3153  * Context: Sleeps.  Must be called in process context and with
3154  * no spinlocks held.  Caller should hold a reference on the folio.
3155  * If the folio is not locked, writeback may start again after writeback
3156  * has finished.
3157  */
3158 void folio_wait_writeback(struct folio *folio)
3159 {
3160 	while (folio_test_writeback(folio)) {
3161 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3162 		folio_wait_bit(folio, PG_writeback);
3163 	}
3164 }
3165 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3166 
3167 /**
3168  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3169  * @folio: The folio to wait for.
3170  *
3171  * If the folio is currently being written back to storage, wait for the
3172  * I/O to complete or a fatal signal to arrive.
3173  *
3174  * Context: Sleeps.  Must be called in process context and with
3175  * no spinlocks held.  Caller should hold a reference on the folio.
3176  * If the folio is not locked, writeback may start again after writeback
3177  * has finished.
3178  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3179  */
3180 int folio_wait_writeback_killable(struct folio *folio)
3181 {
3182 	while (folio_test_writeback(folio)) {
3183 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3184 		if (folio_wait_bit_killable(folio, PG_writeback))
3185 			return -EINTR;
3186 	}
3187 
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3191 
3192 /**
3193  * folio_wait_stable() - wait for writeback to finish, if necessary.
3194  * @folio: The folio to wait on.
3195  *
3196  * This function determines if the given folio is related to a backing
3197  * device that requires folio contents to be held stable during writeback.
3198  * If so, then it will wait for any pending writeback to complete.
3199  *
3200  * Context: Sleeps.  Must be called in process context and with
3201  * no spinlocks held.  Caller should hold a reference on the folio.
3202  * If the folio is not locked, writeback may start again after writeback
3203  * has finished.
3204  */
3205 void folio_wait_stable(struct folio *folio)
3206 {
3207 	if (mapping_stable_writes(folio_mapping(folio)))
3208 		folio_wait_writeback(folio);
3209 }
3210 EXPORT_SYMBOL_GPL(folio_wait_stable);
3211