1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 41 * will look to see if it needs to force writeback or throttling. 42 */ 43 static long ratelimit_pages = 32; 44 45 /* 46 * When balance_dirty_pages decides that the caller needs to perform some 47 * non-background writeback, this is how many pages it will attempt to write. 48 * It should be somewhat larger than dirtied pages to ensure that reasonably 49 * large amounts of I/O are submitted. 50 */ 51 static inline long sync_writeback_pages(unsigned long dirtied) 52 { 53 if (dirtied < ratelimit_pages) 54 dirtied = ratelimit_pages; 55 56 return dirtied + dirtied / 2; 57 } 58 59 /* The following parameters are exported via /proc/sys/vm */ 60 61 /* 62 * Start background writeback (via writeback threads) at this percentage 63 */ 64 int dirty_background_ratio = 10; 65 66 /* 67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 68 * dirty_background_ratio * the amount of dirtyable memory 69 */ 70 unsigned long dirty_background_bytes; 71 72 /* 73 * free highmem will not be subtracted from the total free memory 74 * for calculating free ratios if vm_highmem_is_dirtyable is true 75 */ 76 int vm_highmem_is_dirtyable; 77 78 /* 79 * The generator of dirty data starts writeback at this percentage 80 */ 81 int vm_dirty_ratio = 20; 82 83 /* 84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 85 * vm_dirty_ratio * the amount of dirtyable memory 86 */ 87 unsigned long vm_dirty_bytes; 88 89 /* 90 * The interval between `kupdate'-style writebacks 91 */ 92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 93 94 /* 95 * The longest time for which data is allowed to remain dirty 96 */ 97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 98 99 /* 100 * Flag that makes the machine dump writes/reads and block dirtyings. 101 */ 102 int block_dump; 103 104 /* 105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 106 * a full sync is triggered after this time elapses without any disk activity. 107 */ 108 int laptop_mode; 109 110 EXPORT_SYMBOL(laptop_mode); 111 112 /* End of sysctl-exported parameters */ 113 114 115 /* 116 * Scale the writeback cache size proportional to the relative writeout speeds. 117 * 118 * We do this by keeping a floating proportion between BDIs, based on page 119 * writeback completions [end_page_writeback()]. Those devices that write out 120 * pages fastest will get the larger share, while the slower will get a smaller 121 * share. 122 * 123 * We use page writeout completions because we are interested in getting rid of 124 * dirty pages. Having them written out is the primary goal. 125 * 126 * We introduce a concept of time, a period over which we measure these events, 127 * because demand can/will vary over time. The length of this period itself is 128 * measured in page writeback completions. 129 * 130 */ 131 static struct prop_descriptor vm_completions; 132 static struct prop_descriptor vm_dirties; 133 134 /* 135 * couple the period to the dirty_ratio: 136 * 137 * period/2 ~ roundup_pow_of_two(dirty limit) 138 */ 139 static int calc_period_shift(void) 140 { 141 unsigned long dirty_total; 142 143 if (vm_dirty_bytes) 144 dirty_total = vm_dirty_bytes / PAGE_SIZE; 145 else 146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 147 100; 148 return 2 + ilog2(dirty_total - 1); 149 } 150 151 /* 152 * update the period when the dirty threshold changes. 153 */ 154 static void update_completion_period(void) 155 { 156 int shift = calc_period_shift(); 157 prop_change_shift(&vm_completions, shift); 158 prop_change_shift(&vm_dirties, shift); 159 } 160 161 int dirty_background_ratio_handler(struct ctl_table *table, int write, 162 void __user *buffer, size_t *lenp, 163 loff_t *ppos) 164 { 165 int ret; 166 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 168 if (ret == 0 && write) 169 dirty_background_bytes = 0; 170 return ret; 171 } 172 173 int dirty_background_bytes_handler(struct ctl_table *table, int write, 174 void __user *buffer, size_t *lenp, 175 loff_t *ppos) 176 { 177 int ret; 178 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 180 if (ret == 0 && write) 181 dirty_background_ratio = 0; 182 return ret; 183 } 184 185 int dirty_ratio_handler(struct ctl_table *table, int write, 186 void __user *buffer, size_t *lenp, 187 loff_t *ppos) 188 { 189 int old_ratio = vm_dirty_ratio; 190 int ret; 191 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 194 update_completion_period(); 195 vm_dirty_bytes = 0; 196 } 197 return ret; 198 } 199 200 201 int dirty_bytes_handler(struct ctl_table *table, int write, 202 void __user *buffer, size_t *lenp, 203 loff_t *ppos) 204 { 205 unsigned long old_bytes = vm_dirty_bytes; 206 int ret; 207 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 210 update_completion_period(); 211 vm_dirty_ratio = 0; 212 } 213 return ret; 214 } 215 216 /* 217 * Increment the BDI's writeout completion count and the global writeout 218 * completion count. Called from test_clear_page_writeback(). 219 */ 220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 221 { 222 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 223 bdi->max_prop_frac); 224 } 225 226 void bdi_writeout_inc(struct backing_dev_info *bdi) 227 { 228 unsigned long flags; 229 230 local_irq_save(flags); 231 __bdi_writeout_inc(bdi); 232 local_irq_restore(flags); 233 } 234 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 235 236 void task_dirty_inc(struct task_struct *tsk) 237 { 238 prop_inc_single(&vm_dirties, &tsk->dirties); 239 } 240 241 /* 242 * Obtain an accurate fraction of the BDI's portion. 243 */ 244 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 245 long *numerator, long *denominator) 246 { 247 if (bdi_cap_writeback_dirty(bdi)) { 248 prop_fraction_percpu(&vm_completions, &bdi->completions, 249 numerator, denominator); 250 } else { 251 *numerator = 0; 252 *denominator = 1; 253 } 254 } 255 256 static inline void task_dirties_fraction(struct task_struct *tsk, 257 long *numerator, long *denominator) 258 { 259 prop_fraction_single(&vm_dirties, &tsk->dirties, 260 numerator, denominator); 261 } 262 263 /* 264 * task_dirty_limit - scale down dirty throttling threshold for one task 265 * 266 * task specific dirty limit: 267 * 268 * dirty -= (dirty/8) * p_{t} 269 * 270 * To protect light/slow dirtying tasks from heavier/fast ones, we start 271 * throttling individual tasks before reaching the bdi dirty limit. 272 * Relatively low thresholds will be allocated to heavy dirtiers. So when 273 * dirty pages grow large, heavy dirtiers will be throttled first, which will 274 * effectively curb the growth of dirty pages. Light dirtiers with high enough 275 * dirty threshold may never get throttled. 276 */ 277 static unsigned long task_dirty_limit(struct task_struct *tsk, 278 unsigned long bdi_dirty) 279 { 280 long numerator, denominator; 281 unsigned long dirty = bdi_dirty; 282 u64 inv = dirty >> 3; 283 284 task_dirties_fraction(tsk, &numerator, &denominator); 285 inv *= numerator; 286 do_div(inv, denominator); 287 288 dirty -= inv; 289 290 return max(dirty, bdi_dirty/2); 291 } 292 293 /* 294 * 295 */ 296 static unsigned int bdi_min_ratio; 297 298 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 299 { 300 int ret = 0; 301 302 spin_lock_bh(&bdi_lock); 303 if (min_ratio > bdi->max_ratio) { 304 ret = -EINVAL; 305 } else { 306 min_ratio -= bdi->min_ratio; 307 if (bdi_min_ratio + min_ratio < 100) { 308 bdi_min_ratio += min_ratio; 309 bdi->min_ratio += min_ratio; 310 } else { 311 ret = -EINVAL; 312 } 313 } 314 spin_unlock_bh(&bdi_lock); 315 316 return ret; 317 } 318 319 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 320 { 321 int ret = 0; 322 323 if (max_ratio > 100) 324 return -EINVAL; 325 326 spin_lock_bh(&bdi_lock); 327 if (bdi->min_ratio > max_ratio) { 328 ret = -EINVAL; 329 } else { 330 bdi->max_ratio = max_ratio; 331 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 332 } 333 spin_unlock_bh(&bdi_lock); 334 335 return ret; 336 } 337 EXPORT_SYMBOL(bdi_set_max_ratio); 338 339 /* 340 * Work out the current dirty-memory clamping and background writeout 341 * thresholds. 342 * 343 * The main aim here is to lower them aggressively if there is a lot of mapped 344 * memory around. To avoid stressing page reclaim with lots of unreclaimable 345 * pages. It is better to clamp down on writers than to start swapping, and 346 * performing lots of scanning. 347 * 348 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 349 * 350 * We don't permit the clamping level to fall below 5% - that is getting rather 351 * excessive. 352 * 353 * We make sure that the background writeout level is below the adjusted 354 * clamping level. 355 */ 356 357 static unsigned long highmem_dirtyable_memory(unsigned long total) 358 { 359 #ifdef CONFIG_HIGHMEM 360 int node; 361 unsigned long x = 0; 362 363 for_each_node_state(node, N_HIGH_MEMORY) { 364 struct zone *z = 365 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 366 367 x += zone_page_state(z, NR_FREE_PAGES) + 368 zone_reclaimable_pages(z); 369 } 370 /* 371 * Make sure that the number of highmem pages is never larger 372 * than the number of the total dirtyable memory. This can only 373 * occur in very strange VM situations but we want to make sure 374 * that this does not occur. 375 */ 376 return min(x, total); 377 #else 378 return 0; 379 #endif 380 } 381 382 /** 383 * determine_dirtyable_memory - amount of memory that may be used 384 * 385 * Returns the numebr of pages that can currently be freed and used 386 * by the kernel for direct mappings. 387 */ 388 unsigned long determine_dirtyable_memory(void) 389 { 390 unsigned long x; 391 392 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 393 394 if (!vm_highmem_is_dirtyable) 395 x -= highmem_dirtyable_memory(x); 396 397 return x + 1; /* Ensure that we never return 0 */ 398 } 399 400 /* 401 * global_dirty_limits - background-writeback and dirty-throttling thresholds 402 * 403 * Calculate the dirty thresholds based on sysctl parameters 404 * - vm.dirty_background_ratio or vm.dirty_background_bytes 405 * - vm.dirty_ratio or vm.dirty_bytes 406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 407 * runtime tasks. 408 */ 409 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 410 { 411 unsigned long background; 412 unsigned long dirty; 413 unsigned long available_memory = determine_dirtyable_memory(); 414 struct task_struct *tsk; 415 416 if (vm_dirty_bytes) 417 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 418 else 419 dirty = (vm_dirty_ratio * available_memory) / 100; 420 421 if (dirty_background_bytes) 422 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 423 else 424 background = (dirty_background_ratio * available_memory) / 100; 425 426 if (background >= dirty) 427 background = dirty / 2; 428 tsk = current; 429 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 430 background += background / 4; 431 dirty += dirty / 4; 432 } 433 *pbackground = background; 434 *pdirty = dirty; 435 } 436 437 /* 438 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 439 * 440 * Allocate high/low dirty limits to fast/slow devices, in order to prevent 441 * - starving fast devices 442 * - piling up dirty pages (that will take long time to sync) on slow devices 443 * 444 * The bdi's share of dirty limit will be adapting to its throughput and 445 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 446 */ 447 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 448 { 449 u64 bdi_dirty; 450 long numerator, denominator; 451 452 /* 453 * Calculate this BDI's share of the dirty ratio. 454 */ 455 bdi_writeout_fraction(bdi, &numerator, &denominator); 456 457 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 458 bdi_dirty *= numerator; 459 do_div(bdi_dirty, denominator); 460 461 bdi_dirty += (dirty * bdi->min_ratio) / 100; 462 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 463 bdi_dirty = dirty * bdi->max_ratio / 100; 464 465 return bdi_dirty; 466 } 467 468 /* 469 * balance_dirty_pages() must be called by processes which are generating dirty 470 * data. It looks at the number of dirty pages in the machine and will force 471 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 472 * If we're over `background_thresh' then the writeback threads are woken to 473 * perform some writeout. 474 */ 475 static void balance_dirty_pages(struct address_space *mapping, 476 unsigned long write_chunk) 477 { 478 long nr_reclaimable, bdi_nr_reclaimable; 479 long nr_writeback, bdi_nr_writeback; 480 unsigned long background_thresh; 481 unsigned long dirty_thresh; 482 unsigned long bdi_thresh; 483 unsigned long pages_written = 0; 484 unsigned long pause = 1; 485 bool dirty_exceeded = false; 486 struct backing_dev_info *bdi = mapping->backing_dev_info; 487 488 for (;;) { 489 struct writeback_control wbc = { 490 .sync_mode = WB_SYNC_NONE, 491 .older_than_this = NULL, 492 .nr_to_write = write_chunk, 493 .range_cyclic = 1, 494 }; 495 496 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 497 global_page_state(NR_UNSTABLE_NFS); 498 nr_writeback = global_page_state(NR_WRITEBACK); 499 500 global_dirty_limits(&background_thresh, &dirty_thresh); 501 502 /* 503 * Throttle it only when the background writeback cannot 504 * catch-up. This avoids (excessively) small writeouts 505 * when the bdi limits are ramping up. 506 */ 507 if (nr_reclaimable + nr_writeback <= 508 (background_thresh + dirty_thresh) / 2) 509 break; 510 511 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 512 bdi_thresh = task_dirty_limit(current, bdi_thresh); 513 514 /* 515 * In order to avoid the stacked BDI deadlock we need 516 * to ensure we accurately count the 'dirty' pages when 517 * the threshold is low. 518 * 519 * Otherwise it would be possible to get thresh+n pages 520 * reported dirty, even though there are thresh-m pages 521 * actually dirty; with m+n sitting in the percpu 522 * deltas. 523 */ 524 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 525 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 526 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 527 } else { 528 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 529 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 530 } 531 532 /* 533 * The bdi thresh is somehow "soft" limit derived from the 534 * global "hard" limit. The former helps to prevent heavy IO 535 * bdi or process from holding back light ones; The latter is 536 * the last resort safeguard. 537 */ 538 dirty_exceeded = 539 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh) 540 || (nr_reclaimable + nr_writeback > dirty_thresh); 541 542 if (!dirty_exceeded) 543 break; 544 545 if (!bdi->dirty_exceeded) 546 bdi->dirty_exceeded = 1; 547 548 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 549 * Unstable writes are a feature of certain networked 550 * filesystems (i.e. NFS) in which data may have been 551 * written to the server's write cache, but has not yet 552 * been flushed to permanent storage. 553 * Only move pages to writeback if this bdi is over its 554 * threshold otherwise wait until the disk writes catch 555 * up. 556 */ 557 trace_wbc_balance_dirty_start(&wbc, bdi); 558 if (bdi_nr_reclaimable > bdi_thresh) { 559 writeback_inodes_wb(&bdi->wb, &wbc); 560 pages_written += write_chunk - wbc.nr_to_write; 561 trace_wbc_balance_dirty_written(&wbc, bdi); 562 if (pages_written >= write_chunk) 563 break; /* We've done our duty */ 564 } 565 trace_wbc_balance_dirty_wait(&wbc, bdi); 566 __set_current_state(TASK_UNINTERRUPTIBLE); 567 io_schedule_timeout(pause); 568 569 /* 570 * Increase the delay for each loop, up to our previous 571 * default of taking a 100ms nap. 572 */ 573 pause <<= 1; 574 if (pause > HZ / 10) 575 pause = HZ / 10; 576 } 577 578 if (!dirty_exceeded && bdi->dirty_exceeded) 579 bdi->dirty_exceeded = 0; 580 581 if (writeback_in_progress(bdi)) 582 return; 583 584 /* 585 * In laptop mode, we wait until hitting the higher threshold before 586 * starting background writeout, and then write out all the way down 587 * to the lower threshold. So slow writers cause minimal disk activity. 588 * 589 * In normal mode, we start background writeout at the lower 590 * background_thresh, to keep the amount of dirty memory low. 591 */ 592 if ((laptop_mode && pages_written) || 593 (!laptop_mode && (nr_reclaimable > background_thresh))) 594 bdi_start_background_writeback(bdi); 595 } 596 597 void set_page_dirty_balance(struct page *page, int page_mkwrite) 598 { 599 if (set_page_dirty(page) || page_mkwrite) { 600 struct address_space *mapping = page_mapping(page); 601 602 if (mapping) 603 balance_dirty_pages_ratelimited(mapping); 604 } 605 } 606 607 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 608 609 /** 610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 611 * @mapping: address_space which was dirtied 612 * @nr_pages_dirtied: number of pages which the caller has just dirtied 613 * 614 * Processes which are dirtying memory should call in here once for each page 615 * which was newly dirtied. The function will periodically check the system's 616 * dirty state and will initiate writeback if needed. 617 * 618 * On really big machines, get_writeback_state is expensive, so try to avoid 619 * calling it too often (ratelimiting). But once we're over the dirty memory 620 * limit we decrease the ratelimiting by a lot, to prevent individual processes 621 * from overshooting the limit by (ratelimit_pages) each. 622 */ 623 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 624 unsigned long nr_pages_dirtied) 625 { 626 unsigned long ratelimit; 627 unsigned long *p; 628 629 ratelimit = ratelimit_pages; 630 if (mapping->backing_dev_info->dirty_exceeded) 631 ratelimit = 8; 632 633 /* 634 * Check the rate limiting. Also, we do not want to throttle real-time 635 * tasks in balance_dirty_pages(). Period. 636 */ 637 preempt_disable(); 638 p = &__get_cpu_var(bdp_ratelimits); 639 *p += nr_pages_dirtied; 640 if (unlikely(*p >= ratelimit)) { 641 ratelimit = sync_writeback_pages(*p); 642 *p = 0; 643 preempt_enable(); 644 balance_dirty_pages(mapping, ratelimit); 645 return; 646 } 647 preempt_enable(); 648 } 649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 650 651 void throttle_vm_writeout(gfp_t gfp_mask) 652 { 653 unsigned long background_thresh; 654 unsigned long dirty_thresh; 655 656 for ( ; ; ) { 657 global_dirty_limits(&background_thresh, &dirty_thresh); 658 659 /* 660 * Boost the allowable dirty threshold a bit for page 661 * allocators so they don't get DoS'ed by heavy writers 662 */ 663 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 664 665 if (global_page_state(NR_UNSTABLE_NFS) + 666 global_page_state(NR_WRITEBACK) <= dirty_thresh) 667 break; 668 congestion_wait(BLK_RW_ASYNC, HZ/10); 669 670 /* 671 * The caller might hold locks which can prevent IO completion 672 * or progress in the filesystem. So we cannot just sit here 673 * waiting for IO to complete. 674 */ 675 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 676 break; 677 } 678 } 679 680 /* 681 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 682 */ 683 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 684 void __user *buffer, size_t *length, loff_t *ppos) 685 { 686 proc_dointvec(table, write, buffer, length, ppos); 687 bdi_arm_supers_timer(); 688 return 0; 689 } 690 691 #ifdef CONFIG_BLOCK 692 void laptop_mode_timer_fn(unsigned long data) 693 { 694 struct request_queue *q = (struct request_queue *)data; 695 int nr_pages = global_page_state(NR_FILE_DIRTY) + 696 global_page_state(NR_UNSTABLE_NFS); 697 698 /* 699 * We want to write everything out, not just down to the dirty 700 * threshold 701 */ 702 if (bdi_has_dirty_io(&q->backing_dev_info)) 703 bdi_start_writeback(&q->backing_dev_info, nr_pages); 704 } 705 706 /* 707 * We've spun up the disk and we're in laptop mode: schedule writeback 708 * of all dirty data a few seconds from now. If the flush is already scheduled 709 * then push it back - the user is still using the disk. 710 */ 711 void laptop_io_completion(struct backing_dev_info *info) 712 { 713 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 714 } 715 716 /* 717 * We're in laptop mode and we've just synced. The sync's writes will have 718 * caused another writeback to be scheduled by laptop_io_completion. 719 * Nothing needs to be written back anymore, so we unschedule the writeback. 720 */ 721 void laptop_sync_completion(void) 722 { 723 struct backing_dev_info *bdi; 724 725 rcu_read_lock(); 726 727 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 728 del_timer(&bdi->laptop_mode_wb_timer); 729 730 rcu_read_unlock(); 731 } 732 #endif 733 734 /* 735 * If ratelimit_pages is too high then we can get into dirty-data overload 736 * if a large number of processes all perform writes at the same time. 737 * If it is too low then SMP machines will call the (expensive) 738 * get_writeback_state too often. 739 * 740 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 741 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 742 * thresholds before writeback cuts in. 743 * 744 * But the limit should not be set too high. Because it also controls the 745 * amount of memory which the balance_dirty_pages() caller has to write back. 746 * If this is too large then the caller will block on the IO queue all the 747 * time. So limit it to four megabytes - the balance_dirty_pages() caller 748 * will write six megabyte chunks, max. 749 */ 750 751 void writeback_set_ratelimit(void) 752 { 753 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 754 if (ratelimit_pages < 16) 755 ratelimit_pages = 16; 756 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 757 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 758 } 759 760 static int __cpuinit 761 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 762 { 763 writeback_set_ratelimit(); 764 return NOTIFY_DONE; 765 } 766 767 static struct notifier_block __cpuinitdata ratelimit_nb = { 768 .notifier_call = ratelimit_handler, 769 .next = NULL, 770 }; 771 772 /* 773 * Called early on to tune the page writeback dirty limits. 774 * 775 * We used to scale dirty pages according to how total memory 776 * related to pages that could be allocated for buffers (by 777 * comparing nr_free_buffer_pages() to vm_total_pages. 778 * 779 * However, that was when we used "dirty_ratio" to scale with 780 * all memory, and we don't do that any more. "dirty_ratio" 781 * is now applied to total non-HIGHPAGE memory (by subtracting 782 * totalhigh_pages from vm_total_pages), and as such we can't 783 * get into the old insane situation any more where we had 784 * large amounts of dirty pages compared to a small amount of 785 * non-HIGHMEM memory. 786 * 787 * But we might still want to scale the dirty_ratio by how 788 * much memory the box has.. 789 */ 790 void __init page_writeback_init(void) 791 { 792 int shift; 793 794 writeback_set_ratelimit(); 795 register_cpu_notifier(&ratelimit_nb); 796 797 shift = calc_period_shift(); 798 prop_descriptor_init(&vm_completions, shift); 799 prop_descriptor_init(&vm_dirties, shift); 800 } 801 802 /** 803 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 804 * @mapping: address space structure to write 805 * @start: starting page index 806 * @end: ending page index (inclusive) 807 * 808 * This function scans the page range from @start to @end (inclusive) and tags 809 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 810 * that write_cache_pages (or whoever calls this function) will then use 811 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 812 * used to avoid livelocking of writeback by a process steadily creating new 813 * dirty pages in the file (thus it is important for this function to be quick 814 * so that it can tag pages faster than a dirtying process can create them). 815 */ 816 /* 817 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 818 */ 819 void tag_pages_for_writeback(struct address_space *mapping, 820 pgoff_t start, pgoff_t end) 821 { 822 #define WRITEBACK_TAG_BATCH 4096 823 unsigned long tagged; 824 825 do { 826 spin_lock_irq(&mapping->tree_lock); 827 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 828 &start, end, WRITEBACK_TAG_BATCH, 829 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 830 spin_unlock_irq(&mapping->tree_lock); 831 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 832 cond_resched(); 833 /* We check 'start' to handle wrapping when end == ~0UL */ 834 } while (tagged >= WRITEBACK_TAG_BATCH && start); 835 } 836 EXPORT_SYMBOL(tag_pages_for_writeback); 837 838 /** 839 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 840 * @mapping: address space structure to write 841 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 842 * @writepage: function called for each page 843 * @data: data passed to writepage function 844 * 845 * If a page is already under I/O, write_cache_pages() skips it, even 846 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 847 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 848 * and msync() need to guarantee that all the data which was dirty at the time 849 * the call was made get new I/O started against them. If wbc->sync_mode is 850 * WB_SYNC_ALL then we were called for data integrity and we must wait for 851 * existing IO to complete. 852 * 853 * To avoid livelocks (when other process dirties new pages), we first tag 854 * pages which should be written back with TOWRITE tag and only then start 855 * writing them. For data-integrity sync we have to be careful so that we do 856 * not miss some pages (e.g., because some other process has cleared TOWRITE 857 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 858 * by the process clearing the DIRTY tag (and submitting the page for IO). 859 */ 860 int write_cache_pages(struct address_space *mapping, 861 struct writeback_control *wbc, writepage_t writepage, 862 void *data) 863 { 864 int ret = 0; 865 int done = 0; 866 struct pagevec pvec; 867 int nr_pages; 868 pgoff_t uninitialized_var(writeback_index); 869 pgoff_t index; 870 pgoff_t end; /* Inclusive */ 871 pgoff_t done_index; 872 int cycled; 873 int range_whole = 0; 874 int tag; 875 876 pagevec_init(&pvec, 0); 877 if (wbc->range_cyclic) { 878 writeback_index = mapping->writeback_index; /* prev offset */ 879 index = writeback_index; 880 if (index == 0) 881 cycled = 1; 882 else 883 cycled = 0; 884 end = -1; 885 } else { 886 index = wbc->range_start >> PAGE_CACHE_SHIFT; 887 end = wbc->range_end >> PAGE_CACHE_SHIFT; 888 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 889 range_whole = 1; 890 cycled = 1; /* ignore range_cyclic tests */ 891 } 892 if (wbc->sync_mode == WB_SYNC_ALL) 893 tag = PAGECACHE_TAG_TOWRITE; 894 else 895 tag = PAGECACHE_TAG_DIRTY; 896 retry: 897 if (wbc->sync_mode == WB_SYNC_ALL) 898 tag_pages_for_writeback(mapping, index, end); 899 done_index = index; 900 while (!done && (index <= end)) { 901 int i; 902 903 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 904 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 905 if (nr_pages == 0) 906 break; 907 908 for (i = 0; i < nr_pages; i++) { 909 struct page *page = pvec.pages[i]; 910 911 /* 912 * At this point, the page may be truncated or 913 * invalidated (changing page->mapping to NULL), or 914 * even swizzled back from swapper_space to tmpfs file 915 * mapping. However, page->index will not change 916 * because we have a reference on the page. 917 */ 918 if (page->index > end) { 919 /* 920 * can't be range_cyclic (1st pass) because 921 * end == -1 in that case. 922 */ 923 done = 1; 924 break; 925 } 926 927 done_index = page->index + 1; 928 929 lock_page(page); 930 931 /* 932 * Page truncated or invalidated. We can freely skip it 933 * then, even for data integrity operations: the page 934 * has disappeared concurrently, so there could be no 935 * real expectation of this data interity operation 936 * even if there is now a new, dirty page at the same 937 * pagecache address. 938 */ 939 if (unlikely(page->mapping != mapping)) { 940 continue_unlock: 941 unlock_page(page); 942 continue; 943 } 944 945 if (!PageDirty(page)) { 946 /* someone wrote it for us */ 947 goto continue_unlock; 948 } 949 950 if (PageWriteback(page)) { 951 if (wbc->sync_mode != WB_SYNC_NONE) 952 wait_on_page_writeback(page); 953 else 954 goto continue_unlock; 955 } 956 957 BUG_ON(PageWriteback(page)); 958 if (!clear_page_dirty_for_io(page)) 959 goto continue_unlock; 960 961 trace_wbc_writepage(wbc, mapping->backing_dev_info); 962 ret = (*writepage)(page, wbc, data); 963 if (unlikely(ret)) { 964 if (ret == AOP_WRITEPAGE_ACTIVATE) { 965 unlock_page(page); 966 ret = 0; 967 } else { 968 /* 969 * done_index is set past this page, 970 * so media errors will not choke 971 * background writeout for the entire 972 * file. This has consequences for 973 * range_cyclic semantics (ie. it may 974 * not be suitable for data integrity 975 * writeout). 976 */ 977 done = 1; 978 break; 979 } 980 } 981 982 /* 983 * We stop writing back only if we are not doing 984 * integrity sync. In case of integrity sync we have to 985 * keep going until we have written all the pages 986 * we tagged for writeback prior to entering this loop. 987 */ 988 if (--wbc->nr_to_write <= 0 && 989 wbc->sync_mode == WB_SYNC_NONE) { 990 done = 1; 991 break; 992 } 993 } 994 pagevec_release(&pvec); 995 cond_resched(); 996 } 997 if (!cycled && !done) { 998 /* 999 * range_cyclic: 1000 * We hit the last page and there is more work to be done: wrap 1001 * back to the start of the file 1002 */ 1003 cycled = 1; 1004 index = 0; 1005 end = writeback_index - 1; 1006 goto retry; 1007 } 1008 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1009 mapping->writeback_index = done_index; 1010 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(write_cache_pages); 1014 1015 /* 1016 * Function used by generic_writepages to call the real writepage 1017 * function and set the mapping flags on error 1018 */ 1019 static int __writepage(struct page *page, struct writeback_control *wbc, 1020 void *data) 1021 { 1022 struct address_space *mapping = data; 1023 int ret = mapping->a_ops->writepage(page, wbc); 1024 mapping_set_error(mapping, ret); 1025 return ret; 1026 } 1027 1028 /** 1029 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1030 * @mapping: address space structure to write 1031 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1032 * 1033 * This is a library function, which implements the writepages() 1034 * address_space_operation. 1035 */ 1036 int generic_writepages(struct address_space *mapping, 1037 struct writeback_control *wbc) 1038 { 1039 /* deal with chardevs and other special file */ 1040 if (!mapping->a_ops->writepage) 1041 return 0; 1042 1043 return write_cache_pages(mapping, wbc, __writepage, mapping); 1044 } 1045 1046 EXPORT_SYMBOL(generic_writepages); 1047 1048 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1049 { 1050 int ret; 1051 1052 if (wbc->nr_to_write <= 0) 1053 return 0; 1054 if (mapping->a_ops->writepages) 1055 ret = mapping->a_ops->writepages(mapping, wbc); 1056 else 1057 ret = generic_writepages(mapping, wbc); 1058 return ret; 1059 } 1060 1061 /** 1062 * write_one_page - write out a single page and optionally wait on I/O 1063 * @page: the page to write 1064 * @wait: if true, wait on writeout 1065 * 1066 * The page must be locked by the caller and will be unlocked upon return. 1067 * 1068 * write_one_page() returns a negative error code if I/O failed. 1069 */ 1070 int write_one_page(struct page *page, int wait) 1071 { 1072 struct address_space *mapping = page->mapping; 1073 int ret = 0; 1074 struct writeback_control wbc = { 1075 .sync_mode = WB_SYNC_ALL, 1076 .nr_to_write = 1, 1077 }; 1078 1079 BUG_ON(!PageLocked(page)); 1080 1081 if (wait) 1082 wait_on_page_writeback(page); 1083 1084 if (clear_page_dirty_for_io(page)) { 1085 page_cache_get(page); 1086 ret = mapping->a_ops->writepage(page, &wbc); 1087 if (ret == 0 && wait) { 1088 wait_on_page_writeback(page); 1089 if (PageError(page)) 1090 ret = -EIO; 1091 } 1092 page_cache_release(page); 1093 } else { 1094 unlock_page(page); 1095 } 1096 return ret; 1097 } 1098 EXPORT_SYMBOL(write_one_page); 1099 1100 /* 1101 * For address_spaces which do not use buffers nor write back. 1102 */ 1103 int __set_page_dirty_no_writeback(struct page *page) 1104 { 1105 if (!PageDirty(page)) 1106 SetPageDirty(page); 1107 return 0; 1108 } 1109 1110 /* 1111 * Helper function for set_page_dirty family. 1112 * NOTE: This relies on being atomic wrt interrupts. 1113 */ 1114 void account_page_dirtied(struct page *page, struct address_space *mapping) 1115 { 1116 if (mapping_cap_account_dirty(mapping)) { 1117 __inc_zone_page_state(page, NR_FILE_DIRTY); 1118 __inc_zone_page_state(page, NR_DIRTIED); 1119 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1120 task_dirty_inc(current); 1121 task_io_account_write(PAGE_CACHE_SIZE); 1122 } 1123 } 1124 EXPORT_SYMBOL(account_page_dirtied); 1125 1126 /* 1127 * Helper function for set_page_writeback family. 1128 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1129 * wrt interrupts. 1130 */ 1131 void account_page_writeback(struct page *page) 1132 { 1133 inc_zone_page_state(page, NR_WRITEBACK); 1134 inc_zone_page_state(page, NR_WRITTEN); 1135 } 1136 EXPORT_SYMBOL(account_page_writeback); 1137 1138 /* 1139 * For address_spaces which do not use buffers. Just tag the page as dirty in 1140 * its radix tree. 1141 * 1142 * This is also used when a single buffer is being dirtied: we want to set the 1143 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1144 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1145 * 1146 * Most callers have locked the page, which pins the address_space in memory. 1147 * But zap_pte_range() does not lock the page, however in that case the 1148 * mapping is pinned by the vma's ->vm_file reference. 1149 * 1150 * We take care to handle the case where the page was truncated from the 1151 * mapping by re-checking page_mapping() inside tree_lock. 1152 */ 1153 int __set_page_dirty_nobuffers(struct page *page) 1154 { 1155 if (!TestSetPageDirty(page)) { 1156 struct address_space *mapping = page_mapping(page); 1157 struct address_space *mapping2; 1158 1159 if (!mapping) 1160 return 1; 1161 1162 spin_lock_irq(&mapping->tree_lock); 1163 mapping2 = page_mapping(page); 1164 if (mapping2) { /* Race with truncate? */ 1165 BUG_ON(mapping2 != mapping); 1166 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1167 account_page_dirtied(page, mapping); 1168 radix_tree_tag_set(&mapping->page_tree, 1169 page_index(page), PAGECACHE_TAG_DIRTY); 1170 } 1171 spin_unlock_irq(&mapping->tree_lock); 1172 if (mapping->host) { 1173 /* !PageAnon && !swapper_space */ 1174 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1175 } 1176 return 1; 1177 } 1178 return 0; 1179 } 1180 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1181 1182 /* 1183 * When a writepage implementation decides that it doesn't want to write this 1184 * page for some reason, it should redirty the locked page via 1185 * redirty_page_for_writepage() and it should then unlock the page and return 0 1186 */ 1187 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1188 { 1189 wbc->pages_skipped++; 1190 return __set_page_dirty_nobuffers(page); 1191 } 1192 EXPORT_SYMBOL(redirty_page_for_writepage); 1193 1194 /* 1195 * Dirty a page. 1196 * 1197 * For pages with a mapping this should be done under the page lock 1198 * for the benefit of asynchronous memory errors who prefer a consistent 1199 * dirty state. This rule can be broken in some special cases, 1200 * but should be better not to. 1201 * 1202 * If the mapping doesn't provide a set_page_dirty a_op, then 1203 * just fall through and assume that it wants buffer_heads. 1204 */ 1205 int set_page_dirty(struct page *page) 1206 { 1207 struct address_space *mapping = page_mapping(page); 1208 1209 if (likely(mapping)) { 1210 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1211 #ifdef CONFIG_BLOCK 1212 if (!spd) 1213 spd = __set_page_dirty_buffers; 1214 #endif 1215 return (*spd)(page); 1216 } 1217 if (!PageDirty(page)) { 1218 if (!TestSetPageDirty(page)) 1219 return 1; 1220 } 1221 return 0; 1222 } 1223 EXPORT_SYMBOL(set_page_dirty); 1224 1225 /* 1226 * set_page_dirty() is racy if the caller has no reference against 1227 * page->mapping->host, and if the page is unlocked. This is because another 1228 * CPU could truncate the page off the mapping and then free the mapping. 1229 * 1230 * Usually, the page _is_ locked, or the caller is a user-space process which 1231 * holds a reference on the inode by having an open file. 1232 * 1233 * In other cases, the page should be locked before running set_page_dirty(). 1234 */ 1235 int set_page_dirty_lock(struct page *page) 1236 { 1237 int ret; 1238 1239 lock_page_nosync(page); 1240 ret = set_page_dirty(page); 1241 unlock_page(page); 1242 return ret; 1243 } 1244 EXPORT_SYMBOL(set_page_dirty_lock); 1245 1246 /* 1247 * Clear a page's dirty flag, while caring for dirty memory accounting. 1248 * Returns true if the page was previously dirty. 1249 * 1250 * This is for preparing to put the page under writeout. We leave the page 1251 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1252 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1253 * implementation will run either set_page_writeback() or set_page_dirty(), 1254 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1255 * back into sync. 1256 * 1257 * This incoherency between the page's dirty flag and radix-tree tag is 1258 * unfortunate, but it only exists while the page is locked. 1259 */ 1260 int clear_page_dirty_for_io(struct page *page) 1261 { 1262 struct address_space *mapping = page_mapping(page); 1263 1264 BUG_ON(!PageLocked(page)); 1265 1266 ClearPageReclaim(page); 1267 if (mapping && mapping_cap_account_dirty(mapping)) { 1268 /* 1269 * Yes, Virginia, this is indeed insane. 1270 * 1271 * We use this sequence to make sure that 1272 * (a) we account for dirty stats properly 1273 * (b) we tell the low-level filesystem to 1274 * mark the whole page dirty if it was 1275 * dirty in a pagetable. Only to then 1276 * (c) clean the page again and return 1 to 1277 * cause the writeback. 1278 * 1279 * This way we avoid all nasty races with the 1280 * dirty bit in multiple places and clearing 1281 * them concurrently from different threads. 1282 * 1283 * Note! Normally the "set_page_dirty(page)" 1284 * has no effect on the actual dirty bit - since 1285 * that will already usually be set. But we 1286 * need the side effects, and it can help us 1287 * avoid races. 1288 * 1289 * We basically use the page "master dirty bit" 1290 * as a serialization point for all the different 1291 * threads doing their things. 1292 */ 1293 if (page_mkclean(page)) 1294 set_page_dirty(page); 1295 /* 1296 * We carefully synchronise fault handlers against 1297 * installing a dirty pte and marking the page dirty 1298 * at this point. We do this by having them hold the 1299 * page lock at some point after installing their 1300 * pte, but before marking the page dirty. 1301 * Pages are always locked coming in here, so we get 1302 * the desired exclusion. See mm/memory.c:do_wp_page() 1303 * for more comments. 1304 */ 1305 if (TestClearPageDirty(page)) { 1306 dec_zone_page_state(page, NR_FILE_DIRTY); 1307 dec_bdi_stat(mapping->backing_dev_info, 1308 BDI_RECLAIMABLE); 1309 return 1; 1310 } 1311 return 0; 1312 } 1313 return TestClearPageDirty(page); 1314 } 1315 EXPORT_SYMBOL(clear_page_dirty_for_io); 1316 1317 int test_clear_page_writeback(struct page *page) 1318 { 1319 struct address_space *mapping = page_mapping(page); 1320 int ret; 1321 1322 if (mapping) { 1323 struct backing_dev_info *bdi = mapping->backing_dev_info; 1324 unsigned long flags; 1325 1326 spin_lock_irqsave(&mapping->tree_lock, flags); 1327 ret = TestClearPageWriteback(page); 1328 if (ret) { 1329 radix_tree_tag_clear(&mapping->page_tree, 1330 page_index(page), 1331 PAGECACHE_TAG_WRITEBACK); 1332 if (bdi_cap_account_writeback(bdi)) { 1333 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1334 __bdi_writeout_inc(bdi); 1335 } 1336 } 1337 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1338 } else { 1339 ret = TestClearPageWriteback(page); 1340 } 1341 if (ret) 1342 dec_zone_page_state(page, NR_WRITEBACK); 1343 return ret; 1344 } 1345 1346 int test_set_page_writeback(struct page *page) 1347 { 1348 struct address_space *mapping = page_mapping(page); 1349 int ret; 1350 1351 if (mapping) { 1352 struct backing_dev_info *bdi = mapping->backing_dev_info; 1353 unsigned long flags; 1354 1355 spin_lock_irqsave(&mapping->tree_lock, flags); 1356 ret = TestSetPageWriteback(page); 1357 if (!ret) { 1358 radix_tree_tag_set(&mapping->page_tree, 1359 page_index(page), 1360 PAGECACHE_TAG_WRITEBACK); 1361 if (bdi_cap_account_writeback(bdi)) 1362 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1363 } 1364 if (!PageDirty(page)) 1365 radix_tree_tag_clear(&mapping->page_tree, 1366 page_index(page), 1367 PAGECACHE_TAG_DIRTY); 1368 radix_tree_tag_clear(&mapping->page_tree, 1369 page_index(page), 1370 PAGECACHE_TAG_TOWRITE); 1371 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1372 } else { 1373 ret = TestSetPageWriteback(page); 1374 } 1375 if (!ret) 1376 account_page_writeback(page); 1377 return ret; 1378 1379 } 1380 EXPORT_SYMBOL(test_set_page_writeback); 1381 1382 /* 1383 * Return true if any of the pages in the mapping are marked with the 1384 * passed tag. 1385 */ 1386 int mapping_tagged(struct address_space *mapping, int tag) 1387 { 1388 int ret; 1389 rcu_read_lock(); 1390 ret = radix_tree_tagged(&mapping->page_tree, tag); 1391 rcu_read_unlock(); 1392 return ret; 1393 } 1394 EXPORT_SYMBOL(mapping_tagged); 1395