1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * Sleep at most 200ms at a time in balance_dirty_pages(). 41 */ 42 #define MAX_PAUSE max(HZ/5, 1) 43 44 /* 45 * Estimate write bandwidth at 200ms intervals. 46 */ 47 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 48 49 /* 50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 51 * will look to see if it needs to force writeback or throttling. 52 */ 53 static long ratelimit_pages = 32; 54 55 /* 56 * When balance_dirty_pages decides that the caller needs to perform some 57 * non-background writeback, this is how many pages it will attempt to write. 58 * It should be somewhat larger than dirtied pages to ensure that reasonably 59 * large amounts of I/O are submitted. 60 */ 61 static inline long sync_writeback_pages(unsigned long dirtied) 62 { 63 if (dirtied < ratelimit_pages) 64 dirtied = ratelimit_pages; 65 66 return dirtied + dirtied / 2; 67 } 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 /* 105 * The longest time for which data is allowed to remain dirty 106 */ 107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 108 109 /* 110 * Flag that makes the machine dump writes/reads and block dirtyings. 111 */ 112 int block_dump; 113 114 /* 115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 116 * a full sync is triggered after this time elapses without any disk activity. 117 */ 118 int laptop_mode; 119 120 EXPORT_SYMBOL(laptop_mode); 121 122 /* End of sysctl-exported parameters */ 123 124 unsigned long global_dirty_limit; 125 126 /* 127 * Scale the writeback cache size proportional to the relative writeout speeds. 128 * 129 * We do this by keeping a floating proportion between BDIs, based on page 130 * writeback completions [end_page_writeback()]. Those devices that write out 131 * pages fastest will get the larger share, while the slower will get a smaller 132 * share. 133 * 134 * We use page writeout completions because we are interested in getting rid of 135 * dirty pages. Having them written out is the primary goal. 136 * 137 * We introduce a concept of time, a period over which we measure these events, 138 * because demand can/will vary over time. The length of this period itself is 139 * measured in page writeback completions. 140 * 141 */ 142 static struct prop_descriptor vm_completions; 143 static struct prop_descriptor vm_dirties; 144 145 /* 146 * couple the period to the dirty_ratio: 147 * 148 * period/2 ~ roundup_pow_of_two(dirty limit) 149 */ 150 static int calc_period_shift(void) 151 { 152 unsigned long dirty_total; 153 154 if (vm_dirty_bytes) 155 dirty_total = vm_dirty_bytes / PAGE_SIZE; 156 else 157 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 158 100; 159 return 2 + ilog2(dirty_total - 1); 160 } 161 162 /* 163 * update the period when the dirty threshold changes. 164 */ 165 static void update_completion_period(void) 166 { 167 int shift = calc_period_shift(); 168 prop_change_shift(&vm_completions, shift); 169 prop_change_shift(&vm_dirties, shift); 170 } 171 172 int dirty_background_ratio_handler(struct ctl_table *table, int write, 173 void __user *buffer, size_t *lenp, 174 loff_t *ppos) 175 { 176 int ret; 177 178 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 179 if (ret == 0 && write) 180 dirty_background_bytes = 0; 181 return ret; 182 } 183 184 int dirty_background_bytes_handler(struct ctl_table *table, int write, 185 void __user *buffer, size_t *lenp, 186 loff_t *ppos) 187 { 188 int ret; 189 190 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 191 if (ret == 0 && write) 192 dirty_background_ratio = 0; 193 return ret; 194 } 195 196 int dirty_ratio_handler(struct ctl_table *table, int write, 197 void __user *buffer, size_t *lenp, 198 loff_t *ppos) 199 { 200 int old_ratio = vm_dirty_ratio; 201 int ret; 202 203 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 204 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 205 update_completion_period(); 206 vm_dirty_bytes = 0; 207 } 208 return ret; 209 } 210 211 212 int dirty_bytes_handler(struct ctl_table *table, int write, 213 void __user *buffer, size_t *lenp, 214 loff_t *ppos) 215 { 216 unsigned long old_bytes = vm_dirty_bytes; 217 int ret; 218 219 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 220 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 221 update_completion_period(); 222 vm_dirty_ratio = 0; 223 } 224 return ret; 225 } 226 227 /* 228 * Increment the BDI's writeout completion count and the global writeout 229 * completion count. Called from test_clear_page_writeback(). 230 */ 231 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 232 { 233 __inc_bdi_stat(bdi, BDI_WRITTEN); 234 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 235 bdi->max_prop_frac); 236 } 237 238 void bdi_writeout_inc(struct backing_dev_info *bdi) 239 { 240 unsigned long flags; 241 242 local_irq_save(flags); 243 __bdi_writeout_inc(bdi); 244 local_irq_restore(flags); 245 } 246 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 247 248 void task_dirty_inc(struct task_struct *tsk) 249 { 250 prop_inc_single(&vm_dirties, &tsk->dirties); 251 } 252 253 /* 254 * Obtain an accurate fraction of the BDI's portion. 255 */ 256 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 257 long *numerator, long *denominator) 258 { 259 prop_fraction_percpu(&vm_completions, &bdi->completions, 260 numerator, denominator); 261 } 262 263 static inline void task_dirties_fraction(struct task_struct *tsk, 264 long *numerator, long *denominator) 265 { 266 prop_fraction_single(&vm_dirties, &tsk->dirties, 267 numerator, denominator); 268 } 269 270 /* 271 * task_dirty_limit - scale down dirty throttling threshold for one task 272 * 273 * task specific dirty limit: 274 * 275 * dirty -= (dirty/8) * p_{t} 276 * 277 * To protect light/slow dirtying tasks from heavier/fast ones, we start 278 * throttling individual tasks before reaching the bdi dirty limit. 279 * Relatively low thresholds will be allocated to heavy dirtiers. So when 280 * dirty pages grow large, heavy dirtiers will be throttled first, which will 281 * effectively curb the growth of dirty pages. Light dirtiers with high enough 282 * dirty threshold may never get throttled. 283 */ 284 #define TASK_LIMIT_FRACTION 8 285 static unsigned long task_dirty_limit(struct task_struct *tsk, 286 unsigned long bdi_dirty) 287 { 288 long numerator, denominator; 289 unsigned long dirty = bdi_dirty; 290 u64 inv = dirty / TASK_LIMIT_FRACTION; 291 292 task_dirties_fraction(tsk, &numerator, &denominator); 293 inv *= numerator; 294 do_div(inv, denominator); 295 296 dirty -= inv; 297 298 return max(dirty, bdi_dirty/2); 299 } 300 301 /* Minimum limit for any task */ 302 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty) 303 { 304 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION; 305 } 306 307 /* 308 * 309 */ 310 static unsigned int bdi_min_ratio; 311 312 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 313 { 314 int ret = 0; 315 316 spin_lock_bh(&bdi_lock); 317 if (min_ratio > bdi->max_ratio) { 318 ret = -EINVAL; 319 } else { 320 min_ratio -= bdi->min_ratio; 321 if (bdi_min_ratio + min_ratio < 100) { 322 bdi_min_ratio += min_ratio; 323 bdi->min_ratio += min_ratio; 324 } else { 325 ret = -EINVAL; 326 } 327 } 328 spin_unlock_bh(&bdi_lock); 329 330 return ret; 331 } 332 333 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 334 { 335 int ret = 0; 336 337 if (max_ratio > 100) 338 return -EINVAL; 339 340 spin_lock_bh(&bdi_lock); 341 if (bdi->min_ratio > max_ratio) { 342 ret = -EINVAL; 343 } else { 344 bdi->max_ratio = max_ratio; 345 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 346 } 347 spin_unlock_bh(&bdi_lock); 348 349 return ret; 350 } 351 EXPORT_SYMBOL(bdi_set_max_ratio); 352 353 /* 354 * Work out the current dirty-memory clamping and background writeout 355 * thresholds. 356 * 357 * The main aim here is to lower them aggressively if there is a lot of mapped 358 * memory around. To avoid stressing page reclaim with lots of unreclaimable 359 * pages. It is better to clamp down on writers than to start swapping, and 360 * performing lots of scanning. 361 * 362 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 363 * 364 * We don't permit the clamping level to fall below 5% - that is getting rather 365 * excessive. 366 * 367 * We make sure that the background writeout level is below the adjusted 368 * clamping level. 369 */ 370 371 static unsigned long highmem_dirtyable_memory(unsigned long total) 372 { 373 #ifdef CONFIG_HIGHMEM 374 int node; 375 unsigned long x = 0; 376 377 for_each_node_state(node, N_HIGH_MEMORY) { 378 struct zone *z = 379 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 380 381 x += zone_page_state(z, NR_FREE_PAGES) + 382 zone_reclaimable_pages(z); 383 } 384 /* 385 * Make sure that the number of highmem pages is never larger 386 * than the number of the total dirtyable memory. This can only 387 * occur in very strange VM situations but we want to make sure 388 * that this does not occur. 389 */ 390 return min(x, total); 391 #else 392 return 0; 393 #endif 394 } 395 396 /** 397 * determine_dirtyable_memory - amount of memory that may be used 398 * 399 * Returns the numebr of pages that can currently be freed and used 400 * by the kernel for direct mappings. 401 */ 402 unsigned long determine_dirtyable_memory(void) 403 { 404 unsigned long x; 405 406 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 407 408 if (!vm_highmem_is_dirtyable) 409 x -= highmem_dirtyable_memory(x); 410 411 return x + 1; /* Ensure that we never return 0 */ 412 } 413 414 static unsigned long hard_dirty_limit(unsigned long thresh) 415 { 416 return max(thresh, global_dirty_limit); 417 } 418 419 /* 420 * global_dirty_limits - background-writeback and dirty-throttling thresholds 421 * 422 * Calculate the dirty thresholds based on sysctl parameters 423 * - vm.dirty_background_ratio or vm.dirty_background_bytes 424 * - vm.dirty_ratio or vm.dirty_bytes 425 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 426 * real-time tasks. 427 */ 428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 429 { 430 unsigned long background; 431 unsigned long dirty; 432 unsigned long uninitialized_var(available_memory); 433 struct task_struct *tsk; 434 435 if (!vm_dirty_bytes || !dirty_background_bytes) 436 available_memory = determine_dirtyable_memory(); 437 438 if (vm_dirty_bytes) 439 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 440 else 441 dirty = (vm_dirty_ratio * available_memory) / 100; 442 443 if (dirty_background_bytes) 444 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 445 else 446 background = (dirty_background_ratio * available_memory) / 100; 447 448 if (background >= dirty) 449 background = dirty / 2; 450 tsk = current; 451 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 452 background += background / 4; 453 dirty += dirty / 4; 454 } 455 *pbackground = background; 456 *pdirty = dirty; 457 trace_global_dirty_state(background, dirty); 458 } 459 460 /** 461 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 462 * @bdi: the backing_dev_info to query 463 * @dirty: global dirty limit in pages 464 * 465 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 466 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 467 * And the "limit" in the name is not seriously taken as hard limit in 468 * balance_dirty_pages(). 469 * 470 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 471 * - starving fast devices 472 * - piling up dirty pages (that will take long time to sync) on slow devices 473 * 474 * The bdi's share of dirty limit will be adapting to its throughput and 475 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 476 */ 477 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 478 { 479 u64 bdi_dirty; 480 long numerator, denominator; 481 482 /* 483 * Calculate this BDI's share of the dirty ratio. 484 */ 485 bdi_writeout_fraction(bdi, &numerator, &denominator); 486 487 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 488 bdi_dirty *= numerator; 489 do_div(bdi_dirty, denominator); 490 491 bdi_dirty += (dirty * bdi->min_ratio) / 100; 492 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 493 bdi_dirty = dirty * bdi->max_ratio / 100; 494 495 return bdi_dirty; 496 } 497 498 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 499 unsigned long elapsed, 500 unsigned long written) 501 { 502 const unsigned long period = roundup_pow_of_two(3 * HZ); 503 unsigned long avg = bdi->avg_write_bandwidth; 504 unsigned long old = bdi->write_bandwidth; 505 u64 bw; 506 507 /* 508 * bw = written * HZ / elapsed 509 * 510 * bw * elapsed + write_bandwidth * (period - elapsed) 511 * write_bandwidth = --------------------------------------------------- 512 * period 513 */ 514 bw = written - bdi->written_stamp; 515 bw *= HZ; 516 if (unlikely(elapsed > period)) { 517 do_div(bw, elapsed); 518 avg = bw; 519 goto out; 520 } 521 bw += (u64)bdi->write_bandwidth * (period - elapsed); 522 bw >>= ilog2(period); 523 524 /* 525 * one more level of smoothing, for filtering out sudden spikes 526 */ 527 if (avg > old && old >= (unsigned long)bw) 528 avg -= (avg - old) >> 3; 529 530 if (avg < old && old <= (unsigned long)bw) 531 avg += (old - avg) >> 3; 532 533 out: 534 bdi->write_bandwidth = bw; 535 bdi->avg_write_bandwidth = avg; 536 } 537 538 /* 539 * The global dirtyable memory and dirty threshold could be suddenly knocked 540 * down by a large amount (eg. on the startup of KVM in a swapless system). 541 * This may throw the system into deep dirty exceeded state and throttle 542 * heavy/light dirtiers alike. To retain good responsiveness, maintain 543 * global_dirty_limit for tracking slowly down to the knocked down dirty 544 * threshold. 545 */ 546 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 547 { 548 unsigned long limit = global_dirty_limit; 549 550 /* 551 * Follow up in one step. 552 */ 553 if (limit < thresh) { 554 limit = thresh; 555 goto update; 556 } 557 558 /* 559 * Follow down slowly. Use the higher one as the target, because thresh 560 * may drop below dirty. This is exactly the reason to introduce 561 * global_dirty_limit which is guaranteed to lie above the dirty pages. 562 */ 563 thresh = max(thresh, dirty); 564 if (limit > thresh) { 565 limit -= (limit - thresh) >> 5; 566 goto update; 567 } 568 return; 569 update: 570 global_dirty_limit = limit; 571 } 572 573 static void global_update_bandwidth(unsigned long thresh, 574 unsigned long dirty, 575 unsigned long now) 576 { 577 static DEFINE_SPINLOCK(dirty_lock); 578 static unsigned long update_time; 579 580 /* 581 * check locklessly first to optimize away locking for the most time 582 */ 583 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 584 return; 585 586 spin_lock(&dirty_lock); 587 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 588 update_dirty_limit(thresh, dirty); 589 update_time = now; 590 } 591 spin_unlock(&dirty_lock); 592 } 593 594 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 595 unsigned long thresh, 596 unsigned long dirty, 597 unsigned long bdi_thresh, 598 unsigned long bdi_dirty, 599 unsigned long start_time) 600 { 601 unsigned long now = jiffies; 602 unsigned long elapsed = now - bdi->bw_time_stamp; 603 unsigned long written; 604 605 /* 606 * rate-limit, only update once every 200ms. 607 */ 608 if (elapsed < BANDWIDTH_INTERVAL) 609 return; 610 611 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 612 613 /* 614 * Skip quiet periods when disk bandwidth is under-utilized. 615 * (at least 1s idle time between two flusher runs) 616 */ 617 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 618 goto snapshot; 619 620 if (thresh) 621 global_update_bandwidth(thresh, dirty, now); 622 623 bdi_update_write_bandwidth(bdi, elapsed, written); 624 625 snapshot: 626 bdi->written_stamp = written; 627 bdi->bw_time_stamp = now; 628 } 629 630 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 631 unsigned long thresh, 632 unsigned long dirty, 633 unsigned long bdi_thresh, 634 unsigned long bdi_dirty, 635 unsigned long start_time) 636 { 637 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 638 return; 639 spin_lock(&bdi->wb.list_lock); 640 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty, 641 start_time); 642 spin_unlock(&bdi->wb.list_lock); 643 } 644 645 /* 646 * balance_dirty_pages() must be called by processes which are generating dirty 647 * data. It looks at the number of dirty pages in the machine and will force 648 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 649 * If we're over `background_thresh' then the writeback threads are woken to 650 * perform some writeout. 651 */ 652 static void balance_dirty_pages(struct address_space *mapping, 653 unsigned long write_chunk) 654 { 655 unsigned long nr_reclaimable, bdi_nr_reclaimable; 656 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 657 unsigned long bdi_dirty; 658 unsigned long background_thresh; 659 unsigned long dirty_thresh; 660 unsigned long bdi_thresh; 661 unsigned long task_bdi_thresh; 662 unsigned long min_task_bdi_thresh; 663 unsigned long pages_written = 0; 664 unsigned long pause = 1; 665 bool dirty_exceeded = false; 666 bool clear_dirty_exceeded = true; 667 struct backing_dev_info *bdi = mapping->backing_dev_info; 668 unsigned long start_time = jiffies; 669 670 for (;;) { 671 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 672 global_page_state(NR_UNSTABLE_NFS); 673 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 674 675 global_dirty_limits(&background_thresh, &dirty_thresh); 676 677 /* 678 * Throttle it only when the background writeback cannot 679 * catch-up. This avoids (excessively) small writeouts 680 * when the bdi limits are ramping up. 681 */ 682 if (nr_dirty <= (background_thresh + dirty_thresh) / 2) 683 break; 684 685 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 686 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh); 687 task_bdi_thresh = task_dirty_limit(current, bdi_thresh); 688 689 /* 690 * In order to avoid the stacked BDI deadlock we need 691 * to ensure we accurately count the 'dirty' pages when 692 * the threshold is low. 693 * 694 * Otherwise it would be possible to get thresh+n pages 695 * reported dirty, even though there are thresh-m pages 696 * actually dirty; with m+n sitting in the percpu 697 * deltas. 698 */ 699 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) { 700 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 701 bdi_dirty = bdi_nr_reclaimable + 702 bdi_stat_sum(bdi, BDI_WRITEBACK); 703 } else { 704 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 705 bdi_dirty = bdi_nr_reclaimable + 706 bdi_stat(bdi, BDI_WRITEBACK); 707 } 708 709 /* 710 * The bdi thresh is somehow "soft" limit derived from the 711 * global "hard" limit. The former helps to prevent heavy IO 712 * bdi or process from holding back light ones; The latter is 713 * the last resort safeguard. 714 */ 715 dirty_exceeded = (bdi_dirty > task_bdi_thresh) || 716 (nr_dirty > dirty_thresh); 717 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) && 718 (nr_dirty <= dirty_thresh); 719 720 if (!dirty_exceeded) 721 break; 722 723 if (!bdi->dirty_exceeded) 724 bdi->dirty_exceeded = 1; 725 726 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty, 727 bdi_thresh, bdi_dirty, start_time); 728 729 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 730 * Unstable writes are a feature of certain networked 731 * filesystems (i.e. NFS) in which data may have been 732 * written to the server's write cache, but has not yet 733 * been flushed to permanent storage. 734 * Only move pages to writeback if this bdi is over its 735 * threshold otherwise wait until the disk writes catch 736 * up. 737 */ 738 trace_balance_dirty_start(bdi); 739 if (bdi_nr_reclaimable > task_bdi_thresh) { 740 pages_written += writeback_inodes_wb(&bdi->wb, 741 write_chunk); 742 trace_balance_dirty_written(bdi, pages_written); 743 if (pages_written >= write_chunk) 744 break; /* We've done our duty */ 745 } 746 __set_current_state(TASK_UNINTERRUPTIBLE); 747 io_schedule_timeout(pause); 748 trace_balance_dirty_wait(bdi); 749 750 dirty_thresh = hard_dirty_limit(dirty_thresh); 751 /* 752 * max-pause area. If dirty exceeded but still within this 753 * area, no need to sleep for more than 200ms: (a) 8 pages per 754 * 200ms is typically more than enough to curb heavy dirtiers; 755 * (b) the pause time limit makes the dirtiers more responsive. 756 */ 757 if (nr_dirty < dirty_thresh + 758 dirty_thresh / DIRTY_MAXPAUSE_AREA && 759 time_after(jiffies, start_time + MAX_PAUSE)) 760 break; 761 /* 762 * pass-good area. When some bdi gets blocked (eg. NFS server 763 * not responding), or write bandwidth dropped dramatically due 764 * to concurrent reads, or dirty threshold suddenly dropped and 765 * the dirty pages cannot be brought down anytime soon (eg. on 766 * slow USB stick), at least let go of the good bdi's. 767 */ 768 if (nr_dirty < dirty_thresh + 769 dirty_thresh / DIRTY_PASSGOOD_AREA && 770 bdi_dirty < bdi_thresh) 771 break; 772 773 /* 774 * Increase the delay for each loop, up to our previous 775 * default of taking a 100ms nap. 776 */ 777 pause <<= 1; 778 if (pause > HZ / 10) 779 pause = HZ / 10; 780 } 781 782 /* Clear dirty_exceeded flag only when no task can exceed the limit */ 783 if (clear_dirty_exceeded && bdi->dirty_exceeded) 784 bdi->dirty_exceeded = 0; 785 786 if (writeback_in_progress(bdi)) 787 return; 788 789 /* 790 * In laptop mode, we wait until hitting the higher threshold before 791 * starting background writeout, and then write out all the way down 792 * to the lower threshold. So slow writers cause minimal disk activity. 793 * 794 * In normal mode, we start background writeout at the lower 795 * background_thresh, to keep the amount of dirty memory low. 796 */ 797 if ((laptop_mode && pages_written) || 798 (!laptop_mode && (nr_reclaimable > background_thresh))) 799 bdi_start_background_writeback(bdi); 800 } 801 802 void set_page_dirty_balance(struct page *page, int page_mkwrite) 803 { 804 if (set_page_dirty(page) || page_mkwrite) { 805 struct address_space *mapping = page_mapping(page); 806 807 if (mapping) 808 balance_dirty_pages_ratelimited(mapping); 809 } 810 } 811 812 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 813 814 /** 815 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 816 * @mapping: address_space which was dirtied 817 * @nr_pages_dirtied: number of pages which the caller has just dirtied 818 * 819 * Processes which are dirtying memory should call in here once for each page 820 * which was newly dirtied. The function will periodically check the system's 821 * dirty state and will initiate writeback if needed. 822 * 823 * On really big machines, get_writeback_state is expensive, so try to avoid 824 * calling it too often (ratelimiting). But once we're over the dirty memory 825 * limit we decrease the ratelimiting by a lot, to prevent individual processes 826 * from overshooting the limit by (ratelimit_pages) each. 827 */ 828 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 829 unsigned long nr_pages_dirtied) 830 { 831 struct backing_dev_info *bdi = mapping->backing_dev_info; 832 unsigned long ratelimit; 833 unsigned long *p; 834 835 if (!bdi_cap_account_dirty(bdi)) 836 return; 837 838 ratelimit = ratelimit_pages; 839 if (mapping->backing_dev_info->dirty_exceeded) 840 ratelimit = 8; 841 842 /* 843 * Check the rate limiting. Also, we do not want to throttle real-time 844 * tasks in balance_dirty_pages(). Period. 845 */ 846 preempt_disable(); 847 p = &__get_cpu_var(bdp_ratelimits); 848 *p += nr_pages_dirtied; 849 if (unlikely(*p >= ratelimit)) { 850 ratelimit = sync_writeback_pages(*p); 851 *p = 0; 852 preempt_enable(); 853 balance_dirty_pages(mapping, ratelimit); 854 return; 855 } 856 preempt_enable(); 857 } 858 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 859 860 void throttle_vm_writeout(gfp_t gfp_mask) 861 { 862 unsigned long background_thresh; 863 unsigned long dirty_thresh; 864 865 for ( ; ; ) { 866 global_dirty_limits(&background_thresh, &dirty_thresh); 867 868 /* 869 * Boost the allowable dirty threshold a bit for page 870 * allocators so they don't get DoS'ed by heavy writers 871 */ 872 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 873 874 if (global_page_state(NR_UNSTABLE_NFS) + 875 global_page_state(NR_WRITEBACK) <= dirty_thresh) 876 break; 877 congestion_wait(BLK_RW_ASYNC, HZ/10); 878 879 /* 880 * The caller might hold locks which can prevent IO completion 881 * or progress in the filesystem. So we cannot just sit here 882 * waiting for IO to complete. 883 */ 884 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 885 break; 886 } 887 } 888 889 /* 890 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 891 */ 892 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 893 void __user *buffer, size_t *length, loff_t *ppos) 894 { 895 proc_dointvec(table, write, buffer, length, ppos); 896 bdi_arm_supers_timer(); 897 return 0; 898 } 899 900 #ifdef CONFIG_BLOCK 901 void laptop_mode_timer_fn(unsigned long data) 902 { 903 struct request_queue *q = (struct request_queue *)data; 904 int nr_pages = global_page_state(NR_FILE_DIRTY) + 905 global_page_state(NR_UNSTABLE_NFS); 906 907 /* 908 * We want to write everything out, not just down to the dirty 909 * threshold 910 */ 911 if (bdi_has_dirty_io(&q->backing_dev_info)) 912 bdi_start_writeback(&q->backing_dev_info, nr_pages); 913 } 914 915 /* 916 * We've spun up the disk and we're in laptop mode: schedule writeback 917 * of all dirty data a few seconds from now. If the flush is already scheduled 918 * then push it back - the user is still using the disk. 919 */ 920 void laptop_io_completion(struct backing_dev_info *info) 921 { 922 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 923 } 924 925 /* 926 * We're in laptop mode and we've just synced. The sync's writes will have 927 * caused another writeback to be scheduled by laptop_io_completion. 928 * Nothing needs to be written back anymore, so we unschedule the writeback. 929 */ 930 void laptop_sync_completion(void) 931 { 932 struct backing_dev_info *bdi; 933 934 rcu_read_lock(); 935 936 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 937 del_timer(&bdi->laptop_mode_wb_timer); 938 939 rcu_read_unlock(); 940 } 941 #endif 942 943 /* 944 * If ratelimit_pages is too high then we can get into dirty-data overload 945 * if a large number of processes all perform writes at the same time. 946 * If it is too low then SMP machines will call the (expensive) 947 * get_writeback_state too often. 948 * 949 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 950 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 951 * thresholds before writeback cuts in. 952 * 953 * But the limit should not be set too high. Because it also controls the 954 * amount of memory which the balance_dirty_pages() caller has to write back. 955 * If this is too large then the caller will block on the IO queue all the 956 * time. So limit it to four megabytes - the balance_dirty_pages() caller 957 * will write six megabyte chunks, max. 958 */ 959 960 void writeback_set_ratelimit(void) 961 { 962 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 963 if (ratelimit_pages < 16) 964 ratelimit_pages = 16; 965 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 966 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 967 } 968 969 static int __cpuinit 970 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 971 { 972 writeback_set_ratelimit(); 973 return NOTIFY_DONE; 974 } 975 976 static struct notifier_block __cpuinitdata ratelimit_nb = { 977 .notifier_call = ratelimit_handler, 978 .next = NULL, 979 }; 980 981 /* 982 * Called early on to tune the page writeback dirty limits. 983 * 984 * We used to scale dirty pages according to how total memory 985 * related to pages that could be allocated for buffers (by 986 * comparing nr_free_buffer_pages() to vm_total_pages. 987 * 988 * However, that was when we used "dirty_ratio" to scale with 989 * all memory, and we don't do that any more. "dirty_ratio" 990 * is now applied to total non-HIGHPAGE memory (by subtracting 991 * totalhigh_pages from vm_total_pages), and as such we can't 992 * get into the old insane situation any more where we had 993 * large amounts of dirty pages compared to a small amount of 994 * non-HIGHMEM memory. 995 * 996 * But we might still want to scale the dirty_ratio by how 997 * much memory the box has.. 998 */ 999 void __init page_writeback_init(void) 1000 { 1001 int shift; 1002 1003 writeback_set_ratelimit(); 1004 register_cpu_notifier(&ratelimit_nb); 1005 1006 shift = calc_period_shift(); 1007 prop_descriptor_init(&vm_completions, shift); 1008 prop_descriptor_init(&vm_dirties, shift); 1009 } 1010 1011 /** 1012 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1013 * @mapping: address space structure to write 1014 * @start: starting page index 1015 * @end: ending page index (inclusive) 1016 * 1017 * This function scans the page range from @start to @end (inclusive) and tags 1018 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1019 * that write_cache_pages (or whoever calls this function) will then use 1020 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1021 * used to avoid livelocking of writeback by a process steadily creating new 1022 * dirty pages in the file (thus it is important for this function to be quick 1023 * so that it can tag pages faster than a dirtying process can create them). 1024 */ 1025 /* 1026 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1027 */ 1028 void tag_pages_for_writeback(struct address_space *mapping, 1029 pgoff_t start, pgoff_t end) 1030 { 1031 #define WRITEBACK_TAG_BATCH 4096 1032 unsigned long tagged; 1033 1034 do { 1035 spin_lock_irq(&mapping->tree_lock); 1036 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1037 &start, end, WRITEBACK_TAG_BATCH, 1038 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1039 spin_unlock_irq(&mapping->tree_lock); 1040 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1041 cond_resched(); 1042 /* We check 'start' to handle wrapping when end == ~0UL */ 1043 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1044 } 1045 EXPORT_SYMBOL(tag_pages_for_writeback); 1046 1047 /** 1048 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1049 * @mapping: address space structure to write 1050 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1051 * @writepage: function called for each page 1052 * @data: data passed to writepage function 1053 * 1054 * If a page is already under I/O, write_cache_pages() skips it, even 1055 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1056 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1057 * and msync() need to guarantee that all the data which was dirty at the time 1058 * the call was made get new I/O started against them. If wbc->sync_mode is 1059 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1060 * existing IO to complete. 1061 * 1062 * To avoid livelocks (when other process dirties new pages), we first tag 1063 * pages which should be written back with TOWRITE tag and only then start 1064 * writing them. For data-integrity sync we have to be careful so that we do 1065 * not miss some pages (e.g., because some other process has cleared TOWRITE 1066 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1067 * by the process clearing the DIRTY tag (and submitting the page for IO). 1068 */ 1069 int write_cache_pages(struct address_space *mapping, 1070 struct writeback_control *wbc, writepage_t writepage, 1071 void *data) 1072 { 1073 int ret = 0; 1074 int done = 0; 1075 struct pagevec pvec; 1076 int nr_pages; 1077 pgoff_t uninitialized_var(writeback_index); 1078 pgoff_t index; 1079 pgoff_t end; /* Inclusive */ 1080 pgoff_t done_index; 1081 int cycled; 1082 int range_whole = 0; 1083 int tag; 1084 1085 pagevec_init(&pvec, 0); 1086 if (wbc->range_cyclic) { 1087 writeback_index = mapping->writeback_index; /* prev offset */ 1088 index = writeback_index; 1089 if (index == 0) 1090 cycled = 1; 1091 else 1092 cycled = 0; 1093 end = -1; 1094 } else { 1095 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1096 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1097 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1098 range_whole = 1; 1099 cycled = 1; /* ignore range_cyclic tests */ 1100 } 1101 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1102 tag = PAGECACHE_TAG_TOWRITE; 1103 else 1104 tag = PAGECACHE_TAG_DIRTY; 1105 retry: 1106 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1107 tag_pages_for_writeback(mapping, index, end); 1108 done_index = index; 1109 while (!done && (index <= end)) { 1110 int i; 1111 1112 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1113 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1114 if (nr_pages == 0) 1115 break; 1116 1117 for (i = 0; i < nr_pages; i++) { 1118 struct page *page = pvec.pages[i]; 1119 1120 /* 1121 * At this point, the page may be truncated or 1122 * invalidated (changing page->mapping to NULL), or 1123 * even swizzled back from swapper_space to tmpfs file 1124 * mapping. However, page->index will not change 1125 * because we have a reference on the page. 1126 */ 1127 if (page->index > end) { 1128 /* 1129 * can't be range_cyclic (1st pass) because 1130 * end == -1 in that case. 1131 */ 1132 done = 1; 1133 break; 1134 } 1135 1136 done_index = page->index; 1137 1138 lock_page(page); 1139 1140 /* 1141 * Page truncated or invalidated. We can freely skip it 1142 * then, even for data integrity operations: the page 1143 * has disappeared concurrently, so there could be no 1144 * real expectation of this data interity operation 1145 * even if there is now a new, dirty page at the same 1146 * pagecache address. 1147 */ 1148 if (unlikely(page->mapping != mapping)) { 1149 continue_unlock: 1150 unlock_page(page); 1151 continue; 1152 } 1153 1154 if (!PageDirty(page)) { 1155 /* someone wrote it for us */ 1156 goto continue_unlock; 1157 } 1158 1159 if (PageWriteback(page)) { 1160 if (wbc->sync_mode != WB_SYNC_NONE) 1161 wait_on_page_writeback(page); 1162 else 1163 goto continue_unlock; 1164 } 1165 1166 BUG_ON(PageWriteback(page)); 1167 if (!clear_page_dirty_for_io(page)) 1168 goto continue_unlock; 1169 1170 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1171 ret = (*writepage)(page, wbc, data); 1172 if (unlikely(ret)) { 1173 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1174 unlock_page(page); 1175 ret = 0; 1176 } else { 1177 /* 1178 * done_index is set past this page, 1179 * so media errors will not choke 1180 * background writeout for the entire 1181 * file. This has consequences for 1182 * range_cyclic semantics (ie. it may 1183 * not be suitable for data integrity 1184 * writeout). 1185 */ 1186 done_index = page->index + 1; 1187 done = 1; 1188 break; 1189 } 1190 } 1191 1192 /* 1193 * We stop writing back only if we are not doing 1194 * integrity sync. In case of integrity sync we have to 1195 * keep going until we have written all the pages 1196 * we tagged for writeback prior to entering this loop. 1197 */ 1198 if (--wbc->nr_to_write <= 0 && 1199 wbc->sync_mode == WB_SYNC_NONE) { 1200 done = 1; 1201 break; 1202 } 1203 } 1204 pagevec_release(&pvec); 1205 cond_resched(); 1206 } 1207 if (!cycled && !done) { 1208 /* 1209 * range_cyclic: 1210 * We hit the last page and there is more work to be done: wrap 1211 * back to the start of the file 1212 */ 1213 cycled = 1; 1214 index = 0; 1215 end = writeback_index - 1; 1216 goto retry; 1217 } 1218 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1219 mapping->writeback_index = done_index; 1220 1221 return ret; 1222 } 1223 EXPORT_SYMBOL(write_cache_pages); 1224 1225 /* 1226 * Function used by generic_writepages to call the real writepage 1227 * function and set the mapping flags on error 1228 */ 1229 static int __writepage(struct page *page, struct writeback_control *wbc, 1230 void *data) 1231 { 1232 struct address_space *mapping = data; 1233 int ret = mapping->a_ops->writepage(page, wbc); 1234 mapping_set_error(mapping, ret); 1235 return ret; 1236 } 1237 1238 /** 1239 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1240 * @mapping: address space structure to write 1241 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1242 * 1243 * This is a library function, which implements the writepages() 1244 * address_space_operation. 1245 */ 1246 int generic_writepages(struct address_space *mapping, 1247 struct writeback_control *wbc) 1248 { 1249 struct blk_plug plug; 1250 int ret; 1251 1252 /* deal with chardevs and other special file */ 1253 if (!mapping->a_ops->writepage) 1254 return 0; 1255 1256 blk_start_plug(&plug); 1257 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1258 blk_finish_plug(&plug); 1259 return ret; 1260 } 1261 1262 EXPORT_SYMBOL(generic_writepages); 1263 1264 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1265 { 1266 int ret; 1267 1268 if (wbc->nr_to_write <= 0) 1269 return 0; 1270 if (mapping->a_ops->writepages) 1271 ret = mapping->a_ops->writepages(mapping, wbc); 1272 else 1273 ret = generic_writepages(mapping, wbc); 1274 return ret; 1275 } 1276 1277 /** 1278 * write_one_page - write out a single page and optionally wait on I/O 1279 * @page: the page to write 1280 * @wait: if true, wait on writeout 1281 * 1282 * The page must be locked by the caller and will be unlocked upon return. 1283 * 1284 * write_one_page() returns a negative error code if I/O failed. 1285 */ 1286 int write_one_page(struct page *page, int wait) 1287 { 1288 struct address_space *mapping = page->mapping; 1289 int ret = 0; 1290 struct writeback_control wbc = { 1291 .sync_mode = WB_SYNC_ALL, 1292 .nr_to_write = 1, 1293 }; 1294 1295 BUG_ON(!PageLocked(page)); 1296 1297 if (wait) 1298 wait_on_page_writeback(page); 1299 1300 if (clear_page_dirty_for_io(page)) { 1301 page_cache_get(page); 1302 ret = mapping->a_ops->writepage(page, &wbc); 1303 if (ret == 0 && wait) { 1304 wait_on_page_writeback(page); 1305 if (PageError(page)) 1306 ret = -EIO; 1307 } 1308 page_cache_release(page); 1309 } else { 1310 unlock_page(page); 1311 } 1312 return ret; 1313 } 1314 EXPORT_SYMBOL(write_one_page); 1315 1316 /* 1317 * For address_spaces which do not use buffers nor write back. 1318 */ 1319 int __set_page_dirty_no_writeback(struct page *page) 1320 { 1321 if (!PageDirty(page)) 1322 return !TestSetPageDirty(page); 1323 return 0; 1324 } 1325 1326 /* 1327 * Helper function for set_page_dirty family. 1328 * NOTE: This relies on being atomic wrt interrupts. 1329 */ 1330 void account_page_dirtied(struct page *page, struct address_space *mapping) 1331 { 1332 if (mapping_cap_account_dirty(mapping)) { 1333 __inc_zone_page_state(page, NR_FILE_DIRTY); 1334 __inc_zone_page_state(page, NR_DIRTIED); 1335 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1336 task_dirty_inc(current); 1337 task_io_account_write(PAGE_CACHE_SIZE); 1338 } 1339 } 1340 EXPORT_SYMBOL(account_page_dirtied); 1341 1342 /* 1343 * Helper function for set_page_writeback family. 1344 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1345 * wrt interrupts. 1346 */ 1347 void account_page_writeback(struct page *page) 1348 { 1349 inc_zone_page_state(page, NR_WRITEBACK); 1350 } 1351 EXPORT_SYMBOL(account_page_writeback); 1352 1353 /* 1354 * For address_spaces which do not use buffers. Just tag the page as dirty in 1355 * its radix tree. 1356 * 1357 * This is also used when a single buffer is being dirtied: we want to set the 1358 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1359 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1360 * 1361 * Most callers have locked the page, which pins the address_space in memory. 1362 * But zap_pte_range() does not lock the page, however in that case the 1363 * mapping is pinned by the vma's ->vm_file reference. 1364 * 1365 * We take care to handle the case where the page was truncated from the 1366 * mapping by re-checking page_mapping() inside tree_lock. 1367 */ 1368 int __set_page_dirty_nobuffers(struct page *page) 1369 { 1370 if (!TestSetPageDirty(page)) { 1371 struct address_space *mapping = page_mapping(page); 1372 struct address_space *mapping2; 1373 1374 if (!mapping) 1375 return 1; 1376 1377 spin_lock_irq(&mapping->tree_lock); 1378 mapping2 = page_mapping(page); 1379 if (mapping2) { /* Race with truncate? */ 1380 BUG_ON(mapping2 != mapping); 1381 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1382 account_page_dirtied(page, mapping); 1383 radix_tree_tag_set(&mapping->page_tree, 1384 page_index(page), PAGECACHE_TAG_DIRTY); 1385 } 1386 spin_unlock_irq(&mapping->tree_lock); 1387 if (mapping->host) { 1388 /* !PageAnon && !swapper_space */ 1389 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1390 } 1391 return 1; 1392 } 1393 return 0; 1394 } 1395 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1396 1397 /* 1398 * When a writepage implementation decides that it doesn't want to write this 1399 * page for some reason, it should redirty the locked page via 1400 * redirty_page_for_writepage() and it should then unlock the page and return 0 1401 */ 1402 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1403 { 1404 wbc->pages_skipped++; 1405 return __set_page_dirty_nobuffers(page); 1406 } 1407 EXPORT_SYMBOL(redirty_page_for_writepage); 1408 1409 /* 1410 * Dirty a page. 1411 * 1412 * For pages with a mapping this should be done under the page lock 1413 * for the benefit of asynchronous memory errors who prefer a consistent 1414 * dirty state. This rule can be broken in some special cases, 1415 * but should be better not to. 1416 * 1417 * If the mapping doesn't provide a set_page_dirty a_op, then 1418 * just fall through and assume that it wants buffer_heads. 1419 */ 1420 int set_page_dirty(struct page *page) 1421 { 1422 struct address_space *mapping = page_mapping(page); 1423 1424 if (likely(mapping)) { 1425 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1426 /* 1427 * readahead/lru_deactivate_page could remain 1428 * PG_readahead/PG_reclaim due to race with end_page_writeback 1429 * About readahead, if the page is written, the flags would be 1430 * reset. So no problem. 1431 * About lru_deactivate_page, if the page is redirty, the flag 1432 * will be reset. So no problem. but if the page is used by readahead 1433 * it will confuse readahead and make it restart the size rampup 1434 * process. But it's a trivial problem. 1435 */ 1436 ClearPageReclaim(page); 1437 #ifdef CONFIG_BLOCK 1438 if (!spd) 1439 spd = __set_page_dirty_buffers; 1440 #endif 1441 return (*spd)(page); 1442 } 1443 if (!PageDirty(page)) { 1444 if (!TestSetPageDirty(page)) 1445 return 1; 1446 } 1447 return 0; 1448 } 1449 EXPORT_SYMBOL(set_page_dirty); 1450 1451 /* 1452 * set_page_dirty() is racy if the caller has no reference against 1453 * page->mapping->host, and if the page is unlocked. This is because another 1454 * CPU could truncate the page off the mapping and then free the mapping. 1455 * 1456 * Usually, the page _is_ locked, or the caller is a user-space process which 1457 * holds a reference on the inode by having an open file. 1458 * 1459 * In other cases, the page should be locked before running set_page_dirty(). 1460 */ 1461 int set_page_dirty_lock(struct page *page) 1462 { 1463 int ret; 1464 1465 lock_page(page); 1466 ret = set_page_dirty(page); 1467 unlock_page(page); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL(set_page_dirty_lock); 1471 1472 /* 1473 * Clear a page's dirty flag, while caring for dirty memory accounting. 1474 * Returns true if the page was previously dirty. 1475 * 1476 * This is for preparing to put the page under writeout. We leave the page 1477 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1478 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1479 * implementation will run either set_page_writeback() or set_page_dirty(), 1480 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1481 * back into sync. 1482 * 1483 * This incoherency between the page's dirty flag and radix-tree tag is 1484 * unfortunate, but it only exists while the page is locked. 1485 */ 1486 int clear_page_dirty_for_io(struct page *page) 1487 { 1488 struct address_space *mapping = page_mapping(page); 1489 1490 BUG_ON(!PageLocked(page)); 1491 1492 if (mapping && mapping_cap_account_dirty(mapping)) { 1493 /* 1494 * Yes, Virginia, this is indeed insane. 1495 * 1496 * We use this sequence to make sure that 1497 * (a) we account for dirty stats properly 1498 * (b) we tell the low-level filesystem to 1499 * mark the whole page dirty if it was 1500 * dirty in a pagetable. Only to then 1501 * (c) clean the page again and return 1 to 1502 * cause the writeback. 1503 * 1504 * This way we avoid all nasty races with the 1505 * dirty bit in multiple places and clearing 1506 * them concurrently from different threads. 1507 * 1508 * Note! Normally the "set_page_dirty(page)" 1509 * has no effect on the actual dirty bit - since 1510 * that will already usually be set. But we 1511 * need the side effects, and it can help us 1512 * avoid races. 1513 * 1514 * We basically use the page "master dirty bit" 1515 * as a serialization point for all the different 1516 * threads doing their things. 1517 */ 1518 if (page_mkclean(page)) 1519 set_page_dirty(page); 1520 /* 1521 * We carefully synchronise fault handlers against 1522 * installing a dirty pte and marking the page dirty 1523 * at this point. We do this by having them hold the 1524 * page lock at some point after installing their 1525 * pte, but before marking the page dirty. 1526 * Pages are always locked coming in here, so we get 1527 * the desired exclusion. See mm/memory.c:do_wp_page() 1528 * for more comments. 1529 */ 1530 if (TestClearPageDirty(page)) { 1531 dec_zone_page_state(page, NR_FILE_DIRTY); 1532 dec_bdi_stat(mapping->backing_dev_info, 1533 BDI_RECLAIMABLE); 1534 return 1; 1535 } 1536 return 0; 1537 } 1538 return TestClearPageDirty(page); 1539 } 1540 EXPORT_SYMBOL(clear_page_dirty_for_io); 1541 1542 int test_clear_page_writeback(struct page *page) 1543 { 1544 struct address_space *mapping = page_mapping(page); 1545 int ret; 1546 1547 if (mapping) { 1548 struct backing_dev_info *bdi = mapping->backing_dev_info; 1549 unsigned long flags; 1550 1551 spin_lock_irqsave(&mapping->tree_lock, flags); 1552 ret = TestClearPageWriteback(page); 1553 if (ret) { 1554 radix_tree_tag_clear(&mapping->page_tree, 1555 page_index(page), 1556 PAGECACHE_TAG_WRITEBACK); 1557 if (bdi_cap_account_writeback(bdi)) { 1558 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1559 __bdi_writeout_inc(bdi); 1560 } 1561 } 1562 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1563 } else { 1564 ret = TestClearPageWriteback(page); 1565 } 1566 if (ret) { 1567 dec_zone_page_state(page, NR_WRITEBACK); 1568 inc_zone_page_state(page, NR_WRITTEN); 1569 } 1570 return ret; 1571 } 1572 1573 int test_set_page_writeback(struct page *page) 1574 { 1575 struct address_space *mapping = page_mapping(page); 1576 int ret; 1577 1578 if (mapping) { 1579 struct backing_dev_info *bdi = mapping->backing_dev_info; 1580 unsigned long flags; 1581 1582 spin_lock_irqsave(&mapping->tree_lock, flags); 1583 ret = TestSetPageWriteback(page); 1584 if (!ret) { 1585 radix_tree_tag_set(&mapping->page_tree, 1586 page_index(page), 1587 PAGECACHE_TAG_WRITEBACK); 1588 if (bdi_cap_account_writeback(bdi)) 1589 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1590 } 1591 if (!PageDirty(page)) 1592 radix_tree_tag_clear(&mapping->page_tree, 1593 page_index(page), 1594 PAGECACHE_TAG_DIRTY); 1595 radix_tree_tag_clear(&mapping->page_tree, 1596 page_index(page), 1597 PAGECACHE_TAG_TOWRITE); 1598 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1599 } else { 1600 ret = TestSetPageWriteback(page); 1601 } 1602 if (!ret) 1603 account_page_writeback(page); 1604 return ret; 1605 1606 } 1607 EXPORT_SYMBOL(test_set_page_writeback); 1608 1609 /* 1610 * Return true if any of the pages in the mapping are marked with the 1611 * passed tag. 1612 */ 1613 int mapping_tagged(struct address_space *mapping, int tag) 1614 { 1615 return radix_tree_tagged(&mapping->page_tree, tag); 1616 } 1617 EXPORT_SYMBOL(mapping_tagged); 1618