1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 40 * will look to see if it needs to force writeback or throttling. 41 */ 42 static long ratelimit_pages = 32; 43 44 /* 45 * When balance_dirty_pages decides that the caller needs to perform some 46 * non-background writeback, this is how many pages it will attempt to write. 47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 48 * large amounts of I/O are submitted. 49 */ 50 static inline long sync_writeback_pages(void) 51 { 52 return ratelimit_pages + ratelimit_pages / 2; 53 } 54 55 /* The following parameters are exported via /proc/sys/vm */ 56 57 /* 58 * Start background writeback (via pdflush) at this percentage 59 */ 60 int dirty_background_ratio = 10; 61 62 /* 63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 64 * dirty_background_ratio * the amount of dirtyable memory 65 */ 66 unsigned long dirty_background_bytes; 67 68 /* 69 * free highmem will not be subtracted from the total free memory 70 * for calculating free ratios if vm_highmem_is_dirtyable is true 71 */ 72 int vm_highmem_is_dirtyable; 73 74 /* 75 * The generator of dirty data starts writeback at this percentage 76 */ 77 int vm_dirty_ratio = 20; 78 79 /* 80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 81 * vm_dirty_ratio * the amount of dirtyable memory 82 */ 83 unsigned long vm_dirty_bytes; 84 85 /* 86 * The interval between `kupdate'-style writebacks 87 */ 88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 89 90 /* 91 * The longest time for which data is allowed to remain dirty 92 */ 93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 94 95 /* 96 * Flag that makes the machine dump writes/reads and block dirtyings. 97 */ 98 int block_dump; 99 100 /* 101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 102 * a full sync is triggered after this time elapses without any disk activity. 103 */ 104 int laptop_mode; 105 106 EXPORT_SYMBOL(laptop_mode); 107 108 /* End of sysctl-exported parameters */ 109 110 111 /* 112 * Scale the writeback cache size proportional to the relative writeout speeds. 113 * 114 * We do this by keeping a floating proportion between BDIs, based on page 115 * writeback completions [end_page_writeback()]. Those devices that write out 116 * pages fastest will get the larger share, while the slower will get a smaller 117 * share. 118 * 119 * We use page writeout completions because we are interested in getting rid of 120 * dirty pages. Having them written out is the primary goal. 121 * 122 * We introduce a concept of time, a period over which we measure these events, 123 * because demand can/will vary over time. The length of this period itself is 124 * measured in page writeback completions. 125 * 126 */ 127 static struct prop_descriptor vm_completions; 128 static struct prop_descriptor vm_dirties; 129 130 /* 131 * couple the period to the dirty_ratio: 132 * 133 * period/2 ~ roundup_pow_of_two(dirty limit) 134 */ 135 static int calc_period_shift(void) 136 { 137 unsigned long dirty_total; 138 139 if (vm_dirty_bytes) 140 dirty_total = vm_dirty_bytes / PAGE_SIZE; 141 else 142 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 143 100; 144 return 2 + ilog2(dirty_total - 1); 145 } 146 147 /* 148 * update the period when the dirty threshold changes. 149 */ 150 static void update_completion_period(void) 151 { 152 int shift = calc_period_shift(); 153 prop_change_shift(&vm_completions, shift); 154 prop_change_shift(&vm_dirties, shift); 155 } 156 157 int dirty_background_ratio_handler(struct ctl_table *table, int write, 158 struct file *filp, void __user *buffer, size_t *lenp, 159 loff_t *ppos) 160 { 161 int ret; 162 163 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 164 if (ret == 0 && write) 165 dirty_background_bytes = 0; 166 return ret; 167 } 168 169 int dirty_background_bytes_handler(struct ctl_table *table, int write, 170 struct file *filp, void __user *buffer, size_t *lenp, 171 loff_t *ppos) 172 { 173 int ret; 174 175 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 176 if (ret == 0 && write) 177 dirty_background_ratio = 0; 178 return ret; 179 } 180 181 int dirty_ratio_handler(struct ctl_table *table, int write, 182 struct file *filp, void __user *buffer, size_t *lenp, 183 loff_t *ppos) 184 { 185 int old_ratio = vm_dirty_ratio; 186 int ret; 187 188 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 189 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 190 update_completion_period(); 191 vm_dirty_bytes = 0; 192 } 193 return ret; 194 } 195 196 197 int dirty_bytes_handler(struct ctl_table *table, int write, 198 struct file *filp, void __user *buffer, size_t *lenp, 199 loff_t *ppos) 200 { 201 unsigned long old_bytes = vm_dirty_bytes; 202 int ret; 203 204 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 205 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 206 update_completion_period(); 207 vm_dirty_ratio = 0; 208 } 209 return ret; 210 } 211 212 /* 213 * Increment the BDI's writeout completion count and the global writeout 214 * completion count. Called from test_clear_page_writeback(). 215 */ 216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 217 { 218 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 219 bdi->max_prop_frac); 220 } 221 222 void bdi_writeout_inc(struct backing_dev_info *bdi) 223 { 224 unsigned long flags; 225 226 local_irq_save(flags); 227 __bdi_writeout_inc(bdi); 228 local_irq_restore(flags); 229 } 230 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 231 232 void task_dirty_inc(struct task_struct *tsk) 233 { 234 prop_inc_single(&vm_dirties, &tsk->dirties); 235 } 236 237 /* 238 * Obtain an accurate fraction of the BDI's portion. 239 */ 240 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 241 long *numerator, long *denominator) 242 { 243 if (bdi_cap_writeback_dirty(bdi)) { 244 prop_fraction_percpu(&vm_completions, &bdi->completions, 245 numerator, denominator); 246 } else { 247 *numerator = 0; 248 *denominator = 1; 249 } 250 } 251 252 /* 253 * Clip the earned share of dirty pages to that which is actually available. 254 * This avoids exceeding the total dirty_limit when the floating averages 255 * fluctuate too quickly. 256 */ 257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, 258 unsigned long dirty, unsigned long *pbdi_dirty) 259 { 260 unsigned long avail_dirty; 261 262 avail_dirty = global_page_state(NR_FILE_DIRTY) + 263 global_page_state(NR_WRITEBACK) + 264 global_page_state(NR_UNSTABLE_NFS) + 265 global_page_state(NR_WRITEBACK_TEMP); 266 267 if (avail_dirty < dirty) 268 avail_dirty = dirty - avail_dirty; 269 else 270 avail_dirty = 0; 271 272 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 273 bdi_stat(bdi, BDI_WRITEBACK); 274 275 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 276 } 277 278 static inline void task_dirties_fraction(struct task_struct *tsk, 279 long *numerator, long *denominator) 280 { 281 prop_fraction_single(&vm_dirties, &tsk->dirties, 282 numerator, denominator); 283 } 284 285 /* 286 * scale the dirty limit 287 * 288 * task specific dirty limit: 289 * 290 * dirty -= (dirty/8) * p_{t} 291 */ 292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) 293 { 294 long numerator, denominator; 295 unsigned long dirty = *pdirty; 296 u64 inv = dirty >> 3; 297 298 task_dirties_fraction(tsk, &numerator, &denominator); 299 inv *= numerator; 300 do_div(inv, denominator); 301 302 dirty -= inv; 303 if (dirty < *pdirty/2) 304 dirty = *pdirty/2; 305 306 *pdirty = dirty; 307 } 308 309 /* 310 * 311 */ 312 static unsigned int bdi_min_ratio; 313 314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 315 { 316 int ret = 0; 317 318 spin_lock_bh(&bdi_lock); 319 if (min_ratio > bdi->max_ratio) { 320 ret = -EINVAL; 321 } else { 322 min_ratio -= bdi->min_ratio; 323 if (bdi_min_ratio + min_ratio < 100) { 324 bdi_min_ratio += min_ratio; 325 bdi->min_ratio += min_ratio; 326 } else { 327 ret = -EINVAL; 328 } 329 } 330 spin_unlock_bh(&bdi_lock); 331 332 return ret; 333 } 334 335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 336 { 337 int ret = 0; 338 339 if (max_ratio > 100) 340 return -EINVAL; 341 342 spin_lock_bh(&bdi_lock); 343 if (bdi->min_ratio > max_ratio) { 344 ret = -EINVAL; 345 } else { 346 bdi->max_ratio = max_ratio; 347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 348 } 349 spin_unlock_bh(&bdi_lock); 350 351 return ret; 352 } 353 EXPORT_SYMBOL(bdi_set_max_ratio); 354 355 /* 356 * Work out the current dirty-memory clamping and background writeout 357 * thresholds. 358 * 359 * The main aim here is to lower them aggressively if there is a lot of mapped 360 * memory around. To avoid stressing page reclaim with lots of unreclaimable 361 * pages. It is better to clamp down on writers than to start swapping, and 362 * performing lots of scanning. 363 * 364 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 365 * 366 * We don't permit the clamping level to fall below 5% - that is getting rather 367 * excessive. 368 * 369 * We make sure that the background writeout level is below the adjusted 370 * clamping level. 371 */ 372 373 static unsigned long highmem_dirtyable_memory(unsigned long total) 374 { 375 #ifdef CONFIG_HIGHMEM 376 int node; 377 unsigned long x = 0; 378 379 for_each_node_state(node, N_HIGH_MEMORY) { 380 struct zone *z = 381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 382 383 x += zone_page_state(z, NR_FREE_PAGES) + 384 zone_reclaimable_pages(z); 385 } 386 /* 387 * Make sure that the number of highmem pages is never larger 388 * than the number of the total dirtyable memory. This can only 389 * occur in very strange VM situations but we want to make sure 390 * that this does not occur. 391 */ 392 return min(x, total); 393 #else 394 return 0; 395 #endif 396 } 397 398 /** 399 * determine_dirtyable_memory - amount of memory that may be used 400 * 401 * Returns the numebr of pages that can currently be freed and used 402 * by the kernel for direct mappings. 403 */ 404 unsigned long determine_dirtyable_memory(void) 405 { 406 unsigned long x; 407 408 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 409 410 if (!vm_highmem_is_dirtyable) 411 x -= highmem_dirtyable_memory(x); 412 413 return x + 1; /* Ensure that we never return 0 */ 414 } 415 416 void 417 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, 418 unsigned long *pbdi_dirty, struct backing_dev_info *bdi) 419 { 420 unsigned long background; 421 unsigned long dirty; 422 unsigned long available_memory = determine_dirtyable_memory(); 423 struct task_struct *tsk; 424 425 if (vm_dirty_bytes) 426 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 427 else { 428 int dirty_ratio; 429 430 dirty_ratio = vm_dirty_ratio; 431 if (dirty_ratio < 5) 432 dirty_ratio = 5; 433 dirty = (dirty_ratio * available_memory) / 100; 434 } 435 436 if (dirty_background_bytes) 437 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 438 else 439 background = (dirty_background_ratio * available_memory) / 100; 440 441 if (background >= dirty) 442 background = dirty / 2; 443 tsk = current; 444 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 445 background += background / 4; 446 dirty += dirty / 4; 447 } 448 *pbackground = background; 449 *pdirty = dirty; 450 451 if (bdi) { 452 u64 bdi_dirty; 453 long numerator, denominator; 454 455 /* 456 * Calculate this BDI's share of the dirty ratio. 457 */ 458 bdi_writeout_fraction(bdi, &numerator, &denominator); 459 460 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 461 bdi_dirty *= numerator; 462 do_div(bdi_dirty, denominator); 463 bdi_dirty += (dirty * bdi->min_ratio) / 100; 464 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 465 bdi_dirty = dirty * bdi->max_ratio / 100; 466 467 *pbdi_dirty = bdi_dirty; 468 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 469 task_dirty_limit(current, pbdi_dirty); 470 } 471 } 472 473 /* 474 * balance_dirty_pages() must be called by processes which are generating dirty 475 * data. It looks at the number of dirty pages in the machine and will force 476 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 477 * If we're over `background_thresh' then pdflush is woken to perform some 478 * writeout. 479 */ 480 static void balance_dirty_pages(struct address_space *mapping) 481 { 482 long nr_reclaimable, bdi_nr_reclaimable; 483 long nr_writeback, bdi_nr_writeback; 484 unsigned long background_thresh; 485 unsigned long dirty_thresh; 486 unsigned long bdi_thresh; 487 unsigned long pages_written = 0; 488 unsigned long write_chunk = sync_writeback_pages(); 489 unsigned long pause = 1; 490 491 struct backing_dev_info *bdi = mapping->backing_dev_info; 492 493 for (;;) { 494 struct writeback_control wbc = { 495 .bdi = bdi, 496 .sync_mode = WB_SYNC_NONE, 497 .older_than_this = NULL, 498 .nr_to_write = write_chunk, 499 .range_cyclic = 1, 500 }; 501 502 get_dirty_limits(&background_thresh, &dirty_thresh, 503 &bdi_thresh, bdi); 504 505 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 506 global_page_state(NR_UNSTABLE_NFS); 507 nr_writeback = global_page_state(NR_WRITEBACK); 508 509 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 510 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 511 512 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 513 break; 514 515 /* 516 * Throttle it only when the background writeback cannot 517 * catch-up. This avoids (excessively) small writeouts 518 * when the bdi limits are ramping up. 519 */ 520 if (nr_reclaimable + nr_writeback < 521 (background_thresh + dirty_thresh) / 2) 522 break; 523 524 if (!bdi->dirty_exceeded) 525 bdi->dirty_exceeded = 1; 526 527 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 528 * Unstable writes are a feature of certain networked 529 * filesystems (i.e. NFS) in which data may have been 530 * written to the server's write cache, but has not yet 531 * been flushed to permanent storage. 532 * Only move pages to writeback if this bdi is over its 533 * threshold otherwise wait until the disk writes catch 534 * up. 535 */ 536 if (bdi_nr_reclaimable > bdi_thresh) { 537 writeback_inodes_wbc(&wbc); 538 pages_written += write_chunk - wbc.nr_to_write; 539 get_dirty_limits(&background_thresh, &dirty_thresh, 540 &bdi_thresh, bdi); 541 } 542 543 /* 544 * In order to avoid the stacked BDI deadlock we need 545 * to ensure we accurately count the 'dirty' pages when 546 * the threshold is low. 547 * 548 * Otherwise it would be possible to get thresh+n pages 549 * reported dirty, even though there are thresh-m pages 550 * actually dirty; with m+n sitting in the percpu 551 * deltas. 552 */ 553 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 554 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 555 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 556 } else if (bdi_nr_reclaimable) { 557 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 558 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 559 } 560 561 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 562 break; 563 if (pages_written >= write_chunk) 564 break; /* We've done our duty */ 565 566 schedule_timeout_interruptible(pause); 567 568 /* 569 * Increase the delay for each loop, up to our previous 570 * default of taking a 100ms nap. 571 */ 572 pause <<= 1; 573 if (pause > HZ / 10) 574 pause = HZ / 10; 575 } 576 577 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 578 bdi->dirty_exceeded) 579 bdi->dirty_exceeded = 0; 580 581 if (writeback_in_progress(bdi)) 582 return; /* pdflush is already working this queue */ 583 584 /* 585 * In laptop mode, we wait until hitting the higher threshold before 586 * starting background writeout, and then write out all the way down 587 * to the lower threshold. So slow writers cause minimal disk activity. 588 * 589 * In normal mode, we start background writeout at the lower 590 * background_thresh, to keep the amount of dirty memory low. 591 */ 592 if ((laptop_mode && pages_written) || 593 (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY) 594 + global_page_state(NR_UNSTABLE_NFS)) 595 > background_thresh))) 596 bdi_start_writeback(bdi, nr_writeback); 597 } 598 599 void set_page_dirty_balance(struct page *page, int page_mkwrite) 600 { 601 if (set_page_dirty(page) || page_mkwrite) { 602 struct address_space *mapping = page_mapping(page); 603 604 if (mapping) 605 balance_dirty_pages_ratelimited(mapping); 606 } 607 } 608 609 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 610 611 /** 612 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 613 * @mapping: address_space which was dirtied 614 * @nr_pages_dirtied: number of pages which the caller has just dirtied 615 * 616 * Processes which are dirtying memory should call in here once for each page 617 * which was newly dirtied. The function will periodically check the system's 618 * dirty state and will initiate writeback if needed. 619 * 620 * On really big machines, get_writeback_state is expensive, so try to avoid 621 * calling it too often (ratelimiting). But once we're over the dirty memory 622 * limit we decrease the ratelimiting by a lot, to prevent individual processes 623 * from overshooting the limit by (ratelimit_pages) each. 624 */ 625 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 626 unsigned long nr_pages_dirtied) 627 { 628 unsigned long ratelimit; 629 unsigned long *p; 630 631 ratelimit = ratelimit_pages; 632 if (mapping->backing_dev_info->dirty_exceeded) 633 ratelimit = 8; 634 635 /* 636 * Check the rate limiting. Also, we do not want to throttle real-time 637 * tasks in balance_dirty_pages(). Period. 638 */ 639 preempt_disable(); 640 p = &__get_cpu_var(bdp_ratelimits); 641 *p += nr_pages_dirtied; 642 if (unlikely(*p >= ratelimit)) { 643 *p = 0; 644 preempt_enable(); 645 balance_dirty_pages(mapping); 646 return; 647 } 648 preempt_enable(); 649 } 650 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 651 652 void throttle_vm_writeout(gfp_t gfp_mask) 653 { 654 unsigned long background_thresh; 655 unsigned long dirty_thresh; 656 657 for ( ; ; ) { 658 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 659 660 /* 661 * Boost the allowable dirty threshold a bit for page 662 * allocators so they don't get DoS'ed by heavy writers 663 */ 664 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 665 666 if (global_page_state(NR_UNSTABLE_NFS) + 667 global_page_state(NR_WRITEBACK) <= dirty_thresh) 668 break; 669 congestion_wait(BLK_RW_ASYNC, HZ/10); 670 671 /* 672 * The caller might hold locks which can prevent IO completion 673 * or progress in the filesystem. So we cannot just sit here 674 * waiting for IO to complete. 675 */ 676 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 677 break; 678 } 679 } 680 681 static void laptop_timer_fn(unsigned long unused); 682 683 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 684 685 /* 686 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 687 */ 688 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 689 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 690 { 691 proc_dointvec(table, write, file, buffer, length, ppos); 692 return 0; 693 } 694 695 static void do_laptop_sync(struct work_struct *work) 696 { 697 wakeup_flusher_threads(0); 698 kfree(work); 699 } 700 701 static void laptop_timer_fn(unsigned long unused) 702 { 703 struct work_struct *work; 704 705 work = kmalloc(sizeof(*work), GFP_ATOMIC); 706 if (work) { 707 INIT_WORK(work, do_laptop_sync); 708 schedule_work(work); 709 } 710 } 711 712 /* 713 * We've spun up the disk and we're in laptop mode: schedule writeback 714 * of all dirty data a few seconds from now. If the flush is already scheduled 715 * then push it back - the user is still using the disk. 716 */ 717 void laptop_io_completion(void) 718 { 719 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 720 } 721 722 /* 723 * We're in laptop mode and we've just synced. The sync's writes will have 724 * caused another writeback to be scheduled by laptop_io_completion. 725 * Nothing needs to be written back anymore, so we unschedule the writeback. 726 */ 727 void laptop_sync_completion(void) 728 { 729 del_timer(&laptop_mode_wb_timer); 730 } 731 732 /* 733 * If ratelimit_pages is too high then we can get into dirty-data overload 734 * if a large number of processes all perform writes at the same time. 735 * If it is too low then SMP machines will call the (expensive) 736 * get_writeback_state too often. 737 * 738 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 739 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 740 * thresholds before writeback cuts in. 741 * 742 * But the limit should not be set too high. Because it also controls the 743 * amount of memory which the balance_dirty_pages() caller has to write back. 744 * If this is too large then the caller will block on the IO queue all the 745 * time. So limit it to four megabytes - the balance_dirty_pages() caller 746 * will write six megabyte chunks, max. 747 */ 748 749 void writeback_set_ratelimit(void) 750 { 751 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 752 if (ratelimit_pages < 16) 753 ratelimit_pages = 16; 754 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 755 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 756 } 757 758 static int __cpuinit 759 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 760 { 761 writeback_set_ratelimit(); 762 return NOTIFY_DONE; 763 } 764 765 static struct notifier_block __cpuinitdata ratelimit_nb = { 766 .notifier_call = ratelimit_handler, 767 .next = NULL, 768 }; 769 770 /* 771 * Called early on to tune the page writeback dirty limits. 772 * 773 * We used to scale dirty pages according to how total memory 774 * related to pages that could be allocated for buffers (by 775 * comparing nr_free_buffer_pages() to vm_total_pages. 776 * 777 * However, that was when we used "dirty_ratio" to scale with 778 * all memory, and we don't do that any more. "dirty_ratio" 779 * is now applied to total non-HIGHPAGE memory (by subtracting 780 * totalhigh_pages from vm_total_pages), and as such we can't 781 * get into the old insane situation any more where we had 782 * large amounts of dirty pages compared to a small amount of 783 * non-HIGHMEM memory. 784 * 785 * But we might still want to scale the dirty_ratio by how 786 * much memory the box has.. 787 */ 788 void __init page_writeback_init(void) 789 { 790 int shift; 791 792 writeback_set_ratelimit(); 793 register_cpu_notifier(&ratelimit_nb); 794 795 shift = calc_period_shift(); 796 prop_descriptor_init(&vm_completions, shift); 797 prop_descriptor_init(&vm_dirties, shift); 798 } 799 800 /** 801 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 802 * @mapping: address space structure to write 803 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 804 * @writepage: function called for each page 805 * @data: data passed to writepage function 806 * 807 * If a page is already under I/O, write_cache_pages() skips it, even 808 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 809 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 810 * and msync() need to guarantee that all the data which was dirty at the time 811 * the call was made get new I/O started against them. If wbc->sync_mode is 812 * WB_SYNC_ALL then we were called for data integrity and we must wait for 813 * existing IO to complete. 814 */ 815 int write_cache_pages(struct address_space *mapping, 816 struct writeback_control *wbc, writepage_t writepage, 817 void *data) 818 { 819 struct backing_dev_info *bdi = mapping->backing_dev_info; 820 int ret = 0; 821 int done = 0; 822 struct pagevec pvec; 823 int nr_pages; 824 pgoff_t uninitialized_var(writeback_index); 825 pgoff_t index; 826 pgoff_t end; /* Inclusive */ 827 pgoff_t done_index; 828 int cycled; 829 int range_whole = 0; 830 long nr_to_write = wbc->nr_to_write; 831 832 if (wbc->nonblocking && bdi_write_congested(bdi)) { 833 wbc->encountered_congestion = 1; 834 return 0; 835 } 836 837 pagevec_init(&pvec, 0); 838 if (wbc->range_cyclic) { 839 writeback_index = mapping->writeback_index; /* prev offset */ 840 index = writeback_index; 841 if (index == 0) 842 cycled = 1; 843 else 844 cycled = 0; 845 end = -1; 846 } else { 847 index = wbc->range_start >> PAGE_CACHE_SHIFT; 848 end = wbc->range_end >> PAGE_CACHE_SHIFT; 849 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 850 range_whole = 1; 851 cycled = 1; /* ignore range_cyclic tests */ 852 } 853 retry: 854 done_index = index; 855 while (!done && (index <= end)) { 856 int i; 857 858 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 859 PAGECACHE_TAG_DIRTY, 860 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 861 if (nr_pages == 0) 862 break; 863 864 for (i = 0; i < nr_pages; i++) { 865 struct page *page = pvec.pages[i]; 866 867 /* 868 * At this point, the page may be truncated or 869 * invalidated (changing page->mapping to NULL), or 870 * even swizzled back from swapper_space to tmpfs file 871 * mapping. However, page->index will not change 872 * because we have a reference on the page. 873 */ 874 if (page->index > end) { 875 /* 876 * can't be range_cyclic (1st pass) because 877 * end == -1 in that case. 878 */ 879 done = 1; 880 break; 881 } 882 883 done_index = page->index + 1; 884 885 lock_page(page); 886 887 /* 888 * Page truncated or invalidated. We can freely skip it 889 * then, even for data integrity operations: the page 890 * has disappeared concurrently, so there could be no 891 * real expectation of this data interity operation 892 * even if there is now a new, dirty page at the same 893 * pagecache address. 894 */ 895 if (unlikely(page->mapping != mapping)) { 896 continue_unlock: 897 unlock_page(page); 898 continue; 899 } 900 901 if (!PageDirty(page)) { 902 /* someone wrote it for us */ 903 goto continue_unlock; 904 } 905 906 if (PageWriteback(page)) { 907 if (wbc->sync_mode != WB_SYNC_NONE) 908 wait_on_page_writeback(page); 909 else 910 goto continue_unlock; 911 } 912 913 BUG_ON(PageWriteback(page)); 914 if (!clear_page_dirty_for_io(page)) 915 goto continue_unlock; 916 917 ret = (*writepage)(page, wbc, data); 918 if (unlikely(ret)) { 919 if (ret == AOP_WRITEPAGE_ACTIVATE) { 920 unlock_page(page); 921 ret = 0; 922 } else { 923 /* 924 * done_index is set past this page, 925 * so media errors will not choke 926 * background writeout for the entire 927 * file. This has consequences for 928 * range_cyclic semantics (ie. it may 929 * not be suitable for data integrity 930 * writeout). 931 */ 932 done = 1; 933 break; 934 } 935 } 936 937 if (nr_to_write > 0) { 938 nr_to_write--; 939 if (nr_to_write == 0 && 940 wbc->sync_mode == WB_SYNC_NONE) { 941 /* 942 * We stop writing back only if we are 943 * not doing integrity sync. In case of 944 * integrity sync we have to keep going 945 * because someone may be concurrently 946 * dirtying pages, and we might have 947 * synced a lot of newly appeared dirty 948 * pages, but have not synced all of the 949 * old dirty pages. 950 */ 951 done = 1; 952 break; 953 } 954 } 955 956 if (wbc->nonblocking && bdi_write_congested(bdi)) { 957 wbc->encountered_congestion = 1; 958 done = 1; 959 break; 960 } 961 } 962 pagevec_release(&pvec); 963 cond_resched(); 964 } 965 if (!cycled && !done) { 966 /* 967 * range_cyclic: 968 * We hit the last page and there is more work to be done: wrap 969 * back to the start of the file 970 */ 971 cycled = 1; 972 index = 0; 973 end = writeback_index - 1; 974 goto retry; 975 } 976 if (!wbc->no_nrwrite_index_update) { 977 if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) 978 mapping->writeback_index = done_index; 979 wbc->nr_to_write = nr_to_write; 980 } 981 982 return ret; 983 } 984 EXPORT_SYMBOL(write_cache_pages); 985 986 /* 987 * Function used by generic_writepages to call the real writepage 988 * function and set the mapping flags on error 989 */ 990 static int __writepage(struct page *page, struct writeback_control *wbc, 991 void *data) 992 { 993 struct address_space *mapping = data; 994 int ret = mapping->a_ops->writepage(page, wbc); 995 mapping_set_error(mapping, ret); 996 return ret; 997 } 998 999 /** 1000 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1001 * @mapping: address space structure to write 1002 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1003 * 1004 * This is a library function, which implements the writepages() 1005 * address_space_operation. 1006 */ 1007 int generic_writepages(struct address_space *mapping, 1008 struct writeback_control *wbc) 1009 { 1010 /* deal with chardevs and other special file */ 1011 if (!mapping->a_ops->writepage) 1012 return 0; 1013 1014 return write_cache_pages(mapping, wbc, __writepage, mapping); 1015 } 1016 1017 EXPORT_SYMBOL(generic_writepages); 1018 1019 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1020 { 1021 int ret; 1022 1023 if (wbc->nr_to_write <= 0) 1024 return 0; 1025 if (mapping->a_ops->writepages) 1026 ret = mapping->a_ops->writepages(mapping, wbc); 1027 else 1028 ret = generic_writepages(mapping, wbc); 1029 return ret; 1030 } 1031 1032 /** 1033 * write_one_page - write out a single page and optionally wait on I/O 1034 * @page: the page to write 1035 * @wait: if true, wait on writeout 1036 * 1037 * The page must be locked by the caller and will be unlocked upon return. 1038 * 1039 * write_one_page() returns a negative error code if I/O failed. 1040 */ 1041 int write_one_page(struct page *page, int wait) 1042 { 1043 struct address_space *mapping = page->mapping; 1044 int ret = 0; 1045 struct writeback_control wbc = { 1046 .sync_mode = WB_SYNC_ALL, 1047 .nr_to_write = 1, 1048 }; 1049 1050 BUG_ON(!PageLocked(page)); 1051 1052 if (wait) 1053 wait_on_page_writeback(page); 1054 1055 if (clear_page_dirty_for_io(page)) { 1056 page_cache_get(page); 1057 ret = mapping->a_ops->writepage(page, &wbc); 1058 if (ret == 0 && wait) { 1059 wait_on_page_writeback(page); 1060 if (PageError(page)) 1061 ret = -EIO; 1062 } 1063 page_cache_release(page); 1064 } else { 1065 unlock_page(page); 1066 } 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(write_one_page); 1070 1071 /* 1072 * For address_spaces which do not use buffers nor write back. 1073 */ 1074 int __set_page_dirty_no_writeback(struct page *page) 1075 { 1076 if (!PageDirty(page)) 1077 SetPageDirty(page); 1078 return 0; 1079 } 1080 1081 /* 1082 * Helper function for set_page_dirty family. 1083 * NOTE: This relies on being atomic wrt interrupts. 1084 */ 1085 void account_page_dirtied(struct page *page, struct address_space *mapping) 1086 { 1087 if (mapping_cap_account_dirty(mapping)) { 1088 __inc_zone_page_state(page, NR_FILE_DIRTY); 1089 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1090 task_dirty_inc(current); 1091 task_io_account_write(PAGE_CACHE_SIZE); 1092 } 1093 } 1094 1095 /* 1096 * For address_spaces which do not use buffers. Just tag the page as dirty in 1097 * its radix tree. 1098 * 1099 * This is also used when a single buffer is being dirtied: we want to set the 1100 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1101 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1102 * 1103 * Most callers have locked the page, which pins the address_space in memory. 1104 * But zap_pte_range() does not lock the page, however in that case the 1105 * mapping is pinned by the vma's ->vm_file reference. 1106 * 1107 * We take care to handle the case where the page was truncated from the 1108 * mapping by re-checking page_mapping() inside tree_lock. 1109 */ 1110 int __set_page_dirty_nobuffers(struct page *page) 1111 { 1112 if (!TestSetPageDirty(page)) { 1113 struct address_space *mapping = page_mapping(page); 1114 struct address_space *mapping2; 1115 1116 if (!mapping) 1117 return 1; 1118 1119 spin_lock_irq(&mapping->tree_lock); 1120 mapping2 = page_mapping(page); 1121 if (mapping2) { /* Race with truncate? */ 1122 BUG_ON(mapping2 != mapping); 1123 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1124 account_page_dirtied(page, mapping); 1125 radix_tree_tag_set(&mapping->page_tree, 1126 page_index(page), PAGECACHE_TAG_DIRTY); 1127 } 1128 spin_unlock_irq(&mapping->tree_lock); 1129 if (mapping->host) { 1130 /* !PageAnon && !swapper_space */ 1131 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1132 } 1133 return 1; 1134 } 1135 return 0; 1136 } 1137 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1138 1139 /* 1140 * When a writepage implementation decides that it doesn't want to write this 1141 * page for some reason, it should redirty the locked page via 1142 * redirty_page_for_writepage() and it should then unlock the page and return 0 1143 */ 1144 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1145 { 1146 wbc->pages_skipped++; 1147 return __set_page_dirty_nobuffers(page); 1148 } 1149 EXPORT_SYMBOL(redirty_page_for_writepage); 1150 1151 /* 1152 * If the mapping doesn't provide a set_page_dirty a_op, then 1153 * just fall through and assume that it wants buffer_heads. 1154 */ 1155 int set_page_dirty(struct page *page) 1156 { 1157 struct address_space *mapping = page_mapping(page); 1158 1159 if (likely(mapping)) { 1160 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1161 #ifdef CONFIG_BLOCK 1162 if (!spd) 1163 spd = __set_page_dirty_buffers; 1164 #endif 1165 return (*spd)(page); 1166 } 1167 if (!PageDirty(page)) { 1168 if (!TestSetPageDirty(page)) 1169 return 1; 1170 } 1171 return 0; 1172 } 1173 EXPORT_SYMBOL(set_page_dirty); 1174 1175 /* 1176 * set_page_dirty() is racy if the caller has no reference against 1177 * page->mapping->host, and if the page is unlocked. This is because another 1178 * CPU could truncate the page off the mapping and then free the mapping. 1179 * 1180 * Usually, the page _is_ locked, or the caller is a user-space process which 1181 * holds a reference on the inode by having an open file. 1182 * 1183 * In other cases, the page should be locked before running set_page_dirty(). 1184 */ 1185 int set_page_dirty_lock(struct page *page) 1186 { 1187 int ret; 1188 1189 lock_page_nosync(page); 1190 ret = set_page_dirty(page); 1191 unlock_page(page); 1192 return ret; 1193 } 1194 EXPORT_SYMBOL(set_page_dirty_lock); 1195 1196 /* 1197 * Clear a page's dirty flag, while caring for dirty memory accounting. 1198 * Returns true if the page was previously dirty. 1199 * 1200 * This is for preparing to put the page under writeout. We leave the page 1201 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1202 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1203 * implementation will run either set_page_writeback() or set_page_dirty(), 1204 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1205 * back into sync. 1206 * 1207 * This incoherency between the page's dirty flag and radix-tree tag is 1208 * unfortunate, but it only exists while the page is locked. 1209 */ 1210 int clear_page_dirty_for_io(struct page *page) 1211 { 1212 struct address_space *mapping = page_mapping(page); 1213 1214 BUG_ON(!PageLocked(page)); 1215 1216 ClearPageReclaim(page); 1217 if (mapping && mapping_cap_account_dirty(mapping)) { 1218 /* 1219 * Yes, Virginia, this is indeed insane. 1220 * 1221 * We use this sequence to make sure that 1222 * (a) we account for dirty stats properly 1223 * (b) we tell the low-level filesystem to 1224 * mark the whole page dirty if it was 1225 * dirty in a pagetable. Only to then 1226 * (c) clean the page again and return 1 to 1227 * cause the writeback. 1228 * 1229 * This way we avoid all nasty races with the 1230 * dirty bit in multiple places and clearing 1231 * them concurrently from different threads. 1232 * 1233 * Note! Normally the "set_page_dirty(page)" 1234 * has no effect on the actual dirty bit - since 1235 * that will already usually be set. But we 1236 * need the side effects, and it can help us 1237 * avoid races. 1238 * 1239 * We basically use the page "master dirty bit" 1240 * as a serialization point for all the different 1241 * threads doing their things. 1242 */ 1243 if (page_mkclean(page)) 1244 set_page_dirty(page); 1245 /* 1246 * We carefully synchronise fault handlers against 1247 * installing a dirty pte and marking the page dirty 1248 * at this point. We do this by having them hold the 1249 * page lock at some point after installing their 1250 * pte, but before marking the page dirty. 1251 * Pages are always locked coming in here, so we get 1252 * the desired exclusion. See mm/memory.c:do_wp_page() 1253 * for more comments. 1254 */ 1255 if (TestClearPageDirty(page)) { 1256 dec_zone_page_state(page, NR_FILE_DIRTY); 1257 dec_bdi_stat(mapping->backing_dev_info, 1258 BDI_RECLAIMABLE); 1259 return 1; 1260 } 1261 return 0; 1262 } 1263 return TestClearPageDirty(page); 1264 } 1265 EXPORT_SYMBOL(clear_page_dirty_for_io); 1266 1267 int test_clear_page_writeback(struct page *page) 1268 { 1269 struct address_space *mapping = page_mapping(page); 1270 int ret; 1271 1272 if (mapping) { 1273 struct backing_dev_info *bdi = mapping->backing_dev_info; 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&mapping->tree_lock, flags); 1277 ret = TestClearPageWriteback(page); 1278 if (ret) { 1279 radix_tree_tag_clear(&mapping->page_tree, 1280 page_index(page), 1281 PAGECACHE_TAG_WRITEBACK); 1282 if (bdi_cap_account_writeback(bdi)) { 1283 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1284 __bdi_writeout_inc(bdi); 1285 } 1286 } 1287 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1288 } else { 1289 ret = TestClearPageWriteback(page); 1290 } 1291 if (ret) 1292 dec_zone_page_state(page, NR_WRITEBACK); 1293 return ret; 1294 } 1295 1296 int test_set_page_writeback(struct page *page) 1297 { 1298 struct address_space *mapping = page_mapping(page); 1299 int ret; 1300 1301 if (mapping) { 1302 struct backing_dev_info *bdi = mapping->backing_dev_info; 1303 unsigned long flags; 1304 1305 spin_lock_irqsave(&mapping->tree_lock, flags); 1306 ret = TestSetPageWriteback(page); 1307 if (!ret) { 1308 radix_tree_tag_set(&mapping->page_tree, 1309 page_index(page), 1310 PAGECACHE_TAG_WRITEBACK); 1311 if (bdi_cap_account_writeback(bdi)) 1312 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1313 } 1314 if (!PageDirty(page)) 1315 radix_tree_tag_clear(&mapping->page_tree, 1316 page_index(page), 1317 PAGECACHE_TAG_DIRTY); 1318 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1319 } else { 1320 ret = TestSetPageWriteback(page); 1321 } 1322 if (!ret) 1323 inc_zone_page_state(page, NR_WRITEBACK); 1324 return ret; 1325 1326 } 1327 EXPORT_SYMBOL(test_set_page_writeback); 1328 1329 /* 1330 * Return true if any of the pages in the mapping are marked with the 1331 * passed tag. 1332 */ 1333 int mapping_tagged(struct address_space *mapping, int tag) 1334 { 1335 int ret; 1336 rcu_read_lock(); 1337 ret = radix_tree_tagged(&mapping->page_tree, tag); 1338 rcu_read_unlock(); 1339 return ret; 1340 } 1341 EXPORT_SYMBOL(mapping_tagged); 1342