xref: /linux/mm/page-writeback.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * mm/page-writeback.c.
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002	akpm@zip.com.au
10  *		Initial version
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32 
33 /*
34  * The maximum number of pages to writeout in a single bdflush/kupdate
35  * operation.  We do this so we don't hold I_LOCK against an inode for
36  * enormous amounts of time, which would block a userspace task which has
37  * been forced to throttle against that inode.  Also, the code reevaluates
38  * the dirty each time it has written this many pages.
39  */
40 #define MAX_WRITEBACK_PAGES	1024
41 
42 /*
43  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44  * will look to see if it needs to force writeback or throttling.
45  */
46 static long ratelimit_pages = 32;
47 
48 static long total_pages;	/* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
50 
51 /*
52  * When balance_dirty_pages decides that the caller needs to perform some
53  * non-background writeback, this is how many pages it will attempt to write.
54  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55  * large amounts of I/O are submitted.
56  */
57 static inline long sync_writeback_pages(void)
58 {
59 	return ratelimit_pages + ratelimit_pages / 2;
60 }
61 
62 /* The following parameters are exported via /proc/sys/vm */
63 
64 /*
65  * Start background writeback (via pdflush) at this percentage
66  */
67 int dirty_background_ratio = 10;
68 
69 /*
70  * The generator of dirty data starts writeback at this percentage
71  */
72 int vm_dirty_ratio = 40;
73 
74 /*
75  * The interval between `kupdate'-style writebacks, in jiffies
76  */
77 int dirty_writeback_interval = 5 * HZ;
78 
79 /*
80  * The longest number of jiffies for which data is allowed to remain dirty
81  */
82 int dirty_expire_interval = 30 * HZ;
83 
84 /*
85  * Flag that makes the machine dump writes/reads and block dirtyings.
86  */
87 int block_dump;
88 
89 /*
90  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
91  * a full sync is triggered after this time elapses without any disk activity.
92  */
93 int laptop_mode;
94 
95 EXPORT_SYMBOL(laptop_mode);
96 
97 /* End of sysctl-exported parameters */
98 
99 
100 static void background_writeout(unsigned long _min_pages);
101 
102 /*
103  * Work out the current dirty-memory clamping and background writeout
104  * thresholds.
105  *
106  * The main aim here is to lower them aggressively if there is a lot of mapped
107  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
108  * pages.  It is better to clamp down on writers than to start swapping, and
109  * performing lots of scanning.
110  *
111  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
112  *
113  * We don't permit the clamping level to fall below 5% - that is getting rather
114  * excessive.
115  *
116  * We make sure that the background writeout level is below the adjusted
117  * clamping level.
118  */
119 static void
120 get_dirty_limits(long *pbackground, long *pdirty,
121 					struct address_space *mapping)
122 {
123 	int background_ratio;		/* Percentages */
124 	int dirty_ratio;
125 	int unmapped_ratio;
126 	long background;
127 	long dirty;
128 	unsigned long available_memory = total_pages;
129 	struct task_struct *tsk;
130 
131 #ifdef CONFIG_HIGHMEM
132 	/*
133 	 * If this mapping can only allocate from low memory,
134 	 * we exclude high memory from our count.
135 	 */
136 	if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
137 		available_memory -= totalhigh_pages;
138 #endif
139 
140 
141 	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
142 				global_page_state(NR_ANON_PAGES)) * 100) /
143 					total_pages;
144 
145 	dirty_ratio = vm_dirty_ratio;
146 	if (dirty_ratio > unmapped_ratio / 2)
147 		dirty_ratio = unmapped_ratio / 2;
148 
149 	if (dirty_ratio < 5)
150 		dirty_ratio = 5;
151 
152 	background_ratio = dirty_background_ratio;
153 	if (background_ratio >= dirty_ratio)
154 		background_ratio = dirty_ratio / 2;
155 
156 	background = (background_ratio * available_memory) / 100;
157 	dirty = (dirty_ratio * available_memory) / 100;
158 	tsk = current;
159 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
160 		background += background / 4;
161 		dirty += dirty / 4;
162 	}
163 	*pbackground = background;
164 	*pdirty = dirty;
165 }
166 
167 /*
168  * balance_dirty_pages() must be called by processes which are generating dirty
169  * data.  It looks at the number of dirty pages in the machine and will force
170  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
171  * If we're over `background_thresh' then pdflush is woken to perform some
172  * writeout.
173  */
174 static void balance_dirty_pages(struct address_space *mapping)
175 {
176 	long nr_reclaimable;
177 	long background_thresh;
178 	long dirty_thresh;
179 	unsigned long pages_written = 0;
180 	unsigned long write_chunk = sync_writeback_pages();
181 
182 	struct backing_dev_info *bdi = mapping->backing_dev_info;
183 
184 	for (;;) {
185 		struct writeback_control wbc = {
186 			.bdi		= bdi,
187 			.sync_mode	= WB_SYNC_NONE,
188 			.older_than_this = NULL,
189 			.nr_to_write	= write_chunk,
190 			.range_cyclic	= 1,
191 		};
192 
193 		get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
194 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
195 					global_page_state(NR_UNSTABLE_NFS);
196 		if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
197 			dirty_thresh)
198 				break;
199 
200 		if (!dirty_exceeded)
201 			dirty_exceeded = 1;
202 
203 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
204 		 * Unstable writes are a feature of certain networked
205 		 * filesystems (i.e. NFS) in which data may have been
206 		 * written to the server's write cache, but has not yet
207 		 * been flushed to permanent storage.
208 		 */
209 		if (nr_reclaimable) {
210 			writeback_inodes(&wbc);
211 			get_dirty_limits(&background_thresh,
212 					 	&dirty_thresh, mapping);
213 			nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
214 					global_page_state(NR_UNSTABLE_NFS);
215 			if (nr_reclaimable +
216 				global_page_state(NR_WRITEBACK)
217 					<= dirty_thresh)
218 						break;
219 			pages_written += write_chunk - wbc.nr_to_write;
220 			if (pages_written >= write_chunk)
221 				break;		/* We've done our duty */
222 		}
223 		blk_congestion_wait(WRITE, HZ/10);
224 	}
225 
226 	if (nr_reclaimable + global_page_state(NR_WRITEBACK)
227 		<= dirty_thresh && dirty_exceeded)
228 			dirty_exceeded = 0;
229 
230 	if (writeback_in_progress(bdi))
231 		return;		/* pdflush is already working this queue */
232 
233 	/*
234 	 * In laptop mode, we wait until hitting the higher threshold before
235 	 * starting background writeout, and then write out all the way down
236 	 * to the lower threshold.  So slow writers cause minimal disk activity.
237 	 *
238 	 * In normal mode, we start background writeout at the lower
239 	 * background_thresh, to keep the amount of dirty memory low.
240 	 */
241 	if ((laptop_mode && pages_written) ||
242 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
243 		pdflush_operation(background_writeout, 0);
244 }
245 
246 /**
247  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
248  * @mapping: address_space which was dirtied
249  * @nr_pages_dirtied: number of pages which the caller has just dirtied
250  *
251  * Processes which are dirtying memory should call in here once for each page
252  * which was newly dirtied.  The function will periodically check the system's
253  * dirty state and will initiate writeback if needed.
254  *
255  * On really big machines, get_writeback_state is expensive, so try to avoid
256  * calling it too often (ratelimiting).  But once we're over the dirty memory
257  * limit we decrease the ratelimiting by a lot, to prevent individual processes
258  * from overshooting the limit by (ratelimit_pages) each.
259  */
260 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
261 					unsigned long nr_pages_dirtied)
262 {
263 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
264 	unsigned long ratelimit;
265 	unsigned long *p;
266 
267 	ratelimit = ratelimit_pages;
268 	if (dirty_exceeded)
269 		ratelimit = 8;
270 
271 	/*
272 	 * Check the rate limiting. Also, we do not want to throttle real-time
273 	 * tasks in balance_dirty_pages(). Period.
274 	 */
275 	preempt_disable();
276 	p =  &__get_cpu_var(ratelimits);
277 	*p += nr_pages_dirtied;
278 	if (unlikely(*p >= ratelimit)) {
279 		*p = 0;
280 		preempt_enable();
281 		balance_dirty_pages(mapping);
282 		return;
283 	}
284 	preempt_enable();
285 }
286 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
287 
288 void throttle_vm_writeout(void)
289 {
290 	long background_thresh;
291 	long dirty_thresh;
292 
293         for ( ; ; ) {
294 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
295 
296                 /*
297                  * Boost the allowable dirty threshold a bit for page
298                  * allocators so they don't get DoS'ed by heavy writers
299                  */
300                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
301 
302                 if (global_page_state(NR_UNSTABLE_NFS) +
303 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
304                         	break;
305                 blk_congestion_wait(WRITE, HZ/10);
306         }
307 }
308 
309 
310 /*
311  * writeback at least _min_pages, and keep writing until the amount of dirty
312  * memory is less than the background threshold, or until we're all clean.
313  */
314 static void background_writeout(unsigned long _min_pages)
315 {
316 	long min_pages = _min_pages;
317 	struct writeback_control wbc = {
318 		.bdi		= NULL,
319 		.sync_mode	= WB_SYNC_NONE,
320 		.older_than_this = NULL,
321 		.nr_to_write	= 0,
322 		.nonblocking	= 1,
323 		.range_cyclic	= 1,
324 	};
325 
326 	for ( ; ; ) {
327 		long background_thresh;
328 		long dirty_thresh;
329 
330 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
331 		if (global_page_state(NR_FILE_DIRTY) +
332 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
333 				&& min_pages <= 0)
334 			break;
335 		wbc.encountered_congestion = 0;
336 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
337 		wbc.pages_skipped = 0;
338 		writeback_inodes(&wbc);
339 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
340 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
341 			/* Wrote less than expected */
342 			blk_congestion_wait(WRITE, HZ/10);
343 			if (!wbc.encountered_congestion)
344 				break;
345 		}
346 	}
347 }
348 
349 /*
350  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
351  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
352  * -1 if all pdflush threads were busy.
353  */
354 int wakeup_pdflush(long nr_pages)
355 {
356 	if (nr_pages == 0)
357 		nr_pages = global_page_state(NR_FILE_DIRTY) +
358 				global_page_state(NR_UNSTABLE_NFS);
359 	return pdflush_operation(background_writeout, nr_pages);
360 }
361 
362 static void wb_timer_fn(unsigned long unused);
363 static void laptop_timer_fn(unsigned long unused);
364 
365 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
366 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
367 
368 /*
369  * Periodic writeback of "old" data.
370  *
371  * Define "old": the first time one of an inode's pages is dirtied, we mark the
372  * dirtying-time in the inode's address_space.  So this periodic writeback code
373  * just walks the superblock inode list, writing back any inodes which are
374  * older than a specific point in time.
375  *
376  * Try to run once per dirty_writeback_interval.  But if a writeback event
377  * takes longer than a dirty_writeback_interval interval, then leave a
378  * one-second gap.
379  *
380  * older_than_this takes precedence over nr_to_write.  So we'll only write back
381  * all dirty pages if they are all attached to "old" mappings.
382  */
383 static void wb_kupdate(unsigned long arg)
384 {
385 	unsigned long oldest_jif;
386 	unsigned long start_jif;
387 	unsigned long next_jif;
388 	long nr_to_write;
389 	struct writeback_control wbc = {
390 		.bdi		= NULL,
391 		.sync_mode	= WB_SYNC_NONE,
392 		.older_than_this = &oldest_jif,
393 		.nr_to_write	= 0,
394 		.nonblocking	= 1,
395 		.for_kupdate	= 1,
396 		.range_cyclic	= 1,
397 	};
398 
399 	sync_supers();
400 
401 	oldest_jif = jiffies - dirty_expire_interval;
402 	start_jif = jiffies;
403 	next_jif = start_jif + dirty_writeback_interval;
404 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
405 			global_page_state(NR_UNSTABLE_NFS) +
406 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
407 	while (nr_to_write > 0) {
408 		wbc.encountered_congestion = 0;
409 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
410 		writeback_inodes(&wbc);
411 		if (wbc.nr_to_write > 0) {
412 			if (wbc.encountered_congestion)
413 				blk_congestion_wait(WRITE, HZ/10);
414 			else
415 				break;	/* All the old data is written */
416 		}
417 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
418 	}
419 	if (time_before(next_jif, jiffies + HZ))
420 		next_jif = jiffies + HZ;
421 	if (dirty_writeback_interval)
422 		mod_timer(&wb_timer, next_jif);
423 }
424 
425 /*
426  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
427  */
428 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
429 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
430 {
431 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
432 	if (dirty_writeback_interval) {
433 		mod_timer(&wb_timer,
434 			jiffies + dirty_writeback_interval);
435 		} else {
436 		del_timer(&wb_timer);
437 	}
438 	return 0;
439 }
440 
441 static void wb_timer_fn(unsigned long unused)
442 {
443 	if (pdflush_operation(wb_kupdate, 0) < 0)
444 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
445 }
446 
447 static void laptop_flush(unsigned long unused)
448 {
449 	sys_sync();
450 }
451 
452 static void laptop_timer_fn(unsigned long unused)
453 {
454 	pdflush_operation(laptop_flush, 0);
455 }
456 
457 /*
458  * We've spun up the disk and we're in laptop mode: schedule writeback
459  * of all dirty data a few seconds from now.  If the flush is already scheduled
460  * then push it back - the user is still using the disk.
461  */
462 void laptop_io_completion(void)
463 {
464 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
465 }
466 
467 /*
468  * We're in laptop mode and we've just synced. The sync's writes will have
469  * caused another writeback to be scheduled by laptop_io_completion.
470  * Nothing needs to be written back anymore, so we unschedule the writeback.
471  */
472 void laptop_sync_completion(void)
473 {
474 	del_timer(&laptop_mode_wb_timer);
475 }
476 
477 /*
478  * If ratelimit_pages is too high then we can get into dirty-data overload
479  * if a large number of processes all perform writes at the same time.
480  * If it is too low then SMP machines will call the (expensive)
481  * get_writeback_state too often.
482  *
483  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
484  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
485  * thresholds before writeback cuts in.
486  *
487  * But the limit should not be set too high.  Because it also controls the
488  * amount of memory which the balance_dirty_pages() caller has to write back.
489  * If this is too large then the caller will block on the IO queue all the
490  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
491  * will write six megabyte chunks, max.
492  */
493 
494 static void set_ratelimit(void)
495 {
496 	ratelimit_pages = total_pages / (num_online_cpus() * 32);
497 	if (ratelimit_pages < 16)
498 		ratelimit_pages = 16;
499 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
500 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
501 }
502 
503 static int __cpuinit
504 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
505 {
506 	set_ratelimit();
507 	return 0;
508 }
509 
510 static struct notifier_block __cpuinitdata ratelimit_nb = {
511 	.notifier_call	= ratelimit_handler,
512 	.next		= NULL,
513 };
514 
515 /*
516  * If the machine has a large highmem:lowmem ratio then scale back the default
517  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
518  * number of buffer_heads.
519  */
520 void __init page_writeback_init(void)
521 {
522 	long buffer_pages = nr_free_buffer_pages();
523 	long correction;
524 
525 	total_pages = nr_free_pagecache_pages();
526 
527 	correction = (100 * 4 * buffer_pages) / total_pages;
528 
529 	if (correction < 100) {
530 		dirty_background_ratio *= correction;
531 		dirty_background_ratio /= 100;
532 		vm_dirty_ratio *= correction;
533 		vm_dirty_ratio /= 100;
534 
535 		if (dirty_background_ratio <= 0)
536 			dirty_background_ratio = 1;
537 		if (vm_dirty_ratio <= 0)
538 			vm_dirty_ratio = 1;
539 	}
540 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
541 	set_ratelimit();
542 	register_cpu_notifier(&ratelimit_nb);
543 }
544 
545 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
546 {
547 	int ret;
548 
549 	if (wbc->nr_to_write <= 0)
550 		return 0;
551 	wbc->for_writepages = 1;
552 	if (mapping->a_ops->writepages)
553 		ret =  mapping->a_ops->writepages(mapping, wbc);
554 	else
555 		ret = generic_writepages(mapping, wbc);
556 	wbc->for_writepages = 0;
557 	return ret;
558 }
559 
560 /**
561  * write_one_page - write out a single page and optionally wait on I/O
562  *
563  * @page: the page to write
564  * @wait: if true, wait on writeout
565  *
566  * The page must be locked by the caller and will be unlocked upon return.
567  *
568  * write_one_page() returns a negative error code if I/O failed.
569  */
570 int write_one_page(struct page *page, int wait)
571 {
572 	struct address_space *mapping = page->mapping;
573 	int ret = 0;
574 	struct writeback_control wbc = {
575 		.sync_mode = WB_SYNC_ALL,
576 		.nr_to_write = 1,
577 	};
578 
579 	BUG_ON(!PageLocked(page));
580 
581 	if (wait)
582 		wait_on_page_writeback(page);
583 
584 	if (clear_page_dirty_for_io(page)) {
585 		page_cache_get(page);
586 		ret = mapping->a_ops->writepage(page, &wbc);
587 		if (ret == 0 && wait) {
588 			wait_on_page_writeback(page);
589 			if (PageError(page))
590 				ret = -EIO;
591 		}
592 		page_cache_release(page);
593 	} else {
594 		unlock_page(page);
595 	}
596 	return ret;
597 }
598 EXPORT_SYMBOL(write_one_page);
599 
600 /*
601  * For address_spaces which do not use buffers.  Just tag the page as dirty in
602  * its radix tree.
603  *
604  * This is also used when a single buffer is being dirtied: we want to set the
605  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
606  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
607  *
608  * Most callers have locked the page, which pins the address_space in memory.
609  * But zap_pte_range() does not lock the page, however in that case the
610  * mapping is pinned by the vma's ->vm_file reference.
611  *
612  * We take care to handle the case where the page was truncated from the
613  * mapping by re-checking page_mapping() insode tree_lock.
614  */
615 int __set_page_dirty_nobuffers(struct page *page)
616 {
617 	if (!TestSetPageDirty(page)) {
618 		struct address_space *mapping = page_mapping(page);
619 		struct address_space *mapping2;
620 
621 		if (mapping) {
622 			write_lock_irq(&mapping->tree_lock);
623 			mapping2 = page_mapping(page);
624 			if (mapping2) { /* Race with truncate? */
625 				BUG_ON(mapping2 != mapping);
626 				if (mapping_cap_account_dirty(mapping))
627 					__inc_zone_page_state(page,
628 								NR_FILE_DIRTY);
629 				radix_tree_tag_set(&mapping->page_tree,
630 					page_index(page), PAGECACHE_TAG_DIRTY);
631 			}
632 			write_unlock_irq(&mapping->tree_lock);
633 			if (mapping->host) {
634 				/* !PageAnon && !swapper_space */
635 				__mark_inode_dirty(mapping->host,
636 							I_DIRTY_PAGES);
637 			}
638 		}
639 		return 1;
640 	}
641 	return 0;
642 }
643 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
644 
645 /*
646  * When a writepage implementation decides that it doesn't want to write this
647  * page for some reason, it should redirty the locked page via
648  * redirty_page_for_writepage() and it should then unlock the page and return 0
649  */
650 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
651 {
652 	wbc->pages_skipped++;
653 	return __set_page_dirty_nobuffers(page);
654 }
655 EXPORT_SYMBOL(redirty_page_for_writepage);
656 
657 /*
658  * If the mapping doesn't provide a set_page_dirty a_op, then
659  * just fall through and assume that it wants buffer_heads.
660  */
661 int fastcall set_page_dirty(struct page *page)
662 {
663 	struct address_space *mapping = page_mapping(page);
664 
665 	if (likely(mapping)) {
666 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
667 		if (spd)
668 			return (*spd)(page);
669 		return __set_page_dirty_buffers(page);
670 	}
671 	if (!PageDirty(page)) {
672 		if (!TestSetPageDirty(page))
673 			return 1;
674 	}
675 	return 0;
676 }
677 EXPORT_SYMBOL(set_page_dirty);
678 
679 /*
680  * set_page_dirty() is racy if the caller has no reference against
681  * page->mapping->host, and if the page is unlocked.  This is because another
682  * CPU could truncate the page off the mapping and then free the mapping.
683  *
684  * Usually, the page _is_ locked, or the caller is a user-space process which
685  * holds a reference on the inode by having an open file.
686  *
687  * In other cases, the page should be locked before running set_page_dirty().
688  */
689 int set_page_dirty_lock(struct page *page)
690 {
691 	int ret;
692 
693 	lock_page(page);
694 	ret = set_page_dirty(page);
695 	unlock_page(page);
696 	return ret;
697 }
698 EXPORT_SYMBOL(set_page_dirty_lock);
699 
700 /*
701  * Clear a page's dirty flag, while caring for dirty memory accounting.
702  * Returns true if the page was previously dirty.
703  */
704 int test_clear_page_dirty(struct page *page)
705 {
706 	struct address_space *mapping = page_mapping(page);
707 	unsigned long flags;
708 
709 	if (mapping) {
710 		write_lock_irqsave(&mapping->tree_lock, flags);
711 		if (TestClearPageDirty(page)) {
712 			radix_tree_tag_clear(&mapping->page_tree,
713 						page_index(page),
714 						PAGECACHE_TAG_DIRTY);
715 			if (mapping_cap_account_dirty(mapping))
716 				__dec_zone_page_state(page, NR_FILE_DIRTY);
717 			write_unlock_irqrestore(&mapping->tree_lock, flags);
718 			return 1;
719 		}
720 		write_unlock_irqrestore(&mapping->tree_lock, flags);
721 		return 0;
722 	}
723 	return TestClearPageDirty(page);
724 }
725 EXPORT_SYMBOL(test_clear_page_dirty);
726 
727 /*
728  * Clear a page's dirty flag, while caring for dirty memory accounting.
729  * Returns true if the page was previously dirty.
730  *
731  * This is for preparing to put the page under writeout.  We leave the page
732  * tagged as dirty in the radix tree so that a concurrent write-for-sync
733  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
734  * implementation will run either set_page_writeback() or set_page_dirty(),
735  * at which stage we bring the page's dirty flag and radix-tree dirty tag
736  * back into sync.
737  *
738  * This incoherency between the page's dirty flag and radix-tree tag is
739  * unfortunate, but it only exists while the page is locked.
740  */
741 int clear_page_dirty_for_io(struct page *page)
742 {
743 	struct address_space *mapping = page_mapping(page);
744 
745 	if (mapping) {
746 		if (TestClearPageDirty(page)) {
747 			if (mapping_cap_account_dirty(mapping))
748 				dec_zone_page_state(page, NR_FILE_DIRTY);
749 			return 1;
750 		}
751 		return 0;
752 	}
753 	return TestClearPageDirty(page);
754 }
755 EXPORT_SYMBOL(clear_page_dirty_for_io);
756 
757 int test_clear_page_writeback(struct page *page)
758 {
759 	struct address_space *mapping = page_mapping(page);
760 	int ret;
761 
762 	if (mapping) {
763 		unsigned long flags;
764 
765 		write_lock_irqsave(&mapping->tree_lock, flags);
766 		ret = TestClearPageWriteback(page);
767 		if (ret)
768 			radix_tree_tag_clear(&mapping->page_tree,
769 						page_index(page),
770 						PAGECACHE_TAG_WRITEBACK);
771 		write_unlock_irqrestore(&mapping->tree_lock, flags);
772 	} else {
773 		ret = TestClearPageWriteback(page);
774 	}
775 	return ret;
776 }
777 
778 int test_set_page_writeback(struct page *page)
779 {
780 	struct address_space *mapping = page_mapping(page);
781 	int ret;
782 
783 	if (mapping) {
784 		unsigned long flags;
785 
786 		write_lock_irqsave(&mapping->tree_lock, flags);
787 		ret = TestSetPageWriteback(page);
788 		if (!ret)
789 			radix_tree_tag_set(&mapping->page_tree,
790 						page_index(page),
791 						PAGECACHE_TAG_WRITEBACK);
792 		if (!PageDirty(page))
793 			radix_tree_tag_clear(&mapping->page_tree,
794 						page_index(page),
795 						PAGECACHE_TAG_DIRTY);
796 		write_unlock_irqrestore(&mapping->tree_lock, flags);
797 	} else {
798 		ret = TestSetPageWriteback(page);
799 	}
800 	return ret;
801 
802 }
803 EXPORT_SYMBOL(test_set_page_writeback);
804 
805 /*
806  * Return true if any of the pages in the mapping are marged with the
807  * passed tag.
808  */
809 int mapping_tagged(struct address_space *mapping, int tag)
810 {
811 	unsigned long flags;
812 	int ret;
813 
814 	read_lock_irqsave(&mapping->tree_lock, flags);
815 	ret = radix_tree_tagged(&mapping->page_tree, tag);
816 	read_unlock_irqrestore(&mapping->tree_lock, flags);
817 	return ret;
818 }
819 EXPORT_SYMBOL(mapping_tagged);
820