1 /* 2 * mm/page-writeback.c. 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to writing back dirty pages at the 7 * address_space level. 8 * 9 * 10Apr2002 akpm@zip.com.au 10 * Initial version 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/spinlock.h> 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/slab.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/init.h> 23 #include <linux/backing-dev.h> 24 #include <linux/blkdev.h> 25 #include <linux/mpage.h> 26 #include <linux/percpu.h> 27 #include <linux/notifier.h> 28 #include <linux/smp.h> 29 #include <linux/sysctl.h> 30 #include <linux/cpu.h> 31 #include <linux/syscalls.h> 32 33 /* 34 * The maximum number of pages to writeout in a single bdflush/kupdate 35 * operation. We do this so we don't hold I_LOCK against an inode for 36 * enormous amounts of time, which would block a userspace task which has 37 * been forced to throttle against that inode. Also, the code reevaluates 38 * the dirty each time it has written this many pages. 39 */ 40 #define MAX_WRITEBACK_PAGES 1024 41 42 /* 43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 44 * will look to see if it needs to force writeback or throttling. 45 */ 46 static long ratelimit_pages = 32; 47 48 static long total_pages; /* The total number of pages in the machine. */ 49 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */ 50 51 /* 52 * When balance_dirty_pages decides that the caller needs to perform some 53 * non-background writeback, this is how many pages it will attempt to write. 54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 55 * large amounts of I/O are submitted. 56 */ 57 static inline long sync_writeback_pages(void) 58 { 59 return ratelimit_pages + ratelimit_pages / 2; 60 } 61 62 /* The following parameters are exported via /proc/sys/vm */ 63 64 /* 65 * Start background writeback (via pdflush) at this percentage 66 */ 67 int dirty_background_ratio = 10; 68 69 /* 70 * The generator of dirty data starts writeback at this percentage 71 */ 72 int vm_dirty_ratio = 40; 73 74 /* 75 * The interval between `kupdate'-style writebacks, in jiffies 76 */ 77 int dirty_writeback_interval = 5 * HZ; 78 79 /* 80 * The longest number of jiffies for which data is allowed to remain dirty 81 */ 82 int dirty_expire_interval = 30 * HZ; 83 84 /* 85 * Flag that makes the machine dump writes/reads and block dirtyings. 86 */ 87 int block_dump; 88 89 /* 90 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 91 * a full sync is triggered after this time elapses without any disk activity. 92 */ 93 int laptop_mode; 94 95 EXPORT_SYMBOL(laptop_mode); 96 97 /* End of sysctl-exported parameters */ 98 99 100 static void background_writeout(unsigned long _min_pages); 101 102 /* 103 * Work out the current dirty-memory clamping and background writeout 104 * thresholds. 105 * 106 * The main aim here is to lower them aggressively if there is a lot of mapped 107 * memory around. To avoid stressing page reclaim with lots of unreclaimable 108 * pages. It is better to clamp down on writers than to start swapping, and 109 * performing lots of scanning. 110 * 111 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 112 * 113 * We don't permit the clamping level to fall below 5% - that is getting rather 114 * excessive. 115 * 116 * We make sure that the background writeout level is below the adjusted 117 * clamping level. 118 */ 119 static void 120 get_dirty_limits(long *pbackground, long *pdirty, 121 struct address_space *mapping) 122 { 123 int background_ratio; /* Percentages */ 124 int dirty_ratio; 125 int unmapped_ratio; 126 long background; 127 long dirty; 128 unsigned long available_memory = total_pages; 129 struct task_struct *tsk; 130 131 #ifdef CONFIG_HIGHMEM 132 /* 133 * If this mapping can only allocate from low memory, 134 * we exclude high memory from our count. 135 */ 136 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) 137 available_memory -= totalhigh_pages; 138 #endif 139 140 141 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) + 142 global_page_state(NR_ANON_PAGES)) * 100) / 143 total_pages; 144 145 dirty_ratio = vm_dirty_ratio; 146 if (dirty_ratio > unmapped_ratio / 2) 147 dirty_ratio = unmapped_ratio / 2; 148 149 if (dirty_ratio < 5) 150 dirty_ratio = 5; 151 152 background_ratio = dirty_background_ratio; 153 if (background_ratio >= dirty_ratio) 154 background_ratio = dirty_ratio / 2; 155 156 background = (background_ratio * available_memory) / 100; 157 dirty = (dirty_ratio * available_memory) / 100; 158 tsk = current; 159 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 160 background += background / 4; 161 dirty += dirty / 4; 162 } 163 *pbackground = background; 164 *pdirty = dirty; 165 } 166 167 /* 168 * balance_dirty_pages() must be called by processes which are generating dirty 169 * data. It looks at the number of dirty pages in the machine and will force 170 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 171 * If we're over `background_thresh' then pdflush is woken to perform some 172 * writeout. 173 */ 174 static void balance_dirty_pages(struct address_space *mapping) 175 { 176 long nr_reclaimable; 177 long background_thresh; 178 long dirty_thresh; 179 unsigned long pages_written = 0; 180 unsigned long write_chunk = sync_writeback_pages(); 181 182 struct backing_dev_info *bdi = mapping->backing_dev_info; 183 184 for (;;) { 185 struct writeback_control wbc = { 186 .bdi = bdi, 187 .sync_mode = WB_SYNC_NONE, 188 .older_than_this = NULL, 189 .nr_to_write = write_chunk, 190 .range_cyclic = 1, 191 }; 192 193 get_dirty_limits(&background_thresh, &dirty_thresh, mapping); 194 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 195 global_page_state(NR_UNSTABLE_NFS); 196 if (nr_reclaimable + global_page_state(NR_WRITEBACK) <= 197 dirty_thresh) 198 break; 199 200 if (!dirty_exceeded) 201 dirty_exceeded = 1; 202 203 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 204 * Unstable writes are a feature of certain networked 205 * filesystems (i.e. NFS) in which data may have been 206 * written to the server's write cache, but has not yet 207 * been flushed to permanent storage. 208 */ 209 if (nr_reclaimable) { 210 writeback_inodes(&wbc); 211 get_dirty_limits(&background_thresh, 212 &dirty_thresh, mapping); 213 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 214 global_page_state(NR_UNSTABLE_NFS); 215 if (nr_reclaimable + 216 global_page_state(NR_WRITEBACK) 217 <= dirty_thresh) 218 break; 219 pages_written += write_chunk - wbc.nr_to_write; 220 if (pages_written >= write_chunk) 221 break; /* We've done our duty */ 222 } 223 blk_congestion_wait(WRITE, HZ/10); 224 } 225 226 if (nr_reclaimable + global_page_state(NR_WRITEBACK) 227 <= dirty_thresh && dirty_exceeded) 228 dirty_exceeded = 0; 229 230 if (writeback_in_progress(bdi)) 231 return; /* pdflush is already working this queue */ 232 233 /* 234 * In laptop mode, we wait until hitting the higher threshold before 235 * starting background writeout, and then write out all the way down 236 * to the lower threshold. So slow writers cause minimal disk activity. 237 * 238 * In normal mode, we start background writeout at the lower 239 * background_thresh, to keep the amount of dirty memory low. 240 */ 241 if ((laptop_mode && pages_written) || 242 (!laptop_mode && (nr_reclaimable > background_thresh))) 243 pdflush_operation(background_writeout, 0); 244 } 245 246 /** 247 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 248 * @mapping: address_space which was dirtied 249 * @nr_pages_dirtied: number of pages which the caller has just dirtied 250 * 251 * Processes which are dirtying memory should call in here once for each page 252 * which was newly dirtied. The function will periodically check the system's 253 * dirty state and will initiate writeback if needed. 254 * 255 * On really big machines, get_writeback_state is expensive, so try to avoid 256 * calling it too often (ratelimiting). But once we're over the dirty memory 257 * limit we decrease the ratelimiting by a lot, to prevent individual processes 258 * from overshooting the limit by (ratelimit_pages) each. 259 */ 260 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 261 unsigned long nr_pages_dirtied) 262 { 263 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; 264 unsigned long ratelimit; 265 unsigned long *p; 266 267 ratelimit = ratelimit_pages; 268 if (dirty_exceeded) 269 ratelimit = 8; 270 271 /* 272 * Check the rate limiting. Also, we do not want to throttle real-time 273 * tasks in balance_dirty_pages(). Period. 274 */ 275 preempt_disable(); 276 p = &__get_cpu_var(ratelimits); 277 *p += nr_pages_dirtied; 278 if (unlikely(*p >= ratelimit)) { 279 *p = 0; 280 preempt_enable(); 281 balance_dirty_pages(mapping); 282 return; 283 } 284 preempt_enable(); 285 } 286 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 287 288 void throttle_vm_writeout(void) 289 { 290 long background_thresh; 291 long dirty_thresh; 292 293 for ( ; ; ) { 294 get_dirty_limits(&background_thresh, &dirty_thresh, NULL); 295 296 /* 297 * Boost the allowable dirty threshold a bit for page 298 * allocators so they don't get DoS'ed by heavy writers 299 */ 300 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 301 302 if (global_page_state(NR_UNSTABLE_NFS) + 303 global_page_state(NR_WRITEBACK) <= dirty_thresh) 304 break; 305 blk_congestion_wait(WRITE, HZ/10); 306 } 307 } 308 309 310 /* 311 * writeback at least _min_pages, and keep writing until the amount of dirty 312 * memory is less than the background threshold, or until we're all clean. 313 */ 314 static void background_writeout(unsigned long _min_pages) 315 { 316 long min_pages = _min_pages; 317 struct writeback_control wbc = { 318 .bdi = NULL, 319 .sync_mode = WB_SYNC_NONE, 320 .older_than_this = NULL, 321 .nr_to_write = 0, 322 .nonblocking = 1, 323 .range_cyclic = 1, 324 }; 325 326 for ( ; ; ) { 327 long background_thresh; 328 long dirty_thresh; 329 330 get_dirty_limits(&background_thresh, &dirty_thresh, NULL); 331 if (global_page_state(NR_FILE_DIRTY) + 332 global_page_state(NR_UNSTABLE_NFS) < background_thresh 333 && min_pages <= 0) 334 break; 335 wbc.encountered_congestion = 0; 336 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 337 wbc.pages_skipped = 0; 338 writeback_inodes(&wbc); 339 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 340 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 341 /* Wrote less than expected */ 342 blk_congestion_wait(WRITE, HZ/10); 343 if (!wbc.encountered_congestion) 344 break; 345 } 346 } 347 } 348 349 /* 350 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 351 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 352 * -1 if all pdflush threads were busy. 353 */ 354 int wakeup_pdflush(long nr_pages) 355 { 356 if (nr_pages == 0) 357 nr_pages = global_page_state(NR_FILE_DIRTY) + 358 global_page_state(NR_UNSTABLE_NFS); 359 return pdflush_operation(background_writeout, nr_pages); 360 } 361 362 static void wb_timer_fn(unsigned long unused); 363 static void laptop_timer_fn(unsigned long unused); 364 365 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 366 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 367 368 /* 369 * Periodic writeback of "old" data. 370 * 371 * Define "old": the first time one of an inode's pages is dirtied, we mark the 372 * dirtying-time in the inode's address_space. So this periodic writeback code 373 * just walks the superblock inode list, writing back any inodes which are 374 * older than a specific point in time. 375 * 376 * Try to run once per dirty_writeback_interval. But if a writeback event 377 * takes longer than a dirty_writeback_interval interval, then leave a 378 * one-second gap. 379 * 380 * older_than_this takes precedence over nr_to_write. So we'll only write back 381 * all dirty pages if they are all attached to "old" mappings. 382 */ 383 static void wb_kupdate(unsigned long arg) 384 { 385 unsigned long oldest_jif; 386 unsigned long start_jif; 387 unsigned long next_jif; 388 long nr_to_write; 389 struct writeback_control wbc = { 390 .bdi = NULL, 391 .sync_mode = WB_SYNC_NONE, 392 .older_than_this = &oldest_jif, 393 .nr_to_write = 0, 394 .nonblocking = 1, 395 .for_kupdate = 1, 396 .range_cyclic = 1, 397 }; 398 399 sync_supers(); 400 401 oldest_jif = jiffies - dirty_expire_interval; 402 start_jif = jiffies; 403 next_jif = start_jif + dirty_writeback_interval; 404 nr_to_write = global_page_state(NR_FILE_DIRTY) + 405 global_page_state(NR_UNSTABLE_NFS) + 406 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 407 while (nr_to_write > 0) { 408 wbc.encountered_congestion = 0; 409 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 410 writeback_inodes(&wbc); 411 if (wbc.nr_to_write > 0) { 412 if (wbc.encountered_congestion) 413 blk_congestion_wait(WRITE, HZ/10); 414 else 415 break; /* All the old data is written */ 416 } 417 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 418 } 419 if (time_before(next_jif, jiffies + HZ)) 420 next_jif = jiffies + HZ; 421 if (dirty_writeback_interval) 422 mod_timer(&wb_timer, next_jif); 423 } 424 425 /* 426 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 427 */ 428 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 429 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 430 { 431 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 432 if (dirty_writeback_interval) { 433 mod_timer(&wb_timer, 434 jiffies + dirty_writeback_interval); 435 } else { 436 del_timer(&wb_timer); 437 } 438 return 0; 439 } 440 441 static void wb_timer_fn(unsigned long unused) 442 { 443 if (pdflush_operation(wb_kupdate, 0) < 0) 444 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 445 } 446 447 static void laptop_flush(unsigned long unused) 448 { 449 sys_sync(); 450 } 451 452 static void laptop_timer_fn(unsigned long unused) 453 { 454 pdflush_operation(laptop_flush, 0); 455 } 456 457 /* 458 * We've spun up the disk and we're in laptop mode: schedule writeback 459 * of all dirty data a few seconds from now. If the flush is already scheduled 460 * then push it back - the user is still using the disk. 461 */ 462 void laptop_io_completion(void) 463 { 464 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 465 } 466 467 /* 468 * We're in laptop mode and we've just synced. The sync's writes will have 469 * caused another writeback to be scheduled by laptop_io_completion. 470 * Nothing needs to be written back anymore, so we unschedule the writeback. 471 */ 472 void laptop_sync_completion(void) 473 { 474 del_timer(&laptop_mode_wb_timer); 475 } 476 477 /* 478 * If ratelimit_pages is too high then we can get into dirty-data overload 479 * if a large number of processes all perform writes at the same time. 480 * If it is too low then SMP machines will call the (expensive) 481 * get_writeback_state too often. 482 * 483 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 484 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 485 * thresholds before writeback cuts in. 486 * 487 * But the limit should not be set too high. Because it also controls the 488 * amount of memory which the balance_dirty_pages() caller has to write back. 489 * If this is too large then the caller will block on the IO queue all the 490 * time. So limit it to four megabytes - the balance_dirty_pages() caller 491 * will write six megabyte chunks, max. 492 */ 493 494 static void set_ratelimit(void) 495 { 496 ratelimit_pages = total_pages / (num_online_cpus() * 32); 497 if (ratelimit_pages < 16) 498 ratelimit_pages = 16; 499 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 500 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 501 } 502 503 static int __cpuinit 504 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 505 { 506 set_ratelimit(); 507 return 0; 508 } 509 510 static struct notifier_block __cpuinitdata ratelimit_nb = { 511 .notifier_call = ratelimit_handler, 512 .next = NULL, 513 }; 514 515 /* 516 * If the machine has a large highmem:lowmem ratio then scale back the default 517 * dirty memory thresholds: allowing too much dirty highmem pins an excessive 518 * number of buffer_heads. 519 */ 520 void __init page_writeback_init(void) 521 { 522 long buffer_pages = nr_free_buffer_pages(); 523 long correction; 524 525 total_pages = nr_free_pagecache_pages(); 526 527 correction = (100 * 4 * buffer_pages) / total_pages; 528 529 if (correction < 100) { 530 dirty_background_ratio *= correction; 531 dirty_background_ratio /= 100; 532 vm_dirty_ratio *= correction; 533 vm_dirty_ratio /= 100; 534 535 if (dirty_background_ratio <= 0) 536 dirty_background_ratio = 1; 537 if (vm_dirty_ratio <= 0) 538 vm_dirty_ratio = 1; 539 } 540 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 541 set_ratelimit(); 542 register_cpu_notifier(&ratelimit_nb); 543 } 544 545 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 546 { 547 int ret; 548 549 if (wbc->nr_to_write <= 0) 550 return 0; 551 wbc->for_writepages = 1; 552 if (mapping->a_ops->writepages) 553 ret = mapping->a_ops->writepages(mapping, wbc); 554 else 555 ret = generic_writepages(mapping, wbc); 556 wbc->for_writepages = 0; 557 return ret; 558 } 559 560 /** 561 * write_one_page - write out a single page and optionally wait on I/O 562 * 563 * @page: the page to write 564 * @wait: if true, wait on writeout 565 * 566 * The page must be locked by the caller and will be unlocked upon return. 567 * 568 * write_one_page() returns a negative error code if I/O failed. 569 */ 570 int write_one_page(struct page *page, int wait) 571 { 572 struct address_space *mapping = page->mapping; 573 int ret = 0; 574 struct writeback_control wbc = { 575 .sync_mode = WB_SYNC_ALL, 576 .nr_to_write = 1, 577 }; 578 579 BUG_ON(!PageLocked(page)); 580 581 if (wait) 582 wait_on_page_writeback(page); 583 584 if (clear_page_dirty_for_io(page)) { 585 page_cache_get(page); 586 ret = mapping->a_ops->writepage(page, &wbc); 587 if (ret == 0 && wait) { 588 wait_on_page_writeback(page); 589 if (PageError(page)) 590 ret = -EIO; 591 } 592 page_cache_release(page); 593 } else { 594 unlock_page(page); 595 } 596 return ret; 597 } 598 EXPORT_SYMBOL(write_one_page); 599 600 /* 601 * For address_spaces which do not use buffers. Just tag the page as dirty in 602 * its radix tree. 603 * 604 * This is also used when a single buffer is being dirtied: we want to set the 605 * page dirty in that case, but not all the buffers. This is a "bottom-up" 606 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 607 * 608 * Most callers have locked the page, which pins the address_space in memory. 609 * But zap_pte_range() does not lock the page, however in that case the 610 * mapping is pinned by the vma's ->vm_file reference. 611 * 612 * We take care to handle the case where the page was truncated from the 613 * mapping by re-checking page_mapping() insode tree_lock. 614 */ 615 int __set_page_dirty_nobuffers(struct page *page) 616 { 617 if (!TestSetPageDirty(page)) { 618 struct address_space *mapping = page_mapping(page); 619 struct address_space *mapping2; 620 621 if (mapping) { 622 write_lock_irq(&mapping->tree_lock); 623 mapping2 = page_mapping(page); 624 if (mapping2) { /* Race with truncate? */ 625 BUG_ON(mapping2 != mapping); 626 if (mapping_cap_account_dirty(mapping)) 627 __inc_zone_page_state(page, 628 NR_FILE_DIRTY); 629 radix_tree_tag_set(&mapping->page_tree, 630 page_index(page), PAGECACHE_TAG_DIRTY); 631 } 632 write_unlock_irq(&mapping->tree_lock); 633 if (mapping->host) { 634 /* !PageAnon && !swapper_space */ 635 __mark_inode_dirty(mapping->host, 636 I_DIRTY_PAGES); 637 } 638 } 639 return 1; 640 } 641 return 0; 642 } 643 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 644 645 /* 646 * When a writepage implementation decides that it doesn't want to write this 647 * page for some reason, it should redirty the locked page via 648 * redirty_page_for_writepage() and it should then unlock the page and return 0 649 */ 650 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 651 { 652 wbc->pages_skipped++; 653 return __set_page_dirty_nobuffers(page); 654 } 655 EXPORT_SYMBOL(redirty_page_for_writepage); 656 657 /* 658 * If the mapping doesn't provide a set_page_dirty a_op, then 659 * just fall through and assume that it wants buffer_heads. 660 */ 661 int fastcall set_page_dirty(struct page *page) 662 { 663 struct address_space *mapping = page_mapping(page); 664 665 if (likely(mapping)) { 666 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 667 if (spd) 668 return (*spd)(page); 669 return __set_page_dirty_buffers(page); 670 } 671 if (!PageDirty(page)) { 672 if (!TestSetPageDirty(page)) 673 return 1; 674 } 675 return 0; 676 } 677 EXPORT_SYMBOL(set_page_dirty); 678 679 /* 680 * set_page_dirty() is racy if the caller has no reference against 681 * page->mapping->host, and if the page is unlocked. This is because another 682 * CPU could truncate the page off the mapping and then free the mapping. 683 * 684 * Usually, the page _is_ locked, or the caller is a user-space process which 685 * holds a reference on the inode by having an open file. 686 * 687 * In other cases, the page should be locked before running set_page_dirty(). 688 */ 689 int set_page_dirty_lock(struct page *page) 690 { 691 int ret; 692 693 lock_page(page); 694 ret = set_page_dirty(page); 695 unlock_page(page); 696 return ret; 697 } 698 EXPORT_SYMBOL(set_page_dirty_lock); 699 700 /* 701 * Clear a page's dirty flag, while caring for dirty memory accounting. 702 * Returns true if the page was previously dirty. 703 */ 704 int test_clear_page_dirty(struct page *page) 705 { 706 struct address_space *mapping = page_mapping(page); 707 unsigned long flags; 708 709 if (mapping) { 710 write_lock_irqsave(&mapping->tree_lock, flags); 711 if (TestClearPageDirty(page)) { 712 radix_tree_tag_clear(&mapping->page_tree, 713 page_index(page), 714 PAGECACHE_TAG_DIRTY); 715 if (mapping_cap_account_dirty(mapping)) 716 __dec_zone_page_state(page, NR_FILE_DIRTY); 717 write_unlock_irqrestore(&mapping->tree_lock, flags); 718 return 1; 719 } 720 write_unlock_irqrestore(&mapping->tree_lock, flags); 721 return 0; 722 } 723 return TestClearPageDirty(page); 724 } 725 EXPORT_SYMBOL(test_clear_page_dirty); 726 727 /* 728 * Clear a page's dirty flag, while caring for dirty memory accounting. 729 * Returns true if the page was previously dirty. 730 * 731 * This is for preparing to put the page under writeout. We leave the page 732 * tagged as dirty in the radix tree so that a concurrent write-for-sync 733 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 734 * implementation will run either set_page_writeback() or set_page_dirty(), 735 * at which stage we bring the page's dirty flag and radix-tree dirty tag 736 * back into sync. 737 * 738 * This incoherency between the page's dirty flag and radix-tree tag is 739 * unfortunate, but it only exists while the page is locked. 740 */ 741 int clear_page_dirty_for_io(struct page *page) 742 { 743 struct address_space *mapping = page_mapping(page); 744 745 if (mapping) { 746 if (TestClearPageDirty(page)) { 747 if (mapping_cap_account_dirty(mapping)) 748 dec_zone_page_state(page, NR_FILE_DIRTY); 749 return 1; 750 } 751 return 0; 752 } 753 return TestClearPageDirty(page); 754 } 755 EXPORT_SYMBOL(clear_page_dirty_for_io); 756 757 int test_clear_page_writeback(struct page *page) 758 { 759 struct address_space *mapping = page_mapping(page); 760 int ret; 761 762 if (mapping) { 763 unsigned long flags; 764 765 write_lock_irqsave(&mapping->tree_lock, flags); 766 ret = TestClearPageWriteback(page); 767 if (ret) 768 radix_tree_tag_clear(&mapping->page_tree, 769 page_index(page), 770 PAGECACHE_TAG_WRITEBACK); 771 write_unlock_irqrestore(&mapping->tree_lock, flags); 772 } else { 773 ret = TestClearPageWriteback(page); 774 } 775 return ret; 776 } 777 778 int test_set_page_writeback(struct page *page) 779 { 780 struct address_space *mapping = page_mapping(page); 781 int ret; 782 783 if (mapping) { 784 unsigned long flags; 785 786 write_lock_irqsave(&mapping->tree_lock, flags); 787 ret = TestSetPageWriteback(page); 788 if (!ret) 789 radix_tree_tag_set(&mapping->page_tree, 790 page_index(page), 791 PAGECACHE_TAG_WRITEBACK); 792 if (!PageDirty(page)) 793 radix_tree_tag_clear(&mapping->page_tree, 794 page_index(page), 795 PAGECACHE_TAG_DIRTY); 796 write_unlock_irqrestore(&mapping->tree_lock, flags); 797 } else { 798 ret = TestSetPageWriteback(page); 799 } 800 return ret; 801 802 } 803 EXPORT_SYMBOL(test_set_page_writeback); 804 805 /* 806 * Return true if any of the pages in the mapping are marged with the 807 * passed tag. 808 */ 809 int mapping_tagged(struct address_space *mapping, int tag) 810 { 811 unsigned long flags; 812 int ret; 813 814 read_lock_irqsave(&mapping->tree_lock, flags); 815 ret = radix_tree_tagged(&mapping->page_tree, tag); 816 read_unlock_irqrestore(&mapping->tree_lock, flags); 817 return ret; 818 } 819 EXPORT_SYMBOL(mapping_tagged); 820