1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <trace/events/writeback.h> 39 40 /* 41 * Sleep at most 200ms at a time in balance_dirty_pages(). 42 */ 43 #define MAX_PAUSE max(HZ/5, 1) 44 45 /* 46 * Try to keep balance_dirty_pages() call intervals higher than this many pages 47 * by raising pause time to max_pause when falls below it. 48 */ 49 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 50 51 /* 52 * Estimate write bandwidth at 200ms intervals. 53 */ 54 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 55 56 #define RATELIMIT_CALC_SHIFT 10 57 58 /* 59 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 60 * will look to see if it needs to force writeback or throttling. 61 */ 62 static long ratelimit_pages = 32; 63 64 /* The following parameters are exported via /proc/sys/vm */ 65 66 /* 67 * Start background writeback (via writeback threads) at this percentage 68 */ 69 int dirty_background_ratio = 10; 70 71 /* 72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 73 * dirty_background_ratio * the amount of dirtyable memory 74 */ 75 unsigned long dirty_background_bytes; 76 77 /* 78 * free highmem will not be subtracted from the total free memory 79 * for calculating free ratios if vm_highmem_is_dirtyable is true 80 */ 81 int vm_highmem_is_dirtyable; 82 83 /* 84 * The generator of dirty data starts writeback at this percentage 85 */ 86 int vm_dirty_ratio = 20; 87 88 /* 89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 90 * vm_dirty_ratio * the amount of dirtyable memory 91 */ 92 unsigned long vm_dirty_bytes; 93 94 /* 95 * The interval between `kupdate'-style writebacks 96 */ 97 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 98 99 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 100 101 /* 102 * The longest time for which data is allowed to remain dirty 103 */ 104 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 105 106 /* 107 * Flag that makes the machine dump writes/reads and block dirtyings. 108 */ 109 int block_dump; 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 unsigned long global_dirty_limit; 122 123 /* 124 * Scale the writeback cache size proportional to the relative writeout speeds. 125 * 126 * We do this by keeping a floating proportion between BDIs, based on page 127 * writeback completions [end_page_writeback()]. Those devices that write out 128 * pages fastest will get the larger share, while the slower will get a smaller 129 * share. 130 * 131 * We use page writeout completions because we are interested in getting rid of 132 * dirty pages. Having them written out is the primary goal. 133 * 134 * We introduce a concept of time, a period over which we measure these events, 135 * because demand can/will vary over time. The length of this period itself is 136 * measured in page writeback completions. 137 * 138 */ 139 static struct fprop_global writeout_completions; 140 141 static void writeout_period(unsigned long t); 142 /* Timer for aging of writeout_completions */ 143 static struct timer_list writeout_period_timer = 144 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); 145 static unsigned long writeout_period_time = 0; 146 147 /* 148 * Length of period for aging writeout fractions of bdis. This is an 149 * arbitrarily chosen number. The longer the period, the slower fractions will 150 * reflect changes in current writeout rate. 151 */ 152 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 153 154 /* 155 * Work out the current dirty-memory clamping and background writeout 156 * thresholds. 157 * 158 * The main aim here is to lower them aggressively if there is a lot of mapped 159 * memory around. To avoid stressing page reclaim with lots of unreclaimable 160 * pages. It is better to clamp down on writers than to start swapping, and 161 * performing lots of scanning. 162 * 163 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 164 * 165 * We don't permit the clamping level to fall below 5% - that is getting rather 166 * excessive. 167 * 168 * We make sure that the background writeout level is below the adjusted 169 * clamping level. 170 */ 171 172 /* 173 * In a memory zone, there is a certain amount of pages we consider 174 * available for the page cache, which is essentially the number of 175 * free and reclaimable pages, minus some zone reserves to protect 176 * lowmem and the ability to uphold the zone's watermarks without 177 * requiring writeback. 178 * 179 * This number of dirtyable pages is the base value of which the 180 * user-configurable dirty ratio is the effictive number of pages that 181 * are allowed to be actually dirtied. Per individual zone, or 182 * globally by using the sum of dirtyable pages over all zones. 183 * 184 * Because the user is allowed to specify the dirty limit globally as 185 * absolute number of bytes, calculating the per-zone dirty limit can 186 * require translating the configured limit into a percentage of 187 * global dirtyable memory first. 188 */ 189 190 static unsigned long highmem_dirtyable_memory(unsigned long total) 191 { 192 #ifdef CONFIG_HIGHMEM 193 int node; 194 unsigned long x = 0; 195 196 for_each_node_state(node, N_HIGH_MEMORY) { 197 struct zone *z = 198 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 199 200 x += zone_page_state(z, NR_FREE_PAGES) + 201 zone_reclaimable_pages(z) - z->dirty_balance_reserve; 202 } 203 /* 204 * Make sure that the number of highmem pages is never larger 205 * than the number of the total dirtyable memory. This can only 206 * occur in very strange VM situations but we want to make sure 207 * that this does not occur. 208 */ 209 return min(x, total); 210 #else 211 return 0; 212 #endif 213 } 214 215 /** 216 * global_dirtyable_memory - number of globally dirtyable pages 217 * 218 * Returns the global number of pages potentially available for dirty 219 * page cache. This is the base value for the global dirty limits. 220 */ 221 static unsigned long global_dirtyable_memory(void) 222 { 223 unsigned long x; 224 225 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() - 226 dirty_balance_reserve; 227 228 if (!vm_highmem_is_dirtyable) 229 x -= highmem_dirtyable_memory(x); 230 231 return x + 1; /* Ensure that we never return 0 */ 232 } 233 234 /* 235 * global_dirty_limits - background-writeback and dirty-throttling thresholds 236 * 237 * Calculate the dirty thresholds based on sysctl parameters 238 * - vm.dirty_background_ratio or vm.dirty_background_bytes 239 * - vm.dirty_ratio or vm.dirty_bytes 240 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 241 * real-time tasks. 242 */ 243 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 244 { 245 unsigned long background; 246 unsigned long dirty; 247 unsigned long uninitialized_var(available_memory); 248 struct task_struct *tsk; 249 250 if (!vm_dirty_bytes || !dirty_background_bytes) 251 available_memory = global_dirtyable_memory(); 252 253 if (vm_dirty_bytes) 254 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 255 else 256 dirty = (vm_dirty_ratio * available_memory) / 100; 257 258 if (dirty_background_bytes) 259 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 260 else 261 background = (dirty_background_ratio * available_memory) / 100; 262 263 if (background >= dirty) 264 background = dirty / 2; 265 tsk = current; 266 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 267 background += background / 4; 268 dirty += dirty / 4; 269 } 270 *pbackground = background; 271 *pdirty = dirty; 272 trace_global_dirty_state(background, dirty); 273 } 274 275 /** 276 * zone_dirtyable_memory - number of dirtyable pages in a zone 277 * @zone: the zone 278 * 279 * Returns the zone's number of pages potentially available for dirty 280 * page cache. This is the base value for the per-zone dirty limits. 281 */ 282 static unsigned long zone_dirtyable_memory(struct zone *zone) 283 { 284 /* 285 * The effective global number of dirtyable pages may exclude 286 * highmem as a big-picture measure to keep the ratio between 287 * dirty memory and lowmem reasonable. 288 * 289 * But this function is purely about the individual zone and a 290 * highmem zone can hold its share of dirty pages, so we don't 291 * care about vm_highmem_is_dirtyable here. 292 */ 293 return zone_page_state(zone, NR_FREE_PAGES) + 294 zone_reclaimable_pages(zone) - 295 zone->dirty_balance_reserve; 296 } 297 298 /** 299 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 300 * @zone: the zone 301 * 302 * Returns the maximum number of dirty pages allowed in a zone, based 303 * on the zone's dirtyable memory. 304 */ 305 static unsigned long zone_dirty_limit(struct zone *zone) 306 { 307 unsigned long zone_memory = zone_dirtyable_memory(zone); 308 struct task_struct *tsk = current; 309 unsigned long dirty; 310 311 if (vm_dirty_bytes) 312 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 313 zone_memory / global_dirtyable_memory(); 314 else 315 dirty = vm_dirty_ratio * zone_memory / 100; 316 317 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 318 dirty += dirty / 4; 319 320 return dirty; 321 } 322 323 /** 324 * zone_dirty_ok - tells whether a zone is within its dirty limits 325 * @zone: the zone to check 326 * 327 * Returns %true when the dirty pages in @zone are within the zone's 328 * dirty limit, %false if the limit is exceeded. 329 */ 330 bool zone_dirty_ok(struct zone *zone) 331 { 332 unsigned long limit = zone_dirty_limit(zone); 333 334 return zone_page_state(zone, NR_FILE_DIRTY) + 335 zone_page_state(zone, NR_UNSTABLE_NFS) + 336 zone_page_state(zone, NR_WRITEBACK) <= limit; 337 } 338 339 int dirty_background_ratio_handler(struct ctl_table *table, int write, 340 void __user *buffer, size_t *lenp, 341 loff_t *ppos) 342 { 343 int ret; 344 345 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 346 if (ret == 0 && write) 347 dirty_background_bytes = 0; 348 return ret; 349 } 350 351 int dirty_background_bytes_handler(struct ctl_table *table, int write, 352 void __user *buffer, size_t *lenp, 353 loff_t *ppos) 354 { 355 int ret; 356 357 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 358 if (ret == 0 && write) 359 dirty_background_ratio = 0; 360 return ret; 361 } 362 363 int dirty_ratio_handler(struct ctl_table *table, int write, 364 void __user *buffer, size_t *lenp, 365 loff_t *ppos) 366 { 367 int old_ratio = vm_dirty_ratio; 368 int ret; 369 370 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 371 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 372 writeback_set_ratelimit(); 373 vm_dirty_bytes = 0; 374 } 375 return ret; 376 } 377 378 int dirty_bytes_handler(struct ctl_table *table, int write, 379 void __user *buffer, size_t *lenp, 380 loff_t *ppos) 381 { 382 unsigned long old_bytes = vm_dirty_bytes; 383 int ret; 384 385 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 386 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 387 writeback_set_ratelimit(); 388 vm_dirty_ratio = 0; 389 } 390 return ret; 391 } 392 393 static unsigned long wp_next_time(unsigned long cur_time) 394 { 395 cur_time += VM_COMPLETIONS_PERIOD_LEN; 396 /* 0 has a special meaning... */ 397 if (!cur_time) 398 return 1; 399 return cur_time; 400 } 401 402 /* 403 * Increment the BDI's writeout completion count and the global writeout 404 * completion count. Called from test_clear_page_writeback(). 405 */ 406 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 407 { 408 __inc_bdi_stat(bdi, BDI_WRITTEN); 409 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, 410 bdi->max_prop_frac); 411 /* First event after period switching was turned off? */ 412 if (!unlikely(writeout_period_time)) { 413 /* 414 * We can race with other __bdi_writeout_inc calls here but 415 * it does not cause any harm since the resulting time when 416 * timer will fire and what is in writeout_period_time will be 417 * roughly the same. 418 */ 419 writeout_period_time = wp_next_time(jiffies); 420 mod_timer(&writeout_period_timer, writeout_period_time); 421 } 422 } 423 424 void bdi_writeout_inc(struct backing_dev_info *bdi) 425 { 426 unsigned long flags; 427 428 local_irq_save(flags); 429 __bdi_writeout_inc(bdi); 430 local_irq_restore(flags); 431 } 432 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 433 434 /* 435 * Obtain an accurate fraction of the BDI's portion. 436 */ 437 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 438 long *numerator, long *denominator) 439 { 440 fprop_fraction_percpu(&writeout_completions, &bdi->completions, 441 numerator, denominator); 442 } 443 444 /* 445 * On idle system, we can be called long after we scheduled because we use 446 * deferred timers so count with missed periods. 447 */ 448 static void writeout_period(unsigned long t) 449 { 450 int miss_periods = (jiffies - writeout_period_time) / 451 VM_COMPLETIONS_PERIOD_LEN; 452 453 if (fprop_new_period(&writeout_completions, miss_periods + 1)) { 454 writeout_period_time = wp_next_time(writeout_period_time + 455 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 456 mod_timer(&writeout_period_timer, writeout_period_time); 457 } else { 458 /* 459 * Aging has zeroed all fractions. Stop wasting CPU on period 460 * updates. 461 */ 462 writeout_period_time = 0; 463 } 464 } 465 466 /* 467 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 468 * registered backing devices, which, for obvious reasons, can not 469 * exceed 100%. 470 */ 471 static unsigned int bdi_min_ratio; 472 473 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 474 { 475 int ret = 0; 476 477 spin_lock_bh(&bdi_lock); 478 if (min_ratio > bdi->max_ratio) { 479 ret = -EINVAL; 480 } else { 481 min_ratio -= bdi->min_ratio; 482 if (bdi_min_ratio + min_ratio < 100) { 483 bdi_min_ratio += min_ratio; 484 bdi->min_ratio += min_ratio; 485 } else { 486 ret = -EINVAL; 487 } 488 } 489 spin_unlock_bh(&bdi_lock); 490 491 return ret; 492 } 493 494 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 495 { 496 int ret = 0; 497 498 if (max_ratio > 100) 499 return -EINVAL; 500 501 spin_lock_bh(&bdi_lock); 502 if (bdi->min_ratio > max_ratio) { 503 ret = -EINVAL; 504 } else { 505 bdi->max_ratio = max_ratio; 506 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 507 } 508 spin_unlock_bh(&bdi_lock); 509 510 return ret; 511 } 512 EXPORT_SYMBOL(bdi_set_max_ratio); 513 514 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 515 unsigned long bg_thresh) 516 { 517 return (thresh + bg_thresh) / 2; 518 } 519 520 static unsigned long hard_dirty_limit(unsigned long thresh) 521 { 522 return max(thresh, global_dirty_limit); 523 } 524 525 /** 526 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 527 * @bdi: the backing_dev_info to query 528 * @dirty: global dirty limit in pages 529 * 530 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 531 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 532 * 533 * Note that balance_dirty_pages() will only seriously take it as a hard limit 534 * when sleeping max_pause per page is not enough to keep the dirty pages under 535 * control. For example, when the device is completely stalled due to some error 536 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 537 * In the other normal situations, it acts more gently by throttling the tasks 538 * more (rather than completely block them) when the bdi dirty pages go high. 539 * 540 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 541 * - starving fast devices 542 * - piling up dirty pages (that will take long time to sync) on slow devices 543 * 544 * The bdi's share of dirty limit will be adapting to its throughput and 545 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 546 */ 547 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 548 { 549 u64 bdi_dirty; 550 long numerator, denominator; 551 552 /* 553 * Calculate this BDI's share of the dirty ratio. 554 */ 555 bdi_writeout_fraction(bdi, &numerator, &denominator); 556 557 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 558 bdi_dirty *= numerator; 559 do_div(bdi_dirty, denominator); 560 561 bdi_dirty += (dirty * bdi->min_ratio) / 100; 562 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 563 bdi_dirty = dirty * bdi->max_ratio / 100; 564 565 return bdi_dirty; 566 } 567 568 /* 569 * Dirty position control. 570 * 571 * (o) global/bdi setpoints 572 * 573 * We want the dirty pages be balanced around the global/bdi setpoints. 574 * When the number of dirty pages is higher/lower than the setpoint, the 575 * dirty position control ratio (and hence task dirty ratelimit) will be 576 * decreased/increased to bring the dirty pages back to the setpoint. 577 * 578 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 579 * 580 * if (dirty < setpoint) scale up pos_ratio 581 * if (dirty > setpoint) scale down pos_ratio 582 * 583 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 584 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 585 * 586 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 587 * 588 * (o) global control line 589 * 590 * ^ pos_ratio 591 * | 592 * | |<===== global dirty control scope ======>| 593 * 2.0 .............* 594 * | .* 595 * | . * 596 * | . * 597 * | . * 598 * | . * 599 * | . * 600 * 1.0 ................................* 601 * | . . * 602 * | . . * 603 * | . . * 604 * | . . * 605 * | . . * 606 * 0 +------------.------------------.----------------------*-------------> 607 * freerun^ setpoint^ limit^ dirty pages 608 * 609 * (o) bdi control line 610 * 611 * ^ pos_ratio 612 * | 613 * | * 614 * | * 615 * | * 616 * | * 617 * | * |<=========== span ============>| 618 * 1.0 .......................* 619 * | . * 620 * | . * 621 * | . * 622 * | . * 623 * | . * 624 * | . * 625 * | . * 626 * | . * 627 * | . * 628 * | . * 629 * | . * 630 * 1/4 ...............................................* * * * * * * * * * * * 631 * | . . 632 * | . . 633 * | . . 634 * 0 +----------------------.-------------------------------.-------------> 635 * bdi_setpoint^ x_intercept^ 636 * 637 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 638 * be smoothly throttled down to normal if it starts high in situations like 639 * - start writing to a slow SD card and a fast disk at the same time. The SD 640 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 641 * - the bdi dirty thresh drops quickly due to change of JBOD workload 642 */ 643 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 644 unsigned long thresh, 645 unsigned long bg_thresh, 646 unsigned long dirty, 647 unsigned long bdi_thresh, 648 unsigned long bdi_dirty) 649 { 650 unsigned long write_bw = bdi->avg_write_bandwidth; 651 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 652 unsigned long limit = hard_dirty_limit(thresh); 653 unsigned long x_intercept; 654 unsigned long setpoint; /* dirty pages' target balance point */ 655 unsigned long bdi_setpoint; 656 unsigned long span; 657 long long pos_ratio; /* for scaling up/down the rate limit */ 658 long x; 659 660 if (unlikely(dirty >= limit)) 661 return 0; 662 663 /* 664 * global setpoint 665 * 666 * setpoint - dirty 3 667 * f(dirty) := 1.0 + (----------------) 668 * limit - setpoint 669 * 670 * it's a 3rd order polynomial that subjects to 671 * 672 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 673 * (2) f(setpoint) = 1.0 => the balance point 674 * (3) f(limit) = 0 => the hard limit 675 * (4) df/dx <= 0 => negative feedback control 676 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 677 * => fast response on large errors; small oscillation near setpoint 678 */ 679 setpoint = (freerun + limit) / 2; 680 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, 681 limit - setpoint + 1); 682 pos_ratio = x; 683 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 684 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 685 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 686 687 /* 688 * We have computed basic pos_ratio above based on global situation. If 689 * the bdi is over/under its share of dirty pages, we want to scale 690 * pos_ratio further down/up. That is done by the following mechanism. 691 */ 692 693 /* 694 * bdi setpoint 695 * 696 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 697 * 698 * x_intercept - bdi_dirty 699 * := -------------------------- 700 * x_intercept - bdi_setpoint 701 * 702 * The main bdi control line is a linear function that subjects to 703 * 704 * (1) f(bdi_setpoint) = 1.0 705 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 706 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 707 * 708 * For single bdi case, the dirty pages are observed to fluctuate 709 * regularly within range 710 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 711 * for various filesystems, where (2) can yield in a reasonable 12.5% 712 * fluctuation range for pos_ratio. 713 * 714 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 715 * own size, so move the slope over accordingly and choose a slope that 716 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 717 */ 718 if (unlikely(bdi_thresh > thresh)) 719 bdi_thresh = thresh; 720 /* 721 * It's very possible that bdi_thresh is close to 0 not because the 722 * device is slow, but that it has remained inactive for long time. 723 * Honour such devices a reasonable good (hopefully IO efficient) 724 * threshold, so that the occasional writes won't be blocked and active 725 * writes can rampup the threshold quickly. 726 */ 727 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 728 /* 729 * scale global setpoint to bdi's: 730 * bdi_setpoint = setpoint * bdi_thresh / thresh 731 */ 732 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 733 bdi_setpoint = setpoint * (u64)x >> 16; 734 /* 735 * Use span=(8*write_bw) in single bdi case as indicated by 736 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 737 * 738 * bdi_thresh thresh - bdi_thresh 739 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 740 * thresh thresh 741 */ 742 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 743 x_intercept = bdi_setpoint + span; 744 745 if (bdi_dirty < x_intercept - span / 4) { 746 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), 747 x_intercept - bdi_setpoint + 1); 748 } else 749 pos_ratio /= 4; 750 751 /* 752 * bdi reserve area, safeguard against dirty pool underrun and disk idle 753 * It may push the desired control point of global dirty pages higher 754 * than setpoint. 755 */ 756 x_intercept = bdi_thresh / 2; 757 if (bdi_dirty < x_intercept) { 758 if (bdi_dirty > x_intercept / 8) 759 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 760 else 761 pos_ratio *= 8; 762 } 763 764 return pos_ratio; 765 } 766 767 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 768 unsigned long elapsed, 769 unsigned long written) 770 { 771 const unsigned long period = roundup_pow_of_two(3 * HZ); 772 unsigned long avg = bdi->avg_write_bandwidth; 773 unsigned long old = bdi->write_bandwidth; 774 u64 bw; 775 776 /* 777 * bw = written * HZ / elapsed 778 * 779 * bw * elapsed + write_bandwidth * (period - elapsed) 780 * write_bandwidth = --------------------------------------------------- 781 * period 782 */ 783 bw = written - bdi->written_stamp; 784 bw *= HZ; 785 if (unlikely(elapsed > period)) { 786 do_div(bw, elapsed); 787 avg = bw; 788 goto out; 789 } 790 bw += (u64)bdi->write_bandwidth * (period - elapsed); 791 bw >>= ilog2(period); 792 793 /* 794 * one more level of smoothing, for filtering out sudden spikes 795 */ 796 if (avg > old && old >= (unsigned long)bw) 797 avg -= (avg - old) >> 3; 798 799 if (avg < old && old <= (unsigned long)bw) 800 avg += (old - avg) >> 3; 801 802 out: 803 bdi->write_bandwidth = bw; 804 bdi->avg_write_bandwidth = avg; 805 } 806 807 /* 808 * The global dirtyable memory and dirty threshold could be suddenly knocked 809 * down by a large amount (eg. on the startup of KVM in a swapless system). 810 * This may throw the system into deep dirty exceeded state and throttle 811 * heavy/light dirtiers alike. To retain good responsiveness, maintain 812 * global_dirty_limit for tracking slowly down to the knocked down dirty 813 * threshold. 814 */ 815 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 816 { 817 unsigned long limit = global_dirty_limit; 818 819 /* 820 * Follow up in one step. 821 */ 822 if (limit < thresh) { 823 limit = thresh; 824 goto update; 825 } 826 827 /* 828 * Follow down slowly. Use the higher one as the target, because thresh 829 * may drop below dirty. This is exactly the reason to introduce 830 * global_dirty_limit which is guaranteed to lie above the dirty pages. 831 */ 832 thresh = max(thresh, dirty); 833 if (limit > thresh) { 834 limit -= (limit - thresh) >> 5; 835 goto update; 836 } 837 return; 838 update: 839 global_dirty_limit = limit; 840 } 841 842 static void global_update_bandwidth(unsigned long thresh, 843 unsigned long dirty, 844 unsigned long now) 845 { 846 static DEFINE_SPINLOCK(dirty_lock); 847 static unsigned long update_time; 848 849 /* 850 * check locklessly first to optimize away locking for the most time 851 */ 852 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 853 return; 854 855 spin_lock(&dirty_lock); 856 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 857 update_dirty_limit(thresh, dirty); 858 update_time = now; 859 } 860 spin_unlock(&dirty_lock); 861 } 862 863 /* 864 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 865 * 866 * Normal bdi tasks will be curbed at or below it in long term. 867 * Obviously it should be around (write_bw / N) when there are N dd tasks. 868 */ 869 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 870 unsigned long thresh, 871 unsigned long bg_thresh, 872 unsigned long dirty, 873 unsigned long bdi_thresh, 874 unsigned long bdi_dirty, 875 unsigned long dirtied, 876 unsigned long elapsed) 877 { 878 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 879 unsigned long limit = hard_dirty_limit(thresh); 880 unsigned long setpoint = (freerun + limit) / 2; 881 unsigned long write_bw = bdi->avg_write_bandwidth; 882 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 883 unsigned long dirty_rate; 884 unsigned long task_ratelimit; 885 unsigned long balanced_dirty_ratelimit; 886 unsigned long pos_ratio; 887 unsigned long step; 888 unsigned long x; 889 890 /* 891 * The dirty rate will match the writeout rate in long term, except 892 * when dirty pages are truncated by userspace or re-dirtied by FS. 893 */ 894 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 895 896 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 897 bdi_thresh, bdi_dirty); 898 /* 899 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 900 */ 901 task_ratelimit = (u64)dirty_ratelimit * 902 pos_ratio >> RATELIMIT_CALC_SHIFT; 903 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 904 905 /* 906 * A linear estimation of the "balanced" throttle rate. The theory is, 907 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 908 * dirty_rate will be measured to be (N * task_ratelimit). So the below 909 * formula will yield the balanced rate limit (write_bw / N). 910 * 911 * Note that the expanded form is not a pure rate feedback: 912 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 913 * but also takes pos_ratio into account: 914 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 915 * 916 * (1) is not realistic because pos_ratio also takes part in balancing 917 * the dirty rate. Consider the state 918 * pos_ratio = 0.5 (3) 919 * rate = 2 * (write_bw / N) (4) 920 * If (1) is used, it will stuck in that state! Because each dd will 921 * be throttled at 922 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 923 * yielding 924 * dirty_rate = N * task_ratelimit = write_bw (6) 925 * put (6) into (1) we get 926 * rate_(i+1) = rate_(i) (7) 927 * 928 * So we end up using (2) to always keep 929 * rate_(i+1) ~= (write_bw / N) (8) 930 * regardless of the value of pos_ratio. As long as (8) is satisfied, 931 * pos_ratio is able to drive itself to 1.0, which is not only where 932 * the dirty count meet the setpoint, but also where the slope of 933 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 934 */ 935 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 936 dirty_rate | 1); 937 /* 938 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 939 */ 940 if (unlikely(balanced_dirty_ratelimit > write_bw)) 941 balanced_dirty_ratelimit = write_bw; 942 943 /* 944 * We could safely do this and return immediately: 945 * 946 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 947 * 948 * However to get a more stable dirty_ratelimit, the below elaborated 949 * code makes use of task_ratelimit to filter out singular points and 950 * limit the step size. 951 * 952 * The below code essentially only uses the relative value of 953 * 954 * task_ratelimit - dirty_ratelimit 955 * = (pos_ratio - 1) * dirty_ratelimit 956 * 957 * which reflects the direction and size of dirty position error. 958 */ 959 960 /* 961 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 962 * task_ratelimit is on the same side of dirty_ratelimit, too. 963 * For example, when 964 * - dirty_ratelimit > balanced_dirty_ratelimit 965 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 966 * lowering dirty_ratelimit will help meet both the position and rate 967 * control targets. Otherwise, don't update dirty_ratelimit if it will 968 * only help meet the rate target. After all, what the users ultimately 969 * feel and care are stable dirty rate and small position error. 970 * 971 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 972 * and filter out the singular points of balanced_dirty_ratelimit. Which 973 * keeps jumping around randomly and can even leap far away at times 974 * due to the small 200ms estimation period of dirty_rate (we want to 975 * keep that period small to reduce time lags). 976 */ 977 step = 0; 978 if (dirty < setpoint) { 979 x = min(bdi->balanced_dirty_ratelimit, 980 min(balanced_dirty_ratelimit, task_ratelimit)); 981 if (dirty_ratelimit < x) 982 step = x - dirty_ratelimit; 983 } else { 984 x = max(bdi->balanced_dirty_ratelimit, 985 max(balanced_dirty_ratelimit, task_ratelimit)); 986 if (dirty_ratelimit > x) 987 step = dirty_ratelimit - x; 988 } 989 990 /* 991 * Don't pursue 100% rate matching. It's impossible since the balanced 992 * rate itself is constantly fluctuating. So decrease the track speed 993 * when it gets close to the target. Helps eliminate pointless tremors. 994 */ 995 step >>= dirty_ratelimit / (2 * step + 1); 996 /* 997 * Limit the tracking speed to avoid overshooting. 998 */ 999 step = (step + 7) / 8; 1000 1001 if (dirty_ratelimit < balanced_dirty_ratelimit) 1002 dirty_ratelimit += step; 1003 else 1004 dirty_ratelimit -= step; 1005 1006 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1007 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1008 1009 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 1010 } 1011 1012 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 1013 unsigned long thresh, 1014 unsigned long bg_thresh, 1015 unsigned long dirty, 1016 unsigned long bdi_thresh, 1017 unsigned long bdi_dirty, 1018 unsigned long start_time) 1019 { 1020 unsigned long now = jiffies; 1021 unsigned long elapsed = now - bdi->bw_time_stamp; 1022 unsigned long dirtied; 1023 unsigned long written; 1024 1025 /* 1026 * rate-limit, only update once every 200ms. 1027 */ 1028 if (elapsed < BANDWIDTH_INTERVAL) 1029 return; 1030 1031 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1032 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1033 1034 /* 1035 * Skip quiet periods when disk bandwidth is under-utilized. 1036 * (at least 1s idle time between two flusher runs) 1037 */ 1038 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1039 goto snapshot; 1040 1041 if (thresh) { 1042 global_update_bandwidth(thresh, dirty, now); 1043 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1044 bdi_thresh, bdi_dirty, 1045 dirtied, elapsed); 1046 } 1047 bdi_update_write_bandwidth(bdi, elapsed, written); 1048 1049 snapshot: 1050 bdi->dirtied_stamp = dirtied; 1051 bdi->written_stamp = written; 1052 bdi->bw_time_stamp = now; 1053 } 1054 1055 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1056 unsigned long thresh, 1057 unsigned long bg_thresh, 1058 unsigned long dirty, 1059 unsigned long bdi_thresh, 1060 unsigned long bdi_dirty, 1061 unsigned long start_time) 1062 { 1063 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1064 return; 1065 spin_lock(&bdi->wb.list_lock); 1066 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1067 bdi_thresh, bdi_dirty, start_time); 1068 spin_unlock(&bdi->wb.list_lock); 1069 } 1070 1071 /* 1072 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1073 * will look to see if it needs to start dirty throttling. 1074 * 1075 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1076 * global_page_state() too often. So scale it near-sqrt to the safety margin 1077 * (the number of pages we may dirty without exceeding the dirty limits). 1078 */ 1079 static unsigned long dirty_poll_interval(unsigned long dirty, 1080 unsigned long thresh) 1081 { 1082 if (thresh > dirty) 1083 return 1UL << (ilog2(thresh - dirty) >> 1); 1084 1085 return 1; 1086 } 1087 1088 static long bdi_max_pause(struct backing_dev_info *bdi, 1089 unsigned long bdi_dirty) 1090 { 1091 long bw = bdi->avg_write_bandwidth; 1092 long t; 1093 1094 /* 1095 * Limit pause time for small memory systems. If sleeping for too long 1096 * time, a small pool of dirty/writeback pages may go empty and disk go 1097 * idle. 1098 * 1099 * 8 serves as the safety ratio. 1100 */ 1101 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1102 t++; 1103 1104 return min_t(long, t, MAX_PAUSE); 1105 } 1106 1107 static long bdi_min_pause(struct backing_dev_info *bdi, 1108 long max_pause, 1109 unsigned long task_ratelimit, 1110 unsigned long dirty_ratelimit, 1111 int *nr_dirtied_pause) 1112 { 1113 long hi = ilog2(bdi->avg_write_bandwidth); 1114 long lo = ilog2(bdi->dirty_ratelimit); 1115 long t; /* target pause */ 1116 long pause; /* estimated next pause */ 1117 int pages; /* target nr_dirtied_pause */ 1118 1119 /* target for 10ms pause on 1-dd case */ 1120 t = max(1, HZ / 100); 1121 1122 /* 1123 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1124 * overheads. 1125 * 1126 * (N * 10ms) on 2^N concurrent tasks. 1127 */ 1128 if (hi > lo) 1129 t += (hi - lo) * (10 * HZ) / 1024; 1130 1131 /* 1132 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1133 * on the much more stable dirty_ratelimit. However the next pause time 1134 * will be computed based on task_ratelimit and the two rate limits may 1135 * depart considerably at some time. Especially if task_ratelimit goes 1136 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1137 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1138 * result task_ratelimit won't be executed faithfully, which could 1139 * eventually bring down dirty_ratelimit. 1140 * 1141 * We apply two rules to fix it up: 1142 * 1) try to estimate the next pause time and if necessary, use a lower 1143 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1144 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1145 * 2) limit the target pause time to max_pause/2, so that the normal 1146 * small fluctuations of task_ratelimit won't trigger rule (1) and 1147 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1148 */ 1149 t = min(t, 1 + max_pause / 2); 1150 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1151 1152 /* 1153 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1154 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1155 * When the 16 consecutive reads are often interrupted by some dirty 1156 * throttling pause during the async writes, cfq will go into idles 1157 * (deadline is fine). So push nr_dirtied_pause as high as possible 1158 * until reaches DIRTY_POLL_THRESH=32 pages. 1159 */ 1160 if (pages < DIRTY_POLL_THRESH) { 1161 t = max_pause; 1162 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1163 if (pages > DIRTY_POLL_THRESH) { 1164 pages = DIRTY_POLL_THRESH; 1165 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1166 } 1167 } 1168 1169 pause = HZ * pages / (task_ratelimit + 1); 1170 if (pause > max_pause) { 1171 t = max_pause; 1172 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1173 } 1174 1175 *nr_dirtied_pause = pages; 1176 /* 1177 * The minimal pause time will normally be half the target pause time. 1178 */ 1179 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1180 } 1181 1182 /* 1183 * balance_dirty_pages() must be called by processes which are generating dirty 1184 * data. It looks at the number of dirty pages in the machine and will force 1185 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1186 * If we're over `background_thresh' then the writeback threads are woken to 1187 * perform some writeout. 1188 */ 1189 static void balance_dirty_pages(struct address_space *mapping, 1190 unsigned long pages_dirtied) 1191 { 1192 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1193 unsigned long bdi_reclaimable; 1194 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1195 unsigned long bdi_dirty; 1196 unsigned long freerun; 1197 unsigned long background_thresh; 1198 unsigned long dirty_thresh; 1199 unsigned long bdi_thresh; 1200 long period; 1201 long pause; 1202 long max_pause; 1203 long min_pause; 1204 int nr_dirtied_pause; 1205 bool dirty_exceeded = false; 1206 unsigned long task_ratelimit; 1207 unsigned long dirty_ratelimit; 1208 unsigned long pos_ratio; 1209 struct backing_dev_info *bdi = mapping->backing_dev_info; 1210 unsigned long start_time = jiffies; 1211 1212 for (;;) { 1213 unsigned long now = jiffies; 1214 1215 /* 1216 * Unstable writes are a feature of certain networked 1217 * filesystems (i.e. NFS) in which data may have been 1218 * written to the server's write cache, but has not yet 1219 * been flushed to permanent storage. 1220 */ 1221 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1222 global_page_state(NR_UNSTABLE_NFS); 1223 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1224 1225 global_dirty_limits(&background_thresh, &dirty_thresh); 1226 1227 /* 1228 * Throttle it only when the background writeback cannot 1229 * catch-up. This avoids (excessively) small writeouts 1230 * when the bdi limits are ramping up. 1231 */ 1232 freerun = dirty_freerun_ceiling(dirty_thresh, 1233 background_thresh); 1234 if (nr_dirty <= freerun) { 1235 current->dirty_paused_when = now; 1236 current->nr_dirtied = 0; 1237 current->nr_dirtied_pause = 1238 dirty_poll_interval(nr_dirty, dirty_thresh); 1239 break; 1240 } 1241 1242 if (unlikely(!writeback_in_progress(bdi))) 1243 bdi_start_background_writeback(bdi); 1244 1245 /* 1246 * bdi_thresh is not treated as some limiting factor as 1247 * dirty_thresh, due to reasons 1248 * - in JBOD setup, bdi_thresh can fluctuate a lot 1249 * - in a system with HDD and USB key, the USB key may somehow 1250 * go into state (bdi_dirty >> bdi_thresh) either because 1251 * bdi_dirty starts high, or because bdi_thresh drops low. 1252 * In this case we don't want to hard throttle the USB key 1253 * dirtiers for 100 seconds until bdi_dirty drops under 1254 * bdi_thresh. Instead the auxiliary bdi control line in 1255 * bdi_position_ratio() will let the dirtier task progress 1256 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1257 */ 1258 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1259 1260 /* 1261 * In order to avoid the stacked BDI deadlock we need 1262 * to ensure we accurately count the 'dirty' pages when 1263 * the threshold is low. 1264 * 1265 * Otherwise it would be possible to get thresh+n pages 1266 * reported dirty, even though there are thresh-m pages 1267 * actually dirty; with m+n sitting in the percpu 1268 * deltas. 1269 */ 1270 if (bdi_thresh < 2 * bdi_stat_error(bdi)) { 1271 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1272 bdi_dirty = bdi_reclaimable + 1273 bdi_stat_sum(bdi, BDI_WRITEBACK); 1274 } else { 1275 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1276 bdi_dirty = bdi_reclaimable + 1277 bdi_stat(bdi, BDI_WRITEBACK); 1278 } 1279 1280 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1281 (nr_dirty > dirty_thresh); 1282 if (dirty_exceeded && !bdi->dirty_exceeded) 1283 bdi->dirty_exceeded = 1; 1284 1285 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1286 nr_dirty, bdi_thresh, bdi_dirty, 1287 start_time); 1288 1289 dirty_ratelimit = bdi->dirty_ratelimit; 1290 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1291 background_thresh, nr_dirty, 1292 bdi_thresh, bdi_dirty); 1293 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1294 RATELIMIT_CALC_SHIFT; 1295 max_pause = bdi_max_pause(bdi, bdi_dirty); 1296 min_pause = bdi_min_pause(bdi, max_pause, 1297 task_ratelimit, dirty_ratelimit, 1298 &nr_dirtied_pause); 1299 1300 if (unlikely(task_ratelimit == 0)) { 1301 period = max_pause; 1302 pause = max_pause; 1303 goto pause; 1304 } 1305 period = HZ * pages_dirtied / task_ratelimit; 1306 pause = period; 1307 if (current->dirty_paused_when) 1308 pause -= now - current->dirty_paused_when; 1309 /* 1310 * For less than 1s think time (ext3/4 may block the dirtier 1311 * for up to 800ms from time to time on 1-HDD; so does xfs, 1312 * however at much less frequency), try to compensate it in 1313 * future periods by updating the virtual time; otherwise just 1314 * do a reset, as it may be a light dirtier. 1315 */ 1316 if (pause < min_pause) { 1317 trace_balance_dirty_pages(bdi, 1318 dirty_thresh, 1319 background_thresh, 1320 nr_dirty, 1321 bdi_thresh, 1322 bdi_dirty, 1323 dirty_ratelimit, 1324 task_ratelimit, 1325 pages_dirtied, 1326 period, 1327 min(pause, 0L), 1328 start_time); 1329 if (pause < -HZ) { 1330 current->dirty_paused_when = now; 1331 current->nr_dirtied = 0; 1332 } else if (period) { 1333 current->dirty_paused_when += period; 1334 current->nr_dirtied = 0; 1335 } else if (current->nr_dirtied_pause <= pages_dirtied) 1336 current->nr_dirtied_pause += pages_dirtied; 1337 break; 1338 } 1339 if (unlikely(pause > max_pause)) { 1340 /* for occasional dropped task_ratelimit */ 1341 now += min(pause - max_pause, max_pause); 1342 pause = max_pause; 1343 } 1344 1345 pause: 1346 trace_balance_dirty_pages(bdi, 1347 dirty_thresh, 1348 background_thresh, 1349 nr_dirty, 1350 bdi_thresh, 1351 bdi_dirty, 1352 dirty_ratelimit, 1353 task_ratelimit, 1354 pages_dirtied, 1355 period, 1356 pause, 1357 start_time); 1358 __set_current_state(TASK_KILLABLE); 1359 io_schedule_timeout(pause); 1360 1361 current->dirty_paused_when = now + pause; 1362 current->nr_dirtied = 0; 1363 current->nr_dirtied_pause = nr_dirtied_pause; 1364 1365 /* 1366 * This is typically equal to (nr_dirty < dirty_thresh) and can 1367 * also keep "1000+ dd on a slow USB stick" under control. 1368 */ 1369 if (task_ratelimit) 1370 break; 1371 1372 /* 1373 * In the case of an unresponding NFS server and the NFS dirty 1374 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1375 * to go through, so that tasks on them still remain responsive. 1376 * 1377 * In theory 1 page is enough to keep the comsumer-producer 1378 * pipe going: the flusher cleans 1 page => the task dirties 1 1379 * more page. However bdi_dirty has accounting errors. So use 1380 * the larger and more IO friendly bdi_stat_error. 1381 */ 1382 if (bdi_dirty <= bdi_stat_error(bdi)) 1383 break; 1384 1385 if (fatal_signal_pending(current)) 1386 break; 1387 } 1388 1389 if (!dirty_exceeded && bdi->dirty_exceeded) 1390 bdi->dirty_exceeded = 0; 1391 1392 if (writeback_in_progress(bdi)) 1393 return; 1394 1395 /* 1396 * In laptop mode, we wait until hitting the higher threshold before 1397 * starting background writeout, and then write out all the way down 1398 * to the lower threshold. So slow writers cause minimal disk activity. 1399 * 1400 * In normal mode, we start background writeout at the lower 1401 * background_thresh, to keep the amount of dirty memory low. 1402 */ 1403 if (laptop_mode) 1404 return; 1405 1406 if (nr_reclaimable > background_thresh) 1407 bdi_start_background_writeback(bdi); 1408 } 1409 1410 void set_page_dirty_balance(struct page *page, int page_mkwrite) 1411 { 1412 if (set_page_dirty(page) || page_mkwrite) { 1413 struct address_space *mapping = page_mapping(page); 1414 1415 if (mapping) 1416 balance_dirty_pages_ratelimited(mapping); 1417 } 1418 } 1419 1420 static DEFINE_PER_CPU(int, bdp_ratelimits); 1421 1422 /* 1423 * Normal tasks are throttled by 1424 * loop { 1425 * dirty tsk->nr_dirtied_pause pages; 1426 * take a snap in balance_dirty_pages(); 1427 * } 1428 * However there is a worst case. If every task exit immediately when dirtied 1429 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1430 * called to throttle the page dirties. The solution is to save the not yet 1431 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1432 * randomly into the running tasks. This works well for the above worst case, 1433 * as the new task will pick up and accumulate the old task's leaked dirty 1434 * count and eventually get throttled. 1435 */ 1436 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1437 1438 /** 1439 * balance_dirty_pages_ratelimited - balance dirty memory state 1440 * @mapping: address_space which was dirtied 1441 * 1442 * Processes which are dirtying memory should call in here once for each page 1443 * which was newly dirtied. The function will periodically check the system's 1444 * dirty state and will initiate writeback if needed. 1445 * 1446 * On really big machines, get_writeback_state is expensive, so try to avoid 1447 * calling it too often (ratelimiting). But once we're over the dirty memory 1448 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1449 * from overshooting the limit by (ratelimit_pages) each. 1450 */ 1451 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1452 { 1453 struct backing_dev_info *bdi = mapping->backing_dev_info; 1454 int ratelimit; 1455 int *p; 1456 1457 if (!bdi_cap_account_dirty(bdi)) 1458 return; 1459 1460 ratelimit = current->nr_dirtied_pause; 1461 if (bdi->dirty_exceeded) 1462 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1463 1464 preempt_disable(); 1465 /* 1466 * This prevents one CPU to accumulate too many dirtied pages without 1467 * calling into balance_dirty_pages(), which can happen when there are 1468 * 1000+ tasks, all of them start dirtying pages at exactly the same 1469 * time, hence all honoured too large initial task->nr_dirtied_pause. 1470 */ 1471 p = &__get_cpu_var(bdp_ratelimits); 1472 if (unlikely(current->nr_dirtied >= ratelimit)) 1473 *p = 0; 1474 else if (unlikely(*p >= ratelimit_pages)) { 1475 *p = 0; 1476 ratelimit = 0; 1477 } 1478 /* 1479 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1480 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1481 * the dirty throttling and livelock other long-run dirtiers. 1482 */ 1483 p = &__get_cpu_var(dirty_throttle_leaks); 1484 if (*p > 0 && current->nr_dirtied < ratelimit) { 1485 unsigned long nr_pages_dirtied; 1486 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1487 *p -= nr_pages_dirtied; 1488 current->nr_dirtied += nr_pages_dirtied; 1489 } 1490 preempt_enable(); 1491 1492 if (unlikely(current->nr_dirtied >= ratelimit)) 1493 balance_dirty_pages(mapping, current->nr_dirtied); 1494 } 1495 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1496 1497 void throttle_vm_writeout(gfp_t gfp_mask) 1498 { 1499 unsigned long background_thresh; 1500 unsigned long dirty_thresh; 1501 1502 for ( ; ; ) { 1503 global_dirty_limits(&background_thresh, &dirty_thresh); 1504 dirty_thresh = hard_dirty_limit(dirty_thresh); 1505 1506 /* 1507 * Boost the allowable dirty threshold a bit for page 1508 * allocators so they don't get DoS'ed by heavy writers 1509 */ 1510 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1511 1512 if (global_page_state(NR_UNSTABLE_NFS) + 1513 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1514 break; 1515 congestion_wait(BLK_RW_ASYNC, HZ/10); 1516 1517 /* 1518 * The caller might hold locks which can prevent IO completion 1519 * or progress in the filesystem. So we cannot just sit here 1520 * waiting for IO to complete. 1521 */ 1522 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1523 break; 1524 } 1525 } 1526 1527 /* 1528 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1529 */ 1530 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 1531 void __user *buffer, size_t *length, loff_t *ppos) 1532 { 1533 proc_dointvec(table, write, buffer, length, ppos); 1534 return 0; 1535 } 1536 1537 #ifdef CONFIG_BLOCK 1538 void laptop_mode_timer_fn(unsigned long data) 1539 { 1540 struct request_queue *q = (struct request_queue *)data; 1541 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1542 global_page_state(NR_UNSTABLE_NFS); 1543 1544 /* 1545 * We want to write everything out, not just down to the dirty 1546 * threshold 1547 */ 1548 if (bdi_has_dirty_io(&q->backing_dev_info)) 1549 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1550 WB_REASON_LAPTOP_TIMER); 1551 } 1552 1553 /* 1554 * We've spun up the disk and we're in laptop mode: schedule writeback 1555 * of all dirty data a few seconds from now. If the flush is already scheduled 1556 * then push it back - the user is still using the disk. 1557 */ 1558 void laptop_io_completion(struct backing_dev_info *info) 1559 { 1560 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1561 } 1562 1563 /* 1564 * We're in laptop mode and we've just synced. The sync's writes will have 1565 * caused another writeback to be scheduled by laptop_io_completion. 1566 * Nothing needs to be written back anymore, so we unschedule the writeback. 1567 */ 1568 void laptop_sync_completion(void) 1569 { 1570 struct backing_dev_info *bdi; 1571 1572 rcu_read_lock(); 1573 1574 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1575 del_timer(&bdi->laptop_mode_wb_timer); 1576 1577 rcu_read_unlock(); 1578 } 1579 #endif 1580 1581 /* 1582 * If ratelimit_pages is too high then we can get into dirty-data overload 1583 * if a large number of processes all perform writes at the same time. 1584 * If it is too low then SMP machines will call the (expensive) 1585 * get_writeback_state too often. 1586 * 1587 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1588 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1589 * thresholds. 1590 */ 1591 1592 void writeback_set_ratelimit(void) 1593 { 1594 unsigned long background_thresh; 1595 unsigned long dirty_thresh; 1596 global_dirty_limits(&background_thresh, &dirty_thresh); 1597 global_dirty_limit = dirty_thresh; 1598 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1599 if (ratelimit_pages < 16) 1600 ratelimit_pages = 16; 1601 } 1602 1603 static int __cpuinit 1604 ratelimit_handler(struct notifier_block *self, unsigned long action, 1605 void *hcpu) 1606 { 1607 1608 switch (action & ~CPU_TASKS_FROZEN) { 1609 case CPU_ONLINE: 1610 case CPU_DEAD: 1611 writeback_set_ratelimit(); 1612 return NOTIFY_OK; 1613 default: 1614 return NOTIFY_DONE; 1615 } 1616 } 1617 1618 static struct notifier_block __cpuinitdata ratelimit_nb = { 1619 .notifier_call = ratelimit_handler, 1620 .next = NULL, 1621 }; 1622 1623 /* 1624 * Called early on to tune the page writeback dirty limits. 1625 * 1626 * We used to scale dirty pages according to how total memory 1627 * related to pages that could be allocated for buffers (by 1628 * comparing nr_free_buffer_pages() to vm_total_pages. 1629 * 1630 * However, that was when we used "dirty_ratio" to scale with 1631 * all memory, and we don't do that any more. "dirty_ratio" 1632 * is now applied to total non-HIGHPAGE memory (by subtracting 1633 * totalhigh_pages from vm_total_pages), and as such we can't 1634 * get into the old insane situation any more where we had 1635 * large amounts of dirty pages compared to a small amount of 1636 * non-HIGHMEM memory. 1637 * 1638 * But we might still want to scale the dirty_ratio by how 1639 * much memory the box has.. 1640 */ 1641 void __init page_writeback_init(void) 1642 { 1643 writeback_set_ratelimit(); 1644 register_cpu_notifier(&ratelimit_nb); 1645 1646 fprop_global_init(&writeout_completions); 1647 } 1648 1649 /** 1650 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1651 * @mapping: address space structure to write 1652 * @start: starting page index 1653 * @end: ending page index (inclusive) 1654 * 1655 * This function scans the page range from @start to @end (inclusive) and tags 1656 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1657 * that write_cache_pages (or whoever calls this function) will then use 1658 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1659 * used to avoid livelocking of writeback by a process steadily creating new 1660 * dirty pages in the file (thus it is important for this function to be quick 1661 * so that it can tag pages faster than a dirtying process can create them). 1662 */ 1663 /* 1664 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1665 */ 1666 void tag_pages_for_writeback(struct address_space *mapping, 1667 pgoff_t start, pgoff_t end) 1668 { 1669 #define WRITEBACK_TAG_BATCH 4096 1670 unsigned long tagged; 1671 1672 do { 1673 spin_lock_irq(&mapping->tree_lock); 1674 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1675 &start, end, WRITEBACK_TAG_BATCH, 1676 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1677 spin_unlock_irq(&mapping->tree_lock); 1678 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1679 cond_resched(); 1680 /* We check 'start' to handle wrapping when end == ~0UL */ 1681 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1682 } 1683 EXPORT_SYMBOL(tag_pages_for_writeback); 1684 1685 /** 1686 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1687 * @mapping: address space structure to write 1688 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1689 * @writepage: function called for each page 1690 * @data: data passed to writepage function 1691 * 1692 * If a page is already under I/O, write_cache_pages() skips it, even 1693 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1694 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1695 * and msync() need to guarantee that all the data which was dirty at the time 1696 * the call was made get new I/O started against them. If wbc->sync_mode is 1697 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1698 * existing IO to complete. 1699 * 1700 * To avoid livelocks (when other process dirties new pages), we first tag 1701 * pages which should be written back with TOWRITE tag and only then start 1702 * writing them. For data-integrity sync we have to be careful so that we do 1703 * not miss some pages (e.g., because some other process has cleared TOWRITE 1704 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1705 * by the process clearing the DIRTY tag (and submitting the page for IO). 1706 */ 1707 int write_cache_pages(struct address_space *mapping, 1708 struct writeback_control *wbc, writepage_t writepage, 1709 void *data) 1710 { 1711 int ret = 0; 1712 int done = 0; 1713 struct pagevec pvec; 1714 int nr_pages; 1715 pgoff_t uninitialized_var(writeback_index); 1716 pgoff_t index; 1717 pgoff_t end; /* Inclusive */ 1718 pgoff_t done_index; 1719 int cycled; 1720 int range_whole = 0; 1721 int tag; 1722 1723 pagevec_init(&pvec, 0); 1724 if (wbc->range_cyclic) { 1725 writeback_index = mapping->writeback_index; /* prev offset */ 1726 index = writeback_index; 1727 if (index == 0) 1728 cycled = 1; 1729 else 1730 cycled = 0; 1731 end = -1; 1732 } else { 1733 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1734 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1735 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1736 range_whole = 1; 1737 cycled = 1; /* ignore range_cyclic tests */ 1738 } 1739 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1740 tag = PAGECACHE_TAG_TOWRITE; 1741 else 1742 tag = PAGECACHE_TAG_DIRTY; 1743 retry: 1744 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1745 tag_pages_for_writeback(mapping, index, end); 1746 done_index = index; 1747 while (!done && (index <= end)) { 1748 int i; 1749 1750 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1751 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1752 if (nr_pages == 0) 1753 break; 1754 1755 for (i = 0; i < nr_pages; i++) { 1756 struct page *page = pvec.pages[i]; 1757 1758 /* 1759 * At this point, the page may be truncated or 1760 * invalidated (changing page->mapping to NULL), or 1761 * even swizzled back from swapper_space to tmpfs file 1762 * mapping. However, page->index will not change 1763 * because we have a reference on the page. 1764 */ 1765 if (page->index > end) { 1766 /* 1767 * can't be range_cyclic (1st pass) because 1768 * end == -1 in that case. 1769 */ 1770 done = 1; 1771 break; 1772 } 1773 1774 done_index = page->index; 1775 1776 lock_page(page); 1777 1778 /* 1779 * Page truncated or invalidated. We can freely skip it 1780 * then, even for data integrity operations: the page 1781 * has disappeared concurrently, so there could be no 1782 * real expectation of this data interity operation 1783 * even if there is now a new, dirty page at the same 1784 * pagecache address. 1785 */ 1786 if (unlikely(page->mapping != mapping)) { 1787 continue_unlock: 1788 unlock_page(page); 1789 continue; 1790 } 1791 1792 if (!PageDirty(page)) { 1793 /* someone wrote it for us */ 1794 goto continue_unlock; 1795 } 1796 1797 if (PageWriteback(page)) { 1798 if (wbc->sync_mode != WB_SYNC_NONE) 1799 wait_on_page_writeback(page); 1800 else 1801 goto continue_unlock; 1802 } 1803 1804 BUG_ON(PageWriteback(page)); 1805 if (!clear_page_dirty_for_io(page)) 1806 goto continue_unlock; 1807 1808 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1809 ret = (*writepage)(page, wbc, data); 1810 if (unlikely(ret)) { 1811 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1812 unlock_page(page); 1813 ret = 0; 1814 } else { 1815 /* 1816 * done_index is set past this page, 1817 * so media errors will not choke 1818 * background writeout for the entire 1819 * file. This has consequences for 1820 * range_cyclic semantics (ie. it may 1821 * not be suitable for data integrity 1822 * writeout). 1823 */ 1824 done_index = page->index + 1; 1825 done = 1; 1826 break; 1827 } 1828 } 1829 1830 /* 1831 * We stop writing back only if we are not doing 1832 * integrity sync. In case of integrity sync we have to 1833 * keep going until we have written all the pages 1834 * we tagged for writeback prior to entering this loop. 1835 */ 1836 if (--wbc->nr_to_write <= 0 && 1837 wbc->sync_mode == WB_SYNC_NONE) { 1838 done = 1; 1839 break; 1840 } 1841 } 1842 pagevec_release(&pvec); 1843 cond_resched(); 1844 } 1845 if (!cycled && !done) { 1846 /* 1847 * range_cyclic: 1848 * We hit the last page and there is more work to be done: wrap 1849 * back to the start of the file 1850 */ 1851 cycled = 1; 1852 index = 0; 1853 end = writeback_index - 1; 1854 goto retry; 1855 } 1856 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1857 mapping->writeback_index = done_index; 1858 1859 return ret; 1860 } 1861 EXPORT_SYMBOL(write_cache_pages); 1862 1863 /* 1864 * Function used by generic_writepages to call the real writepage 1865 * function and set the mapping flags on error 1866 */ 1867 static int __writepage(struct page *page, struct writeback_control *wbc, 1868 void *data) 1869 { 1870 struct address_space *mapping = data; 1871 int ret = mapping->a_ops->writepage(page, wbc); 1872 mapping_set_error(mapping, ret); 1873 return ret; 1874 } 1875 1876 /** 1877 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1878 * @mapping: address space structure to write 1879 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1880 * 1881 * This is a library function, which implements the writepages() 1882 * address_space_operation. 1883 */ 1884 int generic_writepages(struct address_space *mapping, 1885 struct writeback_control *wbc) 1886 { 1887 struct blk_plug plug; 1888 int ret; 1889 1890 /* deal with chardevs and other special file */ 1891 if (!mapping->a_ops->writepage) 1892 return 0; 1893 1894 blk_start_plug(&plug); 1895 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1896 blk_finish_plug(&plug); 1897 return ret; 1898 } 1899 1900 EXPORT_SYMBOL(generic_writepages); 1901 1902 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1903 { 1904 int ret; 1905 1906 if (wbc->nr_to_write <= 0) 1907 return 0; 1908 if (mapping->a_ops->writepages) 1909 ret = mapping->a_ops->writepages(mapping, wbc); 1910 else 1911 ret = generic_writepages(mapping, wbc); 1912 return ret; 1913 } 1914 1915 /** 1916 * write_one_page - write out a single page and optionally wait on I/O 1917 * @page: the page to write 1918 * @wait: if true, wait on writeout 1919 * 1920 * The page must be locked by the caller and will be unlocked upon return. 1921 * 1922 * write_one_page() returns a negative error code if I/O failed. 1923 */ 1924 int write_one_page(struct page *page, int wait) 1925 { 1926 struct address_space *mapping = page->mapping; 1927 int ret = 0; 1928 struct writeback_control wbc = { 1929 .sync_mode = WB_SYNC_ALL, 1930 .nr_to_write = 1, 1931 }; 1932 1933 BUG_ON(!PageLocked(page)); 1934 1935 if (wait) 1936 wait_on_page_writeback(page); 1937 1938 if (clear_page_dirty_for_io(page)) { 1939 page_cache_get(page); 1940 ret = mapping->a_ops->writepage(page, &wbc); 1941 if (ret == 0 && wait) { 1942 wait_on_page_writeback(page); 1943 if (PageError(page)) 1944 ret = -EIO; 1945 } 1946 page_cache_release(page); 1947 } else { 1948 unlock_page(page); 1949 } 1950 return ret; 1951 } 1952 EXPORT_SYMBOL(write_one_page); 1953 1954 /* 1955 * For address_spaces which do not use buffers nor write back. 1956 */ 1957 int __set_page_dirty_no_writeback(struct page *page) 1958 { 1959 if (!PageDirty(page)) 1960 return !TestSetPageDirty(page); 1961 return 0; 1962 } 1963 1964 /* 1965 * Helper function for set_page_dirty family. 1966 * NOTE: This relies on being atomic wrt interrupts. 1967 */ 1968 void account_page_dirtied(struct page *page, struct address_space *mapping) 1969 { 1970 if (mapping_cap_account_dirty(mapping)) { 1971 __inc_zone_page_state(page, NR_FILE_DIRTY); 1972 __inc_zone_page_state(page, NR_DIRTIED); 1973 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1974 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 1975 task_io_account_write(PAGE_CACHE_SIZE); 1976 current->nr_dirtied++; 1977 this_cpu_inc(bdp_ratelimits); 1978 } 1979 } 1980 EXPORT_SYMBOL(account_page_dirtied); 1981 1982 /* 1983 * Helper function for set_page_writeback family. 1984 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1985 * wrt interrupts. 1986 */ 1987 void account_page_writeback(struct page *page) 1988 { 1989 inc_zone_page_state(page, NR_WRITEBACK); 1990 } 1991 EXPORT_SYMBOL(account_page_writeback); 1992 1993 /* 1994 * For address_spaces which do not use buffers. Just tag the page as dirty in 1995 * its radix tree. 1996 * 1997 * This is also used when a single buffer is being dirtied: we want to set the 1998 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1999 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2000 * 2001 * Most callers have locked the page, which pins the address_space in memory. 2002 * But zap_pte_range() does not lock the page, however in that case the 2003 * mapping is pinned by the vma's ->vm_file reference. 2004 * 2005 * We take care to handle the case where the page was truncated from the 2006 * mapping by re-checking page_mapping() inside tree_lock. 2007 */ 2008 int __set_page_dirty_nobuffers(struct page *page) 2009 { 2010 if (!TestSetPageDirty(page)) { 2011 struct address_space *mapping = page_mapping(page); 2012 struct address_space *mapping2; 2013 2014 if (!mapping) 2015 return 1; 2016 2017 spin_lock_irq(&mapping->tree_lock); 2018 mapping2 = page_mapping(page); 2019 if (mapping2) { /* Race with truncate? */ 2020 BUG_ON(mapping2 != mapping); 2021 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2022 account_page_dirtied(page, mapping); 2023 radix_tree_tag_set(&mapping->page_tree, 2024 page_index(page), PAGECACHE_TAG_DIRTY); 2025 } 2026 spin_unlock_irq(&mapping->tree_lock); 2027 if (mapping->host) { 2028 /* !PageAnon && !swapper_space */ 2029 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2030 } 2031 return 1; 2032 } 2033 return 0; 2034 } 2035 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2036 2037 /* 2038 * Call this whenever redirtying a page, to de-account the dirty counters 2039 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2040 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2041 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2042 * control. 2043 */ 2044 void account_page_redirty(struct page *page) 2045 { 2046 struct address_space *mapping = page->mapping; 2047 if (mapping && mapping_cap_account_dirty(mapping)) { 2048 current->nr_dirtied--; 2049 dec_zone_page_state(page, NR_DIRTIED); 2050 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2051 } 2052 } 2053 EXPORT_SYMBOL(account_page_redirty); 2054 2055 /* 2056 * When a writepage implementation decides that it doesn't want to write this 2057 * page for some reason, it should redirty the locked page via 2058 * redirty_page_for_writepage() and it should then unlock the page and return 0 2059 */ 2060 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2061 { 2062 wbc->pages_skipped++; 2063 account_page_redirty(page); 2064 return __set_page_dirty_nobuffers(page); 2065 } 2066 EXPORT_SYMBOL(redirty_page_for_writepage); 2067 2068 /* 2069 * Dirty a page. 2070 * 2071 * For pages with a mapping this should be done under the page lock 2072 * for the benefit of asynchronous memory errors who prefer a consistent 2073 * dirty state. This rule can be broken in some special cases, 2074 * but should be better not to. 2075 * 2076 * If the mapping doesn't provide a set_page_dirty a_op, then 2077 * just fall through and assume that it wants buffer_heads. 2078 */ 2079 int set_page_dirty(struct page *page) 2080 { 2081 struct address_space *mapping = page_mapping(page); 2082 2083 if (likely(mapping)) { 2084 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2085 /* 2086 * readahead/lru_deactivate_page could remain 2087 * PG_readahead/PG_reclaim due to race with end_page_writeback 2088 * About readahead, if the page is written, the flags would be 2089 * reset. So no problem. 2090 * About lru_deactivate_page, if the page is redirty, the flag 2091 * will be reset. So no problem. but if the page is used by readahead 2092 * it will confuse readahead and make it restart the size rampup 2093 * process. But it's a trivial problem. 2094 */ 2095 ClearPageReclaim(page); 2096 #ifdef CONFIG_BLOCK 2097 if (!spd) 2098 spd = __set_page_dirty_buffers; 2099 #endif 2100 return (*spd)(page); 2101 } 2102 if (!PageDirty(page)) { 2103 if (!TestSetPageDirty(page)) 2104 return 1; 2105 } 2106 return 0; 2107 } 2108 EXPORT_SYMBOL(set_page_dirty); 2109 2110 /* 2111 * set_page_dirty() is racy if the caller has no reference against 2112 * page->mapping->host, and if the page is unlocked. This is because another 2113 * CPU could truncate the page off the mapping and then free the mapping. 2114 * 2115 * Usually, the page _is_ locked, or the caller is a user-space process which 2116 * holds a reference on the inode by having an open file. 2117 * 2118 * In other cases, the page should be locked before running set_page_dirty(). 2119 */ 2120 int set_page_dirty_lock(struct page *page) 2121 { 2122 int ret; 2123 2124 lock_page(page); 2125 ret = set_page_dirty(page); 2126 unlock_page(page); 2127 return ret; 2128 } 2129 EXPORT_SYMBOL(set_page_dirty_lock); 2130 2131 /* 2132 * Clear a page's dirty flag, while caring for dirty memory accounting. 2133 * Returns true if the page was previously dirty. 2134 * 2135 * This is for preparing to put the page under writeout. We leave the page 2136 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2137 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2138 * implementation will run either set_page_writeback() or set_page_dirty(), 2139 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2140 * back into sync. 2141 * 2142 * This incoherency between the page's dirty flag and radix-tree tag is 2143 * unfortunate, but it only exists while the page is locked. 2144 */ 2145 int clear_page_dirty_for_io(struct page *page) 2146 { 2147 struct address_space *mapping = page_mapping(page); 2148 2149 BUG_ON(!PageLocked(page)); 2150 2151 if (mapping && mapping_cap_account_dirty(mapping)) { 2152 /* 2153 * Yes, Virginia, this is indeed insane. 2154 * 2155 * We use this sequence to make sure that 2156 * (a) we account for dirty stats properly 2157 * (b) we tell the low-level filesystem to 2158 * mark the whole page dirty if it was 2159 * dirty in a pagetable. Only to then 2160 * (c) clean the page again and return 1 to 2161 * cause the writeback. 2162 * 2163 * This way we avoid all nasty races with the 2164 * dirty bit in multiple places and clearing 2165 * them concurrently from different threads. 2166 * 2167 * Note! Normally the "set_page_dirty(page)" 2168 * has no effect on the actual dirty bit - since 2169 * that will already usually be set. But we 2170 * need the side effects, and it can help us 2171 * avoid races. 2172 * 2173 * We basically use the page "master dirty bit" 2174 * as a serialization point for all the different 2175 * threads doing their things. 2176 */ 2177 if (page_mkclean(page)) 2178 set_page_dirty(page); 2179 /* 2180 * We carefully synchronise fault handlers against 2181 * installing a dirty pte and marking the page dirty 2182 * at this point. We do this by having them hold the 2183 * page lock at some point after installing their 2184 * pte, but before marking the page dirty. 2185 * Pages are always locked coming in here, so we get 2186 * the desired exclusion. See mm/memory.c:do_wp_page() 2187 * for more comments. 2188 */ 2189 if (TestClearPageDirty(page)) { 2190 dec_zone_page_state(page, NR_FILE_DIRTY); 2191 dec_bdi_stat(mapping->backing_dev_info, 2192 BDI_RECLAIMABLE); 2193 return 1; 2194 } 2195 return 0; 2196 } 2197 return TestClearPageDirty(page); 2198 } 2199 EXPORT_SYMBOL(clear_page_dirty_for_io); 2200 2201 int test_clear_page_writeback(struct page *page) 2202 { 2203 struct address_space *mapping = page_mapping(page); 2204 int ret; 2205 2206 if (mapping) { 2207 struct backing_dev_info *bdi = mapping->backing_dev_info; 2208 unsigned long flags; 2209 2210 spin_lock_irqsave(&mapping->tree_lock, flags); 2211 ret = TestClearPageWriteback(page); 2212 if (ret) { 2213 radix_tree_tag_clear(&mapping->page_tree, 2214 page_index(page), 2215 PAGECACHE_TAG_WRITEBACK); 2216 if (bdi_cap_account_writeback(bdi)) { 2217 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2218 __bdi_writeout_inc(bdi); 2219 } 2220 } 2221 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2222 } else { 2223 ret = TestClearPageWriteback(page); 2224 } 2225 if (ret) { 2226 dec_zone_page_state(page, NR_WRITEBACK); 2227 inc_zone_page_state(page, NR_WRITTEN); 2228 } 2229 return ret; 2230 } 2231 2232 int test_set_page_writeback(struct page *page) 2233 { 2234 struct address_space *mapping = page_mapping(page); 2235 int ret; 2236 2237 if (mapping) { 2238 struct backing_dev_info *bdi = mapping->backing_dev_info; 2239 unsigned long flags; 2240 2241 spin_lock_irqsave(&mapping->tree_lock, flags); 2242 ret = TestSetPageWriteback(page); 2243 if (!ret) { 2244 radix_tree_tag_set(&mapping->page_tree, 2245 page_index(page), 2246 PAGECACHE_TAG_WRITEBACK); 2247 if (bdi_cap_account_writeback(bdi)) 2248 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2249 } 2250 if (!PageDirty(page)) 2251 radix_tree_tag_clear(&mapping->page_tree, 2252 page_index(page), 2253 PAGECACHE_TAG_DIRTY); 2254 radix_tree_tag_clear(&mapping->page_tree, 2255 page_index(page), 2256 PAGECACHE_TAG_TOWRITE); 2257 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2258 } else { 2259 ret = TestSetPageWriteback(page); 2260 } 2261 if (!ret) 2262 account_page_writeback(page); 2263 return ret; 2264 2265 } 2266 EXPORT_SYMBOL(test_set_page_writeback); 2267 2268 /* 2269 * Return true if any of the pages in the mapping are marked with the 2270 * passed tag. 2271 */ 2272 int mapping_tagged(struct address_space *mapping, int tag) 2273 { 2274 return radix_tree_tagged(&mapping->page_tree, tag); 2275 } 2276 EXPORT_SYMBOL(mapping_tagged); 2277