xref: /linux/mm/page-writeback.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 struct wb_domain global_wb_domain;
126 
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 	struct wb_domain	*dom;
131 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132 #endif
133 	struct bdi_writeback	*wb;
134 	struct fprop_local_percpu *wb_completions;
135 
136 	unsigned long		avail;		/* dirtyable */
137 	unsigned long		dirty;		/* file_dirty + write + nfs */
138 	unsigned long		thresh;		/* dirty threshold */
139 	unsigned long		bg_thresh;	/* dirty background threshold */
140 
141 	unsigned long		wb_dirty;	/* per-wb counterparts */
142 	unsigned long		wb_thresh;
143 	unsigned long		wb_bg_thresh;
144 
145 	unsigned long		pos_ratio;
146 };
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 #ifdef CONFIG_CGROUP_WRITEBACK
156 
157 #define GDTC_INIT(__wb)		.wb = (__wb),				\
158 				.dom = &global_wb_domain,		\
159 				.wb_completions = &(__wb)->completions
160 
161 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 
163 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
164 				.dom = mem_cgroup_wb_domain(__wb),	\
165 				.wb_completions = &(__wb)->memcg_completions, \
166 				.gdtc = __gdtc
167 
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 	return dtc->dom;
171 }
172 
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 	return dtc->dom;
176 }
177 
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 	return mdtc->gdtc;
181 }
182 
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 	return &wb->memcg_completions;
186 }
187 
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 			     unsigned long *minp, unsigned long *maxp)
190 {
191 	unsigned long this_bw = wb->avg_write_bandwidth;
192 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 	unsigned long long min = wb->bdi->min_ratio;
194 	unsigned long long max = wb->bdi->max_ratio;
195 
196 	/*
197 	 * @wb may already be clean by the time control reaches here and
198 	 * the total may not include its bw.
199 	 */
200 	if (this_bw < tot_bw) {
201 		if (min) {
202 			min *= this_bw;
203 			do_div(min, tot_bw);
204 		}
205 		if (max < 100) {
206 			max *= this_bw;
207 			do_div(max, tot_bw);
208 		}
209 	}
210 
211 	*minp = min;
212 	*maxp = max;
213 }
214 
215 #else	/* CONFIG_CGROUP_WRITEBACK */
216 
217 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
218 				.wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221 
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 	return false;
225 }
226 
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 	return &global_wb_domain;
230 }
231 
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 	return NULL;
235 }
236 
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 	return NULL;
240 }
241 
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 			     unsigned long *minp, unsigned long *maxp)
244 {
245 	*minp = wb->bdi->min_ratio;
246 	*maxp = wb->bdi->max_ratio;
247 }
248 
249 #endif	/* CONFIG_CGROUP_WRITEBACK */
250 
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268 
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278 	unsigned long nr_pages;
279 
280 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 	/*
282 	 * Pages reserved for the kernel should not be considered
283 	 * dirtyable, to prevent a situation where reclaim has to
284 	 * clean pages in order to balance the zones.
285 	 */
286 	nr_pages -= min(nr_pages, zone->totalreserve_pages);
287 
288 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290 
291 	return nr_pages;
292 }
293 
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
295 {
296 #ifdef CONFIG_HIGHMEM
297 	int node;
298 	unsigned long x = 0;
299 	int i;
300 
301 	for_each_node_state(node, N_HIGH_MEMORY) {
302 		for (i = 0; i < MAX_NR_ZONES; i++) {
303 			struct zone *z = &NODE_DATA(node)->node_zones[i];
304 
305 			if (is_highmem(z))
306 				x += zone_dirtyable_memory(z);
307 		}
308 	}
309 	/*
310 	 * Unreclaimable memory (kernel memory or anonymous memory
311 	 * without swap) can bring down the dirtyable pages below
312 	 * the zone's dirty balance reserve and the above calculation
313 	 * will underflow.  However we still want to add in nodes
314 	 * which are below threshold (negative values) to get a more
315 	 * accurate calculation but make sure that the total never
316 	 * underflows.
317 	 */
318 	if ((long)x < 0)
319 		x = 0;
320 
321 	/*
322 	 * Make sure that the number of highmem pages is never larger
323 	 * than the number of the total dirtyable memory. This can only
324 	 * occur in very strange VM situations but we want to make sure
325 	 * that this does not occur.
326 	 */
327 	return min(x, total);
328 #else
329 	return 0;
330 #endif
331 }
332 
333 /**
334  * global_dirtyable_memory - number of globally dirtyable pages
335  *
336  * Returns the global number of pages potentially available for dirty
337  * page cache.  This is the base value for the global dirty limits.
338  */
339 static unsigned long global_dirtyable_memory(void)
340 {
341 	unsigned long x;
342 
343 	x = global_page_state(NR_FREE_PAGES);
344 	/*
345 	 * Pages reserved for the kernel should not be considered
346 	 * dirtyable, to prevent a situation where reclaim has to
347 	 * clean pages in order to balance the zones.
348 	 */
349 	x -= min(x, totalreserve_pages);
350 
351 	x += global_page_state(NR_INACTIVE_FILE);
352 	x += global_page_state(NR_ACTIVE_FILE);
353 
354 	if (!vm_highmem_is_dirtyable)
355 		x -= highmem_dirtyable_memory(x);
356 
357 	return x + 1;	/* Ensure that we never return 0 */
358 }
359 
360 /**
361  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
362  * @dtc: dirty_throttle_control of interest
363  *
364  * Calculate @dtc->thresh and ->bg_thresh considering
365  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
366  * must ensure that @dtc->avail is set before calling this function.  The
367  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368  * real-time tasks.
369  */
370 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
371 {
372 	const unsigned long available_memory = dtc->avail;
373 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
374 	unsigned long bytes = vm_dirty_bytes;
375 	unsigned long bg_bytes = dirty_background_bytes;
376 	/* convert ratios to per-PAGE_SIZE for higher precision */
377 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
378 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
379 	unsigned long thresh;
380 	unsigned long bg_thresh;
381 	struct task_struct *tsk;
382 
383 	/* gdtc is !NULL iff @dtc is for memcg domain */
384 	if (gdtc) {
385 		unsigned long global_avail = gdtc->avail;
386 
387 		/*
388 		 * The byte settings can't be applied directly to memcg
389 		 * domains.  Convert them to ratios by scaling against
390 		 * globally available memory.  As the ratios are in
391 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
392 		 * number of pages.
393 		 */
394 		if (bytes)
395 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
396 				    PAGE_SIZE);
397 		if (bg_bytes)
398 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
399 				       PAGE_SIZE);
400 		bytes = bg_bytes = 0;
401 	}
402 
403 	if (bytes)
404 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
405 	else
406 		thresh = (ratio * available_memory) / PAGE_SIZE;
407 
408 	if (bg_bytes)
409 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
410 	else
411 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
412 
413 	if (bg_thresh >= thresh)
414 		bg_thresh = thresh / 2;
415 	tsk = current;
416 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
417 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
418 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
419 	}
420 	dtc->thresh = thresh;
421 	dtc->bg_thresh = bg_thresh;
422 
423 	/* we should eventually report the domain in the TP */
424 	if (!gdtc)
425 		trace_global_dirty_state(bg_thresh, thresh);
426 }
427 
428 /**
429  * global_dirty_limits - background-writeback and dirty-throttling thresholds
430  * @pbackground: out parameter for bg_thresh
431  * @pdirty: out parameter for thresh
432  *
433  * Calculate bg_thresh and thresh for global_wb_domain.  See
434  * domain_dirty_limits() for details.
435  */
436 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
437 {
438 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
439 
440 	gdtc.avail = global_dirtyable_memory();
441 	domain_dirty_limits(&gdtc);
442 
443 	*pbackground = gdtc.bg_thresh;
444 	*pdirty = gdtc.thresh;
445 }
446 
447 /**
448  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
449  * @zone: the zone
450  *
451  * Returns the maximum number of dirty pages allowed in a zone, based
452  * on the zone's dirtyable memory.
453  */
454 static unsigned long zone_dirty_limit(struct zone *zone)
455 {
456 	unsigned long zone_memory = zone_dirtyable_memory(zone);
457 	struct task_struct *tsk = current;
458 	unsigned long dirty;
459 
460 	if (vm_dirty_bytes)
461 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
462 			zone_memory / global_dirtyable_memory();
463 	else
464 		dirty = vm_dirty_ratio * zone_memory / 100;
465 
466 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
467 		dirty += dirty / 4;
468 
469 	return dirty;
470 }
471 
472 /**
473  * zone_dirty_ok - tells whether a zone is within its dirty limits
474  * @zone: the zone to check
475  *
476  * Returns %true when the dirty pages in @zone are within the zone's
477  * dirty limit, %false if the limit is exceeded.
478  */
479 bool zone_dirty_ok(struct zone *zone)
480 {
481 	unsigned long limit = zone_dirty_limit(zone);
482 
483 	return zone_page_state(zone, NR_FILE_DIRTY) +
484 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
485 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
486 }
487 
488 int dirty_background_ratio_handler(struct ctl_table *table, int write,
489 		void __user *buffer, size_t *lenp,
490 		loff_t *ppos)
491 {
492 	int ret;
493 
494 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
495 	if (ret == 0 && write)
496 		dirty_background_bytes = 0;
497 	return ret;
498 }
499 
500 int dirty_background_bytes_handler(struct ctl_table *table, int write,
501 		void __user *buffer, size_t *lenp,
502 		loff_t *ppos)
503 {
504 	int ret;
505 
506 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
507 	if (ret == 0 && write)
508 		dirty_background_ratio = 0;
509 	return ret;
510 }
511 
512 int dirty_ratio_handler(struct ctl_table *table, int write,
513 		void __user *buffer, size_t *lenp,
514 		loff_t *ppos)
515 {
516 	int old_ratio = vm_dirty_ratio;
517 	int ret;
518 
519 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
520 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
521 		writeback_set_ratelimit();
522 		vm_dirty_bytes = 0;
523 	}
524 	return ret;
525 }
526 
527 int dirty_bytes_handler(struct ctl_table *table, int write,
528 		void __user *buffer, size_t *lenp,
529 		loff_t *ppos)
530 {
531 	unsigned long old_bytes = vm_dirty_bytes;
532 	int ret;
533 
534 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
535 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
536 		writeback_set_ratelimit();
537 		vm_dirty_ratio = 0;
538 	}
539 	return ret;
540 }
541 
542 static unsigned long wp_next_time(unsigned long cur_time)
543 {
544 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
545 	/* 0 has a special meaning... */
546 	if (!cur_time)
547 		return 1;
548 	return cur_time;
549 }
550 
551 static void wb_domain_writeout_inc(struct wb_domain *dom,
552 				   struct fprop_local_percpu *completions,
553 				   unsigned int max_prop_frac)
554 {
555 	__fprop_inc_percpu_max(&dom->completions, completions,
556 			       max_prop_frac);
557 	/* First event after period switching was turned off? */
558 	if (!unlikely(dom->period_time)) {
559 		/*
560 		 * We can race with other __bdi_writeout_inc calls here but
561 		 * it does not cause any harm since the resulting time when
562 		 * timer will fire and what is in writeout_period_time will be
563 		 * roughly the same.
564 		 */
565 		dom->period_time = wp_next_time(jiffies);
566 		mod_timer(&dom->period_timer, dom->period_time);
567 	}
568 }
569 
570 /*
571  * Increment @wb's writeout completion count and the global writeout
572  * completion count. Called from test_clear_page_writeback().
573  */
574 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
575 {
576 	struct wb_domain *cgdom;
577 
578 	__inc_wb_stat(wb, WB_WRITTEN);
579 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
580 			       wb->bdi->max_prop_frac);
581 
582 	cgdom = mem_cgroup_wb_domain(wb);
583 	if (cgdom)
584 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
585 				       wb->bdi->max_prop_frac);
586 }
587 
588 void wb_writeout_inc(struct bdi_writeback *wb)
589 {
590 	unsigned long flags;
591 
592 	local_irq_save(flags);
593 	__wb_writeout_inc(wb);
594 	local_irq_restore(flags);
595 }
596 EXPORT_SYMBOL_GPL(wb_writeout_inc);
597 
598 /*
599  * On idle system, we can be called long after we scheduled because we use
600  * deferred timers so count with missed periods.
601  */
602 static void writeout_period(unsigned long t)
603 {
604 	struct wb_domain *dom = (void *)t;
605 	int miss_periods = (jiffies - dom->period_time) /
606 						 VM_COMPLETIONS_PERIOD_LEN;
607 
608 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
609 		dom->period_time = wp_next_time(dom->period_time +
610 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
611 		mod_timer(&dom->period_timer, dom->period_time);
612 	} else {
613 		/*
614 		 * Aging has zeroed all fractions. Stop wasting CPU on period
615 		 * updates.
616 		 */
617 		dom->period_time = 0;
618 	}
619 }
620 
621 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
622 {
623 	memset(dom, 0, sizeof(*dom));
624 
625 	spin_lock_init(&dom->lock);
626 
627 	init_timer_deferrable(&dom->period_timer);
628 	dom->period_timer.function = writeout_period;
629 	dom->period_timer.data = (unsigned long)dom;
630 
631 	dom->dirty_limit_tstamp = jiffies;
632 
633 	return fprop_global_init(&dom->completions, gfp);
634 }
635 
636 #ifdef CONFIG_CGROUP_WRITEBACK
637 void wb_domain_exit(struct wb_domain *dom)
638 {
639 	del_timer_sync(&dom->period_timer);
640 	fprop_global_destroy(&dom->completions);
641 }
642 #endif
643 
644 /*
645  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
646  * registered backing devices, which, for obvious reasons, can not
647  * exceed 100%.
648  */
649 static unsigned int bdi_min_ratio;
650 
651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
652 {
653 	int ret = 0;
654 
655 	spin_lock_bh(&bdi_lock);
656 	if (min_ratio > bdi->max_ratio) {
657 		ret = -EINVAL;
658 	} else {
659 		min_ratio -= bdi->min_ratio;
660 		if (bdi_min_ratio + min_ratio < 100) {
661 			bdi_min_ratio += min_ratio;
662 			bdi->min_ratio += min_ratio;
663 		} else {
664 			ret = -EINVAL;
665 		}
666 	}
667 	spin_unlock_bh(&bdi_lock);
668 
669 	return ret;
670 }
671 
672 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
673 {
674 	int ret = 0;
675 
676 	if (max_ratio > 100)
677 		return -EINVAL;
678 
679 	spin_lock_bh(&bdi_lock);
680 	if (bdi->min_ratio > max_ratio) {
681 		ret = -EINVAL;
682 	} else {
683 		bdi->max_ratio = max_ratio;
684 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
685 	}
686 	spin_unlock_bh(&bdi_lock);
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL(bdi_set_max_ratio);
691 
692 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
693 					   unsigned long bg_thresh)
694 {
695 	return (thresh + bg_thresh) / 2;
696 }
697 
698 static unsigned long hard_dirty_limit(struct wb_domain *dom,
699 				      unsigned long thresh)
700 {
701 	return max(thresh, dom->dirty_limit);
702 }
703 
704 /*
705  * Memory which can be further allocated to a memcg domain is capped by
706  * system-wide clean memory excluding the amount being used in the domain.
707  */
708 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
709 			    unsigned long filepages, unsigned long headroom)
710 {
711 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
712 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
713 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
714 	unsigned long other_clean = global_clean - min(global_clean, clean);
715 
716 	mdtc->avail = filepages + min(headroom, other_clean);
717 }
718 
719 /**
720  * __wb_calc_thresh - @wb's share of dirty throttling threshold
721  * @dtc: dirty_throttle_context of interest
722  *
723  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
724  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
725  *
726  * Note that balance_dirty_pages() will only seriously take it as a hard limit
727  * when sleeping max_pause per page is not enough to keep the dirty pages under
728  * control. For example, when the device is completely stalled due to some error
729  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
730  * In the other normal situations, it acts more gently by throttling the tasks
731  * more (rather than completely block them) when the wb dirty pages go high.
732  *
733  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
734  * - starving fast devices
735  * - piling up dirty pages (that will take long time to sync) on slow devices
736  *
737  * The wb's share of dirty limit will be adapting to its throughput and
738  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
739  */
740 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
741 {
742 	struct wb_domain *dom = dtc_dom(dtc);
743 	unsigned long thresh = dtc->thresh;
744 	u64 wb_thresh;
745 	long numerator, denominator;
746 	unsigned long wb_min_ratio, wb_max_ratio;
747 
748 	/*
749 	 * Calculate this BDI's share of the thresh ratio.
750 	 */
751 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
752 			      &numerator, &denominator);
753 
754 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
755 	wb_thresh *= numerator;
756 	do_div(wb_thresh, denominator);
757 
758 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
759 
760 	wb_thresh += (thresh * wb_min_ratio) / 100;
761 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
762 		wb_thresh = thresh * wb_max_ratio / 100;
763 
764 	return wb_thresh;
765 }
766 
767 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
768 {
769 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
770 					       .thresh = thresh };
771 	return __wb_calc_thresh(&gdtc);
772 }
773 
774 /*
775  *                           setpoint - dirty 3
776  *        f(dirty) := 1.0 + (----------------)
777  *                           limit - setpoint
778  *
779  * it's a 3rd order polynomial that subjects to
780  *
781  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
782  * (2) f(setpoint) = 1.0 => the balance point
783  * (3) f(limit)    = 0   => the hard limit
784  * (4) df/dx      <= 0	 => negative feedback control
785  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
786  *     => fast response on large errors; small oscillation near setpoint
787  */
788 static long long pos_ratio_polynom(unsigned long setpoint,
789 					  unsigned long dirty,
790 					  unsigned long limit)
791 {
792 	long long pos_ratio;
793 	long x;
794 
795 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
796 		      (limit - setpoint) | 1);
797 	pos_ratio = x;
798 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
799 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
800 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
801 
802 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
803 }
804 
805 /*
806  * Dirty position control.
807  *
808  * (o) global/bdi setpoints
809  *
810  * We want the dirty pages be balanced around the global/wb setpoints.
811  * When the number of dirty pages is higher/lower than the setpoint, the
812  * dirty position control ratio (and hence task dirty ratelimit) will be
813  * decreased/increased to bring the dirty pages back to the setpoint.
814  *
815  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
816  *
817  *     if (dirty < setpoint) scale up   pos_ratio
818  *     if (dirty > setpoint) scale down pos_ratio
819  *
820  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
821  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
822  *
823  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
824  *
825  * (o) global control line
826  *
827  *     ^ pos_ratio
828  *     |
829  *     |            |<===== global dirty control scope ======>|
830  * 2.0 .............*
831  *     |            .*
832  *     |            . *
833  *     |            .   *
834  *     |            .     *
835  *     |            .        *
836  *     |            .            *
837  * 1.0 ................................*
838  *     |            .                  .     *
839  *     |            .                  .          *
840  *     |            .                  .              *
841  *     |            .                  .                 *
842  *     |            .                  .                    *
843  *   0 +------------.------------------.----------------------*------------->
844  *           freerun^          setpoint^                 limit^   dirty pages
845  *
846  * (o) wb control line
847  *
848  *     ^ pos_ratio
849  *     |
850  *     |            *
851  *     |              *
852  *     |                *
853  *     |                  *
854  *     |                    * |<=========== span ============>|
855  * 1.0 .......................*
856  *     |                      . *
857  *     |                      .   *
858  *     |                      .     *
859  *     |                      .       *
860  *     |                      .         *
861  *     |                      .           *
862  *     |                      .             *
863  *     |                      .               *
864  *     |                      .                 *
865  *     |                      .                   *
866  *     |                      .                     *
867  * 1/4 ...............................................* * * * * * * * * * * *
868  *     |                      .                         .
869  *     |                      .                           .
870  *     |                      .                             .
871  *   0 +----------------------.-------------------------------.------------->
872  *                wb_setpoint^                    x_intercept^
873  *
874  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
875  * be smoothly throttled down to normal if it starts high in situations like
876  * - start writing to a slow SD card and a fast disk at the same time. The SD
877  *   card's wb_dirty may rush to many times higher than wb_setpoint.
878  * - the wb dirty thresh drops quickly due to change of JBOD workload
879  */
880 static void wb_position_ratio(struct dirty_throttle_control *dtc)
881 {
882 	struct bdi_writeback *wb = dtc->wb;
883 	unsigned long write_bw = wb->avg_write_bandwidth;
884 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
885 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
886 	unsigned long wb_thresh = dtc->wb_thresh;
887 	unsigned long x_intercept;
888 	unsigned long setpoint;		/* dirty pages' target balance point */
889 	unsigned long wb_setpoint;
890 	unsigned long span;
891 	long long pos_ratio;		/* for scaling up/down the rate limit */
892 	long x;
893 
894 	dtc->pos_ratio = 0;
895 
896 	if (unlikely(dtc->dirty >= limit))
897 		return;
898 
899 	/*
900 	 * global setpoint
901 	 *
902 	 * See comment for pos_ratio_polynom().
903 	 */
904 	setpoint = (freerun + limit) / 2;
905 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
906 
907 	/*
908 	 * The strictlimit feature is a tool preventing mistrusted filesystems
909 	 * from growing a large number of dirty pages before throttling. For
910 	 * such filesystems balance_dirty_pages always checks wb counters
911 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
912 	 * This is especially important for fuse which sets bdi->max_ratio to
913 	 * 1% by default. Without strictlimit feature, fuse writeback may
914 	 * consume arbitrary amount of RAM because it is accounted in
915 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
916 	 *
917 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
918 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
919 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
920 	 * limits are set by default to 10% and 20% (background and throttle).
921 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
922 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
923 	 * about ~6K pages (as the average of background and throttle wb
924 	 * limits). The 3rd order polynomial will provide positive feedback if
925 	 * wb_dirty is under wb_setpoint and vice versa.
926 	 *
927 	 * Note, that we cannot use global counters in these calculations
928 	 * because we want to throttle process writing to a strictlimit wb
929 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
930 	 * in the example above).
931 	 */
932 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
933 		long long wb_pos_ratio;
934 
935 		if (dtc->wb_dirty < 8) {
936 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
937 					   2 << RATELIMIT_CALC_SHIFT);
938 			return;
939 		}
940 
941 		if (dtc->wb_dirty >= wb_thresh)
942 			return;
943 
944 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
945 						    dtc->wb_bg_thresh);
946 
947 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
948 			return;
949 
950 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
951 						 wb_thresh);
952 
953 		/*
954 		 * Typically, for strictlimit case, wb_setpoint << setpoint
955 		 * and pos_ratio >> wb_pos_ratio. In the other words global
956 		 * state ("dirty") is not limiting factor and we have to
957 		 * make decision based on wb counters. But there is an
958 		 * important case when global pos_ratio should get precedence:
959 		 * global limits are exceeded (e.g. due to activities on other
960 		 * wb's) while given strictlimit wb is below limit.
961 		 *
962 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
963 		 * but it would look too non-natural for the case of all
964 		 * activity in the system coming from a single strictlimit wb
965 		 * with bdi->max_ratio == 100%.
966 		 *
967 		 * Note that min() below somewhat changes the dynamics of the
968 		 * control system. Normally, pos_ratio value can be well over 3
969 		 * (when globally we are at freerun and wb is well below wb
970 		 * setpoint). Now the maximum pos_ratio in the same situation
971 		 * is 2. We might want to tweak this if we observe the control
972 		 * system is too slow to adapt.
973 		 */
974 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
975 		return;
976 	}
977 
978 	/*
979 	 * We have computed basic pos_ratio above based on global situation. If
980 	 * the wb is over/under its share of dirty pages, we want to scale
981 	 * pos_ratio further down/up. That is done by the following mechanism.
982 	 */
983 
984 	/*
985 	 * wb setpoint
986 	 *
987 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
988 	 *
989 	 *                        x_intercept - wb_dirty
990 	 *                     := --------------------------
991 	 *                        x_intercept - wb_setpoint
992 	 *
993 	 * The main wb control line is a linear function that subjects to
994 	 *
995 	 * (1) f(wb_setpoint) = 1.0
996 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
997 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
998 	 *
999 	 * For single wb case, the dirty pages are observed to fluctuate
1000 	 * regularly within range
1001 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1002 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1003 	 * fluctuation range for pos_ratio.
1004 	 *
1005 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1006 	 * own size, so move the slope over accordingly and choose a slope that
1007 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1008 	 */
1009 	if (unlikely(wb_thresh > dtc->thresh))
1010 		wb_thresh = dtc->thresh;
1011 	/*
1012 	 * It's very possible that wb_thresh is close to 0 not because the
1013 	 * device is slow, but that it has remained inactive for long time.
1014 	 * Honour such devices a reasonable good (hopefully IO efficient)
1015 	 * threshold, so that the occasional writes won't be blocked and active
1016 	 * writes can rampup the threshold quickly.
1017 	 */
1018 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1019 	/*
1020 	 * scale global setpoint to wb's:
1021 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1022 	 */
1023 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1024 	wb_setpoint = setpoint * (u64)x >> 16;
1025 	/*
1026 	 * Use span=(8*write_bw) in single wb case as indicated by
1027 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1028 	 *
1029 	 *        wb_thresh                    thresh - wb_thresh
1030 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1031 	 *         thresh                           thresh
1032 	 */
1033 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1034 	x_intercept = wb_setpoint + span;
1035 
1036 	if (dtc->wb_dirty < x_intercept - span / 4) {
1037 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1038 				      (x_intercept - wb_setpoint) | 1);
1039 	} else
1040 		pos_ratio /= 4;
1041 
1042 	/*
1043 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1044 	 * It may push the desired control point of global dirty pages higher
1045 	 * than setpoint.
1046 	 */
1047 	x_intercept = wb_thresh / 2;
1048 	if (dtc->wb_dirty < x_intercept) {
1049 		if (dtc->wb_dirty > x_intercept / 8)
1050 			pos_ratio = div_u64(pos_ratio * x_intercept,
1051 					    dtc->wb_dirty);
1052 		else
1053 			pos_ratio *= 8;
1054 	}
1055 
1056 	dtc->pos_ratio = pos_ratio;
1057 }
1058 
1059 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1060 				      unsigned long elapsed,
1061 				      unsigned long written)
1062 {
1063 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1064 	unsigned long avg = wb->avg_write_bandwidth;
1065 	unsigned long old = wb->write_bandwidth;
1066 	u64 bw;
1067 
1068 	/*
1069 	 * bw = written * HZ / elapsed
1070 	 *
1071 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1072 	 * write_bandwidth = ---------------------------------------------------
1073 	 *                                          period
1074 	 *
1075 	 * @written may have decreased due to account_page_redirty().
1076 	 * Avoid underflowing @bw calculation.
1077 	 */
1078 	bw = written - min(written, wb->written_stamp);
1079 	bw *= HZ;
1080 	if (unlikely(elapsed > period)) {
1081 		do_div(bw, elapsed);
1082 		avg = bw;
1083 		goto out;
1084 	}
1085 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1086 	bw >>= ilog2(period);
1087 
1088 	/*
1089 	 * one more level of smoothing, for filtering out sudden spikes
1090 	 */
1091 	if (avg > old && old >= (unsigned long)bw)
1092 		avg -= (avg - old) >> 3;
1093 
1094 	if (avg < old && old <= (unsigned long)bw)
1095 		avg += (old - avg) >> 3;
1096 
1097 out:
1098 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1099 	avg = max(avg, 1LU);
1100 	if (wb_has_dirty_io(wb)) {
1101 		long delta = avg - wb->avg_write_bandwidth;
1102 		WARN_ON_ONCE(atomic_long_add_return(delta,
1103 					&wb->bdi->tot_write_bandwidth) <= 0);
1104 	}
1105 	wb->write_bandwidth = bw;
1106 	wb->avg_write_bandwidth = avg;
1107 }
1108 
1109 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1110 {
1111 	struct wb_domain *dom = dtc_dom(dtc);
1112 	unsigned long thresh = dtc->thresh;
1113 	unsigned long limit = dom->dirty_limit;
1114 
1115 	/*
1116 	 * Follow up in one step.
1117 	 */
1118 	if (limit < thresh) {
1119 		limit = thresh;
1120 		goto update;
1121 	}
1122 
1123 	/*
1124 	 * Follow down slowly. Use the higher one as the target, because thresh
1125 	 * may drop below dirty. This is exactly the reason to introduce
1126 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1127 	 */
1128 	thresh = max(thresh, dtc->dirty);
1129 	if (limit > thresh) {
1130 		limit -= (limit - thresh) >> 5;
1131 		goto update;
1132 	}
1133 	return;
1134 update:
1135 	dom->dirty_limit = limit;
1136 }
1137 
1138 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1139 				    unsigned long now)
1140 {
1141 	struct wb_domain *dom = dtc_dom(dtc);
1142 
1143 	/*
1144 	 * check locklessly first to optimize away locking for the most time
1145 	 */
1146 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1147 		return;
1148 
1149 	spin_lock(&dom->lock);
1150 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1151 		update_dirty_limit(dtc);
1152 		dom->dirty_limit_tstamp = now;
1153 	}
1154 	spin_unlock(&dom->lock);
1155 }
1156 
1157 /*
1158  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1159  *
1160  * Normal wb tasks will be curbed at or below it in long term.
1161  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1162  */
1163 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1164 				      unsigned long dirtied,
1165 				      unsigned long elapsed)
1166 {
1167 	struct bdi_writeback *wb = dtc->wb;
1168 	unsigned long dirty = dtc->dirty;
1169 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1170 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1171 	unsigned long setpoint = (freerun + limit) / 2;
1172 	unsigned long write_bw = wb->avg_write_bandwidth;
1173 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1174 	unsigned long dirty_rate;
1175 	unsigned long task_ratelimit;
1176 	unsigned long balanced_dirty_ratelimit;
1177 	unsigned long step;
1178 	unsigned long x;
1179 	unsigned long shift;
1180 
1181 	/*
1182 	 * The dirty rate will match the writeout rate in long term, except
1183 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1184 	 */
1185 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1186 
1187 	/*
1188 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1189 	 */
1190 	task_ratelimit = (u64)dirty_ratelimit *
1191 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1192 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1193 
1194 	/*
1195 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1196 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1197 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1198 	 * formula will yield the balanced rate limit (write_bw / N).
1199 	 *
1200 	 * Note that the expanded form is not a pure rate feedback:
1201 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1202 	 * but also takes pos_ratio into account:
1203 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1204 	 *
1205 	 * (1) is not realistic because pos_ratio also takes part in balancing
1206 	 * the dirty rate.  Consider the state
1207 	 *	pos_ratio = 0.5						     (3)
1208 	 *	rate = 2 * (write_bw / N)				     (4)
1209 	 * If (1) is used, it will stuck in that state! Because each dd will
1210 	 * be throttled at
1211 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1212 	 * yielding
1213 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1214 	 * put (6) into (1) we get
1215 	 *	rate_(i+1) = rate_(i)					     (7)
1216 	 *
1217 	 * So we end up using (2) to always keep
1218 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1219 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1220 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1221 	 * the dirty count meet the setpoint, but also where the slope of
1222 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1223 	 */
1224 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1225 					   dirty_rate | 1);
1226 	/*
1227 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1228 	 */
1229 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1230 		balanced_dirty_ratelimit = write_bw;
1231 
1232 	/*
1233 	 * We could safely do this and return immediately:
1234 	 *
1235 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1236 	 *
1237 	 * However to get a more stable dirty_ratelimit, the below elaborated
1238 	 * code makes use of task_ratelimit to filter out singular points and
1239 	 * limit the step size.
1240 	 *
1241 	 * The below code essentially only uses the relative value of
1242 	 *
1243 	 *	task_ratelimit - dirty_ratelimit
1244 	 *	= (pos_ratio - 1) * dirty_ratelimit
1245 	 *
1246 	 * which reflects the direction and size of dirty position error.
1247 	 */
1248 
1249 	/*
1250 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1251 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1252 	 * For example, when
1253 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1254 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1255 	 * lowering dirty_ratelimit will help meet both the position and rate
1256 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1257 	 * only help meet the rate target. After all, what the users ultimately
1258 	 * feel and care are stable dirty rate and small position error.
1259 	 *
1260 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1261 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1262 	 * keeps jumping around randomly and can even leap far away at times
1263 	 * due to the small 200ms estimation period of dirty_rate (we want to
1264 	 * keep that period small to reduce time lags).
1265 	 */
1266 	step = 0;
1267 
1268 	/*
1269 	 * For strictlimit case, calculations above were based on wb counters
1270 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1271 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1272 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1273 	 * "dirty" and wb_setpoint as "setpoint".
1274 	 *
1275 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1276 	 * it's possible that wb_thresh is close to zero due to inactivity
1277 	 * of backing device.
1278 	 */
1279 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1280 		dirty = dtc->wb_dirty;
1281 		if (dtc->wb_dirty < 8)
1282 			setpoint = dtc->wb_dirty + 1;
1283 		else
1284 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1285 	}
1286 
1287 	if (dirty < setpoint) {
1288 		x = min3(wb->balanced_dirty_ratelimit,
1289 			 balanced_dirty_ratelimit, task_ratelimit);
1290 		if (dirty_ratelimit < x)
1291 			step = x - dirty_ratelimit;
1292 	} else {
1293 		x = max3(wb->balanced_dirty_ratelimit,
1294 			 balanced_dirty_ratelimit, task_ratelimit);
1295 		if (dirty_ratelimit > x)
1296 			step = dirty_ratelimit - x;
1297 	}
1298 
1299 	/*
1300 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1301 	 * rate itself is constantly fluctuating. So decrease the track speed
1302 	 * when it gets close to the target. Helps eliminate pointless tremors.
1303 	 */
1304 	shift = dirty_ratelimit / (2 * step + 1);
1305 	if (shift < BITS_PER_LONG)
1306 		step = DIV_ROUND_UP(step >> shift, 8);
1307 	else
1308 		step = 0;
1309 
1310 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1311 		dirty_ratelimit += step;
1312 	else
1313 		dirty_ratelimit -= step;
1314 
1315 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1316 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1317 
1318 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1319 }
1320 
1321 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1322 				  struct dirty_throttle_control *mdtc,
1323 				  unsigned long start_time,
1324 				  bool update_ratelimit)
1325 {
1326 	struct bdi_writeback *wb = gdtc->wb;
1327 	unsigned long now = jiffies;
1328 	unsigned long elapsed = now - wb->bw_time_stamp;
1329 	unsigned long dirtied;
1330 	unsigned long written;
1331 
1332 	lockdep_assert_held(&wb->list_lock);
1333 
1334 	/*
1335 	 * rate-limit, only update once every 200ms.
1336 	 */
1337 	if (elapsed < BANDWIDTH_INTERVAL)
1338 		return;
1339 
1340 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1341 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1342 
1343 	/*
1344 	 * Skip quiet periods when disk bandwidth is under-utilized.
1345 	 * (at least 1s idle time between two flusher runs)
1346 	 */
1347 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1348 		goto snapshot;
1349 
1350 	if (update_ratelimit) {
1351 		domain_update_bandwidth(gdtc, now);
1352 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1353 
1354 		/*
1355 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1356 		 * compiler has no way to figure that out.  Help it.
1357 		 */
1358 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1359 			domain_update_bandwidth(mdtc, now);
1360 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1361 		}
1362 	}
1363 	wb_update_write_bandwidth(wb, elapsed, written);
1364 
1365 snapshot:
1366 	wb->dirtied_stamp = dirtied;
1367 	wb->written_stamp = written;
1368 	wb->bw_time_stamp = now;
1369 }
1370 
1371 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1372 {
1373 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1374 
1375 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1376 }
1377 
1378 /*
1379  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1380  * will look to see if it needs to start dirty throttling.
1381  *
1382  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1383  * global_page_state() too often. So scale it near-sqrt to the safety margin
1384  * (the number of pages we may dirty without exceeding the dirty limits).
1385  */
1386 static unsigned long dirty_poll_interval(unsigned long dirty,
1387 					 unsigned long thresh)
1388 {
1389 	if (thresh > dirty)
1390 		return 1UL << (ilog2(thresh - dirty) >> 1);
1391 
1392 	return 1;
1393 }
1394 
1395 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1396 				  unsigned long wb_dirty)
1397 {
1398 	unsigned long bw = wb->avg_write_bandwidth;
1399 	unsigned long t;
1400 
1401 	/*
1402 	 * Limit pause time for small memory systems. If sleeping for too long
1403 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1404 	 * idle.
1405 	 *
1406 	 * 8 serves as the safety ratio.
1407 	 */
1408 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1409 	t++;
1410 
1411 	return min_t(unsigned long, t, MAX_PAUSE);
1412 }
1413 
1414 static long wb_min_pause(struct bdi_writeback *wb,
1415 			 long max_pause,
1416 			 unsigned long task_ratelimit,
1417 			 unsigned long dirty_ratelimit,
1418 			 int *nr_dirtied_pause)
1419 {
1420 	long hi = ilog2(wb->avg_write_bandwidth);
1421 	long lo = ilog2(wb->dirty_ratelimit);
1422 	long t;		/* target pause */
1423 	long pause;	/* estimated next pause */
1424 	int pages;	/* target nr_dirtied_pause */
1425 
1426 	/* target for 10ms pause on 1-dd case */
1427 	t = max(1, HZ / 100);
1428 
1429 	/*
1430 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1431 	 * overheads.
1432 	 *
1433 	 * (N * 10ms) on 2^N concurrent tasks.
1434 	 */
1435 	if (hi > lo)
1436 		t += (hi - lo) * (10 * HZ) / 1024;
1437 
1438 	/*
1439 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1440 	 * on the much more stable dirty_ratelimit. However the next pause time
1441 	 * will be computed based on task_ratelimit and the two rate limits may
1442 	 * depart considerably at some time. Especially if task_ratelimit goes
1443 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1444 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1445 	 * result task_ratelimit won't be executed faithfully, which could
1446 	 * eventually bring down dirty_ratelimit.
1447 	 *
1448 	 * We apply two rules to fix it up:
1449 	 * 1) try to estimate the next pause time and if necessary, use a lower
1450 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1451 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1452 	 * 2) limit the target pause time to max_pause/2, so that the normal
1453 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1454 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1455 	 */
1456 	t = min(t, 1 + max_pause / 2);
1457 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1458 
1459 	/*
1460 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1461 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1462 	 * When the 16 consecutive reads are often interrupted by some dirty
1463 	 * throttling pause during the async writes, cfq will go into idles
1464 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1465 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1466 	 */
1467 	if (pages < DIRTY_POLL_THRESH) {
1468 		t = max_pause;
1469 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1470 		if (pages > DIRTY_POLL_THRESH) {
1471 			pages = DIRTY_POLL_THRESH;
1472 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1473 		}
1474 	}
1475 
1476 	pause = HZ * pages / (task_ratelimit + 1);
1477 	if (pause > max_pause) {
1478 		t = max_pause;
1479 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1480 	}
1481 
1482 	*nr_dirtied_pause = pages;
1483 	/*
1484 	 * The minimal pause time will normally be half the target pause time.
1485 	 */
1486 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1487 }
1488 
1489 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1490 {
1491 	struct bdi_writeback *wb = dtc->wb;
1492 	unsigned long wb_reclaimable;
1493 
1494 	/*
1495 	 * wb_thresh is not treated as some limiting factor as
1496 	 * dirty_thresh, due to reasons
1497 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1498 	 * - in a system with HDD and USB key, the USB key may somehow
1499 	 *   go into state (wb_dirty >> wb_thresh) either because
1500 	 *   wb_dirty starts high, or because wb_thresh drops low.
1501 	 *   In this case we don't want to hard throttle the USB key
1502 	 *   dirtiers for 100 seconds until wb_dirty drops under
1503 	 *   wb_thresh. Instead the auxiliary wb control line in
1504 	 *   wb_position_ratio() will let the dirtier task progress
1505 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1506 	 */
1507 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1508 	dtc->wb_bg_thresh = dtc->thresh ?
1509 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1510 
1511 	/*
1512 	 * In order to avoid the stacked BDI deadlock we need
1513 	 * to ensure we accurately count the 'dirty' pages when
1514 	 * the threshold is low.
1515 	 *
1516 	 * Otherwise it would be possible to get thresh+n pages
1517 	 * reported dirty, even though there are thresh-m pages
1518 	 * actually dirty; with m+n sitting in the percpu
1519 	 * deltas.
1520 	 */
1521 	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1522 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1523 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1524 	} else {
1525 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1526 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1527 	}
1528 }
1529 
1530 /*
1531  * balance_dirty_pages() must be called by processes which are generating dirty
1532  * data.  It looks at the number of dirty pages in the machine and will force
1533  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1534  * If we're over `background_thresh' then the writeback threads are woken to
1535  * perform some writeout.
1536  */
1537 static void balance_dirty_pages(struct address_space *mapping,
1538 				struct bdi_writeback *wb,
1539 				unsigned long pages_dirtied)
1540 {
1541 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1542 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1543 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1544 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1545 						     &mdtc_stor : NULL;
1546 	struct dirty_throttle_control *sdtc;
1547 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1548 	long period;
1549 	long pause;
1550 	long max_pause;
1551 	long min_pause;
1552 	int nr_dirtied_pause;
1553 	bool dirty_exceeded = false;
1554 	unsigned long task_ratelimit;
1555 	unsigned long dirty_ratelimit;
1556 	struct backing_dev_info *bdi = wb->bdi;
1557 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1558 	unsigned long start_time = jiffies;
1559 
1560 	for (;;) {
1561 		unsigned long now = jiffies;
1562 		unsigned long dirty, thresh, bg_thresh;
1563 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1564 		unsigned long m_thresh = 0;
1565 		unsigned long m_bg_thresh = 0;
1566 
1567 		/*
1568 		 * Unstable writes are a feature of certain networked
1569 		 * filesystems (i.e. NFS) in which data may have been
1570 		 * written to the server's write cache, but has not yet
1571 		 * been flushed to permanent storage.
1572 		 */
1573 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1574 					global_page_state(NR_UNSTABLE_NFS);
1575 		gdtc->avail = global_dirtyable_memory();
1576 		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1577 
1578 		domain_dirty_limits(gdtc);
1579 
1580 		if (unlikely(strictlimit)) {
1581 			wb_dirty_limits(gdtc);
1582 
1583 			dirty = gdtc->wb_dirty;
1584 			thresh = gdtc->wb_thresh;
1585 			bg_thresh = gdtc->wb_bg_thresh;
1586 		} else {
1587 			dirty = gdtc->dirty;
1588 			thresh = gdtc->thresh;
1589 			bg_thresh = gdtc->bg_thresh;
1590 		}
1591 
1592 		if (mdtc) {
1593 			unsigned long filepages, headroom, writeback;
1594 
1595 			/*
1596 			 * If @wb belongs to !root memcg, repeat the same
1597 			 * basic calculations for the memcg domain.
1598 			 */
1599 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1600 					    &mdtc->dirty, &writeback);
1601 			mdtc->dirty += writeback;
1602 			mdtc_calc_avail(mdtc, filepages, headroom);
1603 
1604 			domain_dirty_limits(mdtc);
1605 
1606 			if (unlikely(strictlimit)) {
1607 				wb_dirty_limits(mdtc);
1608 				m_dirty = mdtc->wb_dirty;
1609 				m_thresh = mdtc->wb_thresh;
1610 				m_bg_thresh = mdtc->wb_bg_thresh;
1611 			} else {
1612 				m_dirty = mdtc->dirty;
1613 				m_thresh = mdtc->thresh;
1614 				m_bg_thresh = mdtc->bg_thresh;
1615 			}
1616 		}
1617 
1618 		/*
1619 		 * Throttle it only when the background writeback cannot
1620 		 * catch-up. This avoids (excessively) small writeouts
1621 		 * when the wb limits are ramping up in case of !strictlimit.
1622 		 *
1623 		 * In strictlimit case make decision based on the wb counters
1624 		 * and limits. Small writeouts when the wb limits are ramping
1625 		 * up are the price we consciously pay for strictlimit-ing.
1626 		 *
1627 		 * If memcg domain is in effect, @dirty should be under
1628 		 * both global and memcg freerun ceilings.
1629 		 */
1630 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1631 		    (!mdtc ||
1632 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1633 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1634 			unsigned long m_intv = ULONG_MAX;
1635 
1636 			current->dirty_paused_when = now;
1637 			current->nr_dirtied = 0;
1638 			if (mdtc)
1639 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1640 			current->nr_dirtied_pause = min(intv, m_intv);
1641 			break;
1642 		}
1643 
1644 		if (unlikely(!writeback_in_progress(wb)))
1645 			wb_start_background_writeback(wb);
1646 
1647 		/*
1648 		 * Calculate global domain's pos_ratio and select the
1649 		 * global dtc by default.
1650 		 */
1651 		if (!strictlimit)
1652 			wb_dirty_limits(gdtc);
1653 
1654 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1655 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1656 
1657 		wb_position_ratio(gdtc);
1658 		sdtc = gdtc;
1659 
1660 		if (mdtc) {
1661 			/*
1662 			 * If memcg domain is in effect, calculate its
1663 			 * pos_ratio.  @wb should satisfy constraints from
1664 			 * both global and memcg domains.  Choose the one
1665 			 * w/ lower pos_ratio.
1666 			 */
1667 			if (!strictlimit)
1668 				wb_dirty_limits(mdtc);
1669 
1670 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1671 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1672 
1673 			wb_position_ratio(mdtc);
1674 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1675 				sdtc = mdtc;
1676 		}
1677 
1678 		if (dirty_exceeded && !wb->dirty_exceeded)
1679 			wb->dirty_exceeded = 1;
1680 
1681 		if (time_is_before_jiffies(wb->bw_time_stamp +
1682 					   BANDWIDTH_INTERVAL)) {
1683 			spin_lock(&wb->list_lock);
1684 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1685 			spin_unlock(&wb->list_lock);
1686 		}
1687 
1688 		/* throttle according to the chosen dtc */
1689 		dirty_ratelimit = wb->dirty_ratelimit;
1690 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1691 							RATELIMIT_CALC_SHIFT;
1692 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1693 		min_pause = wb_min_pause(wb, max_pause,
1694 					 task_ratelimit, dirty_ratelimit,
1695 					 &nr_dirtied_pause);
1696 
1697 		if (unlikely(task_ratelimit == 0)) {
1698 			period = max_pause;
1699 			pause = max_pause;
1700 			goto pause;
1701 		}
1702 		period = HZ * pages_dirtied / task_ratelimit;
1703 		pause = period;
1704 		if (current->dirty_paused_when)
1705 			pause -= now - current->dirty_paused_when;
1706 		/*
1707 		 * For less than 1s think time (ext3/4 may block the dirtier
1708 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1709 		 * however at much less frequency), try to compensate it in
1710 		 * future periods by updating the virtual time; otherwise just
1711 		 * do a reset, as it may be a light dirtier.
1712 		 */
1713 		if (pause < min_pause) {
1714 			trace_balance_dirty_pages(wb,
1715 						  sdtc->thresh,
1716 						  sdtc->bg_thresh,
1717 						  sdtc->dirty,
1718 						  sdtc->wb_thresh,
1719 						  sdtc->wb_dirty,
1720 						  dirty_ratelimit,
1721 						  task_ratelimit,
1722 						  pages_dirtied,
1723 						  period,
1724 						  min(pause, 0L),
1725 						  start_time);
1726 			if (pause < -HZ) {
1727 				current->dirty_paused_when = now;
1728 				current->nr_dirtied = 0;
1729 			} else if (period) {
1730 				current->dirty_paused_when += period;
1731 				current->nr_dirtied = 0;
1732 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1733 				current->nr_dirtied_pause += pages_dirtied;
1734 			break;
1735 		}
1736 		if (unlikely(pause > max_pause)) {
1737 			/* for occasional dropped task_ratelimit */
1738 			now += min(pause - max_pause, max_pause);
1739 			pause = max_pause;
1740 		}
1741 
1742 pause:
1743 		trace_balance_dirty_pages(wb,
1744 					  sdtc->thresh,
1745 					  sdtc->bg_thresh,
1746 					  sdtc->dirty,
1747 					  sdtc->wb_thresh,
1748 					  sdtc->wb_dirty,
1749 					  dirty_ratelimit,
1750 					  task_ratelimit,
1751 					  pages_dirtied,
1752 					  period,
1753 					  pause,
1754 					  start_time);
1755 		__set_current_state(TASK_KILLABLE);
1756 		io_schedule_timeout(pause);
1757 
1758 		current->dirty_paused_when = now + pause;
1759 		current->nr_dirtied = 0;
1760 		current->nr_dirtied_pause = nr_dirtied_pause;
1761 
1762 		/*
1763 		 * This is typically equal to (dirty < thresh) and can also
1764 		 * keep "1000+ dd on a slow USB stick" under control.
1765 		 */
1766 		if (task_ratelimit)
1767 			break;
1768 
1769 		/*
1770 		 * In the case of an unresponding NFS server and the NFS dirty
1771 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1772 		 * to go through, so that tasks on them still remain responsive.
1773 		 *
1774 		 * In theory 1 page is enough to keep the comsumer-producer
1775 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1776 		 * more page. However wb_dirty has accounting errors.  So use
1777 		 * the larger and more IO friendly wb_stat_error.
1778 		 */
1779 		if (sdtc->wb_dirty <= wb_stat_error(wb))
1780 			break;
1781 
1782 		if (fatal_signal_pending(current))
1783 			break;
1784 	}
1785 
1786 	if (!dirty_exceeded && wb->dirty_exceeded)
1787 		wb->dirty_exceeded = 0;
1788 
1789 	if (writeback_in_progress(wb))
1790 		return;
1791 
1792 	/*
1793 	 * In laptop mode, we wait until hitting the higher threshold before
1794 	 * starting background writeout, and then write out all the way down
1795 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1796 	 *
1797 	 * In normal mode, we start background writeout at the lower
1798 	 * background_thresh, to keep the amount of dirty memory low.
1799 	 */
1800 	if (laptop_mode)
1801 		return;
1802 
1803 	if (nr_reclaimable > gdtc->bg_thresh)
1804 		wb_start_background_writeback(wb);
1805 }
1806 
1807 static DEFINE_PER_CPU(int, bdp_ratelimits);
1808 
1809 /*
1810  * Normal tasks are throttled by
1811  *	loop {
1812  *		dirty tsk->nr_dirtied_pause pages;
1813  *		take a snap in balance_dirty_pages();
1814  *	}
1815  * However there is a worst case. If every task exit immediately when dirtied
1816  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1817  * called to throttle the page dirties. The solution is to save the not yet
1818  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1819  * randomly into the running tasks. This works well for the above worst case,
1820  * as the new task will pick up and accumulate the old task's leaked dirty
1821  * count and eventually get throttled.
1822  */
1823 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1824 
1825 /**
1826  * balance_dirty_pages_ratelimited - balance dirty memory state
1827  * @mapping: address_space which was dirtied
1828  *
1829  * Processes which are dirtying memory should call in here once for each page
1830  * which was newly dirtied.  The function will periodically check the system's
1831  * dirty state and will initiate writeback if needed.
1832  *
1833  * On really big machines, get_writeback_state is expensive, so try to avoid
1834  * calling it too often (ratelimiting).  But once we're over the dirty memory
1835  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1836  * from overshooting the limit by (ratelimit_pages) each.
1837  */
1838 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1839 {
1840 	struct inode *inode = mapping->host;
1841 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1842 	struct bdi_writeback *wb = NULL;
1843 	int ratelimit;
1844 	int *p;
1845 
1846 	if (!bdi_cap_account_dirty(bdi))
1847 		return;
1848 
1849 	if (inode_cgwb_enabled(inode))
1850 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1851 	if (!wb)
1852 		wb = &bdi->wb;
1853 
1854 	ratelimit = current->nr_dirtied_pause;
1855 	if (wb->dirty_exceeded)
1856 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1857 
1858 	preempt_disable();
1859 	/*
1860 	 * This prevents one CPU to accumulate too many dirtied pages without
1861 	 * calling into balance_dirty_pages(), which can happen when there are
1862 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1863 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1864 	 */
1865 	p =  this_cpu_ptr(&bdp_ratelimits);
1866 	if (unlikely(current->nr_dirtied >= ratelimit))
1867 		*p = 0;
1868 	else if (unlikely(*p >= ratelimit_pages)) {
1869 		*p = 0;
1870 		ratelimit = 0;
1871 	}
1872 	/*
1873 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1874 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1875 	 * the dirty throttling and livelock other long-run dirtiers.
1876 	 */
1877 	p = this_cpu_ptr(&dirty_throttle_leaks);
1878 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1879 		unsigned long nr_pages_dirtied;
1880 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1881 		*p -= nr_pages_dirtied;
1882 		current->nr_dirtied += nr_pages_dirtied;
1883 	}
1884 	preempt_enable();
1885 
1886 	if (unlikely(current->nr_dirtied >= ratelimit))
1887 		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1888 
1889 	wb_put(wb);
1890 }
1891 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1892 
1893 /**
1894  * wb_over_bg_thresh - does @wb need to be written back?
1895  * @wb: bdi_writeback of interest
1896  *
1897  * Determines whether background writeback should keep writing @wb or it's
1898  * clean enough.  Returns %true if writeback should continue.
1899  */
1900 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1901 {
1902 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1903 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1904 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1905 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1906 						     &mdtc_stor : NULL;
1907 
1908 	/*
1909 	 * Similar to balance_dirty_pages() but ignores pages being written
1910 	 * as we're trying to decide whether to put more under writeback.
1911 	 */
1912 	gdtc->avail = global_dirtyable_memory();
1913 	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1914 		      global_page_state(NR_UNSTABLE_NFS);
1915 	domain_dirty_limits(gdtc);
1916 
1917 	if (gdtc->dirty > gdtc->bg_thresh)
1918 		return true;
1919 
1920 	if (wb_stat(wb, WB_RECLAIMABLE) >
1921 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1922 		return true;
1923 
1924 	if (mdtc) {
1925 		unsigned long filepages, headroom, writeback;
1926 
1927 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1928 				    &writeback);
1929 		mdtc_calc_avail(mdtc, filepages, headroom);
1930 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1931 
1932 		if (mdtc->dirty > mdtc->bg_thresh)
1933 			return true;
1934 
1935 		if (wb_stat(wb, WB_RECLAIMABLE) >
1936 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1937 			return true;
1938 	}
1939 
1940 	return false;
1941 }
1942 
1943 void throttle_vm_writeout(gfp_t gfp_mask)
1944 {
1945 	unsigned long background_thresh;
1946 	unsigned long dirty_thresh;
1947 
1948         for ( ; ; ) {
1949 		global_dirty_limits(&background_thresh, &dirty_thresh);
1950 		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1951 
1952                 /*
1953                  * Boost the allowable dirty threshold a bit for page
1954                  * allocators so they don't get DoS'ed by heavy writers
1955                  */
1956                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1957 
1958                 if (global_page_state(NR_UNSTABLE_NFS) +
1959 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1960                         	break;
1961                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1962 
1963 		/*
1964 		 * The caller might hold locks which can prevent IO completion
1965 		 * or progress in the filesystem.  So we cannot just sit here
1966 		 * waiting for IO to complete.
1967 		 */
1968 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1969 			break;
1970         }
1971 }
1972 
1973 /*
1974  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1975  */
1976 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1977 	void __user *buffer, size_t *length, loff_t *ppos)
1978 {
1979 	proc_dointvec(table, write, buffer, length, ppos);
1980 	return 0;
1981 }
1982 
1983 #ifdef CONFIG_BLOCK
1984 void laptop_mode_timer_fn(unsigned long data)
1985 {
1986 	struct request_queue *q = (struct request_queue *)data;
1987 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1988 		global_page_state(NR_UNSTABLE_NFS);
1989 	struct bdi_writeback *wb;
1990 
1991 	/*
1992 	 * We want to write everything out, not just down to the dirty
1993 	 * threshold
1994 	 */
1995 	if (!bdi_has_dirty_io(&q->backing_dev_info))
1996 		return;
1997 
1998 	rcu_read_lock();
1999 	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2000 		if (wb_has_dirty_io(wb))
2001 			wb_start_writeback(wb, nr_pages, true,
2002 					   WB_REASON_LAPTOP_TIMER);
2003 	rcu_read_unlock();
2004 }
2005 
2006 /*
2007  * We've spun up the disk and we're in laptop mode: schedule writeback
2008  * of all dirty data a few seconds from now.  If the flush is already scheduled
2009  * then push it back - the user is still using the disk.
2010  */
2011 void laptop_io_completion(struct backing_dev_info *info)
2012 {
2013 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2014 }
2015 
2016 /*
2017  * We're in laptop mode and we've just synced. The sync's writes will have
2018  * caused another writeback to be scheduled by laptop_io_completion.
2019  * Nothing needs to be written back anymore, so we unschedule the writeback.
2020  */
2021 void laptop_sync_completion(void)
2022 {
2023 	struct backing_dev_info *bdi;
2024 
2025 	rcu_read_lock();
2026 
2027 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2028 		del_timer(&bdi->laptop_mode_wb_timer);
2029 
2030 	rcu_read_unlock();
2031 }
2032 #endif
2033 
2034 /*
2035  * If ratelimit_pages is too high then we can get into dirty-data overload
2036  * if a large number of processes all perform writes at the same time.
2037  * If it is too low then SMP machines will call the (expensive)
2038  * get_writeback_state too often.
2039  *
2040  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2041  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2042  * thresholds.
2043  */
2044 
2045 void writeback_set_ratelimit(void)
2046 {
2047 	struct wb_domain *dom = &global_wb_domain;
2048 	unsigned long background_thresh;
2049 	unsigned long dirty_thresh;
2050 
2051 	global_dirty_limits(&background_thresh, &dirty_thresh);
2052 	dom->dirty_limit = dirty_thresh;
2053 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2054 	if (ratelimit_pages < 16)
2055 		ratelimit_pages = 16;
2056 }
2057 
2058 static int
2059 ratelimit_handler(struct notifier_block *self, unsigned long action,
2060 		  void *hcpu)
2061 {
2062 
2063 	switch (action & ~CPU_TASKS_FROZEN) {
2064 	case CPU_ONLINE:
2065 	case CPU_DEAD:
2066 		writeback_set_ratelimit();
2067 		return NOTIFY_OK;
2068 	default:
2069 		return NOTIFY_DONE;
2070 	}
2071 }
2072 
2073 static struct notifier_block ratelimit_nb = {
2074 	.notifier_call	= ratelimit_handler,
2075 	.next		= NULL,
2076 };
2077 
2078 /*
2079  * Called early on to tune the page writeback dirty limits.
2080  *
2081  * We used to scale dirty pages according to how total memory
2082  * related to pages that could be allocated for buffers (by
2083  * comparing nr_free_buffer_pages() to vm_total_pages.
2084  *
2085  * However, that was when we used "dirty_ratio" to scale with
2086  * all memory, and we don't do that any more. "dirty_ratio"
2087  * is now applied to total non-HIGHPAGE memory (by subtracting
2088  * totalhigh_pages from vm_total_pages), and as such we can't
2089  * get into the old insane situation any more where we had
2090  * large amounts of dirty pages compared to a small amount of
2091  * non-HIGHMEM memory.
2092  *
2093  * But we might still want to scale the dirty_ratio by how
2094  * much memory the box has..
2095  */
2096 void __init page_writeback_init(void)
2097 {
2098 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2099 
2100 	writeback_set_ratelimit();
2101 	register_cpu_notifier(&ratelimit_nb);
2102 }
2103 
2104 /**
2105  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2106  * @mapping: address space structure to write
2107  * @start: starting page index
2108  * @end: ending page index (inclusive)
2109  *
2110  * This function scans the page range from @start to @end (inclusive) and tags
2111  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2112  * that write_cache_pages (or whoever calls this function) will then use
2113  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2114  * used to avoid livelocking of writeback by a process steadily creating new
2115  * dirty pages in the file (thus it is important for this function to be quick
2116  * so that it can tag pages faster than a dirtying process can create them).
2117  */
2118 /*
2119  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2120  */
2121 void tag_pages_for_writeback(struct address_space *mapping,
2122 			     pgoff_t start, pgoff_t end)
2123 {
2124 #define WRITEBACK_TAG_BATCH 4096
2125 	unsigned long tagged;
2126 
2127 	do {
2128 		spin_lock_irq(&mapping->tree_lock);
2129 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2130 				&start, end, WRITEBACK_TAG_BATCH,
2131 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2132 		spin_unlock_irq(&mapping->tree_lock);
2133 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2134 		cond_resched();
2135 		/* We check 'start' to handle wrapping when end == ~0UL */
2136 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2137 }
2138 EXPORT_SYMBOL(tag_pages_for_writeback);
2139 
2140 /**
2141  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2142  * @mapping: address space structure to write
2143  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2144  * @writepage: function called for each page
2145  * @data: data passed to writepage function
2146  *
2147  * If a page is already under I/O, write_cache_pages() skips it, even
2148  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2149  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2150  * and msync() need to guarantee that all the data which was dirty at the time
2151  * the call was made get new I/O started against them.  If wbc->sync_mode is
2152  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2153  * existing IO to complete.
2154  *
2155  * To avoid livelocks (when other process dirties new pages), we first tag
2156  * pages which should be written back with TOWRITE tag and only then start
2157  * writing them. For data-integrity sync we have to be careful so that we do
2158  * not miss some pages (e.g., because some other process has cleared TOWRITE
2159  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2160  * by the process clearing the DIRTY tag (and submitting the page for IO).
2161  */
2162 int write_cache_pages(struct address_space *mapping,
2163 		      struct writeback_control *wbc, writepage_t writepage,
2164 		      void *data)
2165 {
2166 	int ret = 0;
2167 	int done = 0;
2168 	struct pagevec pvec;
2169 	int nr_pages;
2170 	pgoff_t uninitialized_var(writeback_index);
2171 	pgoff_t index;
2172 	pgoff_t end;		/* Inclusive */
2173 	pgoff_t done_index;
2174 	int cycled;
2175 	int range_whole = 0;
2176 	int tag;
2177 
2178 	pagevec_init(&pvec, 0);
2179 	if (wbc->range_cyclic) {
2180 		writeback_index = mapping->writeback_index; /* prev offset */
2181 		index = writeback_index;
2182 		if (index == 0)
2183 			cycled = 1;
2184 		else
2185 			cycled = 0;
2186 		end = -1;
2187 	} else {
2188 		index = wbc->range_start >> PAGE_SHIFT;
2189 		end = wbc->range_end >> PAGE_SHIFT;
2190 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191 			range_whole = 1;
2192 		cycled = 1; /* ignore range_cyclic tests */
2193 	}
2194 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2195 		tag = PAGECACHE_TAG_TOWRITE;
2196 	else
2197 		tag = PAGECACHE_TAG_DIRTY;
2198 retry:
2199 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2200 		tag_pages_for_writeback(mapping, index, end);
2201 	done_index = index;
2202 	while (!done && (index <= end)) {
2203 		int i;
2204 
2205 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2206 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2207 		if (nr_pages == 0)
2208 			break;
2209 
2210 		for (i = 0; i < nr_pages; i++) {
2211 			struct page *page = pvec.pages[i];
2212 
2213 			/*
2214 			 * At this point, the page may be truncated or
2215 			 * invalidated (changing page->mapping to NULL), or
2216 			 * even swizzled back from swapper_space to tmpfs file
2217 			 * mapping. However, page->index will not change
2218 			 * because we have a reference on the page.
2219 			 */
2220 			if (page->index > end) {
2221 				/*
2222 				 * can't be range_cyclic (1st pass) because
2223 				 * end == -1 in that case.
2224 				 */
2225 				done = 1;
2226 				break;
2227 			}
2228 
2229 			done_index = page->index;
2230 
2231 			lock_page(page);
2232 
2233 			/*
2234 			 * Page truncated or invalidated. We can freely skip it
2235 			 * then, even for data integrity operations: the page
2236 			 * has disappeared concurrently, so there could be no
2237 			 * real expectation of this data interity operation
2238 			 * even if there is now a new, dirty page at the same
2239 			 * pagecache address.
2240 			 */
2241 			if (unlikely(page->mapping != mapping)) {
2242 continue_unlock:
2243 				unlock_page(page);
2244 				continue;
2245 			}
2246 
2247 			if (!PageDirty(page)) {
2248 				/* someone wrote it for us */
2249 				goto continue_unlock;
2250 			}
2251 
2252 			if (PageWriteback(page)) {
2253 				if (wbc->sync_mode != WB_SYNC_NONE)
2254 					wait_on_page_writeback(page);
2255 				else
2256 					goto continue_unlock;
2257 			}
2258 
2259 			BUG_ON(PageWriteback(page));
2260 			if (!clear_page_dirty_for_io(page))
2261 				goto continue_unlock;
2262 
2263 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2264 			ret = (*writepage)(page, wbc, data);
2265 			if (unlikely(ret)) {
2266 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2267 					unlock_page(page);
2268 					ret = 0;
2269 				} else {
2270 					/*
2271 					 * done_index is set past this page,
2272 					 * so media errors will not choke
2273 					 * background writeout for the entire
2274 					 * file. This has consequences for
2275 					 * range_cyclic semantics (ie. it may
2276 					 * not be suitable for data integrity
2277 					 * writeout).
2278 					 */
2279 					done_index = page->index + 1;
2280 					done = 1;
2281 					break;
2282 				}
2283 			}
2284 
2285 			/*
2286 			 * We stop writing back only if we are not doing
2287 			 * integrity sync. In case of integrity sync we have to
2288 			 * keep going until we have written all the pages
2289 			 * we tagged for writeback prior to entering this loop.
2290 			 */
2291 			if (--wbc->nr_to_write <= 0 &&
2292 			    wbc->sync_mode == WB_SYNC_NONE) {
2293 				done = 1;
2294 				break;
2295 			}
2296 		}
2297 		pagevec_release(&pvec);
2298 		cond_resched();
2299 	}
2300 	if (!cycled && !done) {
2301 		/*
2302 		 * range_cyclic:
2303 		 * We hit the last page and there is more work to be done: wrap
2304 		 * back to the start of the file
2305 		 */
2306 		cycled = 1;
2307 		index = 0;
2308 		end = writeback_index - 1;
2309 		goto retry;
2310 	}
2311 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2312 		mapping->writeback_index = done_index;
2313 
2314 	return ret;
2315 }
2316 EXPORT_SYMBOL(write_cache_pages);
2317 
2318 /*
2319  * Function used by generic_writepages to call the real writepage
2320  * function and set the mapping flags on error
2321  */
2322 static int __writepage(struct page *page, struct writeback_control *wbc,
2323 		       void *data)
2324 {
2325 	struct address_space *mapping = data;
2326 	int ret = mapping->a_ops->writepage(page, wbc);
2327 	mapping_set_error(mapping, ret);
2328 	return ret;
2329 }
2330 
2331 /**
2332  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2333  * @mapping: address space structure to write
2334  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2335  *
2336  * This is a library function, which implements the writepages()
2337  * address_space_operation.
2338  */
2339 int generic_writepages(struct address_space *mapping,
2340 		       struct writeback_control *wbc)
2341 {
2342 	struct blk_plug plug;
2343 	int ret;
2344 
2345 	/* deal with chardevs and other special file */
2346 	if (!mapping->a_ops->writepage)
2347 		return 0;
2348 
2349 	blk_start_plug(&plug);
2350 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2351 	blk_finish_plug(&plug);
2352 	return ret;
2353 }
2354 
2355 EXPORT_SYMBOL(generic_writepages);
2356 
2357 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2358 {
2359 	int ret;
2360 
2361 	if (wbc->nr_to_write <= 0)
2362 		return 0;
2363 	if (mapping->a_ops->writepages)
2364 		ret = mapping->a_ops->writepages(mapping, wbc);
2365 	else
2366 		ret = generic_writepages(mapping, wbc);
2367 	return ret;
2368 }
2369 
2370 /**
2371  * write_one_page - write out a single page and optionally wait on I/O
2372  * @page: the page to write
2373  * @wait: if true, wait on writeout
2374  *
2375  * The page must be locked by the caller and will be unlocked upon return.
2376  *
2377  * write_one_page() returns a negative error code if I/O failed.
2378  */
2379 int write_one_page(struct page *page, int wait)
2380 {
2381 	struct address_space *mapping = page->mapping;
2382 	int ret = 0;
2383 	struct writeback_control wbc = {
2384 		.sync_mode = WB_SYNC_ALL,
2385 		.nr_to_write = 1,
2386 	};
2387 
2388 	BUG_ON(!PageLocked(page));
2389 
2390 	if (wait)
2391 		wait_on_page_writeback(page);
2392 
2393 	if (clear_page_dirty_for_io(page)) {
2394 		get_page(page);
2395 		ret = mapping->a_ops->writepage(page, &wbc);
2396 		if (ret == 0 && wait) {
2397 			wait_on_page_writeback(page);
2398 			if (PageError(page))
2399 				ret = -EIO;
2400 		}
2401 		put_page(page);
2402 	} else {
2403 		unlock_page(page);
2404 	}
2405 	return ret;
2406 }
2407 EXPORT_SYMBOL(write_one_page);
2408 
2409 /*
2410  * For address_spaces which do not use buffers nor write back.
2411  */
2412 int __set_page_dirty_no_writeback(struct page *page)
2413 {
2414 	if (!PageDirty(page))
2415 		return !TestSetPageDirty(page);
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Helper function for set_page_dirty family.
2421  *
2422  * Caller must hold lock_page_memcg().
2423  *
2424  * NOTE: This relies on being atomic wrt interrupts.
2425  */
2426 void account_page_dirtied(struct page *page, struct address_space *mapping)
2427 {
2428 	struct inode *inode = mapping->host;
2429 
2430 	trace_writeback_dirty_page(page, mapping);
2431 
2432 	if (mapping_cap_account_dirty(mapping)) {
2433 		struct bdi_writeback *wb;
2434 
2435 		inode_attach_wb(inode, page);
2436 		wb = inode_to_wb(inode);
2437 
2438 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2439 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2440 		__inc_zone_page_state(page, NR_DIRTIED);
2441 		__inc_wb_stat(wb, WB_RECLAIMABLE);
2442 		__inc_wb_stat(wb, WB_DIRTIED);
2443 		task_io_account_write(PAGE_SIZE);
2444 		current->nr_dirtied++;
2445 		this_cpu_inc(bdp_ratelimits);
2446 	}
2447 }
2448 EXPORT_SYMBOL(account_page_dirtied);
2449 
2450 /*
2451  * Helper function for deaccounting dirty page without writeback.
2452  *
2453  * Caller must hold lock_page_memcg().
2454  */
2455 void account_page_cleaned(struct page *page, struct address_space *mapping,
2456 			  struct bdi_writeback *wb)
2457 {
2458 	if (mapping_cap_account_dirty(mapping)) {
2459 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2460 		dec_zone_page_state(page, NR_FILE_DIRTY);
2461 		dec_wb_stat(wb, WB_RECLAIMABLE);
2462 		task_io_account_cancelled_write(PAGE_SIZE);
2463 	}
2464 }
2465 
2466 /*
2467  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2468  * its radix tree.
2469  *
2470  * This is also used when a single buffer is being dirtied: we want to set the
2471  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2472  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2473  *
2474  * The caller must ensure this doesn't race with truncation.  Most will simply
2475  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2476  * the pte lock held, which also locks out truncation.
2477  */
2478 int __set_page_dirty_nobuffers(struct page *page)
2479 {
2480 	lock_page_memcg(page);
2481 	if (!TestSetPageDirty(page)) {
2482 		struct address_space *mapping = page_mapping(page);
2483 		unsigned long flags;
2484 
2485 		if (!mapping) {
2486 			unlock_page_memcg(page);
2487 			return 1;
2488 		}
2489 
2490 		spin_lock_irqsave(&mapping->tree_lock, flags);
2491 		BUG_ON(page_mapping(page) != mapping);
2492 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2493 		account_page_dirtied(page, mapping);
2494 		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2495 				   PAGECACHE_TAG_DIRTY);
2496 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2497 		unlock_page_memcg(page);
2498 
2499 		if (mapping->host) {
2500 			/* !PageAnon && !swapper_space */
2501 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2502 		}
2503 		return 1;
2504 	}
2505 	unlock_page_memcg(page);
2506 	return 0;
2507 }
2508 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2509 
2510 /*
2511  * Call this whenever redirtying a page, to de-account the dirty counters
2512  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2513  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2514  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2515  * control.
2516  */
2517 void account_page_redirty(struct page *page)
2518 {
2519 	struct address_space *mapping = page->mapping;
2520 
2521 	if (mapping && mapping_cap_account_dirty(mapping)) {
2522 		struct inode *inode = mapping->host;
2523 		struct bdi_writeback *wb;
2524 		bool locked;
2525 
2526 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2527 		current->nr_dirtied--;
2528 		dec_zone_page_state(page, NR_DIRTIED);
2529 		dec_wb_stat(wb, WB_DIRTIED);
2530 		unlocked_inode_to_wb_end(inode, locked);
2531 	}
2532 }
2533 EXPORT_SYMBOL(account_page_redirty);
2534 
2535 /*
2536  * When a writepage implementation decides that it doesn't want to write this
2537  * page for some reason, it should redirty the locked page via
2538  * redirty_page_for_writepage() and it should then unlock the page and return 0
2539  */
2540 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2541 {
2542 	int ret;
2543 
2544 	wbc->pages_skipped++;
2545 	ret = __set_page_dirty_nobuffers(page);
2546 	account_page_redirty(page);
2547 	return ret;
2548 }
2549 EXPORT_SYMBOL(redirty_page_for_writepage);
2550 
2551 /*
2552  * Dirty a page.
2553  *
2554  * For pages with a mapping this should be done under the page lock
2555  * for the benefit of asynchronous memory errors who prefer a consistent
2556  * dirty state. This rule can be broken in some special cases,
2557  * but should be better not to.
2558  *
2559  * If the mapping doesn't provide a set_page_dirty a_op, then
2560  * just fall through and assume that it wants buffer_heads.
2561  */
2562 int set_page_dirty(struct page *page)
2563 {
2564 	struct address_space *mapping = page_mapping(page);
2565 
2566 	if (likely(mapping)) {
2567 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2568 		/*
2569 		 * readahead/lru_deactivate_page could remain
2570 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2571 		 * About readahead, if the page is written, the flags would be
2572 		 * reset. So no problem.
2573 		 * About lru_deactivate_page, if the page is redirty, the flag
2574 		 * will be reset. So no problem. but if the page is used by readahead
2575 		 * it will confuse readahead and make it restart the size rampup
2576 		 * process. But it's a trivial problem.
2577 		 */
2578 		if (PageReclaim(page))
2579 			ClearPageReclaim(page);
2580 #ifdef CONFIG_BLOCK
2581 		if (!spd)
2582 			spd = __set_page_dirty_buffers;
2583 #endif
2584 		return (*spd)(page);
2585 	}
2586 	if (!PageDirty(page)) {
2587 		if (!TestSetPageDirty(page))
2588 			return 1;
2589 	}
2590 	return 0;
2591 }
2592 EXPORT_SYMBOL(set_page_dirty);
2593 
2594 /*
2595  * set_page_dirty() is racy if the caller has no reference against
2596  * page->mapping->host, and if the page is unlocked.  This is because another
2597  * CPU could truncate the page off the mapping and then free the mapping.
2598  *
2599  * Usually, the page _is_ locked, or the caller is a user-space process which
2600  * holds a reference on the inode by having an open file.
2601  *
2602  * In other cases, the page should be locked before running set_page_dirty().
2603  */
2604 int set_page_dirty_lock(struct page *page)
2605 {
2606 	int ret;
2607 
2608 	lock_page(page);
2609 	ret = set_page_dirty(page);
2610 	unlock_page(page);
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL(set_page_dirty_lock);
2614 
2615 /*
2616  * This cancels just the dirty bit on the kernel page itself, it does NOT
2617  * actually remove dirty bits on any mmap's that may be around. It also
2618  * leaves the page tagged dirty, so any sync activity will still find it on
2619  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2620  * look at the dirty bits in the VM.
2621  *
2622  * Doing this should *normally* only ever be done when a page is truncated,
2623  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2624  * this when it notices that somebody has cleaned out all the buffers on a
2625  * page without actually doing it through the VM. Can you say "ext3 is
2626  * horribly ugly"? Thought you could.
2627  */
2628 void cancel_dirty_page(struct page *page)
2629 {
2630 	struct address_space *mapping = page_mapping(page);
2631 
2632 	if (mapping_cap_account_dirty(mapping)) {
2633 		struct inode *inode = mapping->host;
2634 		struct bdi_writeback *wb;
2635 		bool locked;
2636 
2637 		lock_page_memcg(page);
2638 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2639 
2640 		if (TestClearPageDirty(page))
2641 			account_page_cleaned(page, mapping, wb);
2642 
2643 		unlocked_inode_to_wb_end(inode, locked);
2644 		unlock_page_memcg(page);
2645 	} else {
2646 		ClearPageDirty(page);
2647 	}
2648 }
2649 EXPORT_SYMBOL(cancel_dirty_page);
2650 
2651 /*
2652  * Clear a page's dirty flag, while caring for dirty memory accounting.
2653  * Returns true if the page was previously dirty.
2654  *
2655  * This is for preparing to put the page under writeout.  We leave the page
2656  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2657  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2658  * implementation will run either set_page_writeback() or set_page_dirty(),
2659  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2660  * back into sync.
2661  *
2662  * This incoherency between the page's dirty flag and radix-tree tag is
2663  * unfortunate, but it only exists while the page is locked.
2664  */
2665 int clear_page_dirty_for_io(struct page *page)
2666 {
2667 	struct address_space *mapping = page_mapping(page);
2668 	int ret = 0;
2669 
2670 	BUG_ON(!PageLocked(page));
2671 
2672 	if (mapping && mapping_cap_account_dirty(mapping)) {
2673 		struct inode *inode = mapping->host;
2674 		struct bdi_writeback *wb;
2675 		bool locked;
2676 
2677 		/*
2678 		 * Yes, Virginia, this is indeed insane.
2679 		 *
2680 		 * We use this sequence to make sure that
2681 		 *  (a) we account for dirty stats properly
2682 		 *  (b) we tell the low-level filesystem to
2683 		 *      mark the whole page dirty if it was
2684 		 *      dirty in a pagetable. Only to then
2685 		 *  (c) clean the page again and return 1 to
2686 		 *      cause the writeback.
2687 		 *
2688 		 * This way we avoid all nasty races with the
2689 		 * dirty bit in multiple places and clearing
2690 		 * them concurrently from different threads.
2691 		 *
2692 		 * Note! Normally the "set_page_dirty(page)"
2693 		 * has no effect on the actual dirty bit - since
2694 		 * that will already usually be set. But we
2695 		 * need the side effects, and it can help us
2696 		 * avoid races.
2697 		 *
2698 		 * We basically use the page "master dirty bit"
2699 		 * as a serialization point for all the different
2700 		 * threads doing their things.
2701 		 */
2702 		if (page_mkclean(page))
2703 			set_page_dirty(page);
2704 		/*
2705 		 * We carefully synchronise fault handlers against
2706 		 * installing a dirty pte and marking the page dirty
2707 		 * at this point.  We do this by having them hold the
2708 		 * page lock while dirtying the page, and pages are
2709 		 * always locked coming in here, so we get the desired
2710 		 * exclusion.
2711 		 */
2712 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2713 		if (TestClearPageDirty(page)) {
2714 			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2715 			dec_zone_page_state(page, NR_FILE_DIRTY);
2716 			dec_wb_stat(wb, WB_RECLAIMABLE);
2717 			ret = 1;
2718 		}
2719 		unlocked_inode_to_wb_end(inode, locked);
2720 		return ret;
2721 	}
2722 	return TestClearPageDirty(page);
2723 }
2724 EXPORT_SYMBOL(clear_page_dirty_for_io);
2725 
2726 int test_clear_page_writeback(struct page *page)
2727 {
2728 	struct address_space *mapping = page_mapping(page);
2729 	int ret;
2730 
2731 	lock_page_memcg(page);
2732 	if (mapping) {
2733 		struct inode *inode = mapping->host;
2734 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2735 		unsigned long flags;
2736 
2737 		spin_lock_irqsave(&mapping->tree_lock, flags);
2738 		ret = TestClearPageWriteback(page);
2739 		if (ret) {
2740 			radix_tree_tag_clear(&mapping->page_tree,
2741 						page_index(page),
2742 						PAGECACHE_TAG_WRITEBACK);
2743 			if (bdi_cap_account_writeback(bdi)) {
2744 				struct bdi_writeback *wb = inode_to_wb(inode);
2745 
2746 				__dec_wb_stat(wb, WB_WRITEBACK);
2747 				__wb_writeout_inc(wb);
2748 			}
2749 		}
2750 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2751 	} else {
2752 		ret = TestClearPageWriteback(page);
2753 	}
2754 	if (ret) {
2755 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2756 		dec_zone_page_state(page, NR_WRITEBACK);
2757 		inc_zone_page_state(page, NR_WRITTEN);
2758 	}
2759 	unlock_page_memcg(page);
2760 	return ret;
2761 }
2762 
2763 int __test_set_page_writeback(struct page *page, bool keep_write)
2764 {
2765 	struct address_space *mapping = page_mapping(page);
2766 	int ret;
2767 
2768 	lock_page_memcg(page);
2769 	if (mapping) {
2770 		struct inode *inode = mapping->host;
2771 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2772 		unsigned long flags;
2773 
2774 		spin_lock_irqsave(&mapping->tree_lock, flags);
2775 		ret = TestSetPageWriteback(page);
2776 		if (!ret) {
2777 			radix_tree_tag_set(&mapping->page_tree,
2778 						page_index(page),
2779 						PAGECACHE_TAG_WRITEBACK);
2780 			if (bdi_cap_account_writeback(bdi))
2781 				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2782 		}
2783 		if (!PageDirty(page))
2784 			radix_tree_tag_clear(&mapping->page_tree,
2785 						page_index(page),
2786 						PAGECACHE_TAG_DIRTY);
2787 		if (!keep_write)
2788 			radix_tree_tag_clear(&mapping->page_tree,
2789 						page_index(page),
2790 						PAGECACHE_TAG_TOWRITE);
2791 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2792 	} else {
2793 		ret = TestSetPageWriteback(page);
2794 	}
2795 	if (!ret) {
2796 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2797 		inc_zone_page_state(page, NR_WRITEBACK);
2798 	}
2799 	unlock_page_memcg(page);
2800 	return ret;
2801 
2802 }
2803 EXPORT_SYMBOL(__test_set_page_writeback);
2804 
2805 /*
2806  * Return true if any of the pages in the mapping are marked with the
2807  * passed tag.
2808  */
2809 int mapping_tagged(struct address_space *mapping, int tag)
2810 {
2811 	return radix_tree_tagged(&mapping->page_tree, tag);
2812 }
2813 EXPORT_SYMBOL(mapping_tagged);
2814 
2815 /**
2816  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2817  * @page:	The page to wait on.
2818  *
2819  * This function determines if the given page is related to a backing device
2820  * that requires page contents to be held stable during writeback.  If so, then
2821  * it will wait for any pending writeback to complete.
2822  */
2823 void wait_for_stable_page(struct page *page)
2824 {
2825 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2826 		wait_on_page_writeback(page);
2827 }
2828 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2829