1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 struct wb_domain global_wb_domain; 126 127 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 128 struct dirty_throttle_control { 129 #ifdef CONFIG_CGROUP_WRITEBACK 130 struct wb_domain *dom; 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 132 #endif 133 struct bdi_writeback *wb; 134 struct fprop_local_percpu *wb_completions; 135 136 unsigned long avail; /* dirtyable */ 137 unsigned long dirty; /* file_dirty + write + nfs */ 138 unsigned long thresh; /* dirty threshold */ 139 unsigned long bg_thresh; /* dirty background threshold */ 140 141 unsigned long wb_dirty; /* per-wb counterparts */ 142 unsigned long wb_thresh; 143 unsigned long wb_bg_thresh; 144 145 unsigned long pos_ratio; 146 }; 147 148 /* 149 * Length of period for aging writeout fractions of bdis. This is an 150 * arbitrarily chosen number. The longer the period, the slower fractions will 151 * reflect changes in current writeout rate. 152 */ 153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 154 155 #ifdef CONFIG_CGROUP_WRITEBACK 156 157 #define GDTC_INIT(__wb) .wb = (__wb), \ 158 .dom = &global_wb_domain, \ 159 .wb_completions = &(__wb)->completions 160 161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 162 163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 164 .dom = mem_cgroup_wb_domain(__wb), \ 165 .wb_completions = &(__wb)->memcg_completions, \ 166 .gdtc = __gdtc 167 168 static bool mdtc_valid(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 174 { 175 return dtc->dom; 176 } 177 178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 179 { 180 return mdtc->gdtc; 181 } 182 183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 184 { 185 return &wb->memcg_completions; 186 } 187 188 static void wb_min_max_ratio(struct bdi_writeback *wb, 189 unsigned long *minp, unsigned long *maxp) 190 { 191 unsigned long this_bw = wb->avg_write_bandwidth; 192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 193 unsigned long long min = wb->bdi->min_ratio; 194 unsigned long long max = wb->bdi->max_ratio; 195 196 /* 197 * @wb may already be clean by the time control reaches here and 198 * the total may not include its bw. 199 */ 200 if (this_bw < tot_bw) { 201 if (min) { 202 min *= this_bw; 203 do_div(min, tot_bw); 204 } 205 if (max < 100) { 206 max *= this_bw; 207 do_div(max, tot_bw); 208 } 209 } 210 211 *minp = min; 212 *maxp = max; 213 } 214 215 #else /* CONFIG_CGROUP_WRITEBACK */ 216 217 #define GDTC_INIT(__wb) .wb = (__wb), \ 218 .wb_completions = &(__wb)->completions 219 #define GDTC_INIT_NO_WB 220 #define MDTC_INIT(__wb, __gdtc) 221 222 static bool mdtc_valid(struct dirty_throttle_control *dtc) 223 { 224 return false; 225 } 226 227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 228 { 229 return &global_wb_domain; 230 } 231 232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 233 { 234 return NULL; 235 } 236 237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 238 { 239 return NULL; 240 } 241 242 static void wb_min_max_ratio(struct bdi_writeback *wb, 243 unsigned long *minp, unsigned long *maxp) 244 { 245 *minp = wb->bdi->min_ratio; 246 *maxp = wb->bdi->max_ratio; 247 } 248 249 #endif /* CONFIG_CGROUP_WRITEBACK */ 250 251 /* 252 * In a memory zone, there is a certain amount of pages we consider 253 * available for the page cache, which is essentially the number of 254 * free and reclaimable pages, minus some zone reserves to protect 255 * lowmem and the ability to uphold the zone's watermarks without 256 * requiring writeback. 257 * 258 * This number of dirtyable pages is the base value of which the 259 * user-configurable dirty ratio is the effictive number of pages that 260 * are allowed to be actually dirtied. Per individual zone, or 261 * globally by using the sum of dirtyable pages over all zones. 262 * 263 * Because the user is allowed to specify the dirty limit globally as 264 * absolute number of bytes, calculating the per-zone dirty limit can 265 * require translating the configured limit into a percentage of 266 * global dirtyable memory first. 267 */ 268 269 /** 270 * zone_dirtyable_memory - number of dirtyable pages in a zone 271 * @zone: the zone 272 * 273 * Returns the zone's number of pages potentially available for dirty 274 * page cache. This is the base value for the per-zone dirty limits. 275 */ 276 static unsigned long zone_dirtyable_memory(struct zone *zone) 277 { 278 unsigned long nr_pages; 279 280 nr_pages = zone_page_state(zone, NR_FREE_PAGES); 281 /* 282 * Pages reserved for the kernel should not be considered 283 * dirtyable, to prevent a situation where reclaim has to 284 * clean pages in order to balance the zones. 285 */ 286 nr_pages -= min(nr_pages, zone->totalreserve_pages); 287 288 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); 289 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); 290 291 return nr_pages; 292 } 293 294 static unsigned long highmem_dirtyable_memory(unsigned long total) 295 { 296 #ifdef CONFIG_HIGHMEM 297 int node; 298 unsigned long x = 0; 299 int i; 300 301 for_each_node_state(node, N_HIGH_MEMORY) { 302 for (i = 0; i < MAX_NR_ZONES; i++) { 303 struct zone *z = &NODE_DATA(node)->node_zones[i]; 304 305 if (is_highmem(z)) 306 x += zone_dirtyable_memory(z); 307 } 308 } 309 /* 310 * Unreclaimable memory (kernel memory or anonymous memory 311 * without swap) can bring down the dirtyable pages below 312 * the zone's dirty balance reserve and the above calculation 313 * will underflow. However we still want to add in nodes 314 * which are below threshold (negative values) to get a more 315 * accurate calculation but make sure that the total never 316 * underflows. 317 */ 318 if ((long)x < 0) 319 x = 0; 320 321 /* 322 * Make sure that the number of highmem pages is never larger 323 * than the number of the total dirtyable memory. This can only 324 * occur in very strange VM situations but we want to make sure 325 * that this does not occur. 326 */ 327 return min(x, total); 328 #else 329 return 0; 330 #endif 331 } 332 333 /** 334 * global_dirtyable_memory - number of globally dirtyable pages 335 * 336 * Returns the global number of pages potentially available for dirty 337 * page cache. This is the base value for the global dirty limits. 338 */ 339 static unsigned long global_dirtyable_memory(void) 340 { 341 unsigned long x; 342 343 x = global_page_state(NR_FREE_PAGES); 344 /* 345 * Pages reserved for the kernel should not be considered 346 * dirtyable, to prevent a situation where reclaim has to 347 * clean pages in order to balance the zones. 348 */ 349 x -= min(x, totalreserve_pages); 350 351 x += global_page_state(NR_INACTIVE_FILE); 352 x += global_page_state(NR_ACTIVE_FILE); 353 354 if (!vm_highmem_is_dirtyable) 355 x -= highmem_dirtyable_memory(x); 356 357 return x + 1; /* Ensure that we never return 0 */ 358 } 359 360 /** 361 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 362 * @dtc: dirty_throttle_control of interest 363 * 364 * Calculate @dtc->thresh and ->bg_thresh considering 365 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 366 * must ensure that @dtc->avail is set before calling this function. The 367 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 368 * real-time tasks. 369 */ 370 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 371 { 372 const unsigned long available_memory = dtc->avail; 373 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 374 unsigned long bytes = vm_dirty_bytes; 375 unsigned long bg_bytes = dirty_background_bytes; 376 /* convert ratios to per-PAGE_SIZE for higher precision */ 377 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 378 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 379 unsigned long thresh; 380 unsigned long bg_thresh; 381 struct task_struct *tsk; 382 383 /* gdtc is !NULL iff @dtc is for memcg domain */ 384 if (gdtc) { 385 unsigned long global_avail = gdtc->avail; 386 387 /* 388 * The byte settings can't be applied directly to memcg 389 * domains. Convert them to ratios by scaling against 390 * globally available memory. As the ratios are in 391 * per-PAGE_SIZE, they can be obtained by dividing bytes by 392 * number of pages. 393 */ 394 if (bytes) 395 ratio = min(DIV_ROUND_UP(bytes, global_avail), 396 PAGE_SIZE); 397 if (bg_bytes) 398 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 399 PAGE_SIZE); 400 bytes = bg_bytes = 0; 401 } 402 403 if (bytes) 404 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 405 else 406 thresh = (ratio * available_memory) / PAGE_SIZE; 407 408 if (bg_bytes) 409 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 410 else 411 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 412 413 if (bg_thresh >= thresh) 414 bg_thresh = thresh / 2; 415 tsk = current; 416 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 417 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 418 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 419 } 420 dtc->thresh = thresh; 421 dtc->bg_thresh = bg_thresh; 422 423 /* we should eventually report the domain in the TP */ 424 if (!gdtc) 425 trace_global_dirty_state(bg_thresh, thresh); 426 } 427 428 /** 429 * global_dirty_limits - background-writeback and dirty-throttling thresholds 430 * @pbackground: out parameter for bg_thresh 431 * @pdirty: out parameter for thresh 432 * 433 * Calculate bg_thresh and thresh for global_wb_domain. See 434 * domain_dirty_limits() for details. 435 */ 436 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 437 { 438 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 439 440 gdtc.avail = global_dirtyable_memory(); 441 domain_dirty_limits(&gdtc); 442 443 *pbackground = gdtc.bg_thresh; 444 *pdirty = gdtc.thresh; 445 } 446 447 /** 448 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 449 * @zone: the zone 450 * 451 * Returns the maximum number of dirty pages allowed in a zone, based 452 * on the zone's dirtyable memory. 453 */ 454 static unsigned long zone_dirty_limit(struct zone *zone) 455 { 456 unsigned long zone_memory = zone_dirtyable_memory(zone); 457 struct task_struct *tsk = current; 458 unsigned long dirty; 459 460 if (vm_dirty_bytes) 461 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 462 zone_memory / global_dirtyable_memory(); 463 else 464 dirty = vm_dirty_ratio * zone_memory / 100; 465 466 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 467 dirty += dirty / 4; 468 469 return dirty; 470 } 471 472 /** 473 * zone_dirty_ok - tells whether a zone is within its dirty limits 474 * @zone: the zone to check 475 * 476 * Returns %true when the dirty pages in @zone are within the zone's 477 * dirty limit, %false if the limit is exceeded. 478 */ 479 bool zone_dirty_ok(struct zone *zone) 480 { 481 unsigned long limit = zone_dirty_limit(zone); 482 483 return zone_page_state(zone, NR_FILE_DIRTY) + 484 zone_page_state(zone, NR_UNSTABLE_NFS) + 485 zone_page_state(zone, NR_WRITEBACK) <= limit; 486 } 487 488 int dirty_background_ratio_handler(struct ctl_table *table, int write, 489 void __user *buffer, size_t *lenp, 490 loff_t *ppos) 491 { 492 int ret; 493 494 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 495 if (ret == 0 && write) 496 dirty_background_bytes = 0; 497 return ret; 498 } 499 500 int dirty_background_bytes_handler(struct ctl_table *table, int write, 501 void __user *buffer, size_t *lenp, 502 loff_t *ppos) 503 { 504 int ret; 505 506 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 507 if (ret == 0 && write) 508 dirty_background_ratio = 0; 509 return ret; 510 } 511 512 int dirty_ratio_handler(struct ctl_table *table, int write, 513 void __user *buffer, size_t *lenp, 514 loff_t *ppos) 515 { 516 int old_ratio = vm_dirty_ratio; 517 int ret; 518 519 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 520 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 521 writeback_set_ratelimit(); 522 vm_dirty_bytes = 0; 523 } 524 return ret; 525 } 526 527 int dirty_bytes_handler(struct ctl_table *table, int write, 528 void __user *buffer, size_t *lenp, 529 loff_t *ppos) 530 { 531 unsigned long old_bytes = vm_dirty_bytes; 532 int ret; 533 534 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 535 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 536 writeback_set_ratelimit(); 537 vm_dirty_ratio = 0; 538 } 539 return ret; 540 } 541 542 static unsigned long wp_next_time(unsigned long cur_time) 543 { 544 cur_time += VM_COMPLETIONS_PERIOD_LEN; 545 /* 0 has a special meaning... */ 546 if (!cur_time) 547 return 1; 548 return cur_time; 549 } 550 551 static void wb_domain_writeout_inc(struct wb_domain *dom, 552 struct fprop_local_percpu *completions, 553 unsigned int max_prop_frac) 554 { 555 __fprop_inc_percpu_max(&dom->completions, completions, 556 max_prop_frac); 557 /* First event after period switching was turned off? */ 558 if (!unlikely(dom->period_time)) { 559 /* 560 * We can race with other __bdi_writeout_inc calls here but 561 * it does not cause any harm since the resulting time when 562 * timer will fire and what is in writeout_period_time will be 563 * roughly the same. 564 */ 565 dom->period_time = wp_next_time(jiffies); 566 mod_timer(&dom->period_timer, dom->period_time); 567 } 568 } 569 570 /* 571 * Increment @wb's writeout completion count and the global writeout 572 * completion count. Called from test_clear_page_writeback(). 573 */ 574 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 575 { 576 struct wb_domain *cgdom; 577 578 __inc_wb_stat(wb, WB_WRITTEN); 579 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 580 wb->bdi->max_prop_frac); 581 582 cgdom = mem_cgroup_wb_domain(wb); 583 if (cgdom) 584 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 585 wb->bdi->max_prop_frac); 586 } 587 588 void wb_writeout_inc(struct bdi_writeback *wb) 589 { 590 unsigned long flags; 591 592 local_irq_save(flags); 593 __wb_writeout_inc(wb); 594 local_irq_restore(flags); 595 } 596 EXPORT_SYMBOL_GPL(wb_writeout_inc); 597 598 /* 599 * On idle system, we can be called long after we scheduled because we use 600 * deferred timers so count with missed periods. 601 */ 602 static void writeout_period(unsigned long t) 603 { 604 struct wb_domain *dom = (void *)t; 605 int miss_periods = (jiffies - dom->period_time) / 606 VM_COMPLETIONS_PERIOD_LEN; 607 608 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 609 dom->period_time = wp_next_time(dom->period_time + 610 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 611 mod_timer(&dom->period_timer, dom->period_time); 612 } else { 613 /* 614 * Aging has zeroed all fractions. Stop wasting CPU on period 615 * updates. 616 */ 617 dom->period_time = 0; 618 } 619 } 620 621 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 622 { 623 memset(dom, 0, sizeof(*dom)); 624 625 spin_lock_init(&dom->lock); 626 627 init_timer_deferrable(&dom->period_timer); 628 dom->period_timer.function = writeout_period; 629 dom->period_timer.data = (unsigned long)dom; 630 631 dom->dirty_limit_tstamp = jiffies; 632 633 return fprop_global_init(&dom->completions, gfp); 634 } 635 636 #ifdef CONFIG_CGROUP_WRITEBACK 637 void wb_domain_exit(struct wb_domain *dom) 638 { 639 del_timer_sync(&dom->period_timer); 640 fprop_global_destroy(&dom->completions); 641 } 642 #endif 643 644 /* 645 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 646 * registered backing devices, which, for obvious reasons, can not 647 * exceed 100%. 648 */ 649 static unsigned int bdi_min_ratio; 650 651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 652 { 653 int ret = 0; 654 655 spin_lock_bh(&bdi_lock); 656 if (min_ratio > bdi->max_ratio) { 657 ret = -EINVAL; 658 } else { 659 min_ratio -= bdi->min_ratio; 660 if (bdi_min_ratio + min_ratio < 100) { 661 bdi_min_ratio += min_ratio; 662 bdi->min_ratio += min_ratio; 663 } else { 664 ret = -EINVAL; 665 } 666 } 667 spin_unlock_bh(&bdi_lock); 668 669 return ret; 670 } 671 672 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 673 { 674 int ret = 0; 675 676 if (max_ratio > 100) 677 return -EINVAL; 678 679 spin_lock_bh(&bdi_lock); 680 if (bdi->min_ratio > max_ratio) { 681 ret = -EINVAL; 682 } else { 683 bdi->max_ratio = max_ratio; 684 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 685 } 686 spin_unlock_bh(&bdi_lock); 687 688 return ret; 689 } 690 EXPORT_SYMBOL(bdi_set_max_ratio); 691 692 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 693 unsigned long bg_thresh) 694 { 695 return (thresh + bg_thresh) / 2; 696 } 697 698 static unsigned long hard_dirty_limit(struct wb_domain *dom, 699 unsigned long thresh) 700 { 701 return max(thresh, dom->dirty_limit); 702 } 703 704 /* 705 * Memory which can be further allocated to a memcg domain is capped by 706 * system-wide clean memory excluding the amount being used in the domain. 707 */ 708 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 709 unsigned long filepages, unsigned long headroom) 710 { 711 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 712 unsigned long clean = filepages - min(filepages, mdtc->dirty); 713 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 714 unsigned long other_clean = global_clean - min(global_clean, clean); 715 716 mdtc->avail = filepages + min(headroom, other_clean); 717 } 718 719 /** 720 * __wb_calc_thresh - @wb's share of dirty throttling threshold 721 * @dtc: dirty_throttle_context of interest 722 * 723 * Returns @wb's dirty limit in pages. The term "dirty" in the context of 724 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 725 * 726 * Note that balance_dirty_pages() will only seriously take it as a hard limit 727 * when sleeping max_pause per page is not enough to keep the dirty pages under 728 * control. For example, when the device is completely stalled due to some error 729 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 730 * In the other normal situations, it acts more gently by throttling the tasks 731 * more (rather than completely block them) when the wb dirty pages go high. 732 * 733 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 734 * - starving fast devices 735 * - piling up dirty pages (that will take long time to sync) on slow devices 736 * 737 * The wb's share of dirty limit will be adapting to its throughput and 738 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 739 */ 740 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 741 { 742 struct wb_domain *dom = dtc_dom(dtc); 743 unsigned long thresh = dtc->thresh; 744 u64 wb_thresh; 745 long numerator, denominator; 746 unsigned long wb_min_ratio, wb_max_ratio; 747 748 /* 749 * Calculate this BDI's share of the thresh ratio. 750 */ 751 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 752 &numerator, &denominator); 753 754 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 755 wb_thresh *= numerator; 756 do_div(wb_thresh, denominator); 757 758 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 759 760 wb_thresh += (thresh * wb_min_ratio) / 100; 761 if (wb_thresh > (thresh * wb_max_ratio) / 100) 762 wb_thresh = thresh * wb_max_ratio / 100; 763 764 return wb_thresh; 765 } 766 767 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 768 { 769 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 770 .thresh = thresh }; 771 return __wb_calc_thresh(&gdtc); 772 } 773 774 /* 775 * setpoint - dirty 3 776 * f(dirty) := 1.0 + (----------------) 777 * limit - setpoint 778 * 779 * it's a 3rd order polynomial that subjects to 780 * 781 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 782 * (2) f(setpoint) = 1.0 => the balance point 783 * (3) f(limit) = 0 => the hard limit 784 * (4) df/dx <= 0 => negative feedback control 785 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 786 * => fast response on large errors; small oscillation near setpoint 787 */ 788 static long long pos_ratio_polynom(unsigned long setpoint, 789 unsigned long dirty, 790 unsigned long limit) 791 { 792 long long pos_ratio; 793 long x; 794 795 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 796 (limit - setpoint) | 1); 797 pos_ratio = x; 798 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 799 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 800 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 801 802 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 803 } 804 805 /* 806 * Dirty position control. 807 * 808 * (o) global/bdi setpoints 809 * 810 * We want the dirty pages be balanced around the global/wb setpoints. 811 * When the number of dirty pages is higher/lower than the setpoint, the 812 * dirty position control ratio (and hence task dirty ratelimit) will be 813 * decreased/increased to bring the dirty pages back to the setpoint. 814 * 815 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 816 * 817 * if (dirty < setpoint) scale up pos_ratio 818 * if (dirty > setpoint) scale down pos_ratio 819 * 820 * if (wb_dirty < wb_setpoint) scale up pos_ratio 821 * if (wb_dirty > wb_setpoint) scale down pos_ratio 822 * 823 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 824 * 825 * (o) global control line 826 * 827 * ^ pos_ratio 828 * | 829 * | |<===== global dirty control scope ======>| 830 * 2.0 .............* 831 * | .* 832 * | . * 833 * | . * 834 * | . * 835 * | . * 836 * | . * 837 * 1.0 ................................* 838 * | . . * 839 * | . . * 840 * | . . * 841 * | . . * 842 * | . . * 843 * 0 +------------.------------------.----------------------*-------------> 844 * freerun^ setpoint^ limit^ dirty pages 845 * 846 * (o) wb control line 847 * 848 * ^ pos_ratio 849 * | 850 * | * 851 * | * 852 * | * 853 * | * 854 * | * |<=========== span ============>| 855 * 1.0 .......................* 856 * | . * 857 * | . * 858 * | . * 859 * | . * 860 * | . * 861 * | . * 862 * | . * 863 * | . * 864 * | . * 865 * | . * 866 * | . * 867 * 1/4 ...............................................* * * * * * * * * * * * 868 * | . . 869 * | . . 870 * | . . 871 * 0 +----------------------.-------------------------------.-------------> 872 * wb_setpoint^ x_intercept^ 873 * 874 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 875 * be smoothly throttled down to normal if it starts high in situations like 876 * - start writing to a slow SD card and a fast disk at the same time. The SD 877 * card's wb_dirty may rush to many times higher than wb_setpoint. 878 * - the wb dirty thresh drops quickly due to change of JBOD workload 879 */ 880 static void wb_position_ratio(struct dirty_throttle_control *dtc) 881 { 882 struct bdi_writeback *wb = dtc->wb; 883 unsigned long write_bw = wb->avg_write_bandwidth; 884 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 885 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 886 unsigned long wb_thresh = dtc->wb_thresh; 887 unsigned long x_intercept; 888 unsigned long setpoint; /* dirty pages' target balance point */ 889 unsigned long wb_setpoint; 890 unsigned long span; 891 long long pos_ratio; /* for scaling up/down the rate limit */ 892 long x; 893 894 dtc->pos_ratio = 0; 895 896 if (unlikely(dtc->dirty >= limit)) 897 return; 898 899 /* 900 * global setpoint 901 * 902 * See comment for pos_ratio_polynom(). 903 */ 904 setpoint = (freerun + limit) / 2; 905 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 906 907 /* 908 * The strictlimit feature is a tool preventing mistrusted filesystems 909 * from growing a large number of dirty pages before throttling. For 910 * such filesystems balance_dirty_pages always checks wb counters 911 * against wb limits. Even if global "nr_dirty" is under "freerun". 912 * This is especially important for fuse which sets bdi->max_ratio to 913 * 1% by default. Without strictlimit feature, fuse writeback may 914 * consume arbitrary amount of RAM because it is accounted in 915 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 916 * 917 * Here, in wb_position_ratio(), we calculate pos_ratio based on 918 * two values: wb_dirty and wb_thresh. Let's consider an example: 919 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 920 * limits are set by default to 10% and 20% (background and throttle). 921 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 922 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 923 * about ~6K pages (as the average of background and throttle wb 924 * limits). The 3rd order polynomial will provide positive feedback if 925 * wb_dirty is under wb_setpoint and vice versa. 926 * 927 * Note, that we cannot use global counters in these calculations 928 * because we want to throttle process writing to a strictlimit wb 929 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 930 * in the example above). 931 */ 932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 933 long long wb_pos_ratio; 934 935 if (dtc->wb_dirty < 8) { 936 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 937 2 << RATELIMIT_CALC_SHIFT); 938 return; 939 } 940 941 if (dtc->wb_dirty >= wb_thresh) 942 return; 943 944 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 945 dtc->wb_bg_thresh); 946 947 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 948 return; 949 950 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 951 wb_thresh); 952 953 /* 954 * Typically, for strictlimit case, wb_setpoint << setpoint 955 * and pos_ratio >> wb_pos_ratio. In the other words global 956 * state ("dirty") is not limiting factor and we have to 957 * make decision based on wb counters. But there is an 958 * important case when global pos_ratio should get precedence: 959 * global limits are exceeded (e.g. due to activities on other 960 * wb's) while given strictlimit wb is below limit. 961 * 962 * "pos_ratio * wb_pos_ratio" would work for the case above, 963 * but it would look too non-natural for the case of all 964 * activity in the system coming from a single strictlimit wb 965 * with bdi->max_ratio == 100%. 966 * 967 * Note that min() below somewhat changes the dynamics of the 968 * control system. Normally, pos_ratio value can be well over 3 969 * (when globally we are at freerun and wb is well below wb 970 * setpoint). Now the maximum pos_ratio in the same situation 971 * is 2. We might want to tweak this if we observe the control 972 * system is too slow to adapt. 973 */ 974 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 975 return; 976 } 977 978 /* 979 * We have computed basic pos_ratio above based on global situation. If 980 * the wb is over/under its share of dirty pages, we want to scale 981 * pos_ratio further down/up. That is done by the following mechanism. 982 */ 983 984 /* 985 * wb setpoint 986 * 987 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 988 * 989 * x_intercept - wb_dirty 990 * := -------------------------- 991 * x_intercept - wb_setpoint 992 * 993 * The main wb control line is a linear function that subjects to 994 * 995 * (1) f(wb_setpoint) = 1.0 996 * (2) k = - 1 / (8 * write_bw) (in single wb case) 997 * or equally: x_intercept = wb_setpoint + 8 * write_bw 998 * 999 * For single wb case, the dirty pages are observed to fluctuate 1000 * regularly within range 1001 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1002 * for various filesystems, where (2) can yield in a reasonable 12.5% 1003 * fluctuation range for pos_ratio. 1004 * 1005 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1006 * own size, so move the slope over accordingly and choose a slope that 1007 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1008 */ 1009 if (unlikely(wb_thresh > dtc->thresh)) 1010 wb_thresh = dtc->thresh; 1011 /* 1012 * It's very possible that wb_thresh is close to 0 not because the 1013 * device is slow, but that it has remained inactive for long time. 1014 * Honour such devices a reasonable good (hopefully IO efficient) 1015 * threshold, so that the occasional writes won't be blocked and active 1016 * writes can rampup the threshold quickly. 1017 */ 1018 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1019 /* 1020 * scale global setpoint to wb's: 1021 * wb_setpoint = setpoint * wb_thresh / thresh 1022 */ 1023 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1024 wb_setpoint = setpoint * (u64)x >> 16; 1025 /* 1026 * Use span=(8*write_bw) in single wb case as indicated by 1027 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1028 * 1029 * wb_thresh thresh - wb_thresh 1030 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1031 * thresh thresh 1032 */ 1033 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1034 x_intercept = wb_setpoint + span; 1035 1036 if (dtc->wb_dirty < x_intercept - span / 4) { 1037 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1038 (x_intercept - wb_setpoint) | 1); 1039 } else 1040 pos_ratio /= 4; 1041 1042 /* 1043 * wb reserve area, safeguard against dirty pool underrun and disk idle 1044 * It may push the desired control point of global dirty pages higher 1045 * than setpoint. 1046 */ 1047 x_intercept = wb_thresh / 2; 1048 if (dtc->wb_dirty < x_intercept) { 1049 if (dtc->wb_dirty > x_intercept / 8) 1050 pos_ratio = div_u64(pos_ratio * x_intercept, 1051 dtc->wb_dirty); 1052 else 1053 pos_ratio *= 8; 1054 } 1055 1056 dtc->pos_ratio = pos_ratio; 1057 } 1058 1059 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1060 unsigned long elapsed, 1061 unsigned long written) 1062 { 1063 const unsigned long period = roundup_pow_of_two(3 * HZ); 1064 unsigned long avg = wb->avg_write_bandwidth; 1065 unsigned long old = wb->write_bandwidth; 1066 u64 bw; 1067 1068 /* 1069 * bw = written * HZ / elapsed 1070 * 1071 * bw * elapsed + write_bandwidth * (period - elapsed) 1072 * write_bandwidth = --------------------------------------------------- 1073 * period 1074 * 1075 * @written may have decreased due to account_page_redirty(). 1076 * Avoid underflowing @bw calculation. 1077 */ 1078 bw = written - min(written, wb->written_stamp); 1079 bw *= HZ; 1080 if (unlikely(elapsed > period)) { 1081 do_div(bw, elapsed); 1082 avg = bw; 1083 goto out; 1084 } 1085 bw += (u64)wb->write_bandwidth * (period - elapsed); 1086 bw >>= ilog2(period); 1087 1088 /* 1089 * one more level of smoothing, for filtering out sudden spikes 1090 */ 1091 if (avg > old && old >= (unsigned long)bw) 1092 avg -= (avg - old) >> 3; 1093 1094 if (avg < old && old <= (unsigned long)bw) 1095 avg += (old - avg) >> 3; 1096 1097 out: 1098 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1099 avg = max(avg, 1LU); 1100 if (wb_has_dirty_io(wb)) { 1101 long delta = avg - wb->avg_write_bandwidth; 1102 WARN_ON_ONCE(atomic_long_add_return(delta, 1103 &wb->bdi->tot_write_bandwidth) <= 0); 1104 } 1105 wb->write_bandwidth = bw; 1106 wb->avg_write_bandwidth = avg; 1107 } 1108 1109 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1110 { 1111 struct wb_domain *dom = dtc_dom(dtc); 1112 unsigned long thresh = dtc->thresh; 1113 unsigned long limit = dom->dirty_limit; 1114 1115 /* 1116 * Follow up in one step. 1117 */ 1118 if (limit < thresh) { 1119 limit = thresh; 1120 goto update; 1121 } 1122 1123 /* 1124 * Follow down slowly. Use the higher one as the target, because thresh 1125 * may drop below dirty. This is exactly the reason to introduce 1126 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1127 */ 1128 thresh = max(thresh, dtc->dirty); 1129 if (limit > thresh) { 1130 limit -= (limit - thresh) >> 5; 1131 goto update; 1132 } 1133 return; 1134 update: 1135 dom->dirty_limit = limit; 1136 } 1137 1138 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1139 unsigned long now) 1140 { 1141 struct wb_domain *dom = dtc_dom(dtc); 1142 1143 /* 1144 * check locklessly first to optimize away locking for the most time 1145 */ 1146 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1147 return; 1148 1149 spin_lock(&dom->lock); 1150 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1151 update_dirty_limit(dtc); 1152 dom->dirty_limit_tstamp = now; 1153 } 1154 spin_unlock(&dom->lock); 1155 } 1156 1157 /* 1158 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1159 * 1160 * Normal wb tasks will be curbed at or below it in long term. 1161 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1162 */ 1163 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1164 unsigned long dirtied, 1165 unsigned long elapsed) 1166 { 1167 struct bdi_writeback *wb = dtc->wb; 1168 unsigned long dirty = dtc->dirty; 1169 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1170 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1171 unsigned long setpoint = (freerun + limit) / 2; 1172 unsigned long write_bw = wb->avg_write_bandwidth; 1173 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1174 unsigned long dirty_rate; 1175 unsigned long task_ratelimit; 1176 unsigned long balanced_dirty_ratelimit; 1177 unsigned long step; 1178 unsigned long x; 1179 unsigned long shift; 1180 1181 /* 1182 * The dirty rate will match the writeout rate in long term, except 1183 * when dirty pages are truncated by userspace or re-dirtied by FS. 1184 */ 1185 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1186 1187 /* 1188 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1189 */ 1190 task_ratelimit = (u64)dirty_ratelimit * 1191 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1192 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1193 1194 /* 1195 * A linear estimation of the "balanced" throttle rate. The theory is, 1196 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1197 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1198 * formula will yield the balanced rate limit (write_bw / N). 1199 * 1200 * Note that the expanded form is not a pure rate feedback: 1201 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1202 * but also takes pos_ratio into account: 1203 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1204 * 1205 * (1) is not realistic because pos_ratio also takes part in balancing 1206 * the dirty rate. Consider the state 1207 * pos_ratio = 0.5 (3) 1208 * rate = 2 * (write_bw / N) (4) 1209 * If (1) is used, it will stuck in that state! Because each dd will 1210 * be throttled at 1211 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1212 * yielding 1213 * dirty_rate = N * task_ratelimit = write_bw (6) 1214 * put (6) into (1) we get 1215 * rate_(i+1) = rate_(i) (7) 1216 * 1217 * So we end up using (2) to always keep 1218 * rate_(i+1) ~= (write_bw / N) (8) 1219 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1220 * pos_ratio is able to drive itself to 1.0, which is not only where 1221 * the dirty count meet the setpoint, but also where the slope of 1222 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1223 */ 1224 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1225 dirty_rate | 1); 1226 /* 1227 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1228 */ 1229 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1230 balanced_dirty_ratelimit = write_bw; 1231 1232 /* 1233 * We could safely do this and return immediately: 1234 * 1235 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1236 * 1237 * However to get a more stable dirty_ratelimit, the below elaborated 1238 * code makes use of task_ratelimit to filter out singular points and 1239 * limit the step size. 1240 * 1241 * The below code essentially only uses the relative value of 1242 * 1243 * task_ratelimit - dirty_ratelimit 1244 * = (pos_ratio - 1) * dirty_ratelimit 1245 * 1246 * which reflects the direction and size of dirty position error. 1247 */ 1248 1249 /* 1250 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1251 * task_ratelimit is on the same side of dirty_ratelimit, too. 1252 * For example, when 1253 * - dirty_ratelimit > balanced_dirty_ratelimit 1254 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1255 * lowering dirty_ratelimit will help meet both the position and rate 1256 * control targets. Otherwise, don't update dirty_ratelimit if it will 1257 * only help meet the rate target. After all, what the users ultimately 1258 * feel and care are stable dirty rate and small position error. 1259 * 1260 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1261 * and filter out the singular points of balanced_dirty_ratelimit. Which 1262 * keeps jumping around randomly and can even leap far away at times 1263 * due to the small 200ms estimation period of dirty_rate (we want to 1264 * keep that period small to reduce time lags). 1265 */ 1266 step = 0; 1267 1268 /* 1269 * For strictlimit case, calculations above were based on wb counters 1270 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1271 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1272 * Hence, to calculate "step" properly, we have to use wb_dirty as 1273 * "dirty" and wb_setpoint as "setpoint". 1274 * 1275 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1276 * it's possible that wb_thresh is close to zero due to inactivity 1277 * of backing device. 1278 */ 1279 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1280 dirty = dtc->wb_dirty; 1281 if (dtc->wb_dirty < 8) 1282 setpoint = dtc->wb_dirty + 1; 1283 else 1284 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1285 } 1286 1287 if (dirty < setpoint) { 1288 x = min3(wb->balanced_dirty_ratelimit, 1289 balanced_dirty_ratelimit, task_ratelimit); 1290 if (dirty_ratelimit < x) 1291 step = x - dirty_ratelimit; 1292 } else { 1293 x = max3(wb->balanced_dirty_ratelimit, 1294 balanced_dirty_ratelimit, task_ratelimit); 1295 if (dirty_ratelimit > x) 1296 step = dirty_ratelimit - x; 1297 } 1298 1299 /* 1300 * Don't pursue 100% rate matching. It's impossible since the balanced 1301 * rate itself is constantly fluctuating. So decrease the track speed 1302 * when it gets close to the target. Helps eliminate pointless tremors. 1303 */ 1304 shift = dirty_ratelimit / (2 * step + 1); 1305 if (shift < BITS_PER_LONG) 1306 step = DIV_ROUND_UP(step >> shift, 8); 1307 else 1308 step = 0; 1309 1310 if (dirty_ratelimit < balanced_dirty_ratelimit) 1311 dirty_ratelimit += step; 1312 else 1313 dirty_ratelimit -= step; 1314 1315 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1316 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1317 1318 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1319 } 1320 1321 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1322 struct dirty_throttle_control *mdtc, 1323 unsigned long start_time, 1324 bool update_ratelimit) 1325 { 1326 struct bdi_writeback *wb = gdtc->wb; 1327 unsigned long now = jiffies; 1328 unsigned long elapsed = now - wb->bw_time_stamp; 1329 unsigned long dirtied; 1330 unsigned long written; 1331 1332 lockdep_assert_held(&wb->list_lock); 1333 1334 /* 1335 * rate-limit, only update once every 200ms. 1336 */ 1337 if (elapsed < BANDWIDTH_INTERVAL) 1338 return; 1339 1340 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1341 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1342 1343 /* 1344 * Skip quiet periods when disk bandwidth is under-utilized. 1345 * (at least 1s idle time between two flusher runs) 1346 */ 1347 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1348 goto snapshot; 1349 1350 if (update_ratelimit) { 1351 domain_update_bandwidth(gdtc, now); 1352 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1353 1354 /* 1355 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1356 * compiler has no way to figure that out. Help it. 1357 */ 1358 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1359 domain_update_bandwidth(mdtc, now); 1360 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1361 } 1362 } 1363 wb_update_write_bandwidth(wb, elapsed, written); 1364 1365 snapshot: 1366 wb->dirtied_stamp = dirtied; 1367 wb->written_stamp = written; 1368 wb->bw_time_stamp = now; 1369 } 1370 1371 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1372 { 1373 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1374 1375 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1376 } 1377 1378 /* 1379 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1380 * will look to see if it needs to start dirty throttling. 1381 * 1382 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1383 * global_page_state() too often. So scale it near-sqrt to the safety margin 1384 * (the number of pages we may dirty without exceeding the dirty limits). 1385 */ 1386 static unsigned long dirty_poll_interval(unsigned long dirty, 1387 unsigned long thresh) 1388 { 1389 if (thresh > dirty) 1390 return 1UL << (ilog2(thresh - dirty) >> 1); 1391 1392 return 1; 1393 } 1394 1395 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1396 unsigned long wb_dirty) 1397 { 1398 unsigned long bw = wb->avg_write_bandwidth; 1399 unsigned long t; 1400 1401 /* 1402 * Limit pause time for small memory systems. If sleeping for too long 1403 * time, a small pool of dirty/writeback pages may go empty and disk go 1404 * idle. 1405 * 1406 * 8 serves as the safety ratio. 1407 */ 1408 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1409 t++; 1410 1411 return min_t(unsigned long, t, MAX_PAUSE); 1412 } 1413 1414 static long wb_min_pause(struct bdi_writeback *wb, 1415 long max_pause, 1416 unsigned long task_ratelimit, 1417 unsigned long dirty_ratelimit, 1418 int *nr_dirtied_pause) 1419 { 1420 long hi = ilog2(wb->avg_write_bandwidth); 1421 long lo = ilog2(wb->dirty_ratelimit); 1422 long t; /* target pause */ 1423 long pause; /* estimated next pause */ 1424 int pages; /* target nr_dirtied_pause */ 1425 1426 /* target for 10ms pause on 1-dd case */ 1427 t = max(1, HZ / 100); 1428 1429 /* 1430 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1431 * overheads. 1432 * 1433 * (N * 10ms) on 2^N concurrent tasks. 1434 */ 1435 if (hi > lo) 1436 t += (hi - lo) * (10 * HZ) / 1024; 1437 1438 /* 1439 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1440 * on the much more stable dirty_ratelimit. However the next pause time 1441 * will be computed based on task_ratelimit and the two rate limits may 1442 * depart considerably at some time. Especially if task_ratelimit goes 1443 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1444 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1445 * result task_ratelimit won't be executed faithfully, which could 1446 * eventually bring down dirty_ratelimit. 1447 * 1448 * We apply two rules to fix it up: 1449 * 1) try to estimate the next pause time and if necessary, use a lower 1450 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1451 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1452 * 2) limit the target pause time to max_pause/2, so that the normal 1453 * small fluctuations of task_ratelimit won't trigger rule (1) and 1454 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1455 */ 1456 t = min(t, 1 + max_pause / 2); 1457 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1458 1459 /* 1460 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1461 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1462 * When the 16 consecutive reads are often interrupted by some dirty 1463 * throttling pause during the async writes, cfq will go into idles 1464 * (deadline is fine). So push nr_dirtied_pause as high as possible 1465 * until reaches DIRTY_POLL_THRESH=32 pages. 1466 */ 1467 if (pages < DIRTY_POLL_THRESH) { 1468 t = max_pause; 1469 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1470 if (pages > DIRTY_POLL_THRESH) { 1471 pages = DIRTY_POLL_THRESH; 1472 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1473 } 1474 } 1475 1476 pause = HZ * pages / (task_ratelimit + 1); 1477 if (pause > max_pause) { 1478 t = max_pause; 1479 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1480 } 1481 1482 *nr_dirtied_pause = pages; 1483 /* 1484 * The minimal pause time will normally be half the target pause time. 1485 */ 1486 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1487 } 1488 1489 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1490 { 1491 struct bdi_writeback *wb = dtc->wb; 1492 unsigned long wb_reclaimable; 1493 1494 /* 1495 * wb_thresh is not treated as some limiting factor as 1496 * dirty_thresh, due to reasons 1497 * - in JBOD setup, wb_thresh can fluctuate a lot 1498 * - in a system with HDD and USB key, the USB key may somehow 1499 * go into state (wb_dirty >> wb_thresh) either because 1500 * wb_dirty starts high, or because wb_thresh drops low. 1501 * In this case we don't want to hard throttle the USB key 1502 * dirtiers for 100 seconds until wb_dirty drops under 1503 * wb_thresh. Instead the auxiliary wb control line in 1504 * wb_position_ratio() will let the dirtier task progress 1505 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1506 */ 1507 dtc->wb_thresh = __wb_calc_thresh(dtc); 1508 dtc->wb_bg_thresh = dtc->thresh ? 1509 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1510 1511 /* 1512 * In order to avoid the stacked BDI deadlock we need 1513 * to ensure we accurately count the 'dirty' pages when 1514 * the threshold is low. 1515 * 1516 * Otherwise it would be possible to get thresh+n pages 1517 * reported dirty, even though there are thresh-m pages 1518 * actually dirty; with m+n sitting in the percpu 1519 * deltas. 1520 */ 1521 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) { 1522 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1523 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1524 } else { 1525 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1526 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1527 } 1528 } 1529 1530 /* 1531 * balance_dirty_pages() must be called by processes which are generating dirty 1532 * data. It looks at the number of dirty pages in the machine and will force 1533 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1534 * If we're over `background_thresh' then the writeback threads are woken to 1535 * perform some writeout. 1536 */ 1537 static void balance_dirty_pages(struct address_space *mapping, 1538 struct bdi_writeback *wb, 1539 unsigned long pages_dirtied) 1540 { 1541 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1542 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1543 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1544 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1545 &mdtc_stor : NULL; 1546 struct dirty_throttle_control *sdtc; 1547 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1548 long period; 1549 long pause; 1550 long max_pause; 1551 long min_pause; 1552 int nr_dirtied_pause; 1553 bool dirty_exceeded = false; 1554 unsigned long task_ratelimit; 1555 unsigned long dirty_ratelimit; 1556 struct backing_dev_info *bdi = wb->bdi; 1557 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1558 unsigned long start_time = jiffies; 1559 1560 for (;;) { 1561 unsigned long now = jiffies; 1562 unsigned long dirty, thresh, bg_thresh; 1563 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1564 unsigned long m_thresh = 0; 1565 unsigned long m_bg_thresh = 0; 1566 1567 /* 1568 * Unstable writes are a feature of certain networked 1569 * filesystems (i.e. NFS) in which data may have been 1570 * written to the server's write cache, but has not yet 1571 * been flushed to permanent storage. 1572 */ 1573 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1574 global_page_state(NR_UNSTABLE_NFS); 1575 gdtc->avail = global_dirtyable_memory(); 1576 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1577 1578 domain_dirty_limits(gdtc); 1579 1580 if (unlikely(strictlimit)) { 1581 wb_dirty_limits(gdtc); 1582 1583 dirty = gdtc->wb_dirty; 1584 thresh = gdtc->wb_thresh; 1585 bg_thresh = gdtc->wb_bg_thresh; 1586 } else { 1587 dirty = gdtc->dirty; 1588 thresh = gdtc->thresh; 1589 bg_thresh = gdtc->bg_thresh; 1590 } 1591 1592 if (mdtc) { 1593 unsigned long filepages, headroom, writeback; 1594 1595 /* 1596 * If @wb belongs to !root memcg, repeat the same 1597 * basic calculations for the memcg domain. 1598 */ 1599 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1600 &mdtc->dirty, &writeback); 1601 mdtc->dirty += writeback; 1602 mdtc_calc_avail(mdtc, filepages, headroom); 1603 1604 domain_dirty_limits(mdtc); 1605 1606 if (unlikely(strictlimit)) { 1607 wb_dirty_limits(mdtc); 1608 m_dirty = mdtc->wb_dirty; 1609 m_thresh = mdtc->wb_thresh; 1610 m_bg_thresh = mdtc->wb_bg_thresh; 1611 } else { 1612 m_dirty = mdtc->dirty; 1613 m_thresh = mdtc->thresh; 1614 m_bg_thresh = mdtc->bg_thresh; 1615 } 1616 } 1617 1618 /* 1619 * Throttle it only when the background writeback cannot 1620 * catch-up. This avoids (excessively) small writeouts 1621 * when the wb limits are ramping up in case of !strictlimit. 1622 * 1623 * In strictlimit case make decision based on the wb counters 1624 * and limits. Small writeouts when the wb limits are ramping 1625 * up are the price we consciously pay for strictlimit-ing. 1626 * 1627 * If memcg domain is in effect, @dirty should be under 1628 * both global and memcg freerun ceilings. 1629 */ 1630 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1631 (!mdtc || 1632 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1633 unsigned long intv = dirty_poll_interval(dirty, thresh); 1634 unsigned long m_intv = ULONG_MAX; 1635 1636 current->dirty_paused_when = now; 1637 current->nr_dirtied = 0; 1638 if (mdtc) 1639 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1640 current->nr_dirtied_pause = min(intv, m_intv); 1641 break; 1642 } 1643 1644 if (unlikely(!writeback_in_progress(wb))) 1645 wb_start_background_writeback(wb); 1646 1647 /* 1648 * Calculate global domain's pos_ratio and select the 1649 * global dtc by default. 1650 */ 1651 if (!strictlimit) 1652 wb_dirty_limits(gdtc); 1653 1654 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1655 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1656 1657 wb_position_ratio(gdtc); 1658 sdtc = gdtc; 1659 1660 if (mdtc) { 1661 /* 1662 * If memcg domain is in effect, calculate its 1663 * pos_ratio. @wb should satisfy constraints from 1664 * both global and memcg domains. Choose the one 1665 * w/ lower pos_ratio. 1666 */ 1667 if (!strictlimit) 1668 wb_dirty_limits(mdtc); 1669 1670 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1671 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1672 1673 wb_position_ratio(mdtc); 1674 if (mdtc->pos_ratio < gdtc->pos_ratio) 1675 sdtc = mdtc; 1676 } 1677 1678 if (dirty_exceeded && !wb->dirty_exceeded) 1679 wb->dirty_exceeded = 1; 1680 1681 if (time_is_before_jiffies(wb->bw_time_stamp + 1682 BANDWIDTH_INTERVAL)) { 1683 spin_lock(&wb->list_lock); 1684 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1685 spin_unlock(&wb->list_lock); 1686 } 1687 1688 /* throttle according to the chosen dtc */ 1689 dirty_ratelimit = wb->dirty_ratelimit; 1690 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1691 RATELIMIT_CALC_SHIFT; 1692 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1693 min_pause = wb_min_pause(wb, max_pause, 1694 task_ratelimit, dirty_ratelimit, 1695 &nr_dirtied_pause); 1696 1697 if (unlikely(task_ratelimit == 0)) { 1698 period = max_pause; 1699 pause = max_pause; 1700 goto pause; 1701 } 1702 period = HZ * pages_dirtied / task_ratelimit; 1703 pause = period; 1704 if (current->dirty_paused_when) 1705 pause -= now - current->dirty_paused_when; 1706 /* 1707 * For less than 1s think time (ext3/4 may block the dirtier 1708 * for up to 800ms from time to time on 1-HDD; so does xfs, 1709 * however at much less frequency), try to compensate it in 1710 * future periods by updating the virtual time; otherwise just 1711 * do a reset, as it may be a light dirtier. 1712 */ 1713 if (pause < min_pause) { 1714 trace_balance_dirty_pages(wb, 1715 sdtc->thresh, 1716 sdtc->bg_thresh, 1717 sdtc->dirty, 1718 sdtc->wb_thresh, 1719 sdtc->wb_dirty, 1720 dirty_ratelimit, 1721 task_ratelimit, 1722 pages_dirtied, 1723 period, 1724 min(pause, 0L), 1725 start_time); 1726 if (pause < -HZ) { 1727 current->dirty_paused_when = now; 1728 current->nr_dirtied = 0; 1729 } else if (period) { 1730 current->dirty_paused_when += period; 1731 current->nr_dirtied = 0; 1732 } else if (current->nr_dirtied_pause <= pages_dirtied) 1733 current->nr_dirtied_pause += pages_dirtied; 1734 break; 1735 } 1736 if (unlikely(pause > max_pause)) { 1737 /* for occasional dropped task_ratelimit */ 1738 now += min(pause - max_pause, max_pause); 1739 pause = max_pause; 1740 } 1741 1742 pause: 1743 trace_balance_dirty_pages(wb, 1744 sdtc->thresh, 1745 sdtc->bg_thresh, 1746 sdtc->dirty, 1747 sdtc->wb_thresh, 1748 sdtc->wb_dirty, 1749 dirty_ratelimit, 1750 task_ratelimit, 1751 pages_dirtied, 1752 period, 1753 pause, 1754 start_time); 1755 __set_current_state(TASK_KILLABLE); 1756 io_schedule_timeout(pause); 1757 1758 current->dirty_paused_when = now + pause; 1759 current->nr_dirtied = 0; 1760 current->nr_dirtied_pause = nr_dirtied_pause; 1761 1762 /* 1763 * This is typically equal to (dirty < thresh) and can also 1764 * keep "1000+ dd on a slow USB stick" under control. 1765 */ 1766 if (task_ratelimit) 1767 break; 1768 1769 /* 1770 * In the case of an unresponding NFS server and the NFS dirty 1771 * pages exceeds dirty_thresh, give the other good wb's a pipe 1772 * to go through, so that tasks on them still remain responsive. 1773 * 1774 * In theory 1 page is enough to keep the comsumer-producer 1775 * pipe going: the flusher cleans 1 page => the task dirties 1 1776 * more page. However wb_dirty has accounting errors. So use 1777 * the larger and more IO friendly wb_stat_error. 1778 */ 1779 if (sdtc->wb_dirty <= wb_stat_error(wb)) 1780 break; 1781 1782 if (fatal_signal_pending(current)) 1783 break; 1784 } 1785 1786 if (!dirty_exceeded && wb->dirty_exceeded) 1787 wb->dirty_exceeded = 0; 1788 1789 if (writeback_in_progress(wb)) 1790 return; 1791 1792 /* 1793 * In laptop mode, we wait until hitting the higher threshold before 1794 * starting background writeout, and then write out all the way down 1795 * to the lower threshold. So slow writers cause minimal disk activity. 1796 * 1797 * In normal mode, we start background writeout at the lower 1798 * background_thresh, to keep the amount of dirty memory low. 1799 */ 1800 if (laptop_mode) 1801 return; 1802 1803 if (nr_reclaimable > gdtc->bg_thresh) 1804 wb_start_background_writeback(wb); 1805 } 1806 1807 static DEFINE_PER_CPU(int, bdp_ratelimits); 1808 1809 /* 1810 * Normal tasks are throttled by 1811 * loop { 1812 * dirty tsk->nr_dirtied_pause pages; 1813 * take a snap in balance_dirty_pages(); 1814 * } 1815 * However there is a worst case. If every task exit immediately when dirtied 1816 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1817 * called to throttle the page dirties. The solution is to save the not yet 1818 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1819 * randomly into the running tasks. This works well for the above worst case, 1820 * as the new task will pick up and accumulate the old task's leaked dirty 1821 * count and eventually get throttled. 1822 */ 1823 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1824 1825 /** 1826 * balance_dirty_pages_ratelimited - balance dirty memory state 1827 * @mapping: address_space which was dirtied 1828 * 1829 * Processes which are dirtying memory should call in here once for each page 1830 * which was newly dirtied. The function will periodically check the system's 1831 * dirty state and will initiate writeback if needed. 1832 * 1833 * On really big machines, get_writeback_state is expensive, so try to avoid 1834 * calling it too often (ratelimiting). But once we're over the dirty memory 1835 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1836 * from overshooting the limit by (ratelimit_pages) each. 1837 */ 1838 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1839 { 1840 struct inode *inode = mapping->host; 1841 struct backing_dev_info *bdi = inode_to_bdi(inode); 1842 struct bdi_writeback *wb = NULL; 1843 int ratelimit; 1844 int *p; 1845 1846 if (!bdi_cap_account_dirty(bdi)) 1847 return; 1848 1849 if (inode_cgwb_enabled(inode)) 1850 wb = wb_get_create_current(bdi, GFP_KERNEL); 1851 if (!wb) 1852 wb = &bdi->wb; 1853 1854 ratelimit = current->nr_dirtied_pause; 1855 if (wb->dirty_exceeded) 1856 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1857 1858 preempt_disable(); 1859 /* 1860 * This prevents one CPU to accumulate too many dirtied pages without 1861 * calling into balance_dirty_pages(), which can happen when there are 1862 * 1000+ tasks, all of them start dirtying pages at exactly the same 1863 * time, hence all honoured too large initial task->nr_dirtied_pause. 1864 */ 1865 p = this_cpu_ptr(&bdp_ratelimits); 1866 if (unlikely(current->nr_dirtied >= ratelimit)) 1867 *p = 0; 1868 else if (unlikely(*p >= ratelimit_pages)) { 1869 *p = 0; 1870 ratelimit = 0; 1871 } 1872 /* 1873 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1874 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1875 * the dirty throttling and livelock other long-run dirtiers. 1876 */ 1877 p = this_cpu_ptr(&dirty_throttle_leaks); 1878 if (*p > 0 && current->nr_dirtied < ratelimit) { 1879 unsigned long nr_pages_dirtied; 1880 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1881 *p -= nr_pages_dirtied; 1882 current->nr_dirtied += nr_pages_dirtied; 1883 } 1884 preempt_enable(); 1885 1886 if (unlikely(current->nr_dirtied >= ratelimit)) 1887 balance_dirty_pages(mapping, wb, current->nr_dirtied); 1888 1889 wb_put(wb); 1890 } 1891 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1892 1893 /** 1894 * wb_over_bg_thresh - does @wb need to be written back? 1895 * @wb: bdi_writeback of interest 1896 * 1897 * Determines whether background writeback should keep writing @wb or it's 1898 * clean enough. Returns %true if writeback should continue. 1899 */ 1900 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1901 { 1902 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1903 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1904 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1905 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1906 &mdtc_stor : NULL; 1907 1908 /* 1909 * Similar to balance_dirty_pages() but ignores pages being written 1910 * as we're trying to decide whether to put more under writeback. 1911 */ 1912 gdtc->avail = global_dirtyable_memory(); 1913 gdtc->dirty = global_page_state(NR_FILE_DIRTY) + 1914 global_page_state(NR_UNSTABLE_NFS); 1915 domain_dirty_limits(gdtc); 1916 1917 if (gdtc->dirty > gdtc->bg_thresh) 1918 return true; 1919 1920 if (wb_stat(wb, WB_RECLAIMABLE) > 1921 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1922 return true; 1923 1924 if (mdtc) { 1925 unsigned long filepages, headroom, writeback; 1926 1927 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1928 &writeback); 1929 mdtc_calc_avail(mdtc, filepages, headroom); 1930 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1931 1932 if (mdtc->dirty > mdtc->bg_thresh) 1933 return true; 1934 1935 if (wb_stat(wb, WB_RECLAIMABLE) > 1936 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1937 return true; 1938 } 1939 1940 return false; 1941 } 1942 1943 void throttle_vm_writeout(gfp_t gfp_mask) 1944 { 1945 unsigned long background_thresh; 1946 unsigned long dirty_thresh; 1947 1948 for ( ; ; ) { 1949 global_dirty_limits(&background_thresh, &dirty_thresh); 1950 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh); 1951 1952 /* 1953 * Boost the allowable dirty threshold a bit for page 1954 * allocators so they don't get DoS'ed by heavy writers 1955 */ 1956 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1957 1958 if (global_page_state(NR_UNSTABLE_NFS) + 1959 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1960 break; 1961 congestion_wait(BLK_RW_ASYNC, HZ/10); 1962 1963 /* 1964 * The caller might hold locks which can prevent IO completion 1965 * or progress in the filesystem. So we cannot just sit here 1966 * waiting for IO to complete. 1967 */ 1968 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1969 break; 1970 } 1971 } 1972 1973 /* 1974 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1975 */ 1976 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1977 void __user *buffer, size_t *length, loff_t *ppos) 1978 { 1979 proc_dointvec(table, write, buffer, length, ppos); 1980 return 0; 1981 } 1982 1983 #ifdef CONFIG_BLOCK 1984 void laptop_mode_timer_fn(unsigned long data) 1985 { 1986 struct request_queue *q = (struct request_queue *)data; 1987 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1988 global_page_state(NR_UNSTABLE_NFS); 1989 struct bdi_writeback *wb; 1990 1991 /* 1992 * We want to write everything out, not just down to the dirty 1993 * threshold 1994 */ 1995 if (!bdi_has_dirty_io(&q->backing_dev_info)) 1996 return; 1997 1998 rcu_read_lock(); 1999 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node) 2000 if (wb_has_dirty_io(wb)) 2001 wb_start_writeback(wb, nr_pages, true, 2002 WB_REASON_LAPTOP_TIMER); 2003 rcu_read_unlock(); 2004 } 2005 2006 /* 2007 * We've spun up the disk and we're in laptop mode: schedule writeback 2008 * of all dirty data a few seconds from now. If the flush is already scheduled 2009 * then push it back - the user is still using the disk. 2010 */ 2011 void laptop_io_completion(struct backing_dev_info *info) 2012 { 2013 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2014 } 2015 2016 /* 2017 * We're in laptop mode and we've just synced. The sync's writes will have 2018 * caused another writeback to be scheduled by laptop_io_completion. 2019 * Nothing needs to be written back anymore, so we unschedule the writeback. 2020 */ 2021 void laptop_sync_completion(void) 2022 { 2023 struct backing_dev_info *bdi; 2024 2025 rcu_read_lock(); 2026 2027 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2028 del_timer(&bdi->laptop_mode_wb_timer); 2029 2030 rcu_read_unlock(); 2031 } 2032 #endif 2033 2034 /* 2035 * If ratelimit_pages is too high then we can get into dirty-data overload 2036 * if a large number of processes all perform writes at the same time. 2037 * If it is too low then SMP machines will call the (expensive) 2038 * get_writeback_state too often. 2039 * 2040 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2041 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2042 * thresholds. 2043 */ 2044 2045 void writeback_set_ratelimit(void) 2046 { 2047 struct wb_domain *dom = &global_wb_domain; 2048 unsigned long background_thresh; 2049 unsigned long dirty_thresh; 2050 2051 global_dirty_limits(&background_thresh, &dirty_thresh); 2052 dom->dirty_limit = dirty_thresh; 2053 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2054 if (ratelimit_pages < 16) 2055 ratelimit_pages = 16; 2056 } 2057 2058 static int 2059 ratelimit_handler(struct notifier_block *self, unsigned long action, 2060 void *hcpu) 2061 { 2062 2063 switch (action & ~CPU_TASKS_FROZEN) { 2064 case CPU_ONLINE: 2065 case CPU_DEAD: 2066 writeback_set_ratelimit(); 2067 return NOTIFY_OK; 2068 default: 2069 return NOTIFY_DONE; 2070 } 2071 } 2072 2073 static struct notifier_block ratelimit_nb = { 2074 .notifier_call = ratelimit_handler, 2075 .next = NULL, 2076 }; 2077 2078 /* 2079 * Called early on to tune the page writeback dirty limits. 2080 * 2081 * We used to scale dirty pages according to how total memory 2082 * related to pages that could be allocated for buffers (by 2083 * comparing nr_free_buffer_pages() to vm_total_pages. 2084 * 2085 * However, that was when we used "dirty_ratio" to scale with 2086 * all memory, and we don't do that any more. "dirty_ratio" 2087 * is now applied to total non-HIGHPAGE memory (by subtracting 2088 * totalhigh_pages from vm_total_pages), and as such we can't 2089 * get into the old insane situation any more where we had 2090 * large amounts of dirty pages compared to a small amount of 2091 * non-HIGHMEM memory. 2092 * 2093 * But we might still want to scale the dirty_ratio by how 2094 * much memory the box has.. 2095 */ 2096 void __init page_writeback_init(void) 2097 { 2098 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2099 2100 writeback_set_ratelimit(); 2101 register_cpu_notifier(&ratelimit_nb); 2102 } 2103 2104 /** 2105 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2106 * @mapping: address space structure to write 2107 * @start: starting page index 2108 * @end: ending page index (inclusive) 2109 * 2110 * This function scans the page range from @start to @end (inclusive) and tags 2111 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2112 * that write_cache_pages (or whoever calls this function) will then use 2113 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2114 * used to avoid livelocking of writeback by a process steadily creating new 2115 * dirty pages in the file (thus it is important for this function to be quick 2116 * so that it can tag pages faster than a dirtying process can create them). 2117 */ 2118 /* 2119 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 2120 */ 2121 void tag_pages_for_writeback(struct address_space *mapping, 2122 pgoff_t start, pgoff_t end) 2123 { 2124 #define WRITEBACK_TAG_BATCH 4096 2125 unsigned long tagged; 2126 2127 do { 2128 spin_lock_irq(&mapping->tree_lock); 2129 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 2130 &start, end, WRITEBACK_TAG_BATCH, 2131 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 2132 spin_unlock_irq(&mapping->tree_lock); 2133 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 2134 cond_resched(); 2135 /* We check 'start' to handle wrapping when end == ~0UL */ 2136 } while (tagged >= WRITEBACK_TAG_BATCH && start); 2137 } 2138 EXPORT_SYMBOL(tag_pages_for_writeback); 2139 2140 /** 2141 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2142 * @mapping: address space structure to write 2143 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2144 * @writepage: function called for each page 2145 * @data: data passed to writepage function 2146 * 2147 * If a page is already under I/O, write_cache_pages() skips it, even 2148 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2149 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2150 * and msync() need to guarantee that all the data which was dirty at the time 2151 * the call was made get new I/O started against them. If wbc->sync_mode is 2152 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2153 * existing IO to complete. 2154 * 2155 * To avoid livelocks (when other process dirties new pages), we first tag 2156 * pages which should be written back with TOWRITE tag and only then start 2157 * writing them. For data-integrity sync we have to be careful so that we do 2158 * not miss some pages (e.g., because some other process has cleared TOWRITE 2159 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2160 * by the process clearing the DIRTY tag (and submitting the page for IO). 2161 */ 2162 int write_cache_pages(struct address_space *mapping, 2163 struct writeback_control *wbc, writepage_t writepage, 2164 void *data) 2165 { 2166 int ret = 0; 2167 int done = 0; 2168 struct pagevec pvec; 2169 int nr_pages; 2170 pgoff_t uninitialized_var(writeback_index); 2171 pgoff_t index; 2172 pgoff_t end; /* Inclusive */ 2173 pgoff_t done_index; 2174 int cycled; 2175 int range_whole = 0; 2176 int tag; 2177 2178 pagevec_init(&pvec, 0); 2179 if (wbc->range_cyclic) { 2180 writeback_index = mapping->writeback_index; /* prev offset */ 2181 index = writeback_index; 2182 if (index == 0) 2183 cycled = 1; 2184 else 2185 cycled = 0; 2186 end = -1; 2187 } else { 2188 index = wbc->range_start >> PAGE_SHIFT; 2189 end = wbc->range_end >> PAGE_SHIFT; 2190 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2191 range_whole = 1; 2192 cycled = 1; /* ignore range_cyclic tests */ 2193 } 2194 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2195 tag = PAGECACHE_TAG_TOWRITE; 2196 else 2197 tag = PAGECACHE_TAG_DIRTY; 2198 retry: 2199 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2200 tag_pages_for_writeback(mapping, index, end); 2201 done_index = index; 2202 while (!done && (index <= end)) { 2203 int i; 2204 2205 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2206 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2207 if (nr_pages == 0) 2208 break; 2209 2210 for (i = 0; i < nr_pages; i++) { 2211 struct page *page = pvec.pages[i]; 2212 2213 /* 2214 * At this point, the page may be truncated or 2215 * invalidated (changing page->mapping to NULL), or 2216 * even swizzled back from swapper_space to tmpfs file 2217 * mapping. However, page->index will not change 2218 * because we have a reference on the page. 2219 */ 2220 if (page->index > end) { 2221 /* 2222 * can't be range_cyclic (1st pass) because 2223 * end == -1 in that case. 2224 */ 2225 done = 1; 2226 break; 2227 } 2228 2229 done_index = page->index; 2230 2231 lock_page(page); 2232 2233 /* 2234 * Page truncated or invalidated. We can freely skip it 2235 * then, even for data integrity operations: the page 2236 * has disappeared concurrently, so there could be no 2237 * real expectation of this data interity operation 2238 * even if there is now a new, dirty page at the same 2239 * pagecache address. 2240 */ 2241 if (unlikely(page->mapping != mapping)) { 2242 continue_unlock: 2243 unlock_page(page); 2244 continue; 2245 } 2246 2247 if (!PageDirty(page)) { 2248 /* someone wrote it for us */ 2249 goto continue_unlock; 2250 } 2251 2252 if (PageWriteback(page)) { 2253 if (wbc->sync_mode != WB_SYNC_NONE) 2254 wait_on_page_writeback(page); 2255 else 2256 goto continue_unlock; 2257 } 2258 2259 BUG_ON(PageWriteback(page)); 2260 if (!clear_page_dirty_for_io(page)) 2261 goto continue_unlock; 2262 2263 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2264 ret = (*writepage)(page, wbc, data); 2265 if (unlikely(ret)) { 2266 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2267 unlock_page(page); 2268 ret = 0; 2269 } else { 2270 /* 2271 * done_index is set past this page, 2272 * so media errors will not choke 2273 * background writeout for the entire 2274 * file. This has consequences for 2275 * range_cyclic semantics (ie. it may 2276 * not be suitable for data integrity 2277 * writeout). 2278 */ 2279 done_index = page->index + 1; 2280 done = 1; 2281 break; 2282 } 2283 } 2284 2285 /* 2286 * We stop writing back only if we are not doing 2287 * integrity sync. In case of integrity sync we have to 2288 * keep going until we have written all the pages 2289 * we tagged for writeback prior to entering this loop. 2290 */ 2291 if (--wbc->nr_to_write <= 0 && 2292 wbc->sync_mode == WB_SYNC_NONE) { 2293 done = 1; 2294 break; 2295 } 2296 } 2297 pagevec_release(&pvec); 2298 cond_resched(); 2299 } 2300 if (!cycled && !done) { 2301 /* 2302 * range_cyclic: 2303 * We hit the last page and there is more work to be done: wrap 2304 * back to the start of the file 2305 */ 2306 cycled = 1; 2307 index = 0; 2308 end = writeback_index - 1; 2309 goto retry; 2310 } 2311 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2312 mapping->writeback_index = done_index; 2313 2314 return ret; 2315 } 2316 EXPORT_SYMBOL(write_cache_pages); 2317 2318 /* 2319 * Function used by generic_writepages to call the real writepage 2320 * function and set the mapping flags on error 2321 */ 2322 static int __writepage(struct page *page, struct writeback_control *wbc, 2323 void *data) 2324 { 2325 struct address_space *mapping = data; 2326 int ret = mapping->a_ops->writepage(page, wbc); 2327 mapping_set_error(mapping, ret); 2328 return ret; 2329 } 2330 2331 /** 2332 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2333 * @mapping: address space structure to write 2334 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2335 * 2336 * This is a library function, which implements the writepages() 2337 * address_space_operation. 2338 */ 2339 int generic_writepages(struct address_space *mapping, 2340 struct writeback_control *wbc) 2341 { 2342 struct blk_plug plug; 2343 int ret; 2344 2345 /* deal with chardevs and other special file */ 2346 if (!mapping->a_ops->writepage) 2347 return 0; 2348 2349 blk_start_plug(&plug); 2350 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2351 blk_finish_plug(&plug); 2352 return ret; 2353 } 2354 2355 EXPORT_SYMBOL(generic_writepages); 2356 2357 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2358 { 2359 int ret; 2360 2361 if (wbc->nr_to_write <= 0) 2362 return 0; 2363 if (mapping->a_ops->writepages) 2364 ret = mapping->a_ops->writepages(mapping, wbc); 2365 else 2366 ret = generic_writepages(mapping, wbc); 2367 return ret; 2368 } 2369 2370 /** 2371 * write_one_page - write out a single page and optionally wait on I/O 2372 * @page: the page to write 2373 * @wait: if true, wait on writeout 2374 * 2375 * The page must be locked by the caller and will be unlocked upon return. 2376 * 2377 * write_one_page() returns a negative error code if I/O failed. 2378 */ 2379 int write_one_page(struct page *page, int wait) 2380 { 2381 struct address_space *mapping = page->mapping; 2382 int ret = 0; 2383 struct writeback_control wbc = { 2384 .sync_mode = WB_SYNC_ALL, 2385 .nr_to_write = 1, 2386 }; 2387 2388 BUG_ON(!PageLocked(page)); 2389 2390 if (wait) 2391 wait_on_page_writeback(page); 2392 2393 if (clear_page_dirty_for_io(page)) { 2394 get_page(page); 2395 ret = mapping->a_ops->writepage(page, &wbc); 2396 if (ret == 0 && wait) { 2397 wait_on_page_writeback(page); 2398 if (PageError(page)) 2399 ret = -EIO; 2400 } 2401 put_page(page); 2402 } else { 2403 unlock_page(page); 2404 } 2405 return ret; 2406 } 2407 EXPORT_SYMBOL(write_one_page); 2408 2409 /* 2410 * For address_spaces which do not use buffers nor write back. 2411 */ 2412 int __set_page_dirty_no_writeback(struct page *page) 2413 { 2414 if (!PageDirty(page)) 2415 return !TestSetPageDirty(page); 2416 return 0; 2417 } 2418 2419 /* 2420 * Helper function for set_page_dirty family. 2421 * 2422 * Caller must hold lock_page_memcg(). 2423 * 2424 * NOTE: This relies on being atomic wrt interrupts. 2425 */ 2426 void account_page_dirtied(struct page *page, struct address_space *mapping) 2427 { 2428 struct inode *inode = mapping->host; 2429 2430 trace_writeback_dirty_page(page, mapping); 2431 2432 if (mapping_cap_account_dirty(mapping)) { 2433 struct bdi_writeback *wb; 2434 2435 inode_attach_wb(inode, page); 2436 wb = inode_to_wb(inode); 2437 2438 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY); 2439 __inc_zone_page_state(page, NR_FILE_DIRTY); 2440 __inc_zone_page_state(page, NR_DIRTIED); 2441 __inc_wb_stat(wb, WB_RECLAIMABLE); 2442 __inc_wb_stat(wb, WB_DIRTIED); 2443 task_io_account_write(PAGE_SIZE); 2444 current->nr_dirtied++; 2445 this_cpu_inc(bdp_ratelimits); 2446 } 2447 } 2448 EXPORT_SYMBOL(account_page_dirtied); 2449 2450 /* 2451 * Helper function for deaccounting dirty page without writeback. 2452 * 2453 * Caller must hold lock_page_memcg(). 2454 */ 2455 void account_page_cleaned(struct page *page, struct address_space *mapping, 2456 struct bdi_writeback *wb) 2457 { 2458 if (mapping_cap_account_dirty(mapping)) { 2459 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY); 2460 dec_zone_page_state(page, NR_FILE_DIRTY); 2461 dec_wb_stat(wb, WB_RECLAIMABLE); 2462 task_io_account_cancelled_write(PAGE_SIZE); 2463 } 2464 } 2465 2466 /* 2467 * For address_spaces which do not use buffers. Just tag the page as dirty in 2468 * its radix tree. 2469 * 2470 * This is also used when a single buffer is being dirtied: we want to set the 2471 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2472 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2473 * 2474 * The caller must ensure this doesn't race with truncation. Most will simply 2475 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2476 * the pte lock held, which also locks out truncation. 2477 */ 2478 int __set_page_dirty_nobuffers(struct page *page) 2479 { 2480 lock_page_memcg(page); 2481 if (!TestSetPageDirty(page)) { 2482 struct address_space *mapping = page_mapping(page); 2483 unsigned long flags; 2484 2485 if (!mapping) { 2486 unlock_page_memcg(page); 2487 return 1; 2488 } 2489 2490 spin_lock_irqsave(&mapping->tree_lock, flags); 2491 BUG_ON(page_mapping(page) != mapping); 2492 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2493 account_page_dirtied(page, mapping); 2494 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2495 PAGECACHE_TAG_DIRTY); 2496 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2497 unlock_page_memcg(page); 2498 2499 if (mapping->host) { 2500 /* !PageAnon && !swapper_space */ 2501 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2502 } 2503 return 1; 2504 } 2505 unlock_page_memcg(page); 2506 return 0; 2507 } 2508 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2509 2510 /* 2511 * Call this whenever redirtying a page, to de-account the dirty counters 2512 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2513 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2514 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2515 * control. 2516 */ 2517 void account_page_redirty(struct page *page) 2518 { 2519 struct address_space *mapping = page->mapping; 2520 2521 if (mapping && mapping_cap_account_dirty(mapping)) { 2522 struct inode *inode = mapping->host; 2523 struct bdi_writeback *wb; 2524 bool locked; 2525 2526 wb = unlocked_inode_to_wb_begin(inode, &locked); 2527 current->nr_dirtied--; 2528 dec_zone_page_state(page, NR_DIRTIED); 2529 dec_wb_stat(wb, WB_DIRTIED); 2530 unlocked_inode_to_wb_end(inode, locked); 2531 } 2532 } 2533 EXPORT_SYMBOL(account_page_redirty); 2534 2535 /* 2536 * When a writepage implementation decides that it doesn't want to write this 2537 * page for some reason, it should redirty the locked page via 2538 * redirty_page_for_writepage() and it should then unlock the page and return 0 2539 */ 2540 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2541 { 2542 int ret; 2543 2544 wbc->pages_skipped++; 2545 ret = __set_page_dirty_nobuffers(page); 2546 account_page_redirty(page); 2547 return ret; 2548 } 2549 EXPORT_SYMBOL(redirty_page_for_writepage); 2550 2551 /* 2552 * Dirty a page. 2553 * 2554 * For pages with a mapping this should be done under the page lock 2555 * for the benefit of asynchronous memory errors who prefer a consistent 2556 * dirty state. This rule can be broken in some special cases, 2557 * but should be better not to. 2558 * 2559 * If the mapping doesn't provide a set_page_dirty a_op, then 2560 * just fall through and assume that it wants buffer_heads. 2561 */ 2562 int set_page_dirty(struct page *page) 2563 { 2564 struct address_space *mapping = page_mapping(page); 2565 2566 if (likely(mapping)) { 2567 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2568 /* 2569 * readahead/lru_deactivate_page could remain 2570 * PG_readahead/PG_reclaim due to race with end_page_writeback 2571 * About readahead, if the page is written, the flags would be 2572 * reset. So no problem. 2573 * About lru_deactivate_page, if the page is redirty, the flag 2574 * will be reset. So no problem. but if the page is used by readahead 2575 * it will confuse readahead and make it restart the size rampup 2576 * process. But it's a trivial problem. 2577 */ 2578 if (PageReclaim(page)) 2579 ClearPageReclaim(page); 2580 #ifdef CONFIG_BLOCK 2581 if (!spd) 2582 spd = __set_page_dirty_buffers; 2583 #endif 2584 return (*spd)(page); 2585 } 2586 if (!PageDirty(page)) { 2587 if (!TestSetPageDirty(page)) 2588 return 1; 2589 } 2590 return 0; 2591 } 2592 EXPORT_SYMBOL(set_page_dirty); 2593 2594 /* 2595 * set_page_dirty() is racy if the caller has no reference against 2596 * page->mapping->host, and if the page is unlocked. This is because another 2597 * CPU could truncate the page off the mapping and then free the mapping. 2598 * 2599 * Usually, the page _is_ locked, or the caller is a user-space process which 2600 * holds a reference on the inode by having an open file. 2601 * 2602 * In other cases, the page should be locked before running set_page_dirty(). 2603 */ 2604 int set_page_dirty_lock(struct page *page) 2605 { 2606 int ret; 2607 2608 lock_page(page); 2609 ret = set_page_dirty(page); 2610 unlock_page(page); 2611 return ret; 2612 } 2613 EXPORT_SYMBOL(set_page_dirty_lock); 2614 2615 /* 2616 * This cancels just the dirty bit on the kernel page itself, it does NOT 2617 * actually remove dirty bits on any mmap's that may be around. It also 2618 * leaves the page tagged dirty, so any sync activity will still find it on 2619 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2620 * look at the dirty bits in the VM. 2621 * 2622 * Doing this should *normally* only ever be done when a page is truncated, 2623 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2624 * this when it notices that somebody has cleaned out all the buffers on a 2625 * page without actually doing it through the VM. Can you say "ext3 is 2626 * horribly ugly"? Thought you could. 2627 */ 2628 void cancel_dirty_page(struct page *page) 2629 { 2630 struct address_space *mapping = page_mapping(page); 2631 2632 if (mapping_cap_account_dirty(mapping)) { 2633 struct inode *inode = mapping->host; 2634 struct bdi_writeback *wb; 2635 bool locked; 2636 2637 lock_page_memcg(page); 2638 wb = unlocked_inode_to_wb_begin(inode, &locked); 2639 2640 if (TestClearPageDirty(page)) 2641 account_page_cleaned(page, mapping, wb); 2642 2643 unlocked_inode_to_wb_end(inode, locked); 2644 unlock_page_memcg(page); 2645 } else { 2646 ClearPageDirty(page); 2647 } 2648 } 2649 EXPORT_SYMBOL(cancel_dirty_page); 2650 2651 /* 2652 * Clear a page's dirty flag, while caring for dirty memory accounting. 2653 * Returns true if the page was previously dirty. 2654 * 2655 * This is for preparing to put the page under writeout. We leave the page 2656 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2657 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2658 * implementation will run either set_page_writeback() or set_page_dirty(), 2659 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2660 * back into sync. 2661 * 2662 * This incoherency between the page's dirty flag and radix-tree tag is 2663 * unfortunate, but it only exists while the page is locked. 2664 */ 2665 int clear_page_dirty_for_io(struct page *page) 2666 { 2667 struct address_space *mapping = page_mapping(page); 2668 int ret = 0; 2669 2670 BUG_ON(!PageLocked(page)); 2671 2672 if (mapping && mapping_cap_account_dirty(mapping)) { 2673 struct inode *inode = mapping->host; 2674 struct bdi_writeback *wb; 2675 bool locked; 2676 2677 /* 2678 * Yes, Virginia, this is indeed insane. 2679 * 2680 * We use this sequence to make sure that 2681 * (a) we account for dirty stats properly 2682 * (b) we tell the low-level filesystem to 2683 * mark the whole page dirty if it was 2684 * dirty in a pagetable. Only to then 2685 * (c) clean the page again and return 1 to 2686 * cause the writeback. 2687 * 2688 * This way we avoid all nasty races with the 2689 * dirty bit in multiple places and clearing 2690 * them concurrently from different threads. 2691 * 2692 * Note! Normally the "set_page_dirty(page)" 2693 * has no effect on the actual dirty bit - since 2694 * that will already usually be set. But we 2695 * need the side effects, and it can help us 2696 * avoid races. 2697 * 2698 * We basically use the page "master dirty bit" 2699 * as a serialization point for all the different 2700 * threads doing their things. 2701 */ 2702 if (page_mkclean(page)) 2703 set_page_dirty(page); 2704 /* 2705 * We carefully synchronise fault handlers against 2706 * installing a dirty pte and marking the page dirty 2707 * at this point. We do this by having them hold the 2708 * page lock while dirtying the page, and pages are 2709 * always locked coming in here, so we get the desired 2710 * exclusion. 2711 */ 2712 wb = unlocked_inode_to_wb_begin(inode, &locked); 2713 if (TestClearPageDirty(page)) { 2714 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY); 2715 dec_zone_page_state(page, NR_FILE_DIRTY); 2716 dec_wb_stat(wb, WB_RECLAIMABLE); 2717 ret = 1; 2718 } 2719 unlocked_inode_to_wb_end(inode, locked); 2720 return ret; 2721 } 2722 return TestClearPageDirty(page); 2723 } 2724 EXPORT_SYMBOL(clear_page_dirty_for_io); 2725 2726 int test_clear_page_writeback(struct page *page) 2727 { 2728 struct address_space *mapping = page_mapping(page); 2729 int ret; 2730 2731 lock_page_memcg(page); 2732 if (mapping) { 2733 struct inode *inode = mapping->host; 2734 struct backing_dev_info *bdi = inode_to_bdi(inode); 2735 unsigned long flags; 2736 2737 spin_lock_irqsave(&mapping->tree_lock, flags); 2738 ret = TestClearPageWriteback(page); 2739 if (ret) { 2740 radix_tree_tag_clear(&mapping->page_tree, 2741 page_index(page), 2742 PAGECACHE_TAG_WRITEBACK); 2743 if (bdi_cap_account_writeback(bdi)) { 2744 struct bdi_writeback *wb = inode_to_wb(inode); 2745 2746 __dec_wb_stat(wb, WB_WRITEBACK); 2747 __wb_writeout_inc(wb); 2748 } 2749 } 2750 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2751 } else { 2752 ret = TestClearPageWriteback(page); 2753 } 2754 if (ret) { 2755 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); 2756 dec_zone_page_state(page, NR_WRITEBACK); 2757 inc_zone_page_state(page, NR_WRITTEN); 2758 } 2759 unlock_page_memcg(page); 2760 return ret; 2761 } 2762 2763 int __test_set_page_writeback(struct page *page, bool keep_write) 2764 { 2765 struct address_space *mapping = page_mapping(page); 2766 int ret; 2767 2768 lock_page_memcg(page); 2769 if (mapping) { 2770 struct inode *inode = mapping->host; 2771 struct backing_dev_info *bdi = inode_to_bdi(inode); 2772 unsigned long flags; 2773 2774 spin_lock_irqsave(&mapping->tree_lock, flags); 2775 ret = TestSetPageWriteback(page); 2776 if (!ret) { 2777 radix_tree_tag_set(&mapping->page_tree, 2778 page_index(page), 2779 PAGECACHE_TAG_WRITEBACK); 2780 if (bdi_cap_account_writeback(bdi)) 2781 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2782 } 2783 if (!PageDirty(page)) 2784 radix_tree_tag_clear(&mapping->page_tree, 2785 page_index(page), 2786 PAGECACHE_TAG_DIRTY); 2787 if (!keep_write) 2788 radix_tree_tag_clear(&mapping->page_tree, 2789 page_index(page), 2790 PAGECACHE_TAG_TOWRITE); 2791 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2792 } else { 2793 ret = TestSetPageWriteback(page); 2794 } 2795 if (!ret) { 2796 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); 2797 inc_zone_page_state(page, NR_WRITEBACK); 2798 } 2799 unlock_page_memcg(page); 2800 return ret; 2801 2802 } 2803 EXPORT_SYMBOL(__test_set_page_writeback); 2804 2805 /* 2806 * Return true if any of the pages in the mapping are marked with the 2807 * passed tag. 2808 */ 2809 int mapping_tagged(struct address_space *mapping, int tag) 2810 { 2811 return radix_tree_tagged(&mapping->page_tree, tag); 2812 } 2813 EXPORT_SYMBOL(mapping_tagged); 2814 2815 /** 2816 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2817 * @page: The page to wait on. 2818 * 2819 * This function determines if the given page is related to a backing device 2820 * that requires page contents to be held stable during writeback. If so, then 2821 * it will wait for any pending writeback to complete. 2822 */ 2823 void wait_for_stable_page(struct page *page) 2824 { 2825 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2826 wait_on_page_writeback(page); 2827 } 2828 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2829