xref: /linux/mm/page-writeback.c (revision 045ddc8991698a8e9c5668c6190faa8b5d516dc0)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE		max(HZ/5, 1)
43 
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
48 
49 #define RATELIMIT_CALC_SHIFT	10
50 
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56 
57 /* The following parameters are exported via /proc/sys/vm */
58 
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63 
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69 
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75 
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80 
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86 
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91 
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96 
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101 
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107 
108 EXPORT_SYMBOL(laptop_mode);
109 
110 /* End of sysctl-exported parameters */
111 
112 unsigned long global_dirty_limit;
113 
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131 
132 /*
133  * couple the period to the dirty_ratio:
134  *
135  *   period/2 ~ roundup_pow_of_two(dirty limit)
136  */
137 static int calc_period_shift(void)
138 {
139 	unsigned long dirty_total;
140 
141 	if (vm_dirty_bytes)
142 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
143 	else
144 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
145 				100;
146 	return 2 + ilog2(dirty_total - 1);
147 }
148 
149 /*
150  * update the period when the dirty threshold changes.
151  */
152 static void update_completion_period(void)
153 {
154 	int shift = calc_period_shift();
155 	prop_change_shift(&vm_completions, shift);
156 
157 	writeback_set_ratelimit();
158 }
159 
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 		void __user *buffer, size_t *lenp,
162 		loff_t *ppos)
163 {
164 	int ret;
165 
166 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 	if (ret == 0 && write)
168 		dirty_background_bytes = 0;
169 	return ret;
170 }
171 
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 		void __user *buffer, size_t *lenp,
174 		loff_t *ppos)
175 {
176 	int ret;
177 
178 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 	if (ret == 0 && write)
180 		dirty_background_ratio = 0;
181 	return ret;
182 }
183 
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 		void __user *buffer, size_t *lenp,
186 		loff_t *ppos)
187 {
188 	int old_ratio = vm_dirty_ratio;
189 	int ret;
190 
191 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 		update_completion_period();
194 		vm_dirty_bytes = 0;
195 	}
196 	return ret;
197 }
198 
199 
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 		void __user *buffer, size_t *lenp,
202 		loff_t *ppos)
203 {
204 	unsigned long old_bytes = vm_dirty_bytes;
205 	int ret;
206 
207 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 		update_completion_period();
210 		vm_dirty_ratio = 0;
211 	}
212 	return ret;
213 }
214 
215 /*
216  * Increment the BDI's writeout completion count and the global writeout
217  * completion count. Called from test_clear_page_writeback().
218  */
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220 {
221 	__inc_bdi_stat(bdi, BDI_WRITTEN);
222 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 			      bdi->max_prop_frac);
224 }
225 
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228 	unsigned long flags;
229 
230 	local_irq_save(flags);
231 	__bdi_writeout_inc(bdi);
232 	local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235 
236 /*
237  * Obtain an accurate fraction of the BDI's portion.
238  */
239 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
240 		long *numerator, long *denominator)
241 {
242 	prop_fraction_percpu(&vm_completions, &bdi->completions,
243 				numerator, denominator);
244 }
245 
246 /*
247  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
248  * registered backing devices, which, for obvious reasons, can not
249  * exceed 100%.
250  */
251 static unsigned int bdi_min_ratio;
252 
253 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
254 {
255 	int ret = 0;
256 
257 	spin_lock_bh(&bdi_lock);
258 	if (min_ratio > bdi->max_ratio) {
259 		ret = -EINVAL;
260 	} else {
261 		min_ratio -= bdi->min_ratio;
262 		if (bdi_min_ratio + min_ratio < 100) {
263 			bdi_min_ratio += min_ratio;
264 			bdi->min_ratio += min_ratio;
265 		} else {
266 			ret = -EINVAL;
267 		}
268 	}
269 	spin_unlock_bh(&bdi_lock);
270 
271 	return ret;
272 }
273 
274 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
275 {
276 	int ret = 0;
277 
278 	if (max_ratio > 100)
279 		return -EINVAL;
280 
281 	spin_lock_bh(&bdi_lock);
282 	if (bdi->min_ratio > max_ratio) {
283 		ret = -EINVAL;
284 	} else {
285 		bdi->max_ratio = max_ratio;
286 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
287 	}
288 	spin_unlock_bh(&bdi_lock);
289 
290 	return ret;
291 }
292 EXPORT_SYMBOL(bdi_set_max_ratio);
293 
294 /*
295  * Work out the current dirty-memory clamping and background writeout
296  * thresholds.
297  *
298  * The main aim here is to lower them aggressively if there is a lot of mapped
299  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
300  * pages.  It is better to clamp down on writers than to start swapping, and
301  * performing lots of scanning.
302  *
303  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
304  *
305  * We don't permit the clamping level to fall below 5% - that is getting rather
306  * excessive.
307  *
308  * We make sure that the background writeout level is below the adjusted
309  * clamping level.
310  */
311 
312 static unsigned long highmem_dirtyable_memory(unsigned long total)
313 {
314 #ifdef CONFIG_HIGHMEM
315 	int node;
316 	unsigned long x = 0;
317 
318 	for_each_node_state(node, N_HIGH_MEMORY) {
319 		struct zone *z =
320 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
321 
322 		x += zone_page_state(z, NR_FREE_PAGES) +
323 		     zone_reclaimable_pages(z);
324 	}
325 	/*
326 	 * Make sure that the number of highmem pages is never larger
327 	 * than the number of the total dirtyable memory. This can only
328 	 * occur in very strange VM situations but we want to make sure
329 	 * that this does not occur.
330 	 */
331 	return min(x, total);
332 #else
333 	return 0;
334 #endif
335 }
336 
337 /**
338  * determine_dirtyable_memory - amount of memory that may be used
339  *
340  * Returns the numebr of pages that can currently be freed and used
341  * by the kernel for direct mappings.
342  */
343 unsigned long determine_dirtyable_memory(void)
344 {
345 	unsigned long x;
346 
347 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
348 
349 	if (!vm_highmem_is_dirtyable)
350 		x -= highmem_dirtyable_memory(x);
351 
352 	return x + 1;	/* Ensure that we never return 0 */
353 }
354 
355 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
356 					   unsigned long bg_thresh)
357 {
358 	return (thresh + bg_thresh) / 2;
359 }
360 
361 static unsigned long hard_dirty_limit(unsigned long thresh)
362 {
363 	return max(thresh, global_dirty_limit);
364 }
365 
366 /*
367  * global_dirty_limits - background-writeback and dirty-throttling thresholds
368  *
369  * Calculate the dirty thresholds based on sysctl parameters
370  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
371  * - vm.dirty_ratio             or  vm.dirty_bytes
372  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
373  * real-time tasks.
374  */
375 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
376 {
377 	unsigned long background;
378 	unsigned long dirty;
379 	unsigned long uninitialized_var(available_memory);
380 	struct task_struct *tsk;
381 
382 	if (!vm_dirty_bytes || !dirty_background_bytes)
383 		available_memory = determine_dirtyable_memory();
384 
385 	if (vm_dirty_bytes)
386 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
387 	else
388 		dirty = (vm_dirty_ratio * available_memory) / 100;
389 
390 	if (dirty_background_bytes)
391 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
392 	else
393 		background = (dirty_background_ratio * available_memory) / 100;
394 
395 	if (background >= dirty)
396 		background = dirty / 2;
397 	tsk = current;
398 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
399 		background += background / 4;
400 		dirty += dirty / 4;
401 	}
402 	*pbackground = background;
403 	*pdirty = dirty;
404 	trace_global_dirty_state(background, dirty);
405 }
406 
407 /**
408  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
409  * @bdi: the backing_dev_info to query
410  * @dirty: global dirty limit in pages
411  *
412  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
413  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
414  * And the "limit" in the name is not seriously taken as hard limit in
415  * balance_dirty_pages().
416  *
417  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
418  * - starving fast devices
419  * - piling up dirty pages (that will take long time to sync) on slow devices
420  *
421  * The bdi's share of dirty limit will be adapting to its throughput and
422  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
423  */
424 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
425 {
426 	u64 bdi_dirty;
427 	long numerator, denominator;
428 
429 	/*
430 	 * Calculate this BDI's share of the dirty ratio.
431 	 */
432 	bdi_writeout_fraction(bdi, &numerator, &denominator);
433 
434 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
435 	bdi_dirty *= numerator;
436 	do_div(bdi_dirty, denominator);
437 
438 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
439 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
440 		bdi_dirty = dirty * bdi->max_ratio / 100;
441 
442 	return bdi_dirty;
443 }
444 
445 /*
446  * Dirty position control.
447  *
448  * (o) global/bdi setpoints
449  *
450  * We want the dirty pages be balanced around the global/bdi setpoints.
451  * When the number of dirty pages is higher/lower than the setpoint, the
452  * dirty position control ratio (and hence task dirty ratelimit) will be
453  * decreased/increased to bring the dirty pages back to the setpoint.
454  *
455  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
456  *
457  *     if (dirty < setpoint) scale up   pos_ratio
458  *     if (dirty > setpoint) scale down pos_ratio
459  *
460  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
461  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
462  *
463  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
464  *
465  * (o) global control line
466  *
467  *     ^ pos_ratio
468  *     |
469  *     |            |<===== global dirty control scope ======>|
470  * 2.0 .............*
471  *     |            .*
472  *     |            . *
473  *     |            .   *
474  *     |            .     *
475  *     |            .        *
476  *     |            .            *
477  * 1.0 ................................*
478  *     |            .                  .     *
479  *     |            .                  .          *
480  *     |            .                  .              *
481  *     |            .                  .                 *
482  *     |            .                  .                    *
483  *   0 +------------.------------------.----------------------*------------->
484  *           freerun^          setpoint^                 limit^   dirty pages
485  *
486  * (o) bdi control line
487  *
488  *     ^ pos_ratio
489  *     |
490  *     |            *
491  *     |              *
492  *     |                *
493  *     |                  *
494  *     |                    * |<=========== span ============>|
495  * 1.0 .......................*
496  *     |                      . *
497  *     |                      .   *
498  *     |                      .     *
499  *     |                      .       *
500  *     |                      .         *
501  *     |                      .           *
502  *     |                      .             *
503  *     |                      .               *
504  *     |                      .                 *
505  *     |                      .                   *
506  *     |                      .                     *
507  * 1/4 ...............................................* * * * * * * * * * * *
508  *     |                      .                         .
509  *     |                      .                           .
510  *     |                      .                             .
511  *   0 +----------------------.-------------------------------.------------->
512  *                bdi_setpoint^                    x_intercept^
513  *
514  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
515  * be smoothly throttled down to normal if it starts high in situations like
516  * - start writing to a slow SD card and a fast disk at the same time. The SD
517  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
518  * - the bdi dirty thresh drops quickly due to change of JBOD workload
519  */
520 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
521 					unsigned long thresh,
522 					unsigned long bg_thresh,
523 					unsigned long dirty,
524 					unsigned long bdi_thresh,
525 					unsigned long bdi_dirty)
526 {
527 	unsigned long write_bw = bdi->avg_write_bandwidth;
528 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
529 	unsigned long limit = hard_dirty_limit(thresh);
530 	unsigned long x_intercept;
531 	unsigned long setpoint;		/* dirty pages' target balance point */
532 	unsigned long bdi_setpoint;
533 	unsigned long span;
534 	long long pos_ratio;		/* for scaling up/down the rate limit */
535 	long x;
536 
537 	if (unlikely(dirty >= limit))
538 		return 0;
539 
540 	/*
541 	 * global setpoint
542 	 *
543 	 *                           setpoint - dirty 3
544 	 *        f(dirty) := 1.0 + (----------------)
545 	 *                           limit - setpoint
546 	 *
547 	 * it's a 3rd order polynomial that subjects to
548 	 *
549 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
550 	 * (2) f(setpoint) = 1.0 => the balance point
551 	 * (3) f(limit)    = 0   => the hard limit
552 	 * (4) df/dx      <= 0	 => negative feedback control
553 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
554 	 *     => fast response on large errors; small oscillation near setpoint
555 	 */
556 	setpoint = (freerun + limit) / 2;
557 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
558 		    limit - setpoint + 1);
559 	pos_ratio = x;
560 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
561 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
562 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
563 
564 	/*
565 	 * We have computed basic pos_ratio above based on global situation. If
566 	 * the bdi is over/under its share of dirty pages, we want to scale
567 	 * pos_ratio further down/up. That is done by the following mechanism.
568 	 */
569 
570 	/*
571 	 * bdi setpoint
572 	 *
573 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
574 	 *
575 	 *                        x_intercept - bdi_dirty
576 	 *                     := --------------------------
577 	 *                        x_intercept - bdi_setpoint
578 	 *
579 	 * The main bdi control line is a linear function that subjects to
580 	 *
581 	 * (1) f(bdi_setpoint) = 1.0
582 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
583 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
584 	 *
585 	 * For single bdi case, the dirty pages are observed to fluctuate
586 	 * regularly within range
587 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
588 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
589 	 * fluctuation range for pos_ratio.
590 	 *
591 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
592 	 * own size, so move the slope over accordingly and choose a slope that
593 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
594 	 */
595 	if (unlikely(bdi_thresh > thresh))
596 		bdi_thresh = thresh;
597 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
598 	/*
599 	 * scale global setpoint to bdi's:
600 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
601 	 */
602 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
603 	bdi_setpoint = setpoint * (u64)x >> 16;
604 	/*
605 	 * Use span=(8*write_bw) in single bdi case as indicated by
606 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
607 	 *
608 	 *        bdi_thresh                    thresh - bdi_thresh
609 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
610 	 *          thresh                            thresh
611 	 */
612 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
613 	x_intercept = bdi_setpoint + span;
614 
615 	if (bdi_dirty < x_intercept - span / 4) {
616 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
617 				    x_intercept - bdi_setpoint + 1);
618 	} else
619 		pos_ratio /= 4;
620 
621 	/*
622 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
623 	 * It may push the desired control point of global dirty pages higher
624 	 * than setpoint.
625 	 */
626 	x_intercept = bdi_thresh / 2;
627 	if (bdi_dirty < x_intercept) {
628 		if (bdi_dirty > x_intercept / 8)
629 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
630 		else
631 			pos_ratio *= 8;
632 	}
633 
634 	return pos_ratio;
635 }
636 
637 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
638 				       unsigned long elapsed,
639 				       unsigned long written)
640 {
641 	const unsigned long period = roundup_pow_of_two(3 * HZ);
642 	unsigned long avg = bdi->avg_write_bandwidth;
643 	unsigned long old = bdi->write_bandwidth;
644 	u64 bw;
645 
646 	/*
647 	 * bw = written * HZ / elapsed
648 	 *
649 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
650 	 * write_bandwidth = ---------------------------------------------------
651 	 *                                          period
652 	 */
653 	bw = written - bdi->written_stamp;
654 	bw *= HZ;
655 	if (unlikely(elapsed > period)) {
656 		do_div(bw, elapsed);
657 		avg = bw;
658 		goto out;
659 	}
660 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
661 	bw >>= ilog2(period);
662 
663 	/*
664 	 * one more level of smoothing, for filtering out sudden spikes
665 	 */
666 	if (avg > old && old >= (unsigned long)bw)
667 		avg -= (avg - old) >> 3;
668 
669 	if (avg < old && old <= (unsigned long)bw)
670 		avg += (old - avg) >> 3;
671 
672 out:
673 	bdi->write_bandwidth = bw;
674 	bdi->avg_write_bandwidth = avg;
675 }
676 
677 /*
678  * The global dirtyable memory and dirty threshold could be suddenly knocked
679  * down by a large amount (eg. on the startup of KVM in a swapless system).
680  * This may throw the system into deep dirty exceeded state and throttle
681  * heavy/light dirtiers alike. To retain good responsiveness, maintain
682  * global_dirty_limit for tracking slowly down to the knocked down dirty
683  * threshold.
684  */
685 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
686 {
687 	unsigned long limit = global_dirty_limit;
688 
689 	/*
690 	 * Follow up in one step.
691 	 */
692 	if (limit < thresh) {
693 		limit = thresh;
694 		goto update;
695 	}
696 
697 	/*
698 	 * Follow down slowly. Use the higher one as the target, because thresh
699 	 * may drop below dirty. This is exactly the reason to introduce
700 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
701 	 */
702 	thresh = max(thresh, dirty);
703 	if (limit > thresh) {
704 		limit -= (limit - thresh) >> 5;
705 		goto update;
706 	}
707 	return;
708 update:
709 	global_dirty_limit = limit;
710 }
711 
712 static void global_update_bandwidth(unsigned long thresh,
713 				    unsigned long dirty,
714 				    unsigned long now)
715 {
716 	static DEFINE_SPINLOCK(dirty_lock);
717 	static unsigned long update_time;
718 
719 	/*
720 	 * check locklessly first to optimize away locking for the most time
721 	 */
722 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
723 		return;
724 
725 	spin_lock(&dirty_lock);
726 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
727 		update_dirty_limit(thresh, dirty);
728 		update_time = now;
729 	}
730 	spin_unlock(&dirty_lock);
731 }
732 
733 /*
734  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
735  *
736  * Normal bdi tasks will be curbed at or below it in long term.
737  * Obviously it should be around (write_bw / N) when there are N dd tasks.
738  */
739 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
740 				       unsigned long thresh,
741 				       unsigned long bg_thresh,
742 				       unsigned long dirty,
743 				       unsigned long bdi_thresh,
744 				       unsigned long bdi_dirty,
745 				       unsigned long dirtied,
746 				       unsigned long elapsed)
747 {
748 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
749 	unsigned long limit = hard_dirty_limit(thresh);
750 	unsigned long setpoint = (freerun + limit) / 2;
751 	unsigned long write_bw = bdi->avg_write_bandwidth;
752 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
753 	unsigned long dirty_rate;
754 	unsigned long task_ratelimit;
755 	unsigned long balanced_dirty_ratelimit;
756 	unsigned long pos_ratio;
757 	unsigned long step;
758 	unsigned long x;
759 
760 	/*
761 	 * The dirty rate will match the writeout rate in long term, except
762 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
763 	 */
764 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
765 
766 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
767 				       bdi_thresh, bdi_dirty);
768 	/*
769 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
770 	 */
771 	task_ratelimit = (u64)dirty_ratelimit *
772 					pos_ratio >> RATELIMIT_CALC_SHIFT;
773 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
774 
775 	/*
776 	 * A linear estimation of the "balanced" throttle rate. The theory is,
777 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
778 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
779 	 * formula will yield the balanced rate limit (write_bw / N).
780 	 *
781 	 * Note that the expanded form is not a pure rate feedback:
782 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
783 	 * but also takes pos_ratio into account:
784 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
785 	 *
786 	 * (1) is not realistic because pos_ratio also takes part in balancing
787 	 * the dirty rate.  Consider the state
788 	 *	pos_ratio = 0.5						     (3)
789 	 *	rate = 2 * (write_bw / N)				     (4)
790 	 * If (1) is used, it will stuck in that state! Because each dd will
791 	 * be throttled at
792 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
793 	 * yielding
794 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
795 	 * put (6) into (1) we get
796 	 *	rate_(i+1) = rate_(i)					     (7)
797 	 *
798 	 * So we end up using (2) to always keep
799 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
800 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
801 	 * pos_ratio is able to drive itself to 1.0, which is not only where
802 	 * the dirty count meet the setpoint, but also where the slope of
803 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
804 	 */
805 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
806 					   dirty_rate | 1);
807 
808 	/*
809 	 * We could safely do this and return immediately:
810 	 *
811 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
812 	 *
813 	 * However to get a more stable dirty_ratelimit, the below elaborated
814 	 * code makes use of task_ratelimit to filter out sigular points and
815 	 * limit the step size.
816 	 *
817 	 * The below code essentially only uses the relative value of
818 	 *
819 	 *	task_ratelimit - dirty_ratelimit
820 	 *	= (pos_ratio - 1) * dirty_ratelimit
821 	 *
822 	 * which reflects the direction and size of dirty position error.
823 	 */
824 
825 	/*
826 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
827 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
828 	 * For example, when
829 	 * - dirty_ratelimit > balanced_dirty_ratelimit
830 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
831 	 * lowering dirty_ratelimit will help meet both the position and rate
832 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
833 	 * only help meet the rate target. After all, what the users ultimately
834 	 * feel and care are stable dirty rate and small position error.
835 	 *
836 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
837 	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
838 	 * keeps jumping around randomly and can even leap far away at times
839 	 * due to the small 200ms estimation period of dirty_rate (we want to
840 	 * keep that period small to reduce time lags).
841 	 */
842 	step = 0;
843 	if (dirty < setpoint) {
844 		x = min(bdi->balanced_dirty_ratelimit,
845 			 min(balanced_dirty_ratelimit, task_ratelimit));
846 		if (dirty_ratelimit < x)
847 			step = x - dirty_ratelimit;
848 	} else {
849 		x = max(bdi->balanced_dirty_ratelimit,
850 			 max(balanced_dirty_ratelimit, task_ratelimit));
851 		if (dirty_ratelimit > x)
852 			step = dirty_ratelimit - x;
853 	}
854 
855 	/*
856 	 * Don't pursue 100% rate matching. It's impossible since the balanced
857 	 * rate itself is constantly fluctuating. So decrease the track speed
858 	 * when it gets close to the target. Helps eliminate pointless tremors.
859 	 */
860 	step >>= dirty_ratelimit / (2 * step + 1);
861 	/*
862 	 * Limit the tracking speed to avoid overshooting.
863 	 */
864 	step = (step + 7) / 8;
865 
866 	if (dirty_ratelimit < balanced_dirty_ratelimit)
867 		dirty_ratelimit += step;
868 	else
869 		dirty_ratelimit -= step;
870 
871 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
872 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
873 
874 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
875 }
876 
877 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
878 			    unsigned long thresh,
879 			    unsigned long bg_thresh,
880 			    unsigned long dirty,
881 			    unsigned long bdi_thresh,
882 			    unsigned long bdi_dirty,
883 			    unsigned long start_time)
884 {
885 	unsigned long now = jiffies;
886 	unsigned long elapsed = now - bdi->bw_time_stamp;
887 	unsigned long dirtied;
888 	unsigned long written;
889 
890 	/*
891 	 * rate-limit, only update once every 200ms.
892 	 */
893 	if (elapsed < BANDWIDTH_INTERVAL)
894 		return;
895 
896 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
897 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
898 
899 	/*
900 	 * Skip quiet periods when disk bandwidth is under-utilized.
901 	 * (at least 1s idle time between two flusher runs)
902 	 */
903 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
904 		goto snapshot;
905 
906 	if (thresh) {
907 		global_update_bandwidth(thresh, dirty, now);
908 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
909 					   bdi_thresh, bdi_dirty,
910 					   dirtied, elapsed);
911 	}
912 	bdi_update_write_bandwidth(bdi, elapsed, written);
913 
914 snapshot:
915 	bdi->dirtied_stamp = dirtied;
916 	bdi->written_stamp = written;
917 	bdi->bw_time_stamp = now;
918 }
919 
920 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
921 				 unsigned long thresh,
922 				 unsigned long bg_thresh,
923 				 unsigned long dirty,
924 				 unsigned long bdi_thresh,
925 				 unsigned long bdi_dirty,
926 				 unsigned long start_time)
927 {
928 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
929 		return;
930 	spin_lock(&bdi->wb.list_lock);
931 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
932 			       bdi_thresh, bdi_dirty, start_time);
933 	spin_unlock(&bdi->wb.list_lock);
934 }
935 
936 /*
937  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
938  * will look to see if it needs to start dirty throttling.
939  *
940  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
941  * global_page_state() too often. So scale it near-sqrt to the safety margin
942  * (the number of pages we may dirty without exceeding the dirty limits).
943  */
944 static unsigned long dirty_poll_interval(unsigned long dirty,
945 					 unsigned long thresh)
946 {
947 	if (thresh > dirty)
948 		return 1UL << (ilog2(thresh - dirty) >> 1);
949 
950 	return 1;
951 }
952 
953 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
954 				   unsigned long bdi_dirty)
955 {
956 	unsigned long bw = bdi->avg_write_bandwidth;
957 	unsigned long hi = ilog2(bw);
958 	unsigned long lo = ilog2(bdi->dirty_ratelimit);
959 	unsigned long t;
960 
961 	/* target for 20ms max pause on 1-dd case */
962 	t = HZ / 50;
963 
964 	/*
965 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
966 	 * overheads.
967 	 *
968 	 * (N * 20ms) on 2^N concurrent tasks.
969 	 */
970 	if (hi > lo)
971 		t += (hi - lo) * (20 * HZ) / 1024;
972 
973 	/*
974 	 * Limit pause time for small memory systems. If sleeping for too long
975 	 * time, a small pool of dirty/writeback pages may go empty and disk go
976 	 * idle.
977 	 *
978 	 * 8 serves as the safety ratio.
979 	 */
980 	if (bdi_dirty)
981 		t = min(t, bdi_dirty * HZ / (8 * bw + 1));
982 
983 	/*
984 	 * The pause time will be settled within range (max_pause/4, max_pause).
985 	 * Apply a minimal value of 4 to get a non-zero max_pause/4.
986 	 */
987 	return clamp_val(t, 4, MAX_PAUSE);
988 }
989 
990 /*
991  * balance_dirty_pages() must be called by processes which are generating dirty
992  * data.  It looks at the number of dirty pages in the machine and will force
993  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
994  * If we're over `background_thresh' then the writeback threads are woken to
995  * perform some writeout.
996  */
997 static void balance_dirty_pages(struct address_space *mapping,
998 				unsigned long pages_dirtied)
999 {
1000 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1001 	unsigned long bdi_reclaimable;
1002 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1003 	unsigned long bdi_dirty;
1004 	unsigned long freerun;
1005 	unsigned long background_thresh;
1006 	unsigned long dirty_thresh;
1007 	unsigned long bdi_thresh;
1008 	long pause = 0;
1009 	long uninitialized_var(max_pause);
1010 	bool dirty_exceeded = false;
1011 	unsigned long task_ratelimit;
1012 	unsigned long uninitialized_var(dirty_ratelimit);
1013 	unsigned long pos_ratio;
1014 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1015 	unsigned long start_time = jiffies;
1016 
1017 	for (;;) {
1018 		/*
1019 		 * Unstable writes are a feature of certain networked
1020 		 * filesystems (i.e. NFS) in which data may have been
1021 		 * written to the server's write cache, but has not yet
1022 		 * been flushed to permanent storage.
1023 		 */
1024 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1025 					global_page_state(NR_UNSTABLE_NFS);
1026 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1027 
1028 		global_dirty_limits(&background_thresh, &dirty_thresh);
1029 
1030 		/*
1031 		 * Throttle it only when the background writeback cannot
1032 		 * catch-up. This avoids (excessively) small writeouts
1033 		 * when the bdi limits are ramping up.
1034 		 */
1035 		freerun = dirty_freerun_ceiling(dirty_thresh,
1036 						background_thresh);
1037 		if (nr_dirty <= freerun)
1038 			break;
1039 
1040 		if (unlikely(!writeback_in_progress(bdi)))
1041 			bdi_start_background_writeback(bdi);
1042 
1043 		/*
1044 		 * bdi_thresh is not treated as some limiting factor as
1045 		 * dirty_thresh, due to reasons
1046 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1047 		 * - in a system with HDD and USB key, the USB key may somehow
1048 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1049 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1050 		 *   In this case we don't want to hard throttle the USB key
1051 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1052 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1053 		 *   bdi_position_ratio() will let the dirtier task progress
1054 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1055 		 */
1056 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1057 
1058 		/*
1059 		 * In order to avoid the stacked BDI deadlock we need
1060 		 * to ensure we accurately count the 'dirty' pages when
1061 		 * the threshold is low.
1062 		 *
1063 		 * Otherwise it would be possible to get thresh+n pages
1064 		 * reported dirty, even though there are thresh-m pages
1065 		 * actually dirty; with m+n sitting in the percpu
1066 		 * deltas.
1067 		 */
1068 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1069 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1070 			bdi_dirty = bdi_reclaimable +
1071 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1072 		} else {
1073 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1074 			bdi_dirty = bdi_reclaimable +
1075 				    bdi_stat(bdi, BDI_WRITEBACK);
1076 		}
1077 
1078 		dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1079 				  (nr_dirty > dirty_thresh);
1080 		if (dirty_exceeded && !bdi->dirty_exceeded)
1081 			bdi->dirty_exceeded = 1;
1082 
1083 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1084 				     nr_dirty, bdi_thresh, bdi_dirty,
1085 				     start_time);
1086 
1087 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1088 
1089 		dirty_ratelimit = bdi->dirty_ratelimit;
1090 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1091 					       background_thresh, nr_dirty,
1092 					       bdi_thresh, bdi_dirty);
1093 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1094 							RATELIMIT_CALC_SHIFT;
1095 		if (unlikely(task_ratelimit == 0)) {
1096 			pause = max_pause;
1097 			goto pause;
1098 		}
1099 		pause = HZ * pages_dirtied / task_ratelimit;
1100 		if (unlikely(pause <= 0)) {
1101 			trace_balance_dirty_pages(bdi,
1102 						  dirty_thresh,
1103 						  background_thresh,
1104 						  nr_dirty,
1105 						  bdi_thresh,
1106 						  bdi_dirty,
1107 						  dirty_ratelimit,
1108 						  task_ratelimit,
1109 						  pages_dirtied,
1110 						  pause,
1111 						  start_time);
1112 			pause = 1; /* avoid resetting nr_dirtied_pause below */
1113 			break;
1114 		}
1115 		pause = min(pause, max_pause);
1116 
1117 pause:
1118 		trace_balance_dirty_pages(bdi,
1119 					  dirty_thresh,
1120 					  background_thresh,
1121 					  nr_dirty,
1122 					  bdi_thresh,
1123 					  bdi_dirty,
1124 					  dirty_ratelimit,
1125 					  task_ratelimit,
1126 					  pages_dirtied,
1127 					  pause,
1128 					  start_time);
1129 		__set_current_state(TASK_KILLABLE);
1130 		io_schedule_timeout(pause);
1131 
1132 		/*
1133 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1134 		 * also keep "1000+ dd on a slow USB stick" under control.
1135 		 */
1136 		if (task_ratelimit)
1137 			break;
1138 
1139 		if (fatal_signal_pending(current))
1140 			break;
1141 	}
1142 
1143 	if (!dirty_exceeded && bdi->dirty_exceeded)
1144 		bdi->dirty_exceeded = 0;
1145 
1146 	current->nr_dirtied = 0;
1147 	if (pause == 0) { /* in freerun area */
1148 		current->nr_dirtied_pause =
1149 				dirty_poll_interval(nr_dirty, dirty_thresh);
1150 	} else if (pause <= max_pause / 4 &&
1151 		   pages_dirtied >= current->nr_dirtied_pause) {
1152 		current->nr_dirtied_pause = clamp_val(
1153 					dirty_ratelimit * (max_pause / 2) / HZ,
1154 					pages_dirtied + pages_dirtied / 8,
1155 					pages_dirtied * 4);
1156 	} else if (pause >= max_pause) {
1157 		current->nr_dirtied_pause = 1 | clamp_val(
1158 					dirty_ratelimit * (max_pause / 2) / HZ,
1159 					pages_dirtied / 4,
1160 					pages_dirtied - pages_dirtied / 8);
1161 	}
1162 
1163 	if (writeback_in_progress(bdi))
1164 		return;
1165 
1166 	/*
1167 	 * In laptop mode, we wait until hitting the higher threshold before
1168 	 * starting background writeout, and then write out all the way down
1169 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1170 	 *
1171 	 * In normal mode, we start background writeout at the lower
1172 	 * background_thresh, to keep the amount of dirty memory low.
1173 	 */
1174 	if (laptop_mode)
1175 		return;
1176 
1177 	if (nr_reclaimable > background_thresh)
1178 		bdi_start_background_writeback(bdi);
1179 }
1180 
1181 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1182 {
1183 	if (set_page_dirty(page) || page_mkwrite) {
1184 		struct address_space *mapping = page_mapping(page);
1185 
1186 		if (mapping)
1187 			balance_dirty_pages_ratelimited(mapping);
1188 	}
1189 }
1190 
1191 static DEFINE_PER_CPU(int, bdp_ratelimits);
1192 
1193 /**
1194  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1195  * @mapping: address_space which was dirtied
1196  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1197  *
1198  * Processes which are dirtying memory should call in here once for each page
1199  * which was newly dirtied.  The function will periodically check the system's
1200  * dirty state and will initiate writeback if needed.
1201  *
1202  * On really big machines, get_writeback_state is expensive, so try to avoid
1203  * calling it too often (ratelimiting).  But once we're over the dirty memory
1204  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1205  * from overshooting the limit by (ratelimit_pages) each.
1206  */
1207 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1208 					unsigned long nr_pages_dirtied)
1209 {
1210 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1211 	int ratelimit;
1212 	int *p;
1213 
1214 	if (!bdi_cap_account_dirty(bdi))
1215 		return;
1216 
1217 	ratelimit = current->nr_dirtied_pause;
1218 	if (bdi->dirty_exceeded)
1219 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1220 
1221 	current->nr_dirtied += nr_pages_dirtied;
1222 
1223 	preempt_disable();
1224 	/*
1225 	 * This prevents one CPU to accumulate too many dirtied pages without
1226 	 * calling into balance_dirty_pages(), which can happen when there are
1227 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1228 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1229 	 */
1230 	p =  &__get_cpu_var(bdp_ratelimits);
1231 	if (unlikely(current->nr_dirtied >= ratelimit))
1232 		*p = 0;
1233 	else {
1234 		*p += nr_pages_dirtied;
1235 		if (unlikely(*p >= ratelimit_pages)) {
1236 			*p = 0;
1237 			ratelimit = 0;
1238 		}
1239 	}
1240 	preempt_enable();
1241 
1242 	if (unlikely(current->nr_dirtied >= ratelimit))
1243 		balance_dirty_pages(mapping, current->nr_dirtied);
1244 }
1245 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1246 
1247 void throttle_vm_writeout(gfp_t gfp_mask)
1248 {
1249 	unsigned long background_thresh;
1250 	unsigned long dirty_thresh;
1251 
1252         for ( ; ; ) {
1253 		global_dirty_limits(&background_thresh, &dirty_thresh);
1254 
1255                 /*
1256                  * Boost the allowable dirty threshold a bit for page
1257                  * allocators so they don't get DoS'ed by heavy writers
1258                  */
1259                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1260 
1261                 if (global_page_state(NR_UNSTABLE_NFS) +
1262 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1263                         	break;
1264                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1265 
1266 		/*
1267 		 * The caller might hold locks which can prevent IO completion
1268 		 * or progress in the filesystem.  So we cannot just sit here
1269 		 * waiting for IO to complete.
1270 		 */
1271 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1272 			break;
1273         }
1274 }
1275 
1276 /*
1277  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1278  */
1279 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1280 	void __user *buffer, size_t *length, loff_t *ppos)
1281 {
1282 	proc_dointvec(table, write, buffer, length, ppos);
1283 	bdi_arm_supers_timer();
1284 	return 0;
1285 }
1286 
1287 #ifdef CONFIG_BLOCK
1288 void laptop_mode_timer_fn(unsigned long data)
1289 {
1290 	struct request_queue *q = (struct request_queue *)data;
1291 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1292 		global_page_state(NR_UNSTABLE_NFS);
1293 
1294 	/*
1295 	 * We want to write everything out, not just down to the dirty
1296 	 * threshold
1297 	 */
1298 	if (bdi_has_dirty_io(&q->backing_dev_info))
1299 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1300 					WB_REASON_LAPTOP_TIMER);
1301 }
1302 
1303 /*
1304  * We've spun up the disk and we're in laptop mode: schedule writeback
1305  * of all dirty data a few seconds from now.  If the flush is already scheduled
1306  * then push it back - the user is still using the disk.
1307  */
1308 void laptop_io_completion(struct backing_dev_info *info)
1309 {
1310 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1311 }
1312 
1313 /*
1314  * We're in laptop mode and we've just synced. The sync's writes will have
1315  * caused another writeback to be scheduled by laptop_io_completion.
1316  * Nothing needs to be written back anymore, so we unschedule the writeback.
1317  */
1318 void laptop_sync_completion(void)
1319 {
1320 	struct backing_dev_info *bdi;
1321 
1322 	rcu_read_lock();
1323 
1324 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1325 		del_timer(&bdi->laptop_mode_wb_timer);
1326 
1327 	rcu_read_unlock();
1328 }
1329 #endif
1330 
1331 /*
1332  * If ratelimit_pages is too high then we can get into dirty-data overload
1333  * if a large number of processes all perform writes at the same time.
1334  * If it is too low then SMP machines will call the (expensive)
1335  * get_writeback_state too often.
1336  *
1337  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1338  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1339  * thresholds.
1340  */
1341 
1342 void writeback_set_ratelimit(void)
1343 {
1344 	unsigned long background_thresh;
1345 	unsigned long dirty_thresh;
1346 	global_dirty_limits(&background_thresh, &dirty_thresh);
1347 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1348 	if (ratelimit_pages < 16)
1349 		ratelimit_pages = 16;
1350 }
1351 
1352 static int __cpuinit
1353 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1354 {
1355 	writeback_set_ratelimit();
1356 	return NOTIFY_DONE;
1357 }
1358 
1359 static struct notifier_block __cpuinitdata ratelimit_nb = {
1360 	.notifier_call	= ratelimit_handler,
1361 	.next		= NULL,
1362 };
1363 
1364 /*
1365  * Called early on to tune the page writeback dirty limits.
1366  *
1367  * We used to scale dirty pages according to how total memory
1368  * related to pages that could be allocated for buffers (by
1369  * comparing nr_free_buffer_pages() to vm_total_pages.
1370  *
1371  * However, that was when we used "dirty_ratio" to scale with
1372  * all memory, and we don't do that any more. "dirty_ratio"
1373  * is now applied to total non-HIGHPAGE memory (by subtracting
1374  * totalhigh_pages from vm_total_pages), and as such we can't
1375  * get into the old insane situation any more where we had
1376  * large amounts of dirty pages compared to a small amount of
1377  * non-HIGHMEM memory.
1378  *
1379  * But we might still want to scale the dirty_ratio by how
1380  * much memory the box has..
1381  */
1382 void __init page_writeback_init(void)
1383 {
1384 	int shift;
1385 
1386 	writeback_set_ratelimit();
1387 	register_cpu_notifier(&ratelimit_nb);
1388 
1389 	shift = calc_period_shift();
1390 	prop_descriptor_init(&vm_completions, shift);
1391 }
1392 
1393 /**
1394  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1395  * @mapping: address space structure to write
1396  * @start: starting page index
1397  * @end: ending page index (inclusive)
1398  *
1399  * This function scans the page range from @start to @end (inclusive) and tags
1400  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1401  * that write_cache_pages (or whoever calls this function) will then use
1402  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1403  * used to avoid livelocking of writeback by a process steadily creating new
1404  * dirty pages in the file (thus it is important for this function to be quick
1405  * so that it can tag pages faster than a dirtying process can create them).
1406  */
1407 /*
1408  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1409  */
1410 void tag_pages_for_writeback(struct address_space *mapping,
1411 			     pgoff_t start, pgoff_t end)
1412 {
1413 #define WRITEBACK_TAG_BATCH 4096
1414 	unsigned long tagged;
1415 
1416 	do {
1417 		spin_lock_irq(&mapping->tree_lock);
1418 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1419 				&start, end, WRITEBACK_TAG_BATCH,
1420 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1421 		spin_unlock_irq(&mapping->tree_lock);
1422 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1423 		cond_resched();
1424 		/* We check 'start' to handle wrapping when end == ~0UL */
1425 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1426 }
1427 EXPORT_SYMBOL(tag_pages_for_writeback);
1428 
1429 /**
1430  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1431  * @mapping: address space structure to write
1432  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1433  * @writepage: function called for each page
1434  * @data: data passed to writepage function
1435  *
1436  * If a page is already under I/O, write_cache_pages() skips it, even
1437  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1438  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1439  * and msync() need to guarantee that all the data which was dirty at the time
1440  * the call was made get new I/O started against them.  If wbc->sync_mode is
1441  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1442  * existing IO to complete.
1443  *
1444  * To avoid livelocks (when other process dirties new pages), we first tag
1445  * pages which should be written back with TOWRITE tag and only then start
1446  * writing them. For data-integrity sync we have to be careful so that we do
1447  * not miss some pages (e.g., because some other process has cleared TOWRITE
1448  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1449  * by the process clearing the DIRTY tag (and submitting the page for IO).
1450  */
1451 int write_cache_pages(struct address_space *mapping,
1452 		      struct writeback_control *wbc, writepage_t writepage,
1453 		      void *data)
1454 {
1455 	int ret = 0;
1456 	int done = 0;
1457 	struct pagevec pvec;
1458 	int nr_pages;
1459 	pgoff_t uninitialized_var(writeback_index);
1460 	pgoff_t index;
1461 	pgoff_t end;		/* Inclusive */
1462 	pgoff_t done_index;
1463 	int cycled;
1464 	int range_whole = 0;
1465 	int tag;
1466 
1467 	pagevec_init(&pvec, 0);
1468 	if (wbc->range_cyclic) {
1469 		writeback_index = mapping->writeback_index; /* prev offset */
1470 		index = writeback_index;
1471 		if (index == 0)
1472 			cycled = 1;
1473 		else
1474 			cycled = 0;
1475 		end = -1;
1476 	} else {
1477 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1478 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1479 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1480 			range_whole = 1;
1481 		cycled = 1; /* ignore range_cyclic tests */
1482 	}
1483 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1484 		tag = PAGECACHE_TAG_TOWRITE;
1485 	else
1486 		tag = PAGECACHE_TAG_DIRTY;
1487 retry:
1488 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1489 		tag_pages_for_writeback(mapping, index, end);
1490 	done_index = index;
1491 	while (!done && (index <= end)) {
1492 		int i;
1493 
1494 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1495 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1496 		if (nr_pages == 0)
1497 			break;
1498 
1499 		for (i = 0; i < nr_pages; i++) {
1500 			struct page *page = pvec.pages[i];
1501 
1502 			/*
1503 			 * At this point, the page may be truncated or
1504 			 * invalidated (changing page->mapping to NULL), or
1505 			 * even swizzled back from swapper_space to tmpfs file
1506 			 * mapping. However, page->index will not change
1507 			 * because we have a reference on the page.
1508 			 */
1509 			if (page->index > end) {
1510 				/*
1511 				 * can't be range_cyclic (1st pass) because
1512 				 * end == -1 in that case.
1513 				 */
1514 				done = 1;
1515 				break;
1516 			}
1517 
1518 			done_index = page->index;
1519 
1520 			lock_page(page);
1521 
1522 			/*
1523 			 * Page truncated or invalidated. We can freely skip it
1524 			 * then, even for data integrity operations: the page
1525 			 * has disappeared concurrently, so there could be no
1526 			 * real expectation of this data interity operation
1527 			 * even if there is now a new, dirty page at the same
1528 			 * pagecache address.
1529 			 */
1530 			if (unlikely(page->mapping != mapping)) {
1531 continue_unlock:
1532 				unlock_page(page);
1533 				continue;
1534 			}
1535 
1536 			if (!PageDirty(page)) {
1537 				/* someone wrote it for us */
1538 				goto continue_unlock;
1539 			}
1540 
1541 			if (PageWriteback(page)) {
1542 				if (wbc->sync_mode != WB_SYNC_NONE)
1543 					wait_on_page_writeback(page);
1544 				else
1545 					goto continue_unlock;
1546 			}
1547 
1548 			BUG_ON(PageWriteback(page));
1549 			if (!clear_page_dirty_for_io(page))
1550 				goto continue_unlock;
1551 
1552 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1553 			ret = (*writepage)(page, wbc, data);
1554 			if (unlikely(ret)) {
1555 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1556 					unlock_page(page);
1557 					ret = 0;
1558 				} else {
1559 					/*
1560 					 * done_index is set past this page,
1561 					 * so media errors will not choke
1562 					 * background writeout for the entire
1563 					 * file. This has consequences for
1564 					 * range_cyclic semantics (ie. it may
1565 					 * not be suitable for data integrity
1566 					 * writeout).
1567 					 */
1568 					done_index = page->index + 1;
1569 					done = 1;
1570 					break;
1571 				}
1572 			}
1573 
1574 			/*
1575 			 * We stop writing back only if we are not doing
1576 			 * integrity sync. In case of integrity sync we have to
1577 			 * keep going until we have written all the pages
1578 			 * we tagged for writeback prior to entering this loop.
1579 			 */
1580 			if (--wbc->nr_to_write <= 0 &&
1581 			    wbc->sync_mode == WB_SYNC_NONE) {
1582 				done = 1;
1583 				break;
1584 			}
1585 		}
1586 		pagevec_release(&pvec);
1587 		cond_resched();
1588 	}
1589 	if (!cycled && !done) {
1590 		/*
1591 		 * range_cyclic:
1592 		 * We hit the last page and there is more work to be done: wrap
1593 		 * back to the start of the file
1594 		 */
1595 		cycled = 1;
1596 		index = 0;
1597 		end = writeback_index - 1;
1598 		goto retry;
1599 	}
1600 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1601 		mapping->writeback_index = done_index;
1602 
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL(write_cache_pages);
1606 
1607 /*
1608  * Function used by generic_writepages to call the real writepage
1609  * function and set the mapping flags on error
1610  */
1611 static int __writepage(struct page *page, struct writeback_control *wbc,
1612 		       void *data)
1613 {
1614 	struct address_space *mapping = data;
1615 	int ret = mapping->a_ops->writepage(page, wbc);
1616 	mapping_set_error(mapping, ret);
1617 	return ret;
1618 }
1619 
1620 /**
1621  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1622  * @mapping: address space structure to write
1623  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1624  *
1625  * This is a library function, which implements the writepages()
1626  * address_space_operation.
1627  */
1628 int generic_writepages(struct address_space *mapping,
1629 		       struct writeback_control *wbc)
1630 {
1631 	struct blk_plug plug;
1632 	int ret;
1633 
1634 	/* deal with chardevs and other special file */
1635 	if (!mapping->a_ops->writepage)
1636 		return 0;
1637 
1638 	blk_start_plug(&plug);
1639 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1640 	blk_finish_plug(&plug);
1641 	return ret;
1642 }
1643 
1644 EXPORT_SYMBOL(generic_writepages);
1645 
1646 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1647 {
1648 	int ret;
1649 
1650 	if (wbc->nr_to_write <= 0)
1651 		return 0;
1652 	if (mapping->a_ops->writepages)
1653 		ret = mapping->a_ops->writepages(mapping, wbc);
1654 	else
1655 		ret = generic_writepages(mapping, wbc);
1656 	return ret;
1657 }
1658 
1659 /**
1660  * write_one_page - write out a single page and optionally wait on I/O
1661  * @page: the page to write
1662  * @wait: if true, wait on writeout
1663  *
1664  * The page must be locked by the caller and will be unlocked upon return.
1665  *
1666  * write_one_page() returns a negative error code if I/O failed.
1667  */
1668 int write_one_page(struct page *page, int wait)
1669 {
1670 	struct address_space *mapping = page->mapping;
1671 	int ret = 0;
1672 	struct writeback_control wbc = {
1673 		.sync_mode = WB_SYNC_ALL,
1674 		.nr_to_write = 1,
1675 	};
1676 
1677 	BUG_ON(!PageLocked(page));
1678 
1679 	if (wait)
1680 		wait_on_page_writeback(page);
1681 
1682 	if (clear_page_dirty_for_io(page)) {
1683 		page_cache_get(page);
1684 		ret = mapping->a_ops->writepage(page, &wbc);
1685 		if (ret == 0 && wait) {
1686 			wait_on_page_writeback(page);
1687 			if (PageError(page))
1688 				ret = -EIO;
1689 		}
1690 		page_cache_release(page);
1691 	} else {
1692 		unlock_page(page);
1693 	}
1694 	return ret;
1695 }
1696 EXPORT_SYMBOL(write_one_page);
1697 
1698 /*
1699  * For address_spaces which do not use buffers nor write back.
1700  */
1701 int __set_page_dirty_no_writeback(struct page *page)
1702 {
1703 	if (!PageDirty(page))
1704 		return !TestSetPageDirty(page);
1705 	return 0;
1706 }
1707 
1708 /*
1709  * Helper function for set_page_dirty family.
1710  * NOTE: This relies on being atomic wrt interrupts.
1711  */
1712 void account_page_dirtied(struct page *page, struct address_space *mapping)
1713 {
1714 	if (mapping_cap_account_dirty(mapping)) {
1715 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1716 		__inc_zone_page_state(page, NR_DIRTIED);
1717 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1718 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1719 		task_io_account_write(PAGE_CACHE_SIZE);
1720 	}
1721 }
1722 EXPORT_SYMBOL(account_page_dirtied);
1723 
1724 /*
1725  * Helper function for set_page_writeback family.
1726  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1727  * wrt interrupts.
1728  */
1729 void account_page_writeback(struct page *page)
1730 {
1731 	inc_zone_page_state(page, NR_WRITEBACK);
1732 }
1733 EXPORT_SYMBOL(account_page_writeback);
1734 
1735 /*
1736  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1737  * its radix tree.
1738  *
1739  * This is also used when a single buffer is being dirtied: we want to set the
1740  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1741  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1742  *
1743  * Most callers have locked the page, which pins the address_space in memory.
1744  * But zap_pte_range() does not lock the page, however in that case the
1745  * mapping is pinned by the vma's ->vm_file reference.
1746  *
1747  * We take care to handle the case where the page was truncated from the
1748  * mapping by re-checking page_mapping() inside tree_lock.
1749  */
1750 int __set_page_dirty_nobuffers(struct page *page)
1751 {
1752 	if (!TestSetPageDirty(page)) {
1753 		struct address_space *mapping = page_mapping(page);
1754 		struct address_space *mapping2;
1755 
1756 		if (!mapping)
1757 			return 1;
1758 
1759 		spin_lock_irq(&mapping->tree_lock);
1760 		mapping2 = page_mapping(page);
1761 		if (mapping2) { /* Race with truncate? */
1762 			BUG_ON(mapping2 != mapping);
1763 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1764 			account_page_dirtied(page, mapping);
1765 			radix_tree_tag_set(&mapping->page_tree,
1766 				page_index(page), PAGECACHE_TAG_DIRTY);
1767 		}
1768 		spin_unlock_irq(&mapping->tree_lock);
1769 		if (mapping->host) {
1770 			/* !PageAnon && !swapper_space */
1771 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1772 		}
1773 		return 1;
1774 	}
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1778 
1779 /*
1780  * When a writepage implementation decides that it doesn't want to write this
1781  * page for some reason, it should redirty the locked page via
1782  * redirty_page_for_writepage() and it should then unlock the page and return 0
1783  */
1784 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1785 {
1786 	wbc->pages_skipped++;
1787 	return __set_page_dirty_nobuffers(page);
1788 }
1789 EXPORT_SYMBOL(redirty_page_for_writepage);
1790 
1791 /*
1792  * Dirty a page.
1793  *
1794  * For pages with a mapping this should be done under the page lock
1795  * for the benefit of asynchronous memory errors who prefer a consistent
1796  * dirty state. This rule can be broken in some special cases,
1797  * but should be better not to.
1798  *
1799  * If the mapping doesn't provide a set_page_dirty a_op, then
1800  * just fall through and assume that it wants buffer_heads.
1801  */
1802 int set_page_dirty(struct page *page)
1803 {
1804 	struct address_space *mapping = page_mapping(page);
1805 
1806 	if (likely(mapping)) {
1807 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1808 		/*
1809 		 * readahead/lru_deactivate_page could remain
1810 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1811 		 * About readahead, if the page is written, the flags would be
1812 		 * reset. So no problem.
1813 		 * About lru_deactivate_page, if the page is redirty, the flag
1814 		 * will be reset. So no problem. but if the page is used by readahead
1815 		 * it will confuse readahead and make it restart the size rampup
1816 		 * process. But it's a trivial problem.
1817 		 */
1818 		ClearPageReclaim(page);
1819 #ifdef CONFIG_BLOCK
1820 		if (!spd)
1821 			spd = __set_page_dirty_buffers;
1822 #endif
1823 		return (*spd)(page);
1824 	}
1825 	if (!PageDirty(page)) {
1826 		if (!TestSetPageDirty(page))
1827 			return 1;
1828 	}
1829 	return 0;
1830 }
1831 EXPORT_SYMBOL(set_page_dirty);
1832 
1833 /*
1834  * set_page_dirty() is racy if the caller has no reference against
1835  * page->mapping->host, and if the page is unlocked.  This is because another
1836  * CPU could truncate the page off the mapping and then free the mapping.
1837  *
1838  * Usually, the page _is_ locked, or the caller is a user-space process which
1839  * holds a reference on the inode by having an open file.
1840  *
1841  * In other cases, the page should be locked before running set_page_dirty().
1842  */
1843 int set_page_dirty_lock(struct page *page)
1844 {
1845 	int ret;
1846 
1847 	lock_page(page);
1848 	ret = set_page_dirty(page);
1849 	unlock_page(page);
1850 	return ret;
1851 }
1852 EXPORT_SYMBOL(set_page_dirty_lock);
1853 
1854 /*
1855  * Clear a page's dirty flag, while caring for dirty memory accounting.
1856  * Returns true if the page was previously dirty.
1857  *
1858  * This is for preparing to put the page under writeout.  We leave the page
1859  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1860  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1861  * implementation will run either set_page_writeback() or set_page_dirty(),
1862  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1863  * back into sync.
1864  *
1865  * This incoherency between the page's dirty flag and radix-tree tag is
1866  * unfortunate, but it only exists while the page is locked.
1867  */
1868 int clear_page_dirty_for_io(struct page *page)
1869 {
1870 	struct address_space *mapping = page_mapping(page);
1871 
1872 	BUG_ON(!PageLocked(page));
1873 
1874 	if (mapping && mapping_cap_account_dirty(mapping)) {
1875 		/*
1876 		 * Yes, Virginia, this is indeed insane.
1877 		 *
1878 		 * We use this sequence to make sure that
1879 		 *  (a) we account for dirty stats properly
1880 		 *  (b) we tell the low-level filesystem to
1881 		 *      mark the whole page dirty if it was
1882 		 *      dirty in a pagetable. Only to then
1883 		 *  (c) clean the page again and return 1 to
1884 		 *      cause the writeback.
1885 		 *
1886 		 * This way we avoid all nasty races with the
1887 		 * dirty bit in multiple places and clearing
1888 		 * them concurrently from different threads.
1889 		 *
1890 		 * Note! Normally the "set_page_dirty(page)"
1891 		 * has no effect on the actual dirty bit - since
1892 		 * that will already usually be set. But we
1893 		 * need the side effects, and it can help us
1894 		 * avoid races.
1895 		 *
1896 		 * We basically use the page "master dirty bit"
1897 		 * as a serialization point for all the different
1898 		 * threads doing their things.
1899 		 */
1900 		if (page_mkclean(page))
1901 			set_page_dirty(page);
1902 		/*
1903 		 * We carefully synchronise fault handlers against
1904 		 * installing a dirty pte and marking the page dirty
1905 		 * at this point. We do this by having them hold the
1906 		 * page lock at some point after installing their
1907 		 * pte, but before marking the page dirty.
1908 		 * Pages are always locked coming in here, so we get
1909 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1910 		 * for more comments.
1911 		 */
1912 		if (TestClearPageDirty(page)) {
1913 			dec_zone_page_state(page, NR_FILE_DIRTY);
1914 			dec_bdi_stat(mapping->backing_dev_info,
1915 					BDI_RECLAIMABLE);
1916 			return 1;
1917 		}
1918 		return 0;
1919 	}
1920 	return TestClearPageDirty(page);
1921 }
1922 EXPORT_SYMBOL(clear_page_dirty_for_io);
1923 
1924 int test_clear_page_writeback(struct page *page)
1925 {
1926 	struct address_space *mapping = page_mapping(page);
1927 	int ret;
1928 
1929 	if (mapping) {
1930 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1931 		unsigned long flags;
1932 
1933 		spin_lock_irqsave(&mapping->tree_lock, flags);
1934 		ret = TestClearPageWriteback(page);
1935 		if (ret) {
1936 			radix_tree_tag_clear(&mapping->page_tree,
1937 						page_index(page),
1938 						PAGECACHE_TAG_WRITEBACK);
1939 			if (bdi_cap_account_writeback(bdi)) {
1940 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1941 				__bdi_writeout_inc(bdi);
1942 			}
1943 		}
1944 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1945 	} else {
1946 		ret = TestClearPageWriteback(page);
1947 	}
1948 	if (ret) {
1949 		dec_zone_page_state(page, NR_WRITEBACK);
1950 		inc_zone_page_state(page, NR_WRITTEN);
1951 	}
1952 	return ret;
1953 }
1954 
1955 int test_set_page_writeback(struct page *page)
1956 {
1957 	struct address_space *mapping = page_mapping(page);
1958 	int ret;
1959 
1960 	if (mapping) {
1961 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1962 		unsigned long flags;
1963 
1964 		spin_lock_irqsave(&mapping->tree_lock, flags);
1965 		ret = TestSetPageWriteback(page);
1966 		if (!ret) {
1967 			radix_tree_tag_set(&mapping->page_tree,
1968 						page_index(page),
1969 						PAGECACHE_TAG_WRITEBACK);
1970 			if (bdi_cap_account_writeback(bdi))
1971 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1972 		}
1973 		if (!PageDirty(page))
1974 			radix_tree_tag_clear(&mapping->page_tree,
1975 						page_index(page),
1976 						PAGECACHE_TAG_DIRTY);
1977 		radix_tree_tag_clear(&mapping->page_tree,
1978 				     page_index(page),
1979 				     PAGECACHE_TAG_TOWRITE);
1980 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1981 	} else {
1982 		ret = TestSetPageWriteback(page);
1983 	}
1984 	if (!ret)
1985 		account_page_writeback(page);
1986 	return ret;
1987 
1988 }
1989 EXPORT_SYMBOL(test_set_page_writeback);
1990 
1991 /*
1992  * Return true if any of the pages in the mapping are marked with the
1993  * passed tag.
1994  */
1995 int mapping_tagged(struct address_space *mapping, int tag)
1996 {
1997 	return radix_tree_tagged(&mapping->page_tree, tag);
1998 }
1999 EXPORT_SYMBOL(mapping_tagged);
2000