1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 40 * will look to see if it needs to force writeback or throttling. 41 */ 42 static long ratelimit_pages = 32; 43 44 /* 45 * When balance_dirty_pages decides that the caller needs to perform some 46 * non-background writeback, this is how many pages it will attempt to write. 47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 48 * large amounts of I/O are submitted. 49 */ 50 static inline long sync_writeback_pages(void) 51 { 52 return ratelimit_pages + ratelimit_pages / 2; 53 } 54 55 /* The following parameters are exported via /proc/sys/vm */ 56 57 /* 58 * Start background writeback (via pdflush) at this percentage 59 */ 60 int dirty_background_ratio = 10; 61 62 /* 63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 64 * dirty_background_ratio * the amount of dirtyable memory 65 */ 66 unsigned long dirty_background_bytes; 67 68 /* 69 * free highmem will not be subtracted from the total free memory 70 * for calculating free ratios if vm_highmem_is_dirtyable is true 71 */ 72 int vm_highmem_is_dirtyable; 73 74 /* 75 * The generator of dirty data starts writeback at this percentage 76 */ 77 int vm_dirty_ratio = 20; 78 79 /* 80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 81 * vm_dirty_ratio * the amount of dirtyable memory 82 */ 83 unsigned long vm_dirty_bytes; 84 85 /* 86 * The interval between `kupdate'-style writebacks 87 */ 88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 89 90 /* 91 * The longest time for which data is allowed to remain dirty 92 */ 93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 94 95 /* 96 * Flag that makes the machine dump writes/reads and block dirtyings. 97 */ 98 int block_dump; 99 100 /* 101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 102 * a full sync is triggered after this time elapses without any disk activity. 103 */ 104 int laptop_mode; 105 106 EXPORT_SYMBOL(laptop_mode); 107 108 /* End of sysctl-exported parameters */ 109 110 111 /* 112 * Scale the writeback cache size proportional to the relative writeout speeds. 113 * 114 * We do this by keeping a floating proportion between BDIs, based on page 115 * writeback completions [end_page_writeback()]. Those devices that write out 116 * pages fastest will get the larger share, while the slower will get a smaller 117 * share. 118 * 119 * We use page writeout completions because we are interested in getting rid of 120 * dirty pages. Having them written out is the primary goal. 121 * 122 * We introduce a concept of time, a period over which we measure these events, 123 * because demand can/will vary over time. The length of this period itself is 124 * measured in page writeback completions. 125 * 126 */ 127 static struct prop_descriptor vm_completions; 128 static struct prop_descriptor vm_dirties; 129 130 /* 131 * couple the period to the dirty_ratio: 132 * 133 * period/2 ~ roundup_pow_of_two(dirty limit) 134 */ 135 static int calc_period_shift(void) 136 { 137 unsigned long dirty_total; 138 139 if (vm_dirty_bytes) 140 dirty_total = vm_dirty_bytes / PAGE_SIZE; 141 else 142 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 143 100; 144 return 2 + ilog2(dirty_total - 1); 145 } 146 147 /* 148 * update the period when the dirty threshold changes. 149 */ 150 static void update_completion_period(void) 151 { 152 int shift = calc_period_shift(); 153 prop_change_shift(&vm_completions, shift); 154 prop_change_shift(&vm_dirties, shift); 155 } 156 157 int dirty_background_ratio_handler(struct ctl_table *table, int write, 158 struct file *filp, void __user *buffer, size_t *lenp, 159 loff_t *ppos) 160 { 161 int ret; 162 163 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 164 if (ret == 0 && write) 165 dirty_background_bytes = 0; 166 return ret; 167 } 168 169 int dirty_background_bytes_handler(struct ctl_table *table, int write, 170 struct file *filp, void __user *buffer, size_t *lenp, 171 loff_t *ppos) 172 { 173 int ret; 174 175 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 176 if (ret == 0 && write) 177 dirty_background_ratio = 0; 178 return ret; 179 } 180 181 int dirty_ratio_handler(struct ctl_table *table, int write, 182 struct file *filp, void __user *buffer, size_t *lenp, 183 loff_t *ppos) 184 { 185 int old_ratio = vm_dirty_ratio; 186 int ret; 187 188 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 189 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 190 update_completion_period(); 191 vm_dirty_bytes = 0; 192 } 193 return ret; 194 } 195 196 197 int dirty_bytes_handler(struct ctl_table *table, int write, 198 struct file *filp, void __user *buffer, size_t *lenp, 199 loff_t *ppos) 200 { 201 unsigned long old_bytes = vm_dirty_bytes; 202 int ret; 203 204 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 205 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 206 update_completion_period(); 207 vm_dirty_ratio = 0; 208 } 209 return ret; 210 } 211 212 /* 213 * Increment the BDI's writeout completion count and the global writeout 214 * completion count. Called from test_clear_page_writeback(). 215 */ 216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 217 { 218 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 219 bdi->max_prop_frac); 220 } 221 222 void bdi_writeout_inc(struct backing_dev_info *bdi) 223 { 224 unsigned long flags; 225 226 local_irq_save(flags); 227 __bdi_writeout_inc(bdi); 228 local_irq_restore(flags); 229 } 230 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 231 232 void task_dirty_inc(struct task_struct *tsk) 233 { 234 prop_inc_single(&vm_dirties, &tsk->dirties); 235 } 236 237 /* 238 * Obtain an accurate fraction of the BDI's portion. 239 */ 240 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 241 long *numerator, long *denominator) 242 { 243 if (bdi_cap_writeback_dirty(bdi)) { 244 prop_fraction_percpu(&vm_completions, &bdi->completions, 245 numerator, denominator); 246 } else { 247 *numerator = 0; 248 *denominator = 1; 249 } 250 } 251 252 /* 253 * Clip the earned share of dirty pages to that which is actually available. 254 * This avoids exceeding the total dirty_limit when the floating averages 255 * fluctuate too quickly. 256 */ 257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, 258 unsigned long dirty, unsigned long *pbdi_dirty) 259 { 260 unsigned long avail_dirty; 261 262 avail_dirty = global_page_state(NR_FILE_DIRTY) + 263 global_page_state(NR_WRITEBACK) + 264 global_page_state(NR_UNSTABLE_NFS) + 265 global_page_state(NR_WRITEBACK_TEMP); 266 267 if (avail_dirty < dirty) 268 avail_dirty = dirty - avail_dirty; 269 else 270 avail_dirty = 0; 271 272 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 273 bdi_stat(bdi, BDI_WRITEBACK); 274 275 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 276 } 277 278 static inline void task_dirties_fraction(struct task_struct *tsk, 279 long *numerator, long *denominator) 280 { 281 prop_fraction_single(&vm_dirties, &tsk->dirties, 282 numerator, denominator); 283 } 284 285 /* 286 * scale the dirty limit 287 * 288 * task specific dirty limit: 289 * 290 * dirty -= (dirty/8) * p_{t} 291 */ 292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) 293 { 294 long numerator, denominator; 295 unsigned long dirty = *pdirty; 296 u64 inv = dirty >> 3; 297 298 task_dirties_fraction(tsk, &numerator, &denominator); 299 inv *= numerator; 300 do_div(inv, denominator); 301 302 dirty -= inv; 303 if (dirty < *pdirty/2) 304 dirty = *pdirty/2; 305 306 *pdirty = dirty; 307 } 308 309 /* 310 * 311 */ 312 static unsigned int bdi_min_ratio; 313 314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 315 { 316 int ret = 0; 317 318 spin_lock_bh(&bdi_lock); 319 if (min_ratio > bdi->max_ratio) { 320 ret = -EINVAL; 321 } else { 322 min_ratio -= bdi->min_ratio; 323 if (bdi_min_ratio + min_ratio < 100) { 324 bdi_min_ratio += min_ratio; 325 bdi->min_ratio += min_ratio; 326 } else { 327 ret = -EINVAL; 328 } 329 } 330 spin_unlock_bh(&bdi_lock); 331 332 return ret; 333 } 334 335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 336 { 337 int ret = 0; 338 339 if (max_ratio > 100) 340 return -EINVAL; 341 342 spin_lock_bh(&bdi_lock); 343 if (bdi->min_ratio > max_ratio) { 344 ret = -EINVAL; 345 } else { 346 bdi->max_ratio = max_ratio; 347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 348 } 349 spin_unlock_bh(&bdi_lock); 350 351 return ret; 352 } 353 EXPORT_SYMBOL(bdi_set_max_ratio); 354 355 /* 356 * Work out the current dirty-memory clamping and background writeout 357 * thresholds. 358 * 359 * The main aim here is to lower them aggressively if there is a lot of mapped 360 * memory around. To avoid stressing page reclaim with lots of unreclaimable 361 * pages. It is better to clamp down on writers than to start swapping, and 362 * performing lots of scanning. 363 * 364 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 365 * 366 * We don't permit the clamping level to fall below 5% - that is getting rather 367 * excessive. 368 * 369 * We make sure that the background writeout level is below the adjusted 370 * clamping level. 371 */ 372 373 static unsigned long highmem_dirtyable_memory(unsigned long total) 374 { 375 #ifdef CONFIG_HIGHMEM 376 int node; 377 unsigned long x = 0; 378 379 for_each_node_state(node, N_HIGH_MEMORY) { 380 struct zone *z = 381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 382 383 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z); 384 } 385 /* 386 * Make sure that the number of highmem pages is never larger 387 * than the number of the total dirtyable memory. This can only 388 * occur in very strange VM situations but we want to make sure 389 * that this does not occur. 390 */ 391 return min(x, total); 392 #else 393 return 0; 394 #endif 395 } 396 397 /** 398 * determine_dirtyable_memory - amount of memory that may be used 399 * 400 * Returns the numebr of pages that can currently be freed and used 401 * by the kernel for direct mappings. 402 */ 403 unsigned long determine_dirtyable_memory(void) 404 { 405 unsigned long x; 406 407 x = global_page_state(NR_FREE_PAGES) + global_lru_pages(); 408 409 if (!vm_highmem_is_dirtyable) 410 x -= highmem_dirtyable_memory(x); 411 412 return x + 1; /* Ensure that we never return 0 */ 413 } 414 415 void 416 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, 417 unsigned long *pbdi_dirty, struct backing_dev_info *bdi) 418 { 419 unsigned long background; 420 unsigned long dirty; 421 unsigned long available_memory = determine_dirtyable_memory(); 422 struct task_struct *tsk; 423 424 if (vm_dirty_bytes) 425 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 426 else { 427 int dirty_ratio; 428 429 dirty_ratio = vm_dirty_ratio; 430 if (dirty_ratio < 5) 431 dirty_ratio = 5; 432 dirty = (dirty_ratio * available_memory) / 100; 433 } 434 435 if (dirty_background_bytes) 436 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 437 else 438 background = (dirty_background_ratio * available_memory) / 100; 439 440 if (background >= dirty) 441 background = dirty / 2; 442 tsk = current; 443 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 444 background += background / 4; 445 dirty += dirty / 4; 446 } 447 *pbackground = background; 448 *pdirty = dirty; 449 450 if (bdi) { 451 u64 bdi_dirty; 452 long numerator, denominator; 453 454 /* 455 * Calculate this BDI's share of the dirty ratio. 456 */ 457 bdi_writeout_fraction(bdi, &numerator, &denominator); 458 459 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 460 bdi_dirty *= numerator; 461 do_div(bdi_dirty, denominator); 462 bdi_dirty += (dirty * bdi->min_ratio) / 100; 463 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 464 bdi_dirty = dirty * bdi->max_ratio / 100; 465 466 *pbdi_dirty = bdi_dirty; 467 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 468 task_dirty_limit(current, pbdi_dirty); 469 } 470 } 471 472 /* 473 * balance_dirty_pages() must be called by processes which are generating dirty 474 * data. It looks at the number of dirty pages in the machine and will force 475 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 476 * If we're over `background_thresh' then pdflush is woken to perform some 477 * writeout. 478 */ 479 static void balance_dirty_pages(struct address_space *mapping) 480 { 481 long nr_reclaimable, bdi_nr_reclaimable; 482 long nr_writeback, bdi_nr_writeback; 483 unsigned long background_thresh; 484 unsigned long dirty_thresh; 485 unsigned long bdi_thresh; 486 unsigned long pages_written = 0; 487 unsigned long write_chunk = sync_writeback_pages(); 488 unsigned long pause = 1; 489 490 struct backing_dev_info *bdi = mapping->backing_dev_info; 491 492 for (;;) { 493 struct writeback_control wbc = { 494 .bdi = bdi, 495 .sync_mode = WB_SYNC_NONE, 496 .older_than_this = NULL, 497 .nr_to_write = write_chunk, 498 .range_cyclic = 1, 499 }; 500 501 get_dirty_limits(&background_thresh, &dirty_thresh, 502 &bdi_thresh, bdi); 503 504 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 505 global_page_state(NR_UNSTABLE_NFS); 506 nr_writeback = global_page_state(NR_WRITEBACK); 507 508 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 509 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 510 511 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 512 break; 513 514 /* 515 * Throttle it only when the background writeback cannot 516 * catch-up. This avoids (excessively) small writeouts 517 * when the bdi limits are ramping up. 518 */ 519 if (nr_reclaimable + nr_writeback < 520 (background_thresh + dirty_thresh) / 2) 521 break; 522 523 if (!bdi->dirty_exceeded) 524 bdi->dirty_exceeded = 1; 525 526 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 527 * Unstable writes are a feature of certain networked 528 * filesystems (i.e. NFS) in which data may have been 529 * written to the server's write cache, but has not yet 530 * been flushed to permanent storage. 531 * Only move pages to writeback if this bdi is over its 532 * threshold otherwise wait until the disk writes catch 533 * up. 534 */ 535 if (bdi_nr_reclaimable > bdi_thresh) { 536 writeback_inodes_wbc(&wbc); 537 pages_written += write_chunk - wbc.nr_to_write; 538 get_dirty_limits(&background_thresh, &dirty_thresh, 539 &bdi_thresh, bdi); 540 } 541 542 /* 543 * In order to avoid the stacked BDI deadlock we need 544 * to ensure we accurately count the 'dirty' pages when 545 * the threshold is low. 546 * 547 * Otherwise it would be possible to get thresh+n pages 548 * reported dirty, even though there are thresh-m pages 549 * actually dirty; with m+n sitting in the percpu 550 * deltas. 551 */ 552 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 553 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 554 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 555 } else if (bdi_nr_reclaimable) { 556 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 557 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 558 } 559 560 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 561 break; 562 if (pages_written >= write_chunk) 563 break; /* We've done our duty */ 564 565 schedule_timeout_interruptible(pause); 566 567 /* 568 * Increase the delay for each loop, up to our previous 569 * default of taking a 100ms nap. 570 */ 571 pause <<= 1; 572 if (pause > HZ / 10) 573 pause = HZ / 10; 574 } 575 576 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 577 bdi->dirty_exceeded) 578 bdi->dirty_exceeded = 0; 579 580 if (writeback_in_progress(bdi)) 581 return; /* pdflush is already working this queue */ 582 583 /* 584 * In laptop mode, we wait until hitting the higher threshold before 585 * starting background writeout, and then write out all the way down 586 * to the lower threshold. So slow writers cause minimal disk activity. 587 * 588 * In normal mode, we start background writeout at the lower 589 * background_thresh, to keep the amount of dirty memory low. 590 */ 591 if ((laptop_mode && pages_written) || 592 (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY) 593 + global_page_state(NR_UNSTABLE_NFS)) 594 > background_thresh))) 595 bdi_start_writeback(bdi, nr_writeback); 596 } 597 598 void set_page_dirty_balance(struct page *page, int page_mkwrite) 599 { 600 if (set_page_dirty(page) || page_mkwrite) { 601 struct address_space *mapping = page_mapping(page); 602 603 if (mapping) 604 balance_dirty_pages_ratelimited(mapping); 605 } 606 } 607 608 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 609 610 /** 611 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 612 * @mapping: address_space which was dirtied 613 * @nr_pages_dirtied: number of pages which the caller has just dirtied 614 * 615 * Processes which are dirtying memory should call in here once for each page 616 * which was newly dirtied. The function will periodically check the system's 617 * dirty state and will initiate writeback if needed. 618 * 619 * On really big machines, get_writeback_state is expensive, so try to avoid 620 * calling it too often (ratelimiting). But once we're over the dirty memory 621 * limit we decrease the ratelimiting by a lot, to prevent individual processes 622 * from overshooting the limit by (ratelimit_pages) each. 623 */ 624 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 625 unsigned long nr_pages_dirtied) 626 { 627 unsigned long ratelimit; 628 unsigned long *p; 629 630 ratelimit = ratelimit_pages; 631 if (mapping->backing_dev_info->dirty_exceeded) 632 ratelimit = 8; 633 634 /* 635 * Check the rate limiting. Also, we do not want to throttle real-time 636 * tasks in balance_dirty_pages(). Period. 637 */ 638 preempt_disable(); 639 p = &__get_cpu_var(bdp_ratelimits); 640 *p += nr_pages_dirtied; 641 if (unlikely(*p >= ratelimit)) { 642 *p = 0; 643 preempt_enable(); 644 balance_dirty_pages(mapping); 645 return; 646 } 647 preempt_enable(); 648 } 649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 650 651 void throttle_vm_writeout(gfp_t gfp_mask) 652 { 653 unsigned long background_thresh; 654 unsigned long dirty_thresh; 655 656 for ( ; ; ) { 657 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 658 659 /* 660 * Boost the allowable dirty threshold a bit for page 661 * allocators so they don't get DoS'ed by heavy writers 662 */ 663 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 664 665 if (global_page_state(NR_UNSTABLE_NFS) + 666 global_page_state(NR_WRITEBACK) <= dirty_thresh) 667 break; 668 congestion_wait(BLK_RW_ASYNC, HZ/10); 669 670 /* 671 * The caller might hold locks which can prevent IO completion 672 * or progress in the filesystem. So we cannot just sit here 673 * waiting for IO to complete. 674 */ 675 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 676 break; 677 } 678 } 679 680 static void laptop_timer_fn(unsigned long unused); 681 682 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 683 684 /* 685 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 686 */ 687 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 688 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 689 { 690 proc_dointvec(table, write, file, buffer, length, ppos); 691 return 0; 692 } 693 694 static void do_laptop_sync(struct work_struct *work) 695 { 696 wakeup_flusher_threads(0); 697 kfree(work); 698 } 699 700 static void laptop_timer_fn(unsigned long unused) 701 { 702 struct work_struct *work; 703 704 work = kmalloc(sizeof(*work), GFP_ATOMIC); 705 if (work) { 706 INIT_WORK(work, do_laptop_sync); 707 schedule_work(work); 708 } 709 } 710 711 /* 712 * We've spun up the disk and we're in laptop mode: schedule writeback 713 * of all dirty data a few seconds from now. If the flush is already scheduled 714 * then push it back - the user is still using the disk. 715 */ 716 void laptop_io_completion(void) 717 { 718 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 719 } 720 721 /* 722 * We're in laptop mode and we've just synced. The sync's writes will have 723 * caused another writeback to be scheduled by laptop_io_completion. 724 * Nothing needs to be written back anymore, so we unschedule the writeback. 725 */ 726 void laptop_sync_completion(void) 727 { 728 del_timer(&laptop_mode_wb_timer); 729 } 730 731 /* 732 * If ratelimit_pages is too high then we can get into dirty-data overload 733 * if a large number of processes all perform writes at the same time. 734 * If it is too low then SMP machines will call the (expensive) 735 * get_writeback_state too often. 736 * 737 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 738 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 739 * thresholds before writeback cuts in. 740 * 741 * But the limit should not be set too high. Because it also controls the 742 * amount of memory which the balance_dirty_pages() caller has to write back. 743 * If this is too large then the caller will block on the IO queue all the 744 * time. So limit it to four megabytes - the balance_dirty_pages() caller 745 * will write six megabyte chunks, max. 746 */ 747 748 void writeback_set_ratelimit(void) 749 { 750 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 751 if (ratelimit_pages < 16) 752 ratelimit_pages = 16; 753 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 754 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 755 } 756 757 static int __cpuinit 758 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 759 { 760 writeback_set_ratelimit(); 761 return NOTIFY_DONE; 762 } 763 764 static struct notifier_block __cpuinitdata ratelimit_nb = { 765 .notifier_call = ratelimit_handler, 766 .next = NULL, 767 }; 768 769 /* 770 * Called early on to tune the page writeback dirty limits. 771 * 772 * We used to scale dirty pages according to how total memory 773 * related to pages that could be allocated for buffers (by 774 * comparing nr_free_buffer_pages() to vm_total_pages. 775 * 776 * However, that was when we used "dirty_ratio" to scale with 777 * all memory, and we don't do that any more. "dirty_ratio" 778 * is now applied to total non-HIGHPAGE memory (by subtracting 779 * totalhigh_pages from vm_total_pages), and as such we can't 780 * get into the old insane situation any more where we had 781 * large amounts of dirty pages compared to a small amount of 782 * non-HIGHMEM memory. 783 * 784 * But we might still want to scale the dirty_ratio by how 785 * much memory the box has.. 786 */ 787 void __init page_writeback_init(void) 788 { 789 int shift; 790 791 writeback_set_ratelimit(); 792 register_cpu_notifier(&ratelimit_nb); 793 794 shift = calc_period_shift(); 795 prop_descriptor_init(&vm_completions, shift); 796 prop_descriptor_init(&vm_dirties, shift); 797 } 798 799 /** 800 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 801 * @mapping: address space structure to write 802 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 803 * @writepage: function called for each page 804 * @data: data passed to writepage function 805 * 806 * If a page is already under I/O, write_cache_pages() skips it, even 807 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 808 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 809 * and msync() need to guarantee that all the data which was dirty at the time 810 * the call was made get new I/O started against them. If wbc->sync_mode is 811 * WB_SYNC_ALL then we were called for data integrity and we must wait for 812 * existing IO to complete. 813 */ 814 int write_cache_pages(struct address_space *mapping, 815 struct writeback_control *wbc, writepage_t writepage, 816 void *data) 817 { 818 struct backing_dev_info *bdi = mapping->backing_dev_info; 819 int ret = 0; 820 int done = 0; 821 struct pagevec pvec; 822 int nr_pages; 823 pgoff_t uninitialized_var(writeback_index); 824 pgoff_t index; 825 pgoff_t end; /* Inclusive */ 826 pgoff_t done_index; 827 int cycled; 828 int range_whole = 0; 829 long nr_to_write = wbc->nr_to_write; 830 831 if (wbc->nonblocking && bdi_write_congested(bdi)) { 832 wbc->encountered_congestion = 1; 833 return 0; 834 } 835 836 pagevec_init(&pvec, 0); 837 if (wbc->range_cyclic) { 838 writeback_index = mapping->writeback_index; /* prev offset */ 839 index = writeback_index; 840 if (index == 0) 841 cycled = 1; 842 else 843 cycled = 0; 844 end = -1; 845 } else { 846 index = wbc->range_start >> PAGE_CACHE_SHIFT; 847 end = wbc->range_end >> PAGE_CACHE_SHIFT; 848 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 849 range_whole = 1; 850 cycled = 1; /* ignore range_cyclic tests */ 851 } 852 retry: 853 done_index = index; 854 while (!done && (index <= end)) { 855 int i; 856 857 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 858 PAGECACHE_TAG_DIRTY, 859 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 860 if (nr_pages == 0) 861 break; 862 863 for (i = 0; i < nr_pages; i++) { 864 struct page *page = pvec.pages[i]; 865 866 /* 867 * At this point, the page may be truncated or 868 * invalidated (changing page->mapping to NULL), or 869 * even swizzled back from swapper_space to tmpfs file 870 * mapping. However, page->index will not change 871 * because we have a reference on the page. 872 */ 873 if (page->index > end) { 874 /* 875 * can't be range_cyclic (1st pass) because 876 * end == -1 in that case. 877 */ 878 done = 1; 879 break; 880 } 881 882 done_index = page->index + 1; 883 884 lock_page(page); 885 886 /* 887 * Page truncated or invalidated. We can freely skip it 888 * then, even for data integrity operations: the page 889 * has disappeared concurrently, so there could be no 890 * real expectation of this data interity operation 891 * even if there is now a new, dirty page at the same 892 * pagecache address. 893 */ 894 if (unlikely(page->mapping != mapping)) { 895 continue_unlock: 896 unlock_page(page); 897 continue; 898 } 899 900 if (!PageDirty(page)) { 901 /* someone wrote it for us */ 902 goto continue_unlock; 903 } 904 905 if (PageWriteback(page)) { 906 if (wbc->sync_mode != WB_SYNC_NONE) 907 wait_on_page_writeback(page); 908 else 909 goto continue_unlock; 910 } 911 912 BUG_ON(PageWriteback(page)); 913 if (!clear_page_dirty_for_io(page)) 914 goto continue_unlock; 915 916 ret = (*writepage)(page, wbc, data); 917 if (unlikely(ret)) { 918 if (ret == AOP_WRITEPAGE_ACTIVATE) { 919 unlock_page(page); 920 ret = 0; 921 } else { 922 /* 923 * done_index is set past this page, 924 * so media errors will not choke 925 * background writeout for the entire 926 * file. This has consequences for 927 * range_cyclic semantics (ie. it may 928 * not be suitable for data integrity 929 * writeout). 930 */ 931 done = 1; 932 break; 933 } 934 } 935 936 if (nr_to_write > 0) { 937 nr_to_write--; 938 if (nr_to_write == 0 && 939 wbc->sync_mode == WB_SYNC_NONE) { 940 /* 941 * We stop writing back only if we are 942 * not doing integrity sync. In case of 943 * integrity sync we have to keep going 944 * because someone may be concurrently 945 * dirtying pages, and we might have 946 * synced a lot of newly appeared dirty 947 * pages, but have not synced all of the 948 * old dirty pages. 949 */ 950 done = 1; 951 break; 952 } 953 } 954 955 if (wbc->nonblocking && bdi_write_congested(bdi)) { 956 wbc->encountered_congestion = 1; 957 done = 1; 958 break; 959 } 960 } 961 pagevec_release(&pvec); 962 cond_resched(); 963 } 964 if (!cycled && !done) { 965 /* 966 * range_cyclic: 967 * We hit the last page and there is more work to be done: wrap 968 * back to the start of the file 969 */ 970 cycled = 1; 971 index = 0; 972 end = writeback_index - 1; 973 goto retry; 974 } 975 if (!wbc->no_nrwrite_index_update) { 976 if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) 977 mapping->writeback_index = done_index; 978 wbc->nr_to_write = nr_to_write; 979 } 980 981 return ret; 982 } 983 EXPORT_SYMBOL(write_cache_pages); 984 985 /* 986 * Function used by generic_writepages to call the real writepage 987 * function and set the mapping flags on error 988 */ 989 static int __writepage(struct page *page, struct writeback_control *wbc, 990 void *data) 991 { 992 struct address_space *mapping = data; 993 int ret = mapping->a_ops->writepage(page, wbc); 994 mapping_set_error(mapping, ret); 995 return ret; 996 } 997 998 /** 999 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1000 * @mapping: address space structure to write 1001 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1002 * 1003 * This is a library function, which implements the writepages() 1004 * address_space_operation. 1005 */ 1006 int generic_writepages(struct address_space *mapping, 1007 struct writeback_control *wbc) 1008 { 1009 /* deal with chardevs and other special file */ 1010 if (!mapping->a_ops->writepage) 1011 return 0; 1012 1013 return write_cache_pages(mapping, wbc, __writepage, mapping); 1014 } 1015 1016 EXPORT_SYMBOL(generic_writepages); 1017 1018 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1019 { 1020 int ret; 1021 1022 if (wbc->nr_to_write <= 0) 1023 return 0; 1024 if (mapping->a_ops->writepages) 1025 ret = mapping->a_ops->writepages(mapping, wbc); 1026 else 1027 ret = generic_writepages(mapping, wbc); 1028 return ret; 1029 } 1030 1031 /** 1032 * write_one_page - write out a single page and optionally wait on I/O 1033 * @page: the page to write 1034 * @wait: if true, wait on writeout 1035 * 1036 * The page must be locked by the caller and will be unlocked upon return. 1037 * 1038 * write_one_page() returns a negative error code if I/O failed. 1039 */ 1040 int write_one_page(struct page *page, int wait) 1041 { 1042 struct address_space *mapping = page->mapping; 1043 int ret = 0; 1044 struct writeback_control wbc = { 1045 .sync_mode = WB_SYNC_ALL, 1046 .nr_to_write = 1, 1047 }; 1048 1049 BUG_ON(!PageLocked(page)); 1050 1051 if (wait) 1052 wait_on_page_writeback(page); 1053 1054 if (clear_page_dirty_for_io(page)) { 1055 page_cache_get(page); 1056 ret = mapping->a_ops->writepage(page, &wbc); 1057 if (ret == 0 && wait) { 1058 wait_on_page_writeback(page); 1059 if (PageError(page)) 1060 ret = -EIO; 1061 } 1062 page_cache_release(page); 1063 } else { 1064 unlock_page(page); 1065 } 1066 return ret; 1067 } 1068 EXPORT_SYMBOL(write_one_page); 1069 1070 /* 1071 * For address_spaces which do not use buffers nor write back. 1072 */ 1073 int __set_page_dirty_no_writeback(struct page *page) 1074 { 1075 if (!PageDirty(page)) 1076 SetPageDirty(page); 1077 return 0; 1078 } 1079 1080 /* 1081 * Helper function for set_page_dirty family. 1082 * NOTE: This relies on being atomic wrt interrupts. 1083 */ 1084 void account_page_dirtied(struct page *page, struct address_space *mapping) 1085 { 1086 if (mapping_cap_account_dirty(mapping)) { 1087 __inc_zone_page_state(page, NR_FILE_DIRTY); 1088 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1089 task_dirty_inc(current); 1090 task_io_account_write(PAGE_CACHE_SIZE); 1091 } 1092 } 1093 1094 /* 1095 * For address_spaces which do not use buffers. Just tag the page as dirty in 1096 * its radix tree. 1097 * 1098 * This is also used when a single buffer is being dirtied: we want to set the 1099 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1100 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1101 * 1102 * Most callers have locked the page, which pins the address_space in memory. 1103 * But zap_pte_range() does not lock the page, however in that case the 1104 * mapping is pinned by the vma's ->vm_file reference. 1105 * 1106 * We take care to handle the case where the page was truncated from the 1107 * mapping by re-checking page_mapping() inside tree_lock. 1108 */ 1109 int __set_page_dirty_nobuffers(struct page *page) 1110 { 1111 if (!TestSetPageDirty(page)) { 1112 struct address_space *mapping = page_mapping(page); 1113 struct address_space *mapping2; 1114 1115 if (!mapping) 1116 return 1; 1117 1118 spin_lock_irq(&mapping->tree_lock); 1119 mapping2 = page_mapping(page); 1120 if (mapping2) { /* Race with truncate? */ 1121 BUG_ON(mapping2 != mapping); 1122 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1123 account_page_dirtied(page, mapping); 1124 radix_tree_tag_set(&mapping->page_tree, 1125 page_index(page), PAGECACHE_TAG_DIRTY); 1126 } 1127 spin_unlock_irq(&mapping->tree_lock); 1128 if (mapping->host) { 1129 /* !PageAnon && !swapper_space */ 1130 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1131 } 1132 return 1; 1133 } 1134 return 0; 1135 } 1136 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1137 1138 /* 1139 * When a writepage implementation decides that it doesn't want to write this 1140 * page for some reason, it should redirty the locked page via 1141 * redirty_page_for_writepage() and it should then unlock the page and return 0 1142 */ 1143 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1144 { 1145 wbc->pages_skipped++; 1146 return __set_page_dirty_nobuffers(page); 1147 } 1148 EXPORT_SYMBOL(redirty_page_for_writepage); 1149 1150 /* 1151 * If the mapping doesn't provide a set_page_dirty a_op, then 1152 * just fall through and assume that it wants buffer_heads. 1153 */ 1154 int set_page_dirty(struct page *page) 1155 { 1156 struct address_space *mapping = page_mapping(page); 1157 1158 if (likely(mapping)) { 1159 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1160 #ifdef CONFIG_BLOCK 1161 if (!spd) 1162 spd = __set_page_dirty_buffers; 1163 #endif 1164 return (*spd)(page); 1165 } 1166 if (!PageDirty(page)) { 1167 if (!TestSetPageDirty(page)) 1168 return 1; 1169 } 1170 return 0; 1171 } 1172 EXPORT_SYMBOL(set_page_dirty); 1173 1174 /* 1175 * set_page_dirty() is racy if the caller has no reference against 1176 * page->mapping->host, and if the page is unlocked. This is because another 1177 * CPU could truncate the page off the mapping and then free the mapping. 1178 * 1179 * Usually, the page _is_ locked, or the caller is a user-space process which 1180 * holds a reference on the inode by having an open file. 1181 * 1182 * In other cases, the page should be locked before running set_page_dirty(). 1183 */ 1184 int set_page_dirty_lock(struct page *page) 1185 { 1186 int ret; 1187 1188 lock_page_nosync(page); 1189 ret = set_page_dirty(page); 1190 unlock_page(page); 1191 return ret; 1192 } 1193 EXPORT_SYMBOL(set_page_dirty_lock); 1194 1195 /* 1196 * Clear a page's dirty flag, while caring for dirty memory accounting. 1197 * Returns true if the page was previously dirty. 1198 * 1199 * This is for preparing to put the page under writeout. We leave the page 1200 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1201 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1202 * implementation will run either set_page_writeback() or set_page_dirty(), 1203 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1204 * back into sync. 1205 * 1206 * This incoherency between the page's dirty flag and radix-tree tag is 1207 * unfortunate, but it only exists while the page is locked. 1208 */ 1209 int clear_page_dirty_for_io(struct page *page) 1210 { 1211 struct address_space *mapping = page_mapping(page); 1212 1213 BUG_ON(!PageLocked(page)); 1214 1215 ClearPageReclaim(page); 1216 if (mapping && mapping_cap_account_dirty(mapping)) { 1217 /* 1218 * Yes, Virginia, this is indeed insane. 1219 * 1220 * We use this sequence to make sure that 1221 * (a) we account for dirty stats properly 1222 * (b) we tell the low-level filesystem to 1223 * mark the whole page dirty if it was 1224 * dirty in a pagetable. Only to then 1225 * (c) clean the page again and return 1 to 1226 * cause the writeback. 1227 * 1228 * This way we avoid all nasty races with the 1229 * dirty bit in multiple places and clearing 1230 * them concurrently from different threads. 1231 * 1232 * Note! Normally the "set_page_dirty(page)" 1233 * has no effect on the actual dirty bit - since 1234 * that will already usually be set. But we 1235 * need the side effects, and it can help us 1236 * avoid races. 1237 * 1238 * We basically use the page "master dirty bit" 1239 * as a serialization point for all the different 1240 * threads doing their things. 1241 */ 1242 if (page_mkclean(page)) 1243 set_page_dirty(page); 1244 /* 1245 * We carefully synchronise fault handlers against 1246 * installing a dirty pte and marking the page dirty 1247 * at this point. We do this by having them hold the 1248 * page lock at some point after installing their 1249 * pte, but before marking the page dirty. 1250 * Pages are always locked coming in here, so we get 1251 * the desired exclusion. See mm/memory.c:do_wp_page() 1252 * for more comments. 1253 */ 1254 if (TestClearPageDirty(page)) { 1255 dec_zone_page_state(page, NR_FILE_DIRTY); 1256 dec_bdi_stat(mapping->backing_dev_info, 1257 BDI_RECLAIMABLE); 1258 return 1; 1259 } 1260 return 0; 1261 } 1262 return TestClearPageDirty(page); 1263 } 1264 EXPORT_SYMBOL(clear_page_dirty_for_io); 1265 1266 int test_clear_page_writeback(struct page *page) 1267 { 1268 struct address_space *mapping = page_mapping(page); 1269 int ret; 1270 1271 if (mapping) { 1272 struct backing_dev_info *bdi = mapping->backing_dev_info; 1273 unsigned long flags; 1274 1275 spin_lock_irqsave(&mapping->tree_lock, flags); 1276 ret = TestClearPageWriteback(page); 1277 if (ret) { 1278 radix_tree_tag_clear(&mapping->page_tree, 1279 page_index(page), 1280 PAGECACHE_TAG_WRITEBACK); 1281 if (bdi_cap_account_writeback(bdi)) { 1282 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1283 __bdi_writeout_inc(bdi); 1284 } 1285 } 1286 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1287 } else { 1288 ret = TestClearPageWriteback(page); 1289 } 1290 if (ret) 1291 dec_zone_page_state(page, NR_WRITEBACK); 1292 return ret; 1293 } 1294 1295 int test_set_page_writeback(struct page *page) 1296 { 1297 struct address_space *mapping = page_mapping(page); 1298 int ret; 1299 1300 if (mapping) { 1301 struct backing_dev_info *bdi = mapping->backing_dev_info; 1302 unsigned long flags; 1303 1304 spin_lock_irqsave(&mapping->tree_lock, flags); 1305 ret = TestSetPageWriteback(page); 1306 if (!ret) { 1307 radix_tree_tag_set(&mapping->page_tree, 1308 page_index(page), 1309 PAGECACHE_TAG_WRITEBACK); 1310 if (bdi_cap_account_writeback(bdi)) 1311 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1312 } 1313 if (!PageDirty(page)) 1314 radix_tree_tag_clear(&mapping->page_tree, 1315 page_index(page), 1316 PAGECACHE_TAG_DIRTY); 1317 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1318 } else { 1319 ret = TestSetPageWriteback(page); 1320 } 1321 if (!ret) 1322 inc_zone_page_state(page, NR_WRITEBACK); 1323 return ret; 1324 1325 } 1326 EXPORT_SYMBOL(test_set_page_writeback); 1327 1328 /* 1329 * Return true if any of the pages in the mapping are marked with the 1330 * passed tag. 1331 */ 1332 int mapping_tagged(struct address_space *mapping, int tag) 1333 { 1334 int ret; 1335 rcu_read_lock(); 1336 ret = radix_tree_tagged(&mapping->page_tree, tag); 1337 rcu_read_unlock(); 1338 return ret; 1339 } 1340 EXPORT_SYMBOL(mapping_tagged); 1341