xref: /linux/mm/page-writeback.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40  * will look to see if it needs to force writeback or throttling.
41  */
42 static long ratelimit_pages = 32;
43 
44 /*
45  * When balance_dirty_pages decides that the caller needs to perform some
46  * non-background writeback, this is how many pages it will attempt to write.
47  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48  * large amounts of I/O are submitted.
49  */
50 static inline long sync_writeback_pages(void)
51 {
52 	return ratelimit_pages + ratelimit_pages / 2;
53 }
54 
55 /* The following parameters are exported via /proc/sys/vm */
56 
57 /*
58  * Start background writeback (via pdflush) at this percentage
59  */
60 int dirty_background_ratio = 10;
61 
62 /*
63  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64  * dirty_background_ratio * the amount of dirtyable memory
65  */
66 unsigned long dirty_background_bytes;
67 
68 /*
69  * free highmem will not be subtracted from the total free memory
70  * for calculating free ratios if vm_highmem_is_dirtyable is true
71  */
72 int vm_highmem_is_dirtyable;
73 
74 /*
75  * The generator of dirty data starts writeback at this percentage
76  */
77 int vm_dirty_ratio = 20;
78 
79 /*
80  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81  * vm_dirty_ratio * the amount of dirtyable memory
82  */
83 unsigned long vm_dirty_bytes;
84 
85 /*
86  * The interval between `kupdate'-style writebacks
87  */
88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
89 
90 /*
91  * The longest time for which data is allowed to remain dirty
92  */
93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
94 
95 /*
96  * Flag that makes the machine dump writes/reads and block dirtyings.
97  */
98 int block_dump;
99 
100 /*
101  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102  * a full sync is triggered after this time elapses without any disk activity.
103  */
104 int laptop_mode;
105 
106 EXPORT_SYMBOL(laptop_mode);
107 
108 /* End of sysctl-exported parameters */
109 
110 
111 /*
112  * Scale the writeback cache size proportional to the relative writeout speeds.
113  *
114  * We do this by keeping a floating proportion between BDIs, based on page
115  * writeback completions [end_page_writeback()]. Those devices that write out
116  * pages fastest will get the larger share, while the slower will get a smaller
117  * share.
118  *
119  * We use page writeout completions because we are interested in getting rid of
120  * dirty pages. Having them written out is the primary goal.
121  *
122  * We introduce a concept of time, a period over which we measure these events,
123  * because demand can/will vary over time. The length of this period itself is
124  * measured in page writeback completions.
125  *
126  */
127 static struct prop_descriptor vm_completions;
128 static struct prop_descriptor vm_dirties;
129 
130 /*
131  * couple the period to the dirty_ratio:
132  *
133  *   period/2 ~ roundup_pow_of_two(dirty limit)
134  */
135 static int calc_period_shift(void)
136 {
137 	unsigned long dirty_total;
138 
139 	if (vm_dirty_bytes)
140 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
141 	else
142 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
143 				100;
144 	return 2 + ilog2(dirty_total - 1);
145 }
146 
147 /*
148  * update the period when the dirty threshold changes.
149  */
150 static void update_completion_period(void)
151 {
152 	int shift = calc_period_shift();
153 	prop_change_shift(&vm_completions, shift);
154 	prop_change_shift(&vm_dirties, shift);
155 }
156 
157 int dirty_background_ratio_handler(struct ctl_table *table, int write,
158 		struct file *filp, void __user *buffer, size_t *lenp,
159 		loff_t *ppos)
160 {
161 	int ret;
162 
163 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
164 	if (ret == 0 && write)
165 		dirty_background_bytes = 0;
166 	return ret;
167 }
168 
169 int dirty_background_bytes_handler(struct ctl_table *table, int write,
170 		struct file *filp, void __user *buffer, size_t *lenp,
171 		loff_t *ppos)
172 {
173 	int ret;
174 
175 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
176 	if (ret == 0 && write)
177 		dirty_background_ratio = 0;
178 	return ret;
179 }
180 
181 int dirty_ratio_handler(struct ctl_table *table, int write,
182 		struct file *filp, void __user *buffer, size_t *lenp,
183 		loff_t *ppos)
184 {
185 	int old_ratio = vm_dirty_ratio;
186 	int ret;
187 
188 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
189 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
190 		update_completion_period();
191 		vm_dirty_bytes = 0;
192 	}
193 	return ret;
194 }
195 
196 
197 int dirty_bytes_handler(struct ctl_table *table, int write,
198 		struct file *filp, void __user *buffer, size_t *lenp,
199 		loff_t *ppos)
200 {
201 	unsigned long old_bytes = vm_dirty_bytes;
202 	int ret;
203 
204 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
205 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
206 		update_completion_period();
207 		vm_dirty_ratio = 0;
208 	}
209 	return ret;
210 }
211 
212 /*
213  * Increment the BDI's writeout completion count and the global writeout
214  * completion count. Called from test_clear_page_writeback().
215  */
216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
217 {
218 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
219 			      bdi->max_prop_frac);
220 }
221 
222 void bdi_writeout_inc(struct backing_dev_info *bdi)
223 {
224 	unsigned long flags;
225 
226 	local_irq_save(flags);
227 	__bdi_writeout_inc(bdi);
228 	local_irq_restore(flags);
229 }
230 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
231 
232 void task_dirty_inc(struct task_struct *tsk)
233 {
234 	prop_inc_single(&vm_dirties, &tsk->dirties);
235 }
236 
237 /*
238  * Obtain an accurate fraction of the BDI's portion.
239  */
240 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
241 		long *numerator, long *denominator)
242 {
243 	if (bdi_cap_writeback_dirty(bdi)) {
244 		prop_fraction_percpu(&vm_completions, &bdi->completions,
245 				numerator, denominator);
246 	} else {
247 		*numerator = 0;
248 		*denominator = 1;
249 	}
250 }
251 
252 /*
253  * Clip the earned share of dirty pages to that which is actually available.
254  * This avoids exceeding the total dirty_limit when the floating averages
255  * fluctuate too quickly.
256  */
257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
258 		unsigned long dirty, unsigned long *pbdi_dirty)
259 {
260 	unsigned long avail_dirty;
261 
262 	avail_dirty = global_page_state(NR_FILE_DIRTY) +
263 		 global_page_state(NR_WRITEBACK) +
264 		 global_page_state(NR_UNSTABLE_NFS) +
265 		 global_page_state(NR_WRITEBACK_TEMP);
266 
267 	if (avail_dirty < dirty)
268 		avail_dirty = dirty - avail_dirty;
269 	else
270 		avail_dirty = 0;
271 
272 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
273 		bdi_stat(bdi, BDI_WRITEBACK);
274 
275 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
276 }
277 
278 static inline void task_dirties_fraction(struct task_struct *tsk,
279 		long *numerator, long *denominator)
280 {
281 	prop_fraction_single(&vm_dirties, &tsk->dirties,
282 				numerator, denominator);
283 }
284 
285 /*
286  * scale the dirty limit
287  *
288  * task specific dirty limit:
289  *
290  *   dirty -= (dirty/8) * p_{t}
291  */
292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
293 {
294 	long numerator, denominator;
295 	unsigned long dirty = *pdirty;
296 	u64 inv = dirty >> 3;
297 
298 	task_dirties_fraction(tsk, &numerator, &denominator);
299 	inv *= numerator;
300 	do_div(inv, denominator);
301 
302 	dirty -= inv;
303 	if (dirty < *pdirty/2)
304 		dirty = *pdirty/2;
305 
306 	*pdirty = dirty;
307 }
308 
309 /*
310  *
311  */
312 static unsigned int bdi_min_ratio;
313 
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315 {
316 	int ret = 0;
317 
318 	spin_lock_bh(&bdi_lock);
319 	if (min_ratio > bdi->max_ratio) {
320 		ret = -EINVAL;
321 	} else {
322 		min_ratio -= bdi->min_ratio;
323 		if (bdi_min_ratio + min_ratio < 100) {
324 			bdi_min_ratio += min_ratio;
325 			bdi->min_ratio += min_ratio;
326 		} else {
327 			ret = -EINVAL;
328 		}
329 	}
330 	spin_unlock_bh(&bdi_lock);
331 
332 	return ret;
333 }
334 
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336 {
337 	int ret = 0;
338 
339 	if (max_ratio > 100)
340 		return -EINVAL;
341 
342 	spin_lock_bh(&bdi_lock);
343 	if (bdi->min_ratio > max_ratio) {
344 		ret = -EINVAL;
345 	} else {
346 		bdi->max_ratio = max_ratio;
347 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 	}
349 	spin_unlock_bh(&bdi_lock);
350 
351 	return ret;
352 }
353 EXPORT_SYMBOL(bdi_set_max_ratio);
354 
355 /*
356  * Work out the current dirty-memory clamping and background writeout
357  * thresholds.
358  *
359  * The main aim here is to lower them aggressively if there is a lot of mapped
360  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
361  * pages.  It is better to clamp down on writers than to start swapping, and
362  * performing lots of scanning.
363  *
364  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365  *
366  * We don't permit the clamping level to fall below 5% - that is getting rather
367  * excessive.
368  *
369  * We make sure that the background writeout level is below the adjusted
370  * clamping level.
371  */
372 
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
374 {
375 #ifdef CONFIG_HIGHMEM
376 	int node;
377 	unsigned long x = 0;
378 
379 	for_each_node_state(node, N_HIGH_MEMORY) {
380 		struct zone *z =
381 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382 
383 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
384 	}
385 	/*
386 	 * Make sure that the number of highmem pages is never larger
387 	 * than the number of the total dirtyable memory. This can only
388 	 * occur in very strange VM situations but we want to make sure
389 	 * that this does not occur.
390 	 */
391 	return min(x, total);
392 #else
393 	return 0;
394 #endif
395 }
396 
397 /**
398  * determine_dirtyable_memory - amount of memory that may be used
399  *
400  * Returns the numebr of pages that can currently be freed and used
401  * by the kernel for direct mappings.
402  */
403 unsigned long determine_dirtyable_memory(void)
404 {
405 	unsigned long x;
406 
407 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
408 
409 	if (!vm_highmem_is_dirtyable)
410 		x -= highmem_dirtyable_memory(x);
411 
412 	return x + 1;	/* Ensure that we never return 0 */
413 }
414 
415 void
416 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
417 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
418 {
419 	unsigned long background;
420 	unsigned long dirty;
421 	unsigned long available_memory = determine_dirtyable_memory();
422 	struct task_struct *tsk;
423 
424 	if (vm_dirty_bytes)
425 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
426 	else {
427 		int dirty_ratio;
428 
429 		dirty_ratio = vm_dirty_ratio;
430 		if (dirty_ratio < 5)
431 			dirty_ratio = 5;
432 		dirty = (dirty_ratio * available_memory) / 100;
433 	}
434 
435 	if (dirty_background_bytes)
436 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
437 	else
438 		background = (dirty_background_ratio * available_memory) / 100;
439 
440 	if (background >= dirty)
441 		background = dirty / 2;
442 	tsk = current;
443 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
444 		background += background / 4;
445 		dirty += dirty / 4;
446 	}
447 	*pbackground = background;
448 	*pdirty = dirty;
449 
450 	if (bdi) {
451 		u64 bdi_dirty;
452 		long numerator, denominator;
453 
454 		/*
455 		 * Calculate this BDI's share of the dirty ratio.
456 		 */
457 		bdi_writeout_fraction(bdi, &numerator, &denominator);
458 
459 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
460 		bdi_dirty *= numerator;
461 		do_div(bdi_dirty, denominator);
462 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
463 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
464 			bdi_dirty = dirty * bdi->max_ratio / 100;
465 
466 		*pbdi_dirty = bdi_dirty;
467 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
468 		task_dirty_limit(current, pbdi_dirty);
469 	}
470 }
471 
472 /*
473  * balance_dirty_pages() must be called by processes which are generating dirty
474  * data.  It looks at the number of dirty pages in the machine and will force
475  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476  * If we're over `background_thresh' then pdflush is woken to perform some
477  * writeout.
478  */
479 static void balance_dirty_pages(struct address_space *mapping)
480 {
481 	long nr_reclaimable, bdi_nr_reclaimable;
482 	long nr_writeback, bdi_nr_writeback;
483 	unsigned long background_thresh;
484 	unsigned long dirty_thresh;
485 	unsigned long bdi_thresh;
486 	unsigned long pages_written = 0;
487 	unsigned long write_chunk = sync_writeback_pages();
488 	unsigned long pause = 1;
489 
490 	struct backing_dev_info *bdi = mapping->backing_dev_info;
491 
492 	for (;;) {
493 		struct writeback_control wbc = {
494 			.bdi		= bdi,
495 			.sync_mode	= WB_SYNC_NONE,
496 			.older_than_this = NULL,
497 			.nr_to_write	= write_chunk,
498 			.range_cyclic	= 1,
499 		};
500 
501 		get_dirty_limits(&background_thresh, &dirty_thresh,
502 				&bdi_thresh, bdi);
503 
504 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
505 					global_page_state(NR_UNSTABLE_NFS);
506 		nr_writeback = global_page_state(NR_WRITEBACK);
507 
508 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
509 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
510 
511 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
512 			break;
513 
514 		/*
515 		 * Throttle it only when the background writeback cannot
516 		 * catch-up. This avoids (excessively) small writeouts
517 		 * when the bdi limits are ramping up.
518 		 */
519 		if (nr_reclaimable + nr_writeback <
520 				(background_thresh + dirty_thresh) / 2)
521 			break;
522 
523 		if (!bdi->dirty_exceeded)
524 			bdi->dirty_exceeded = 1;
525 
526 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
527 		 * Unstable writes are a feature of certain networked
528 		 * filesystems (i.e. NFS) in which data may have been
529 		 * written to the server's write cache, but has not yet
530 		 * been flushed to permanent storage.
531 		 * Only move pages to writeback if this bdi is over its
532 		 * threshold otherwise wait until the disk writes catch
533 		 * up.
534 		 */
535 		if (bdi_nr_reclaimable > bdi_thresh) {
536 			writeback_inodes_wbc(&wbc);
537 			pages_written += write_chunk - wbc.nr_to_write;
538 			get_dirty_limits(&background_thresh, &dirty_thresh,
539 				       &bdi_thresh, bdi);
540 		}
541 
542 		/*
543 		 * In order to avoid the stacked BDI deadlock we need
544 		 * to ensure we accurately count the 'dirty' pages when
545 		 * the threshold is low.
546 		 *
547 		 * Otherwise it would be possible to get thresh+n pages
548 		 * reported dirty, even though there are thresh-m pages
549 		 * actually dirty; with m+n sitting in the percpu
550 		 * deltas.
551 		 */
552 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
553 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
554 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
555 		} else if (bdi_nr_reclaimable) {
556 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
557 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
558 		}
559 
560 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
561 			break;
562 		if (pages_written >= write_chunk)
563 			break;		/* We've done our duty */
564 
565 		schedule_timeout_interruptible(pause);
566 
567 		/*
568 		 * Increase the delay for each loop, up to our previous
569 		 * default of taking a 100ms nap.
570 		 */
571 		pause <<= 1;
572 		if (pause > HZ / 10)
573 			pause = HZ / 10;
574 	}
575 
576 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
577 			bdi->dirty_exceeded)
578 		bdi->dirty_exceeded = 0;
579 
580 	if (writeback_in_progress(bdi))
581 		return;		/* pdflush is already working this queue */
582 
583 	/*
584 	 * In laptop mode, we wait until hitting the higher threshold before
585 	 * starting background writeout, and then write out all the way down
586 	 * to the lower threshold.  So slow writers cause minimal disk activity.
587 	 *
588 	 * In normal mode, we start background writeout at the lower
589 	 * background_thresh, to keep the amount of dirty memory low.
590 	 */
591 	if ((laptop_mode && pages_written) ||
592 	    (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY)
593 					  + global_page_state(NR_UNSTABLE_NFS))
594 					  > background_thresh)))
595 		bdi_start_writeback(bdi, nr_writeback);
596 }
597 
598 void set_page_dirty_balance(struct page *page, int page_mkwrite)
599 {
600 	if (set_page_dirty(page) || page_mkwrite) {
601 		struct address_space *mapping = page_mapping(page);
602 
603 		if (mapping)
604 			balance_dirty_pages_ratelimited(mapping);
605 	}
606 }
607 
608 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
609 
610 /**
611  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
612  * @mapping: address_space which was dirtied
613  * @nr_pages_dirtied: number of pages which the caller has just dirtied
614  *
615  * Processes which are dirtying memory should call in here once for each page
616  * which was newly dirtied.  The function will periodically check the system's
617  * dirty state and will initiate writeback if needed.
618  *
619  * On really big machines, get_writeback_state is expensive, so try to avoid
620  * calling it too often (ratelimiting).  But once we're over the dirty memory
621  * limit we decrease the ratelimiting by a lot, to prevent individual processes
622  * from overshooting the limit by (ratelimit_pages) each.
623  */
624 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
625 					unsigned long nr_pages_dirtied)
626 {
627 	unsigned long ratelimit;
628 	unsigned long *p;
629 
630 	ratelimit = ratelimit_pages;
631 	if (mapping->backing_dev_info->dirty_exceeded)
632 		ratelimit = 8;
633 
634 	/*
635 	 * Check the rate limiting. Also, we do not want to throttle real-time
636 	 * tasks in balance_dirty_pages(). Period.
637 	 */
638 	preempt_disable();
639 	p =  &__get_cpu_var(bdp_ratelimits);
640 	*p += nr_pages_dirtied;
641 	if (unlikely(*p >= ratelimit)) {
642 		*p = 0;
643 		preempt_enable();
644 		balance_dirty_pages(mapping);
645 		return;
646 	}
647 	preempt_enable();
648 }
649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
650 
651 void throttle_vm_writeout(gfp_t gfp_mask)
652 {
653 	unsigned long background_thresh;
654 	unsigned long dirty_thresh;
655 
656         for ( ; ; ) {
657 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
658 
659                 /*
660                  * Boost the allowable dirty threshold a bit for page
661                  * allocators so they don't get DoS'ed by heavy writers
662                  */
663                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
664 
665                 if (global_page_state(NR_UNSTABLE_NFS) +
666 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
667                         	break;
668                 congestion_wait(BLK_RW_ASYNC, HZ/10);
669 
670 		/*
671 		 * The caller might hold locks which can prevent IO completion
672 		 * or progress in the filesystem.  So we cannot just sit here
673 		 * waiting for IO to complete.
674 		 */
675 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
676 			break;
677         }
678 }
679 
680 static void laptop_timer_fn(unsigned long unused);
681 
682 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
683 
684 /*
685  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
686  */
687 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
688 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
689 {
690 	proc_dointvec(table, write, file, buffer, length, ppos);
691 	return 0;
692 }
693 
694 static void do_laptop_sync(struct work_struct *work)
695 {
696 	wakeup_flusher_threads(0);
697 	kfree(work);
698 }
699 
700 static void laptop_timer_fn(unsigned long unused)
701 {
702 	struct work_struct *work;
703 
704 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
705 	if (work) {
706 		INIT_WORK(work, do_laptop_sync);
707 		schedule_work(work);
708 	}
709 }
710 
711 /*
712  * We've spun up the disk and we're in laptop mode: schedule writeback
713  * of all dirty data a few seconds from now.  If the flush is already scheduled
714  * then push it back - the user is still using the disk.
715  */
716 void laptop_io_completion(void)
717 {
718 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
719 }
720 
721 /*
722  * We're in laptop mode and we've just synced. The sync's writes will have
723  * caused another writeback to be scheduled by laptop_io_completion.
724  * Nothing needs to be written back anymore, so we unschedule the writeback.
725  */
726 void laptop_sync_completion(void)
727 {
728 	del_timer(&laptop_mode_wb_timer);
729 }
730 
731 /*
732  * If ratelimit_pages is too high then we can get into dirty-data overload
733  * if a large number of processes all perform writes at the same time.
734  * If it is too low then SMP machines will call the (expensive)
735  * get_writeback_state too often.
736  *
737  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
738  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
739  * thresholds before writeback cuts in.
740  *
741  * But the limit should not be set too high.  Because it also controls the
742  * amount of memory which the balance_dirty_pages() caller has to write back.
743  * If this is too large then the caller will block on the IO queue all the
744  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
745  * will write six megabyte chunks, max.
746  */
747 
748 void writeback_set_ratelimit(void)
749 {
750 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
751 	if (ratelimit_pages < 16)
752 		ratelimit_pages = 16;
753 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
754 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
755 }
756 
757 static int __cpuinit
758 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
759 {
760 	writeback_set_ratelimit();
761 	return NOTIFY_DONE;
762 }
763 
764 static struct notifier_block __cpuinitdata ratelimit_nb = {
765 	.notifier_call	= ratelimit_handler,
766 	.next		= NULL,
767 };
768 
769 /*
770  * Called early on to tune the page writeback dirty limits.
771  *
772  * We used to scale dirty pages according to how total memory
773  * related to pages that could be allocated for buffers (by
774  * comparing nr_free_buffer_pages() to vm_total_pages.
775  *
776  * However, that was when we used "dirty_ratio" to scale with
777  * all memory, and we don't do that any more. "dirty_ratio"
778  * is now applied to total non-HIGHPAGE memory (by subtracting
779  * totalhigh_pages from vm_total_pages), and as such we can't
780  * get into the old insane situation any more where we had
781  * large amounts of dirty pages compared to a small amount of
782  * non-HIGHMEM memory.
783  *
784  * But we might still want to scale the dirty_ratio by how
785  * much memory the box has..
786  */
787 void __init page_writeback_init(void)
788 {
789 	int shift;
790 
791 	writeback_set_ratelimit();
792 	register_cpu_notifier(&ratelimit_nb);
793 
794 	shift = calc_period_shift();
795 	prop_descriptor_init(&vm_completions, shift);
796 	prop_descriptor_init(&vm_dirties, shift);
797 }
798 
799 /**
800  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
801  * @mapping: address space structure to write
802  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
803  * @writepage: function called for each page
804  * @data: data passed to writepage function
805  *
806  * If a page is already under I/O, write_cache_pages() skips it, even
807  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
808  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
809  * and msync() need to guarantee that all the data which was dirty at the time
810  * the call was made get new I/O started against them.  If wbc->sync_mode is
811  * WB_SYNC_ALL then we were called for data integrity and we must wait for
812  * existing IO to complete.
813  */
814 int write_cache_pages(struct address_space *mapping,
815 		      struct writeback_control *wbc, writepage_t writepage,
816 		      void *data)
817 {
818 	struct backing_dev_info *bdi = mapping->backing_dev_info;
819 	int ret = 0;
820 	int done = 0;
821 	struct pagevec pvec;
822 	int nr_pages;
823 	pgoff_t uninitialized_var(writeback_index);
824 	pgoff_t index;
825 	pgoff_t end;		/* Inclusive */
826 	pgoff_t done_index;
827 	int cycled;
828 	int range_whole = 0;
829 	long nr_to_write = wbc->nr_to_write;
830 
831 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
832 		wbc->encountered_congestion = 1;
833 		return 0;
834 	}
835 
836 	pagevec_init(&pvec, 0);
837 	if (wbc->range_cyclic) {
838 		writeback_index = mapping->writeback_index; /* prev offset */
839 		index = writeback_index;
840 		if (index == 0)
841 			cycled = 1;
842 		else
843 			cycled = 0;
844 		end = -1;
845 	} else {
846 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
847 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
848 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
849 			range_whole = 1;
850 		cycled = 1; /* ignore range_cyclic tests */
851 	}
852 retry:
853 	done_index = index;
854 	while (!done && (index <= end)) {
855 		int i;
856 
857 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
858 			      PAGECACHE_TAG_DIRTY,
859 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
860 		if (nr_pages == 0)
861 			break;
862 
863 		for (i = 0; i < nr_pages; i++) {
864 			struct page *page = pvec.pages[i];
865 
866 			/*
867 			 * At this point, the page may be truncated or
868 			 * invalidated (changing page->mapping to NULL), or
869 			 * even swizzled back from swapper_space to tmpfs file
870 			 * mapping. However, page->index will not change
871 			 * because we have a reference on the page.
872 			 */
873 			if (page->index > end) {
874 				/*
875 				 * can't be range_cyclic (1st pass) because
876 				 * end == -1 in that case.
877 				 */
878 				done = 1;
879 				break;
880 			}
881 
882 			done_index = page->index + 1;
883 
884 			lock_page(page);
885 
886 			/*
887 			 * Page truncated or invalidated. We can freely skip it
888 			 * then, even for data integrity operations: the page
889 			 * has disappeared concurrently, so there could be no
890 			 * real expectation of this data interity operation
891 			 * even if there is now a new, dirty page at the same
892 			 * pagecache address.
893 			 */
894 			if (unlikely(page->mapping != mapping)) {
895 continue_unlock:
896 				unlock_page(page);
897 				continue;
898 			}
899 
900 			if (!PageDirty(page)) {
901 				/* someone wrote it for us */
902 				goto continue_unlock;
903 			}
904 
905 			if (PageWriteback(page)) {
906 				if (wbc->sync_mode != WB_SYNC_NONE)
907 					wait_on_page_writeback(page);
908 				else
909 					goto continue_unlock;
910 			}
911 
912 			BUG_ON(PageWriteback(page));
913 			if (!clear_page_dirty_for_io(page))
914 				goto continue_unlock;
915 
916 			ret = (*writepage)(page, wbc, data);
917 			if (unlikely(ret)) {
918 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
919 					unlock_page(page);
920 					ret = 0;
921 				} else {
922 					/*
923 					 * done_index is set past this page,
924 					 * so media errors will not choke
925 					 * background writeout for the entire
926 					 * file. This has consequences for
927 					 * range_cyclic semantics (ie. it may
928 					 * not be suitable for data integrity
929 					 * writeout).
930 					 */
931 					done = 1;
932 					break;
933 				}
934  			}
935 
936 			if (nr_to_write > 0) {
937 				nr_to_write--;
938 				if (nr_to_write == 0 &&
939 				    wbc->sync_mode == WB_SYNC_NONE) {
940 					/*
941 					 * We stop writing back only if we are
942 					 * not doing integrity sync. In case of
943 					 * integrity sync we have to keep going
944 					 * because someone may be concurrently
945 					 * dirtying pages, and we might have
946 					 * synced a lot of newly appeared dirty
947 					 * pages, but have not synced all of the
948 					 * old dirty pages.
949 					 */
950 					done = 1;
951 					break;
952 				}
953 			}
954 
955 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
956 				wbc->encountered_congestion = 1;
957 				done = 1;
958 				break;
959 			}
960 		}
961 		pagevec_release(&pvec);
962 		cond_resched();
963 	}
964 	if (!cycled && !done) {
965 		/*
966 		 * range_cyclic:
967 		 * We hit the last page and there is more work to be done: wrap
968 		 * back to the start of the file
969 		 */
970 		cycled = 1;
971 		index = 0;
972 		end = writeback_index - 1;
973 		goto retry;
974 	}
975 	if (!wbc->no_nrwrite_index_update) {
976 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
977 			mapping->writeback_index = done_index;
978 		wbc->nr_to_write = nr_to_write;
979 	}
980 
981 	return ret;
982 }
983 EXPORT_SYMBOL(write_cache_pages);
984 
985 /*
986  * Function used by generic_writepages to call the real writepage
987  * function and set the mapping flags on error
988  */
989 static int __writepage(struct page *page, struct writeback_control *wbc,
990 		       void *data)
991 {
992 	struct address_space *mapping = data;
993 	int ret = mapping->a_ops->writepage(page, wbc);
994 	mapping_set_error(mapping, ret);
995 	return ret;
996 }
997 
998 /**
999  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1000  * @mapping: address space structure to write
1001  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1002  *
1003  * This is a library function, which implements the writepages()
1004  * address_space_operation.
1005  */
1006 int generic_writepages(struct address_space *mapping,
1007 		       struct writeback_control *wbc)
1008 {
1009 	/* deal with chardevs and other special file */
1010 	if (!mapping->a_ops->writepage)
1011 		return 0;
1012 
1013 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1014 }
1015 
1016 EXPORT_SYMBOL(generic_writepages);
1017 
1018 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1019 {
1020 	int ret;
1021 
1022 	if (wbc->nr_to_write <= 0)
1023 		return 0;
1024 	if (mapping->a_ops->writepages)
1025 		ret = mapping->a_ops->writepages(mapping, wbc);
1026 	else
1027 		ret = generic_writepages(mapping, wbc);
1028 	return ret;
1029 }
1030 
1031 /**
1032  * write_one_page - write out a single page and optionally wait on I/O
1033  * @page: the page to write
1034  * @wait: if true, wait on writeout
1035  *
1036  * The page must be locked by the caller and will be unlocked upon return.
1037  *
1038  * write_one_page() returns a negative error code if I/O failed.
1039  */
1040 int write_one_page(struct page *page, int wait)
1041 {
1042 	struct address_space *mapping = page->mapping;
1043 	int ret = 0;
1044 	struct writeback_control wbc = {
1045 		.sync_mode = WB_SYNC_ALL,
1046 		.nr_to_write = 1,
1047 	};
1048 
1049 	BUG_ON(!PageLocked(page));
1050 
1051 	if (wait)
1052 		wait_on_page_writeback(page);
1053 
1054 	if (clear_page_dirty_for_io(page)) {
1055 		page_cache_get(page);
1056 		ret = mapping->a_ops->writepage(page, &wbc);
1057 		if (ret == 0 && wait) {
1058 			wait_on_page_writeback(page);
1059 			if (PageError(page))
1060 				ret = -EIO;
1061 		}
1062 		page_cache_release(page);
1063 	} else {
1064 		unlock_page(page);
1065 	}
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL(write_one_page);
1069 
1070 /*
1071  * For address_spaces which do not use buffers nor write back.
1072  */
1073 int __set_page_dirty_no_writeback(struct page *page)
1074 {
1075 	if (!PageDirty(page))
1076 		SetPageDirty(page);
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Helper function for set_page_dirty family.
1082  * NOTE: This relies on being atomic wrt interrupts.
1083  */
1084 void account_page_dirtied(struct page *page, struct address_space *mapping)
1085 {
1086 	if (mapping_cap_account_dirty(mapping)) {
1087 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1088 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1089 		task_dirty_inc(current);
1090 		task_io_account_write(PAGE_CACHE_SIZE);
1091 	}
1092 }
1093 
1094 /*
1095  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1096  * its radix tree.
1097  *
1098  * This is also used when a single buffer is being dirtied: we want to set the
1099  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1100  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1101  *
1102  * Most callers have locked the page, which pins the address_space in memory.
1103  * But zap_pte_range() does not lock the page, however in that case the
1104  * mapping is pinned by the vma's ->vm_file reference.
1105  *
1106  * We take care to handle the case where the page was truncated from the
1107  * mapping by re-checking page_mapping() inside tree_lock.
1108  */
1109 int __set_page_dirty_nobuffers(struct page *page)
1110 {
1111 	if (!TestSetPageDirty(page)) {
1112 		struct address_space *mapping = page_mapping(page);
1113 		struct address_space *mapping2;
1114 
1115 		if (!mapping)
1116 			return 1;
1117 
1118 		spin_lock_irq(&mapping->tree_lock);
1119 		mapping2 = page_mapping(page);
1120 		if (mapping2) { /* Race with truncate? */
1121 			BUG_ON(mapping2 != mapping);
1122 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1123 			account_page_dirtied(page, mapping);
1124 			radix_tree_tag_set(&mapping->page_tree,
1125 				page_index(page), PAGECACHE_TAG_DIRTY);
1126 		}
1127 		spin_unlock_irq(&mapping->tree_lock);
1128 		if (mapping->host) {
1129 			/* !PageAnon && !swapper_space */
1130 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1131 		}
1132 		return 1;
1133 	}
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1137 
1138 /*
1139  * When a writepage implementation decides that it doesn't want to write this
1140  * page for some reason, it should redirty the locked page via
1141  * redirty_page_for_writepage() and it should then unlock the page and return 0
1142  */
1143 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1144 {
1145 	wbc->pages_skipped++;
1146 	return __set_page_dirty_nobuffers(page);
1147 }
1148 EXPORT_SYMBOL(redirty_page_for_writepage);
1149 
1150 /*
1151  * If the mapping doesn't provide a set_page_dirty a_op, then
1152  * just fall through and assume that it wants buffer_heads.
1153  */
1154 int set_page_dirty(struct page *page)
1155 {
1156 	struct address_space *mapping = page_mapping(page);
1157 
1158 	if (likely(mapping)) {
1159 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1160 #ifdef CONFIG_BLOCK
1161 		if (!spd)
1162 			spd = __set_page_dirty_buffers;
1163 #endif
1164 		return (*spd)(page);
1165 	}
1166 	if (!PageDirty(page)) {
1167 		if (!TestSetPageDirty(page))
1168 			return 1;
1169 	}
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL(set_page_dirty);
1173 
1174 /*
1175  * set_page_dirty() is racy if the caller has no reference against
1176  * page->mapping->host, and if the page is unlocked.  This is because another
1177  * CPU could truncate the page off the mapping and then free the mapping.
1178  *
1179  * Usually, the page _is_ locked, or the caller is a user-space process which
1180  * holds a reference on the inode by having an open file.
1181  *
1182  * In other cases, the page should be locked before running set_page_dirty().
1183  */
1184 int set_page_dirty_lock(struct page *page)
1185 {
1186 	int ret;
1187 
1188 	lock_page_nosync(page);
1189 	ret = set_page_dirty(page);
1190 	unlock_page(page);
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL(set_page_dirty_lock);
1194 
1195 /*
1196  * Clear a page's dirty flag, while caring for dirty memory accounting.
1197  * Returns true if the page was previously dirty.
1198  *
1199  * This is for preparing to put the page under writeout.  We leave the page
1200  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1201  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1202  * implementation will run either set_page_writeback() or set_page_dirty(),
1203  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1204  * back into sync.
1205  *
1206  * This incoherency between the page's dirty flag and radix-tree tag is
1207  * unfortunate, but it only exists while the page is locked.
1208  */
1209 int clear_page_dirty_for_io(struct page *page)
1210 {
1211 	struct address_space *mapping = page_mapping(page);
1212 
1213 	BUG_ON(!PageLocked(page));
1214 
1215 	ClearPageReclaim(page);
1216 	if (mapping && mapping_cap_account_dirty(mapping)) {
1217 		/*
1218 		 * Yes, Virginia, this is indeed insane.
1219 		 *
1220 		 * We use this sequence to make sure that
1221 		 *  (a) we account for dirty stats properly
1222 		 *  (b) we tell the low-level filesystem to
1223 		 *      mark the whole page dirty if it was
1224 		 *      dirty in a pagetable. Only to then
1225 		 *  (c) clean the page again and return 1 to
1226 		 *      cause the writeback.
1227 		 *
1228 		 * This way we avoid all nasty races with the
1229 		 * dirty bit in multiple places and clearing
1230 		 * them concurrently from different threads.
1231 		 *
1232 		 * Note! Normally the "set_page_dirty(page)"
1233 		 * has no effect on the actual dirty bit - since
1234 		 * that will already usually be set. But we
1235 		 * need the side effects, and it can help us
1236 		 * avoid races.
1237 		 *
1238 		 * We basically use the page "master dirty bit"
1239 		 * as a serialization point for all the different
1240 		 * threads doing their things.
1241 		 */
1242 		if (page_mkclean(page))
1243 			set_page_dirty(page);
1244 		/*
1245 		 * We carefully synchronise fault handlers against
1246 		 * installing a dirty pte and marking the page dirty
1247 		 * at this point. We do this by having them hold the
1248 		 * page lock at some point after installing their
1249 		 * pte, but before marking the page dirty.
1250 		 * Pages are always locked coming in here, so we get
1251 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1252 		 * for more comments.
1253 		 */
1254 		if (TestClearPageDirty(page)) {
1255 			dec_zone_page_state(page, NR_FILE_DIRTY);
1256 			dec_bdi_stat(mapping->backing_dev_info,
1257 					BDI_RECLAIMABLE);
1258 			return 1;
1259 		}
1260 		return 0;
1261 	}
1262 	return TestClearPageDirty(page);
1263 }
1264 EXPORT_SYMBOL(clear_page_dirty_for_io);
1265 
1266 int test_clear_page_writeback(struct page *page)
1267 {
1268 	struct address_space *mapping = page_mapping(page);
1269 	int ret;
1270 
1271 	if (mapping) {
1272 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1273 		unsigned long flags;
1274 
1275 		spin_lock_irqsave(&mapping->tree_lock, flags);
1276 		ret = TestClearPageWriteback(page);
1277 		if (ret) {
1278 			radix_tree_tag_clear(&mapping->page_tree,
1279 						page_index(page),
1280 						PAGECACHE_TAG_WRITEBACK);
1281 			if (bdi_cap_account_writeback(bdi)) {
1282 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1283 				__bdi_writeout_inc(bdi);
1284 			}
1285 		}
1286 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1287 	} else {
1288 		ret = TestClearPageWriteback(page);
1289 	}
1290 	if (ret)
1291 		dec_zone_page_state(page, NR_WRITEBACK);
1292 	return ret;
1293 }
1294 
1295 int test_set_page_writeback(struct page *page)
1296 {
1297 	struct address_space *mapping = page_mapping(page);
1298 	int ret;
1299 
1300 	if (mapping) {
1301 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1302 		unsigned long flags;
1303 
1304 		spin_lock_irqsave(&mapping->tree_lock, flags);
1305 		ret = TestSetPageWriteback(page);
1306 		if (!ret) {
1307 			radix_tree_tag_set(&mapping->page_tree,
1308 						page_index(page),
1309 						PAGECACHE_TAG_WRITEBACK);
1310 			if (bdi_cap_account_writeback(bdi))
1311 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1312 		}
1313 		if (!PageDirty(page))
1314 			radix_tree_tag_clear(&mapping->page_tree,
1315 						page_index(page),
1316 						PAGECACHE_TAG_DIRTY);
1317 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1318 	} else {
1319 		ret = TestSetPageWriteback(page);
1320 	}
1321 	if (!ret)
1322 		inc_zone_page_state(page, NR_WRITEBACK);
1323 	return ret;
1324 
1325 }
1326 EXPORT_SYMBOL(test_set_page_writeback);
1327 
1328 /*
1329  * Return true if any of the pages in the mapping are marked with the
1330  * passed tag.
1331  */
1332 int mapping_tagged(struct address_space *mapping, int tag)
1333 {
1334 	int ret;
1335 	rcu_read_lock();
1336 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1337 	rcu_read_unlock();
1338 	return ret;
1339 }
1340 EXPORT_SYMBOL(mapping_tagged);
1341