xref: /linux/mm/oom_kill.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/mm.h>
19 #include <linux/sched.h>
20 #include <linux/swap.h>
21 #include <linux/timex.h>
22 #include <linux/jiffies.h>
23 #include <linux/cpuset.h>
24 
25 /* #define DEBUG */
26 
27 /**
28  * oom_badness - calculate a numeric value for how bad this task has been
29  * @p: task struct of which task we should calculate
30  * @uptime: current uptime in seconds
31  *
32  * The formula used is relatively simple and documented inline in the
33  * function. The main rationale is that we want to select a good task
34  * to kill when we run out of memory.
35  *
36  * Good in this context means that:
37  * 1) we lose the minimum amount of work done
38  * 2) we recover a large amount of memory
39  * 3) we don't kill anything innocent of eating tons of memory
40  * 4) we want to kill the minimum amount of processes (one)
41  * 5) we try to kill the process the user expects us to kill, this
42  *    algorithm has been meticulously tuned to meet the principle
43  *    of least surprise ... (be careful when you change it)
44  */
45 
46 unsigned long badness(struct task_struct *p, unsigned long uptime)
47 {
48 	unsigned long points, cpu_time, run_time, s;
49 	struct mm_struct *mm;
50 	struct task_struct *child;
51 
52 	task_lock(p);
53 	mm = p->mm;
54 	if (!mm) {
55 		task_unlock(p);
56 		return 0;
57 	}
58 
59 	/*
60 	 * The memory size of the process is the basis for the badness.
61 	 */
62 	points = mm->total_vm;
63 
64 	/*
65 	 * After this unlock we can no longer dereference local variable `mm'
66 	 */
67 	task_unlock(p);
68 
69 	/*
70 	 * Processes which fork a lot of child processes are likely
71 	 * a good choice. We add half the vmsize of the children if they
72 	 * have an own mm. This prevents forking servers to flood the
73 	 * machine with an endless amount of children. In case a single
74 	 * child is eating the vast majority of memory, adding only half
75 	 * to the parents will make the child our kill candidate of choice.
76 	 */
77 	list_for_each_entry(child, &p->children, sibling) {
78 		task_lock(child);
79 		if (child->mm != mm && child->mm)
80 			points += child->mm->total_vm/2 + 1;
81 		task_unlock(child);
82 	}
83 
84 	/*
85 	 * CPU time is in tens of seconds and run time is in thousands
86          * of seconds. There is no particular reason for this other than
87          * that it turned out to work very well in practice.
88 	 */
89 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
90 		>> (SHIFT_HZ + 3);
91 
92 	if (uptime >= p->start_time.tv_sec)
93 		run_time = (uptime - p->start_time.tv_sec) >> 10;
94 	else
95 		run_time = 0;
96 
97 	s = int_sqrt(cpu_time);
98 	if (s)
99 		points /= s;
100 	s = int_sqrt(int_sqrt(run_time));
101 	if (s)
102 		points /= s;
103 
104 	/*
105 	 * Niced processes are most likely less important, so double
106 	 * their badness points.
107 	 */
108 	if (task_nice(p) > 0)
109 		points *= 2;
110 
111 	/*
112 	 * Superuser processes are usually more important, so we make it
113 	 * less likely that we kill those.
114 	 */
115 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
116 				p->uid == 0 || p->euid == 0)
117 		points /= 4;
118 
119 	/*
120 	 * We don't want to kill a process with direct hardware access.
121 	 * Not only could that mess up the hardware, but usually users
122 	 * tend to only have this flag set on applications they think
123 	 * of as important.
124 	 */
125 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
126 		points /= 4;
127 
128 	/*
129 	 * Adjust the score by oomkilladj.
130 	 */
131 	if (p->oomkilladj) {
132 		if (p->oomkilladj > 0)
133 			points <<= p->oomkilladj;
134 		else
135 			points >>= -(p->oomkilladj);
136 	}
137 
138 #ifdef DEBUG
139 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
140 	p->pid, p->comm, points);
141 #endif
142 	return points;
143 }
144 
145 /*
146  * Types of limitations to the nodes from which allocations may occur
147  */
148 #define CONSTRAINT_NONE 1
149 #define CONSTRAINT_MEMORY_POLICY 2
150 #define CONSTRAINT_CPUSET 3
151 
152 /*
153  * Determine the type of allocation constraint.
154  */
155 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
156 {
157 #ifdef CONFIG_NUMA
158 	struct zone **z;
159 	nodemask_t nodes = node_online_map;
160 
161 	for (z = zonelist->zones; *z; z++)
162 		if (cpuset_zone_allowed(*z, gfp_mask))
163 			node_clear((*z)->zone_pgdat->node_id,
164 					nodes);
165 		else
166 			return CONSTRAINT_CPUSET;
167 
168 	if (!nodes_empty(nodes))
169 		return CONSTRAINT_MEMORY_POLICY;
170 #endif
171 
172 	return CONSTRAINT_NONE;
173 }
174 
175 /*
176  * Simple selection loop. We chose the process with the highest
177  * number of 'points'. We expect the caller will lock the tasklist.
178  *
179  * (not docbooked, we don't want this one cluttering up the manual)
180  */
181 static struct task_struct *select_bad_process(unsigned long *ppoints)
182 {
183 	struct task_struct *g, *p;
184 	struct task_struct *chosen = NULL;
185 	struct timespec uptime;
186 	*ppoints = 0;
187 
188 	do_posix_clock_monotonic_gettime(&uptime);
189 	do_each_thread(g, p) {
190 		unsigned long points;
191 		int releasing;
192 
193 		/* skip the init task with pid == 1 */
194 		if (p->pid == 1)
195 			continue;
196 		if (p->oomkilladj == OOM_DISABLE)
197 			continue;
198 		/* If p's nodes don't overlap ours, it won't help to kill p. */
199 		if (!cpuset_excl_nodes_overlap(p))
200 			continue;
201 
202 		/*
203 		 * This is in the process of releasing memory so for wait it
204 		 * to finish before killing some other task by mistake.
205 		 */
206 		releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
207 						p->flags & PF_EXITING;
208 		if (releasing && !(p->flags & PF_DEAD))
209 			return ERR_PTR(-1UL);
210 		if (p->flags & PF_SWAPOFF)
211 			return p;
212 
213 		points = badness(p, uptime.tv_sec);
214 		if (points > *ppoints || !chosen) {
215 			chosen = p;
216 			*ppoints = points;
217 		}
218 	} while_each_thread(g, p);
219 	return chosen;
220 }
221 
222 /**
223  * We must be careful though to never send SIGKILL a process with
224  * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
225  * we select a process with CAP_SYS_RAW_IO set).
226  */
227 static void __oom_kill_task(task_t *p, const char *message)
228 {
229 	if (p->pid == 1) {
230 		WARN_ON(1);
231 		printk(KERN_WARNING "tried to kill init!\n");
232 		return;
233 	}
234 
235 	task_lock(p);
236 	if (!p->mm || p->mm == &init_mm) {
237 		WARN_ON(1);
238 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
239 		task_unlock(p);
240 		return;
241 	}
242 	task_unlock(p);
243 	printk(KERN_ERR "%s: Killed process %d (%s).\n",
244 				message, p->pid, p->comm);
245 
246 	/*
247 	 * We give our sacrificial lamb high priority and access to
248 	 * all the memory it needs. That way it should be able to
249 	 * exit() and clear out its resources quickly...
250 	 */
251 	p->time_slice = HZ;
252 	set_tsk_thread_flag(p, TIF_MEMDIE);
253 
254 	force_sig(SIGKILL, p);
255 }
256 
257 static int oom_kill_task(task_t *p, const char *message)
258 {
259 	struct mm_struct *mm;
260 	task_t * g, * q;
261 
262 	mm = p->mm;
263 
264 	/* WARNING: mm may not be dereferenced since we did not obtain its
265 	 * value from get_task_mm(p).  This is OK since all we need to do is
266 	 * compare mm to q->mm below.
267 	 *
268 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
269 	 * change to NULL at any time since we do not hold task_lock(p).
270 	 * However, this is of no concern to us.
271 	 */
272 
273 	if (mm == NULL || mm == &init_mm)
274 		return 1;
275 
276 	__oom_kill_task(p, message);
277 	/*
278 	 * kill all processes that share the ->mm (i.e. all threads),
279 	 * but are in a different thread group
280 	 */
281 	do_each_thread(g, q)
282 		if (q->mm == mm && q->tgid != p->tgid)
283 			__oom_kill_task(q, message);
284 	while_each_thread(g, q);
285 
286 	return 0;
287 }
288 
289 static int oom_kill_process(struct task_struct *p, unsigned long points,
290 		const char *message)
291 {
292 	struct task_struct *c;
293 	struct list_head *tsk;
294 
295 	printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and "
296 		"children.\n", p->pid, p->comm, points);
297 	/* Try to kill a child first */
298 	list_for_each(tsk, &p->children) {
299 		c = list_entry(tsk, struct task_struct, sibling);
300 		if (c->mm == p->mm)
301 			continue;
302 		if (!oom_kill_task(c, message))
303 			return 0;
304 	}
305 	return oom_kill_task(p, message);
306 }
307 
308 /**
309  * oom_kill - kill the "best" process when we run out of memory
310  *
311  * If we run out of memory, we have the choice between either
312  * killing a random task (bad), letting the system crash (worse)
313  * OR try to be smart about which process to kill. Note that we
314  * don't have to be perfect here, we just have to be good.
315  */
316 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
317 {
318 	task_t *p;
319 	unsigned long points = 0;
320 
321 	if (printk_ratelimit()) {
322 		printk("oom-killer: gfp_mask=0x%x, order=%d\n",
323 			gfp_mask, order);
324 		dump_stack();
325 		show_mem();
326 	}
327 
328 	cpuset_lock();
329 	read_lock(&tasklist_lock);
330 
331 	/*
332 	 * Check if there were limitations on the allocation (only relevant for
333 	 * NUMA) that may require different handling.
334 	 */
335 	switch (constrained_alloc(zonelist, gfp_mask)) {
336 	case CONSTRAINT_MEMORY_POLICY:
337 		oom_kill_process(current, points,
338 				"No available memory (MPOL_BIND)");
339 		break;
340 
341 	case CONSTRAINT_CPUSET:
342 		oom_kill_process(current, points,
343 				"No available memory in cpuset");
344 		break;
345 
346 	case CONSTRAINT_NONE:
347 retry:
348 		/*
349 		 * Rambo mode: Shoot down a process and hope it solves whatever
350 		 * issues we may have.
351 		 */
352 		p = select_bad_process(&points);
353 
354 		if (PTR_ERR(p) == -1UL)
355 			goto out;
356 
357 		/* Found nothing?!?! Either we hang forever, or we panic. */
358 		if (!p) {
359 			read_unlock(&tasklist_lock);
360 			cpuset_unlock();
361 			panic("Out of memory and no killable processes...\n");
362 		}
363 
364 		if (oom_kill_process(p, points, "Out of memory"))
365 			goto retry;
366 
367 		break;
368 	}
369 
370 out:
371 	read_unlock(&tasklist_lock);
372 	cpuset_unlock();
373 
374 	/*
375 	 * Give "p" a good chance of killing itself before we
376 	 * retry to allocate memory unless "p" is current
377 	 */
378 	if (!test_thread_flag(TIF_MEMDIE))
379 		schedule_timeout_uninterruptible(1);
380 }
381