1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/export.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 #include <linux/ptrace.h> 35 #include <linux/freezer.h> 36 37 int sysctl_panic_on_oom; 38 int sysctl_oom_kill_allocating_task; 39 int sysctl_oom_dump_tasks = 1; 40 static DEFINE_SPINLOCK(zone_scan_lock); 41 42 /* 43 * compare_swap_oom_score_adj() - compare and swap current's oom_score_adj 44 * @old_val: old oom_score_adj for compare 45 * @new_val: new oom_score_adj for swap 46 * 47 * Sets the oom_score_adj value for current to @new_val iff its present value is 48 * @old_val. Usually used to reinstate a previous value to prevent racing with 49 * userspacing tuning the value in the interim. 50 */ 51 void compare_swap_oom_score_adj(int old_val, int new_val) 52 { 53 struct sighand_struct *sighand = current->sighand; 54 55 spin_lock_irq(&sighand->siglock); 56 if (current->signal->oom_score_adj == old_val) 57 current->signal->oom_score_adj = new_val; 58 spin_unlock_irq(&sighand->siglock); 59 } 60 61 /** 62 * test_set_oom_score_adj() - set current's oom_score_adj and return old value 63 * @new_val: new oom_score_adj value 64 * 65 * Sets the oom_score_adj value for current to @new_val with proper 66 * synchronization and returns the old value. Usually used to temporarily 67 * set a value, save the old value in the caller, and then reinstate it later. 68 */ 69 int test_set_oom_score_adj(int new_val) 70 { 71 struct sighand_struct *sighand = current->sighand; 72 int old_val; 73 74 spin_lock_irq(&sighand->siglock); 75 old_val = current->signal->oom_score_adj; 76 current->signal->oom_score_adj = new_val; 77 spin_unlock_irq(&sighand->siglock); 78 79 return old_val; 80 } 81 82 #ifdef CONFIG_NUMA 83 /** 84 * has_intersects_mems_allowed() - check task eligiblity for kill 85 * @tsk: task struct of which task to consider 86 * @mask: nodemask passed to page allocator for mempolicy ooms 87 * 88 * Task eligibility is determined by whether or not a candidate task, @tsk, 89 * shares the same mempolicy nodes as current if it is bound by such a policy 90 * and whether or not it has the same set of allowed cpuset nodes. 91 */ 92 static bool has_intersects_mems_allowed(struct task_struct *tsk, 93 const nodemask_t *mask) 94 { 95 struct task_struct *start = tsk; 96 97 do { 98 if (mask) { 99 /* 100 * If this is a mempolicy constrained oom, tsk's 101 * cpuset is irrelevant. Only return true if its 102 * mempolicy intersects current, otherwise it may be 103 * needlessly killed. 104 */ 105 if (mempolicy_nodemask_intersects(tsk, mask)) 106 return true; 107 } else { 108 /* 109 * This is not a mempolicy constrained oom, so only 110 * check the mems of tsk's cpuset. 111 */ 112 if (cpuset_mems_allowed_intersects(current, tsk)) 113 return true; 114 } 115 } while_each_thread(start, tsk); 116 117 return false; 118 } 119 #else 120 static bool has_intersects_mems_allowed(struct task_struct *tsk, 121 const nodemask_t *mask) 122 { 123 return true; 124 } 125 #endif /* CONFIG_NUMA */ 126 127 /* 128 * The process p may have detached its own ->mm while exiting or through 129 * use_mm(), but one or more of its subthreads may still have a valid 130 * pointer. Return p, or any of its subthreads with a valid ->mm, with 131 * task_lock() held. 132 */ 133 struct task_struct *find_lock_task_mm(struct task_struct *p) 134 { 135 struct task_struct *t = p; 136 137 do { 138 task_lock(t); 139 if (likely(t->mm)) 140 return t; 141 task_unlock(t); 142 } while_each_thread(p, t); 143 144 return NULL; 145 } 146 147 /* return true if the task is not adequate as candidate victim task. */ 148 static bool oom_unkillable_task(struct task_struct *p, 149 const struct mem_cgroup *mem, const nodemask_t *nodemask) 150 { 151 if (is_global_init(p)) 152 return true; 153 if (p->flags & PF_KTHREAD) 154 return true; 155 156 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 157 if (mem && !task_in_mem_cgroup(p, mem)) 158 return true; 159 160 /* p may not have freeable memory in nodemask */ 161 if (!has_intersects_mems_allowed(p, nodemask)) 162 return true; 163 164 return false; 165 } 166 167 /** 168 * oom_badness - heuristic function to determine which candidate task to kill 169 * @p: task struct of which task we should calculate 170 * @totalpages: total present RAM allowed for page allocation 171 * 172 * The heuristic for determining which task to kill is made to be as simple and 173 * predictable as possible. The goal is to return the highest value for the 174 * task consuming the most memory to avoid subsequent oom failures. 175 */ 176 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, 177 const nodemask_t *nodemask, unsigned long totalpages) 178 { 179 int points; 180 181 if (oom_unkillable_task(p, mem, nodemask)) 182 return 0; 183 184 p = find_lock_task_mm(p); 185 if (!p) 186 return 0; 187 188 /* 189 * The memory controller may have a limit of 0 bytes, so avoid a divide 190 * by zero, if necessary. 191 */ 192 if (!totalpages) 193 totalpages = 1; 194 195 /* 196 * The baseline for the badness score is the proportion of RAM that each 197 * task's rss, pagetable and swap space use. 198 */ 199 points = get_mm_rss(p->mm) + p->mm->nr_ptes; 200 points += get_mm_counter(p->mm, MM_SWAPENTS); 201 202 points *= 1000; 203 points /= totalpages; 204 task_unlock(p); 205 206 /* 207 * Root processes get 3% bonus, just like the __vm_enough_memory() 208 * implementation used by LSMs. 209 */ 210 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 211 points -= 30; 212 213 /* 214 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 215 * either completely disable oom killing or always prefer a certain 216 * task. 217 */ 218 points += p->signal->oom_score_adj; 219 220 /* 221 * Never return 0 for an eligible task that may be killed since it's 222 * possible that no single user task uses more than 0.1% of memory and 223 * no single admin tasks uses more than 3.0%. 224 */ 225 if (points <= 0) 226 return 1; 227 return (points < 1000) ? points : 1000; 228 } 229 230 /* 231 * Determine the type of allocation constraint. 232 */ 233 #ifdef CONFIG_NUMA 234 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 235 gfp_t gfp_mask, nodemask_t *nodemask, 236 unsigned long *totalpages) 237 { 238 struct zone *zone; 239 struct zoneref *z; 240 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 241 bool cpuset_limited = false; 242 int nid; 243 244 /* Default to all available memory */ 245 *totalpages = totalram_pages + total_swap_pages; 246 247 if (!zonelist) 248 return CONSTRAINT_NONE; 249 /* 250 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 251 * to kill current.We have to random task kill in this case. 252 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 253 */ 254 if (gfp_mask & __GFP_THISNODE) 255 return CONSTRAINT_NONE; 256 257 /* 258 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 259 * the page allocator means a mempolicy is in effect. Cpuset policy 260 * is enforced in get_page_from_freelist(). 261 */ 262 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 263 *totalpages = total_swap_pages; 264 for_each_node_mask(nid, *nodemask) 265 *totalpages += node_spanned_pages(nid); 266 return CONSTRAINT_MEMORY_POLICY; 267 } 268 269 /* Check this allocation failure is caused by cpuset's wall function */ 270 for_each_zone_zonelist_nodemask(zone, z, zonelist, 271 high_zoneidx, nodemask) 272 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 273 cpuset_limited = true; 274 275 if (cpuset_limited) { 276 *totalpages = total_swap_pages; 277 for_each_node_mask(nid, cpuset_current_mems_allowed) 278 *totalpages += node_spanned_pages(nid); 279 return CONSTRAINT_CPUSET; 280 } 281 return CONSTRAINT_NONE; 282 } 283 #else 284 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 285 gfp_t gfp_mask, nodemask_t *nodemask, 286 unsigned long *totalpages) 287 { 288 *totalpages = totalram_pages + total_swap_pages; 289 return CONSTRAINT_NONE; 290 } 291 #endif 292 293 /* 294 * Simple selection loop. We chose the process with the highest 295 * number of 'points'. We expect the caller will lock the tasklist. 296 * 297 * (not docbooked, we don't want this one cluttering up the manual) 298 */ 299 static struct task_struct *select_bad_process(unsigned int *ppoints, 300 unsigned long totalpages, struct mem_cgroup *mem, 301 const nodemask_t *nodemask) 302 { 303 struct task_struct *g, *p; 304 struct task_struct *chosen = NULL; 305 *ppoints = 0; 306 307 do_each_thread(g, p) { 308 unsigned int points; 309 310 if (p->exit_state) 311 continue; 312 if (oom_unkillable_task(p, mem, nodemask)) 313 continue; 314 315 /* 316 * This task already has access to memory reserves and is 317 * being killed. Don't allow any other task access to the 318 * memory reserve. 319 * 320 * Note: this may have a chance of deadlock if it gets 321 * blocked waiting for another task which itself is waiting 322 * for memory. Is there a better alternative? 323 */ 324 if (test_tsk_thread_flag(p, TIF_MEMDIE)) { 325 if (unlikely(frozen(p))) 326 thaw_process(p); 327 return ERR_PTR(-1UL); 328 } 329 if (!p->mm) 330 continue; 331 332 if (p->flags & PF_EXITING) { 333 /* 334 * If p is the current task and is in the process of 335 * releasing memory, we allow the "kill" to set 336 * TIF_MEMDIE, which will allow it to gain access to 337 * memory reserves. Otherwise, it may stall forever. 338 * 339 * The loop isn't broken here, however, in case other 340 * threads are found to have already been oom killed. 341 */ 342 if (p == current) { 343 chosen = p; 344 *ppoints = 1000; 345 } else { 346 /* 347 * If this task is not being ptraced on exit, 348 * then wait for it to finish before killing 349 * some other task unnecessarily. 350 */ 351 if (!(p->group_leader->ptrace & PT_TRACE_EXIT)) 352 return ERR_PTR(-1UL); 353 } 354 } 355 356 points = oom_badness(p, mem, nodemask, totalpages); 357 if (points > *ppoints) { 358 chosen = p; 359 *ppoints = points; 360 } 361 } while_each_thread(g, p); 362 363 return chosen; 364 } 365 366 /** 367 * dump_tasks - dump current memory state of all system tasks 368 * @mem: current's memory controller, if constrained 369 * @nodemask: nodemask passed to page allocator for mempolicy ooms 370 * 371 * Dumps the current memory state of all eligible tasks. Tasks not in the same 372 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 373 * are not shown. 374 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 375 * value, oom_score_adj value, and name. 376 * 377 * Call with tasklist_lock read-locked. 378 */ 379 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask) 380 { 381 struct task_struct *p; 382 struct task_struct *task; 383 384 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 385 for_each_process(p) { 386 if (oom_unkillable_task(p, mem, nodemask)) 387 continue; 388 389 task = find_lock_task_mm(p); 390 if (!task) { 391 /* 392 * This is a kthread or all of p's threads have already 393 * detached their mm's. There's no need to report 394 * them; they can't be oom killed anyway. 395 */ 396 continue; 397 } 398 399 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 400 task->pid, task_uid(task), task->tgid, 401 task->mm->total_vm, get_mm_rss(task->mm), 402 task_cpu(task), task->signal->oom_adj, 403 task->signal->oom_score_adj, task->comm); 404 task_unlock(task); 405 } 406 } 407 408 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 409 struct mem_cgroup *mem, const nodemask_t *nodemask) 410 { 411 task_lock(current); 412 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 413 "oom_adj=%d, oom_score_adj=%d\n", 414 current->comm, gfp_mask, order, current->signal->oom_adj, 415 current->signal->oom_score_adj); 416 cpuset_print_task_mems_allowed(current); 417 task_unlock(current); 418 dump_stack(); 419 mem_cgroup_print_oom_info(mem, p); 420 show_mem(SHOW_MEM_FILTER_NODES); 421 if (sysctl_oom_dump_tasks) 422 dump_tasks(mem, nodemask); 423 } 424 425 #define K(x) ((x) << (PAGE_SHIFT-10)) 426 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) 427 { 428 struct task_struct *q; 429 struct mm_struct *mm; 430 431 p = find_lock_task_mm(p); 432 if (!p) 433 return 1; 434 435 /* mm cannot be safely dereferenced after task_unlock(p) */ 436 mm = p->mm; 437 438 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 439 task_pid_nr(p), p->comm, K(p->mm->total_vm), 440 K(get_mm_counter(p->mm, MM_ANONPAGES)), 441 K(get_mm_counter(p->mm, MM_FILEPAGES))); 442 task_unlock(p); 443 444 /* 445 * Kill all user processes sharing p->mm in other thread groups, if any. 446 * They don't get access to memory reserves or a higher scheduler 447 * priority, though, to avoid depletion of all memory or task 448 * starvation. This prevents mm->mmap_sem livelock when an oom killed 449 * task cannot exit because it requires the semaphore and its contended 450 * by another thread trying to allocate memory itself. That thread will 451 * now get access to memory reserves since it has a pending fatal 452 * signal. 453 */ 454 for_each_process(q) 455 if (q->mm == mm && !same_thread_group(q, p) && 456 !(q->flags & PF_KTHREAD)) { 457 if (q->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 458 continue; 459 460 task_lock(q); /* Protect ->comm from prctl() */ 461 pr_err("Kill process %d (%s) sharing same memory\n", 462 task_pid_nr(q), q->comm); 463 task_unlock(q); 464 force_sig(SIGKILL, q); 465 } 466 467 set_tsk_thread_flag(p, TIF_MEMDIE); 468 force_sig(SIGKILL, p); 469 470 return 0; 471 } 472 #undef K 473 474 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 475 unsigned int points, unsigned long totalpages, 476 struct mem_cgroup *mem, nodemask_t *nodemask, 477 const char *message) 478 { 479 struct task_struct *victim = p; 480 struct task_struct *child; 481 struct task_struct *t = p; 482 unsigned int victim_points = 0; 483 484 if (printk_ratelimit()) 485 dump_header(p, gfp_mask, order, mem, nodemask); 486 487 /* 488 * If the task is already exiting, don't alarm the sysadmin or kill 489 * its children or threads, just set TIF_MEMDIE so it can die quickly 490 */ 491 if (p->flags & PF_EXITING) { 492 set_tsk_thread_flag(p, TIF_MEMDIE); 493 return 0; 494 } 495 496 task_lock(p); 497 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 498 message, task_pid_nr(p), p->comm, points); 499 task_unlock(p); 500 501 /* 502 * If any of p's children has a different mm and is eligible for kill, 503 * the one with the highest oom_badness() score is sacrificed for its 504 * parent. This attempts to lose the minimal amount of work done while 505 * still freeing memory. 506 */ 507 do { 508 list_for_each_entry(child, &t->children, sibling) { 509 unsigned int child_points; 510 511 if (child->mm == p->mm) 512 continue; 513 /* 514 * oom_badness() returns 0 if the thread is unkillable 515 */ 516 child_points = oom_badness(child, mem, nodemask, 517 totalpages); 518 if (child_points > victim_points) { 519 victim = child; 520 victim_points = child_points; 521 } 522 } 523 } while_each_thread(p, t); 524 525 return oom_kill_task(victim, mem); 526 } 527 528 /* 529 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 530 */ 531 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 532 int order, const nodemask_t *nodemask) 533 { 534 if (likely(!sysctl_panic_on_oom)) 535 return; 536 if (sysctl_panic_on_oom != 2) { 537 /* 538 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 539 * does not panic for cpuset, mempolicy, or memcg allocation 540 * failures. 541 */ 542 if (constraint != CONSTRAINT_NONE) 543 return; 544 } 545 read_lock(&tasklist_lock); 546 dump_header(NULL, gfp_mask, order, NULL, nodemask); 547 read_unlock(&tasklist_lock); 548 panic("Out of memory: %s panic_on_oom is enabled\n", 549 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 550 } 551 552 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 553 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 554 { 555 unsigned long limit; 556 unsigned int points = 0; 557 struct task_struct *p; 558 559 /* 560 * If current has a pending SIGKILL, then automatically select it. The 561 * goal is to allow it to allocate so that it may quickly exit and free 562 * its memory. 563 */ 564 if (fatal_signal_pending(current)) { 565 set_thread_flag(TIF_MEMDIE); 566 return; 567 } 568 569 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); 570 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; 571 read_lock(&tasklist_lock); 572 retry: 573 p = select_bad_process(&points, limit, mem, NULL); 574 if (!p || PTR_ERR(p) == -1UL) 575 goto out; 576 577 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, 578 "Memory cgroup out of memory")) 579 goto retry; 580 out: 581 read_unlock(&tasklist_lock); 582 } 583 #endif 584 585 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 586 587 int register_oom_notifier(struct notifier_block *nb) 588 { 589 return blocking_notifier_chain_register(&oom_notify_list, nb); 590 } 591 EXPORT_SYMBOL_GPL(register_oom_notifier); 592 593 int unregister_oom_notifier(struct notifier_block *nb) 594 { 595 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 596 } 597 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 598 599 /* 600 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 601 * if a parallel OOM killing is already taking place that includes a zone in 602 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 603 */ 604 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 605 { 606 struct zoneref *z; 607 struct zone *zone; 608 int ret = 1; 609 610 spin_lock(&zone_scan_lock); 611 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 612 if (zone_is_oom_locked(zone)) { 613 ret = 0; 614 goto out; 615 } 616 } 617 618 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 619 /* 620 * Lock each zone in the zonelist under zone_scan_lock so a 621 * parallel invocation of try_set_zonelist_oom() doesn't succeed 622 * when it shouldn't. 623 */ 624 zone_set_flag(zone, ZONE_OOM_LOCKED); 625 } 626 627 out: 628 spin_unlock(&zone_scan_lock); 629 return ret; 630 } 631 632 /* 633 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 634 * allocation attempts with zonelists containing them may now recall the OOM 635 * killer, if necessary. 636 */ 637 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 638 { 639 struct zoneref *z; 640 struct zone *zone; 641 642 spin_lock(&zone_scan_lock); 643 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 644 zone_clear_flag(zone, ZONE_OOM_LOCKED); 645 } 646 spin_unlock(&zone_scan_lock); 647 } 648 649 /* 650 * Try to acquire the oom killer lock for all system zones. Returns zero if a 651 * parallel oom killing is taking place, otherwise locks all zones and returns 652 * non-zero. 653 */ 654 static int try_set_system_oom(void) 655 { 656 struct zone *zone; 657 int ret = 1; 658 659 spin_lock(&zone_scan_lock); 660 for_each_populated_zone(zone) 661 if (zone_is_oom_locked(zone)) { 662 ret = 0; 663 goto out; 664 } 665 for_each_populated_zone(zone) 666 zone_set_flag(zone, ZONE_OOM_LOCKED); 667 out: 668 spin_unlock(&zone_scan_lock); 669 return ret; 670 } 671 672 /* 673 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 674 * attempts or page faults may now recall the oom killer, if necessary. 675 */ 676 static void clear_system_oom(void) 677 { 678 struct zone *zone; 679 680 spin_lock(&zone_scan_lock); 681 for_each_populated_zone(zone) 682 zone_clear_flag(zone, ZONE_OOM_LOCKED); 683 spin_unlock(&zone_scan_lock); 684 } 685 686 /** 687 * out_of_memory - kill the "best" process when we run out of memory 688 * @zonelist: zonelist pointer 689 * @gfp_mask: memory allocation flags 690 * @order: amount of memory being requested as a power of 2 691 * @nodemask: nodemask passed to page allocator 692 * 693 * If we run out of memory, we have the choice between either 694 * killing a random task (bad), letting the system crash (worse) 695 * OR try to be smart about which process to kill. Note that we 696 * don't have to be perfect here, we just have to be good. 697 */ 698 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 699 int order, nodemask_t *nodemask) 700 { 701 const nodemask_t *mpol_mask; 702 struct task_struct *p; 703 unsigned long totalpages; 704 unsigned long freed = 0; 705 unsigned int points; 706 enum oom_constraint constraint = CONSTRAINT_NONE; 707 int killed = 0; 708 709 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 710 if (freed > 0) 711 /* Got some memory back in the last second. */ 712 return; 713 714 /* 715 * If current has a pending SIGKILL, then automatically select it. The 716 * goal is to allow it to allocate so that it may quickly exit and free 717 * its memory. 718 */ 719 if (fatal_signal_pending(current)) { 720 set_thread_flag(TIF_MEMDIE); 721 return; 722 } 723 724 /* 725 * Check if there were limitations on the allocation (only relevant for 726 * NUMA) that may require different handling. 727 */ 728 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 729 &totalpages); 730 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 731 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 732 733 read_lock(&tasklist_lock); 734 if (sysctl_oom_kill_allocating_task && 735 !oom_unkillable_task(current, NULL, nodemask) && 736 current->mm) { 737 /* 738 * oom_kill_process() needs tasklist_lock held. If it returns 739 * non-zero, current could not be killed so we must fallback to 740 * the tasklist scan. 741 */ 742 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, 743 NULL, nodemask, 744 "Out of memory (oom_kill_allocating_task)")) 745 goto out; 746 } 747 748 retry: 749 p = select_bad_process(&points, totalpages, NULL, mpol_mask); 750 if (PTR_ERR(p) == -1UL) 751 goto out; 752 753 /* Found nothing?!?! Either we hang forever, or we panic. */ 754 if (!p) { 755 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 756 read_unlock(&tasklist_lock); 757 panic("Out of memory and no killable processes...\n"); 758 } 759 760 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 761 nodemask, "Out of memory")) 762 goto retry; 763 killed = 1; 764 out: 765 read_unlock(&tasklist_lock); 766 767 /* 768 * Give "p" a good chance of killing itself before we 769 * retry to allocate memory unless "p" is current 770 */ 771 if (killed && !test_thread_flag(TIF_MEMDIE)) 772 schedule_timeout_uninterruptible(1); 773 } 774 775 /* 776 * The pagefault handler calls here because it is out of memory, so kill a 777 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 778 * oom killing is already in progress so do nothing. If a task is found with 779 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 780 */ 781 void pagefault_out_of_memory(void) 782 { 783 if (try_set_system_oom()) { 784 out_of_memory(NULL, 0, 0, NULL); 785 clear_system_oom(); 786 } 787 if (!test_thread_flag(TIF_MEMDIE)) 788 schedule_timeout_uninterruptible(1); 789 } 790