xref: /linux/mm/oom_kill.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 
30 int sysctl_panic_on_oom;
31 int sysctl_oom_kill_allocating_task;
32 int sysctl_oom_dump_tasks;
33 static DEFINE_SPINLOCK(zone_scan_mutex);
34 /* #define DEBUG */
35 
36 /**
37  * badness - calculate a numeric value for how bad this task has been
38  * @p: task struct of which task we should calculate
39  * @uptime: current uptime in seconds
40  *
41  * The formula used is relatively simple and documented inline in the
42  * function. The main rationale is that we want to select a good task
43  * to kill when we run out of memory.
44  *
45  * Good in this context means that:
46  * 1) we lose the minimum amount of work done
47  * 2) we recover a large amount of memory
48  * 3) we don't kill anything innocent of eating tons of memory
49  * 4) we want to kill the minimum amount of processes (one)
50  * 5) we try to kill the process the user expects us to kill, this
51  *    algorithm has been meticulously tuned to meet the principle
52  *    of least surprise ... (be careful when you change it)
53  */
54 
55 unsigned long badness(struct task_struct *p, unsigned long uptime,
56 			struct mem_cgroup *mem)
57 {
58 	unsigned long points, cpu_time, run_time, s;
59 	struct mm_struct *mm;
60 	struct task_struct *child;
61 
62 	task_lock(p);
63 	mm = p->mm;
64 	if (!mm) {
65 		task_unlock(p);
66 		return 0;
67 	}
68 
69 	/*
70 	 * The memory size of the process is the basis for the badness.
71 	 */
72 	points = mm->total_vm;
73 
74 	/*
75 	 * After this unlock we can no longer dereference local variable `mm'
76 	 */
77 	task_unlock(p);
78 
79 	/*
80 	 * swapoff can easily use up all memory, so kill those first.
81 	 */
82 	if (p->flags & PF_SWAPOFF)
83 		return ULONG_MAX;
84 
85 	/*
86 	 * Processes which fork a lot of child processes are likely
87 	 * a good choice. We add half the vmsize of the children if they
88 	 * have an own mm. This prevents forking servers to flood the
89 	 * machine with an endless amount of children. In case a single
90 	 * child is eating the vast majority of memory, adding only half
91 	 * to the parents will make the child our kill candidate of choice.
92 	 */
93 	list_for_each_entry(child, &p->children, sibling) {
94 		task_lock(child);
95 		if (child->mm != mm && child->mm)
96 			points += child->mm->total_vm/2 + 1;
97 		task_unlock(child);
98 	}
99 
100 	/*
101 	 * CPU time is in tens of seconds and run time is in thousands
102          * of seconds. There is no particular reason for this other than
103          * that it turned out to work very well in practice.
104 	 */
105 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
106 		>> (SHIFT_HZ + 3);
107 
108 	if (uptime >= p->start_time.tv_sec)
109 		run_time = (uptime - p->start_time.tv_sec) >> 10;
110 	else
111 		run_time = 0;
112 
113 	s = int_sqrt(cpu_time);
114 	if (s)
115 		points /= s;
116 	s = int_sqrt(int_sqrt(run_time));
117 	if (s)
118 		points /= s;
119 
120 	/*
121 	 * Niced processes are most likely less important, so double
122 	 * their badness points.
123 	 */
124 	if (task_nice(p) > 0)
125 		points *= 2;
126 
127 	/*
128 	 * Superuser processes are usually more important, so we make it
129 	 * less likely that we kill those.
130 	 */
131 	if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE))
132 		points /= 4;
133 
134 	/*
135 	 * We don't want to kill a process with direct hardware access.
136 	 * Not only could that mess up the hardware, but usually users
137 	 * tend to only have this flag set on applications they think
138 	 * of as important.
139 	 */
140 	if (__capable(p, CAP_SYS_RAWIO))
141 		points /= 4;
142 
143 	/*
144 	 * If p's nodes don't overlap ours, it may still help to kill p
145 	 * because p may have allocated or otherwise mapped memory on
146 	 * this node before. However it will be less likely.
147 	 */
148 	if (!cpuset_mems_allowed_intersects(current, p))
149 		points /= 8;
150 
151 	/*
152 	 * Adjust the score by oomkilladj.
153 	 */
154 	if (p->oomkilladj) {
155 		if (p->oomkilladj > 0) {
156 			if (!points)
157 				points = 1;
158 			points <<= p->oomkilladj;
159 		} else
160 			points >>= -(p->oomkilladj);
161 	}
162 
163 #ifdef DEBUG
164 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
165 	p->pid, p->comm, points);
166 #endif
167 	return points;
168 }
169 
170 /*
171  * Determine the type of allocation constraint.
172  */
173 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
174 						    gfp_t gfp_mask)
175 {
176 #ifdef CONFIG_NUMA
177 	struct zone **z;
178 	nodemask_t nodes = node_states[N_HIGH_MEMORY];
179 
180 	for (z = zonelist->zones; *z; z++)
181 		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
182 			node_clear(zone_to_nid(*z), nodes);
183 		else
184 			return CONSTRAINT_CPUSET;
185 
186 	if (!nodes_empty(nodes))
187 		return CONSTRAINT_MEMORY_POLICY;
188 #endif
189 
190 	return CONSTRAINT_NONE;
191 }
192 
193 /*
194  * Simple selection loop. We chose the process with the highest
195  * number of 'points'. We expect the caller will lock the tasklist.
196  *
197  * (not docbooked, we don't want this one cluttering up the manual)
198  */
199 static struct task_struct *select_bad_process(unsigned long *ppoints,
200 						struct mem_cgroup *mem)
201 {
202 	struct task_struct *g, *p;
203 	struct task_struct *chosen = NULL;
204 	struct timespec uptime;
205 	*ppoints = 0;
206 
207 	do_posix_clock_monotonic_gettime(&uptime);
208 	do_each_thread(g, p) {
209 		unsigned long points;
210 
211 		/*
212 		 * skip kernel threads and tasks which have already released
213 		 * their mm.
214 		 */
215 		if (!p->mm)
216 			continue;
217 		/* skip the init task */
218 		if (is_global_init(p))
219 			continue;
220 		if (mem && !task_in_mem_cgroup(p, mem))
221 			continue;
222 
223 		/*
224 		 * This task already has access to memory reserves and is
225 		 * being killed. Don't allow any other task access to the
226 		 * memory reserve.
227 		 *
228 		 * Note: this may have a chance of deadlock if it gets
229 		 * blocked waiting for another task which itself is waiting
230 		 * for memory. Is there a better alternative?
231 		 */
232 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
233 			return ERR_PTR(-1UL);
234 
235 		/*
236 		 * This is in the process of releasing memory so wait for it
237 		 * to finish before killing some other task by mistake.
238 		 *
239 		 * However, if p is the current task, we allow the 'kill' to
240 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
241 		 * which will allow it to gain access to memory reserves in
242 		 * the process of exiting and releasing its resources.
243 		 * Otherwise we could get an easy OOM deadlock.
244 		 */
245 		if (p->flags & PF_EXITING) {
246 			if (p != current)
247 				return ERR_PTR(-1UL);
248 
249 			chosen = p;
250 			*ppoints = ULONG_MAX;
251 		}
252 
253 		if (p->oomkilladj == OOM_DISABLE)
254 			continue;
255 
256 		points = badness(p, uptime.tv_sec, mem);
257 		if (points > *ppoints || !chosen) {
258 			chosen = p;
259 			*ppoints = points;
260 		}
261 	} while_each_thread(g, p);
262 
263 	return chosen;
264 }
265 
266 /**
267  * Dumps the current memory state of all system tasks, excluding kernel threads.
268  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
269  * score, and name.
270  *
271  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
272  * shown.
273  *
274  * Call with tasklist_lock read-locked.
275  */
276 static void dump_tasks(const struct mem_cgroup *mem)
277 {
278 	struct task_struct *g, *p;
279 
280 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
281 	       "name\n");
282 	do_each_thread(g, p) {
283 		/*
284 		 * total_vm and rss sizes do not exist for tasks with a
285 		 * detached mm so there's no need to report them.
286 		 */
287 		if (!p->mm)
288 			continue;
289 		if (mem && !task_in_mem_cgroup(p, mem))
290 			continue;
291 
292 		task_lock(p);
293 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
294 		       p->pid, p->uid, p->tgid, p->mm->total_vm,
295 		       get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
296 		       p->comm);
297 		task_unlock(p);
298 	} while_each_thread(g, p);
299 }
300 
301 /**
302  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
303  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
304  * set.
305  */
306 static void __oom_kill_task(struct task_struct *p, int verbose)
307 {
308 	if (is_global_init(p)) {
309 		WARN_ON(1);
310 		printk(KERN_WARNING "tried to kill init!\n");
311 		return;
312 	}
313 
314 	if (!p->mm) {
315 		WARN_ON(1);
316 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
317 		return;
318 	}
319 
320 	if (verbose)
321 		printk(KERN_ERR "Killed process %d (%s)\n",
322 				task_pid_nr(p), p->comm);
323 
324 	/*
325 	 * We give our sacrificial lamb high priority and access to
326 	 * all the memory it needs. That way it should be able to
327 	 * exit() and clear out its resources quickly...
328 	 */
329 	p->rt.time_slice = HZ;
330 	set_tsk_thread_flag(p, TIF_MEMDIE);
331 
332 	force_sig(SIGKILL, p);
333 }
334 
335 static int oom_kill_task(struct task_struct *p)
336 {
337 	struct mm_struct *mm;
338 	struct task_struct *g, *q;
339 
340 	mm = p->mm;
341 
342 	/* WARNING: mm may not be dereferenced since we did not obtain its
343 	 * value from get_task_mm(p).  This is OK since all we need to do is
344 	 * compare mm to q->mm below.
345 	 *
346 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
347 	 * change to NULL at any time since we do not hold task_lock(p).
348 	 * However, this is of no concern to us.
349 	 */
350 
351 	if (mm == NULL)
352 		return 1;
353 
354 	/*
355 	 * Don't kill the process if any threads are set to OOM_DISABLE
356 	 */
357 	do_each_thread(g, q) {
358 		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
359 			return 1;
360 	} while_each_thread(g, q);
361 
362 	__oom_kill_task(p, 1);
363 
364 	/*
365 	 * kill all processes that share the ->mm (i.e. all threads),
366 	 * but are in a different thread group. Don't let them have access
367 	 * to memory reserves though, otherwise we might deplete all memory.
368 	 */
369 	do_each_thread(g, q) {
370 		if (q->mm == mm && !same_thread_group(q, p))
371 			force_sig(SIGKILL, q);
372 	} while_each_thread(g, q);
373 
374 	return 0;
375 }
376 
377 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
378 			    unsigned long points, struct mem_cgroup *mem,
379 			    const char *message)
380 {
381 	struct task_struct *c;
382 
383 	if (printk_ratelimit()) {
384 		printk(KERN_WARNING "%s invoked oom-killer: "
385 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
386 			current->comm, gfp_mask, order, current->oomkilladj);
387 		dump_stack();
388 		show_mem();
389 		if (sysctl_oom_dump_tasks)
390 			dump_tasks(mem);
391 	}
392 
393 	/*
394 	 * If the task is already exiting, don't alarm the sysadmin or kill
395 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
396 	 */
397 	if (p->flags & PF_EXITING) {
398 		__oom_kill_task(p, 0);
399 		return 0;
400 	}
401 
402 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
403 					message, task_pid_nr(p), p->comm, points);
404 
405 	/* Try to kill a child first */
406 	list_for_each_entry(c, &p->children, sibling) {
407 		if (c->mm == p->mm)
408 			continue;
409 		if (!oom_kill_task(c))
410 			return 0;
411 	}
412 	return oom_kill_task(p);
413 }
414 
415 #ifdef CONFIG_CGROUP_MEM_CONT
416 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
417 {
418 	unsigned long points = 0;
419 	struct task_struct *p;
420 
421 	cgroup_lock();
422 	rcu_read_lock();
423 retry:
424 	p = select_bad_process(&points, mem);
425 	if (PTR_ERR(p) == -1UL)
426 		goto out;
427 
428 	if (!p)
429 		p = current;
430 
431 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
432 				"Memory cgroup out of memory"))
433 		goto retry;
434 out:
435 	rcu_read_unlock();
436 	cgroup_unlock();
437 }
438 #endif
439 
440 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
441 
442 int register_oom_notifier(struct notifier_block *nb)
443 {
444 	return blocking_notifier_chain_register(&oom_notify_list, nb);
445 }
446 EXPORT_SYMBOL_GPL(register_oom_notifier);
447 
448 int unregister_oom_notifier(struct notifier_block *nb)
449 {
450 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
451 }
452 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
453 
454 /*
455  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
456  * if a parallel OOM killing is already taking place that includes a zone in
457  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
458  */
459 int try_set_zone_oom(struct zonelist *zonelist)
460 {
461 	struct zone **z;
462 	int ret = 1;
463 
464 	z = zonelist->zones;
465 
466 	spin_lock(&zone_scan_mutex);
467 	do {
468 		if (zone_is_oom_locked(*z)) {
469 			ret = 0;
470 			goto out;
471 		}
472 	} while (*(++z) != NULL);
473 
474 	/*
475 	 * Lock each zone in the zonelist under zone_scan_mutex so a parallel
476 	 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
477 	 */
478 	z = zonelist->zones;
479 	do {
480 		zone_set_flag(*z, ZONE_OOM_LOCKED);
481 	} while (*(++z) != NULL);
482 out:
483 	spin_unlock(&zone_scan_mutex);
484 	return ret;
485 }
486 
487 /*
488  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
489  * allocation attempts with zonelists containing them may now recall the OOM
490  * killer, if necessary.
491  */
492 void clear_zonelist_oom(struct zonelist *zonelist)
493 {
494 	struct zone **z;
495 
496 	z = zonelist->zones;
497 
498 	spin_lock(&zone_scan_mutex);
499 	do {
500 		zone_clear_flag(*z, ZONE_OOM_LOCKED);
501 	} while (*(++z) != NULL);
502 	spin_unlock(&zone_scan_mutex);
503 }
504 
505 /**
506  * out_of_memory - kill the "best" process when we run out of memory
507  *
508  * If we run out of memory, we have the choice between either
509  * killing a random task (bad), letting the system crash (worse)
510  * OR try to be smart about which process to kill. Note that we
511  * don't have to be perfect here, we just have to be good.
512  */
513 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
514 {
515 	struct task_struct *p;
516 	unsigned long points = 0;
517 	unsigned long freed = 0;
518 	enum oom_constraint constraint;
519 
520 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
521 	if (freed > 0)
522 		/* Got some memory back in the last second. */
523 		return;
524 
525 	if (sysctl_panic_on_oom == 2)
526 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
527 
528 	/*
529 	 * Check if there were limitations on the allocation (only relevant for
530 	 * NUMA) that may require different handling.
531 	 */
532 	constraint = constrained_alloc(zonelist, gfp_mask);
533 	read_lock(&tasklist_lock);
534 
535 	switch (constraint) {
536 	case CONSTRAINT_MEMORY_POLICY:
537 		oom_kill_process(current, gfp_mask, order, points, NULL,
538 				"No available memory (MPOL_BIND)");
539 		break;
540 
541 	case CONSTRAINT_NONE:
542 		if (sysctl_panic_on_oom)
543 			panic("out of memory. panic_on_oom is selected\n");
544 		/* Fall-through */
545 	case CONSTRAINT_CPUSET:
546 		if (sysctl_oom_kill_allocating_task) {
547 			oom_kill_process(current, gfp_mask, order, points, NULL,
548 					"Out of memory (oom_kill_allocating_task)");
549 			break;
550 		}
551 retry:
552 		/*
553 		 * Rambo mode: Shoot down a process and hope it solves whatever
554 		 * issues we may have.
555 		 */
556 		p = select_bad_process(&points, NULL);
557 
558 		if (PTR_ERR(p) == -1UL)
559 			goto out;
560 
561 		/* Found nothing?!?! Either we hang forever, or we panic. */
562 		if (!p) {
563 			read_unlock(&tasklist_lock);
564 			panic("Out of memory and no killable processes...\n");
565 		}
566 
567 		if (oom_kill_process(p, gfp_mask, order, points, NULL,
568 				     "Out of memory"))
569 			goto retry;
570 
571 		break;
572 	}
573 
574 out:
575 	read_unlock(&tasklist_lock);
576 
577 	/*
578 	 * Give "p" a good chance of killing itself before we
579 	 * retry to allocate memory unless "p" is current
580 	 */
581 	if (!test_thread_flag(TIF_MEMDIE))
582 		schedule_timeout_uninterruptible(1);
583 }
584