1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 #include <linux/memcontrol.h> 29 30 int sysctl_panic_on_oom; 31 int sysctl_oom_kill_allocating_task; 32 int sysctl_oom_dump_tasks; 33 static DEFINE_SPINLOCK(zone_scan_mutex); 34 /* #define DEBUG */ 35 36 /** 37 * badness - calculate a numeric value for how bad this task has been 38 * @p: task struct of which task we should calculate 39 * @uptime: current uptime in seconds 40 * 41 * The formula used is relatively simple and documented inline in the 42 * function. The main rationale is that we want to select a good task 43 * to kill when we run out of memory. 44 * 45 * Good in this context means that: 46 * 1) we lose the minimum amount of work done 47 * 2) we recover a large amount of memory 48 * 3) we don't kill anything innocent of eating tons of memory 49 * 4) we want to kill the minimum amount of processes (one) 50 * 5) we try to kill the process the user expects us to kill, this 51 * algorithm has been meticulously tuned to meet the principle 52 * of least surprise ... (be careful when you change it) 53 */ 54 55 unsigned long badness(struct task_struct *p, unsigned long uptime, 56 struct mem_cgroup *mem) 57 { 58 unsigned long points, cpu_time, run_time, s; 59 struct mm_struct *mm; 60 struct task_struct *child; 61 62 task_lock(p); 63 mm = p->mm; 64 if (!mm) { 65 task_unlock(p); 66 return 0; 67 } 68 69 /* 70 * The memory size of the process is the basis for the badness. 71 */ 72 points = mm->total_vm; 73 74 /* 75 * After this unlock we can no longer dereference local variable `mm' 76 */ 77 task_unlock(p); 78 79 /* 80 * swapoff can easily use up all memory, so kill those first. 81 */ 82 if (p->flags & PF_SWAPOFF) 83 return ULONG_MAX; 84 85 /* 86 * Processes which fork a lot of child processes are likely 87 * a good choice. We add half the vmsize of the children if they 88 * have an own mm. This prevents forking servers to flood the 89 * machine with an endless amount of children. In case a single 90 * child is eating the vast majority of memory, adding only half 91 * to the parents will make the child our kill candidate of choice. 92 */ 93 list_for_each_entry(child, &p->children, sibling) { 94 task_lock(child); 95 if (child->mm != mm && child->mm) 96 points += child->mm->total_vm/2 + 1; 97 task_unlock(child); 98 } 99 100 /* 101 * CPU time is in tens of seconds and run time is in thousands 102 * of seconds. There is no particular reason for this other than 103 * that it turned out to work very well in practice. 104 */ 105 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 106 >> (SHIFT_HZ + 3); 107 108 if (uptime >= p->start_time.tv_sec) 109 run_time = (uptime - p->start_time.tv_sec) >> 10; 110 else 111 run_time = 0; 112 113 s = int_sqrt(cpu_time); 114 if (s) 115 points /= s; 116 s = int_sqrt(int_sqrt(run_time)); 117 if (s) 118 points /= s; 119 120 /* 121 * Niced processes are most likely less important, so double 122 * their badness points. 123 */ 124 if (task_nice(p) > 0) 125 points *= 2; 126 127 /* 128 * Superuser processes are usually more important, so we make it 129 * less likely that we kill those. 130 */ 131 if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE)) 132 points /= 4; 133 134 /* 135 * We don't want to kill a process with direct hardware access. 136 * Not only could that mess up the hardware, but usually users 137 * tend to only have this flag set on applications they think 138 * of as important. 139 */ 140 if (__capable(p, CAP_SYS_RAWIO)) 141 points /= 4; 142 143 /* 144 * If p's nodes don't overlap ours, it may still help to kill p 145 * because p may have allocated or otherwise mapped memory on 146 * this node before. However it will be less likely. 147 */ 148 if (!cpuset_mems_allowed_intersects(current, p)) 149 points /= 8; 150 151 /* 152 * Adjust the score by oomkilladj. 153 */ 154 if (p->oomkilladj) { 155 if (p->oomkilladj > 0) { 156 if (!points) 157 points = 1; 158 points <<= p->oomkilladj; 159 } else 160 points >>= -(p->oomkilladj); 161 } 162 163 #ifdef DEBUG 164 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 165 p->pid, p->comm, points); 166 #endif 167 return points; 168 } 169 170 /* 171 * Determine the type of allocation constraint. 172 */ 173 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, 174 gfp_t gfp_mask) 175 { 176 #ifdef CONFIG_NUMA 177 struct zone **z; 178 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 179 180 for (z = zonelist->zones; *z; z++) 181 if (cpuset_zone_allowed_softwall(*z, gfp_mask)) 182 node_clear(zone_to_nid(*z), nodes); 183 else 184 return CONSTRAINT_CPUSET; 185 186 if (!nodes_empty(nodes)) 187 return CONSTRAINT_MEMORY_POLICY; 188 #endif 189 190 return CONSTRAINT_NONE; 191 } 192 193 /* 194 * Simple selection loop. We chose the process with the highest 195 * number of 'points'. We expect the caller will lock the tasklist. 196 * 197 * (not docbooked, we don't want this one cluttering up the manual) 198 */ 199 static struct task_struct *select_bad_process(unsigned long *ppoints, 200 struct mem_cgroup *mem) 201 { 202 struct task_struct *g, *p; 203 struct task_struct *chosen = NULL; 204 struct timespec uptime; 205 *ppoints = 0; 206 207 do_posix_clock_monotonic_gettime(&uptime); 208 do_each_thread(g, p) { 209 unsigned long points; 210 211 /* 212 * skip kernel threads and tasks which have already released 213 * their mm. 214 */ 215 if (!p->mm) 216 continue; 217 /* skip the init task */ 218 if (is_global_init(p)) 219 continue; 220 if (mem && !task_in_mem_cgroup(p, mem)) 221 continue; 222 223 /* 224 * This task already has access to memory reserves and is 225 * being killed. Don't allow any other task access to the 226 * memory reserve. 227 * 228 * Note: this may have a chance of deadlock if it gets 229 * blocked waiting for another task which itself is waiting 230 * for memory. Is there a better alternative? 231 */ 232 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 233 return ERR_PTR(-1UL); 234 235 /* 236 * This is in the process of releasing memory so wait for it 237 * to finish before killing some other task by mistake. 238 * 239 * However, if p is the current task, we allow the 'kill' to 240 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 241 * which will allow it to gain access to memory reserves in 242 * the process of exiting and releasing its resources. 243 * Otherwise we could get an easy OOM deadlock. 244 */ 245 if (p->flags & PF_EXITING) { 246 if (p != current) 247 return ERR_PTR(-1UL); 248 249 chosen = p; 250 *ppoints = ULONG_MAX; 251 } 252 253 if (p->oomkilladj == OOM_DISABLE) 254 continue; 255 256 points = badness(p, uptime.tv_sec, mem); 257 if (points > *ppoints || !chosen) { 258 chosen = p; 259 *ppoints = points; 260 } 261 } while_each_thread(g, p); 262 263 return chosen; 264 } 265 266 /** 267 * Dumps the current memory state of all system tasks, excluding kernel threads. 268 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 269 * score, and name. 270 * 271 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 272 * shown. 273 * 274 * Call with tasklist_lock read-locked. 275 */ 276 static void dump_tasks(const struct mem_cgroup *mem) 277 { 278 struct task_struct *g, *p; 279 280 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 281 "name\n"); 282 do_each_thread(g, p) { 283 /* 284 * total_vm and rss sizes do not exist for tasks with a 285 * detached mm so there's no need to report them. 286 */ 287 if (!p->mm) 288 continue; 289 if (mem && !task_in_mem_cgroup(p, mem)) 290 continue; 291 292 task_lock(p); 293 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", 294 p->pid, p->uid, p->tgid, p->mm->total_vm, 295 get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj, 296 p->comm); 297 task_unlock(p); 298 } while_each_thread(g, p); 299 } 300 301 /** 302 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 303 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 304 * set. 305 */ 306 static void __oom_kill_task(struct task_struct *p, int verbose) 307 { 308 if (is_global_init(p)) { 309 WARN_ON(1); 310 printk(KERN_WARNING "tried to kill init!\n"); 311 return; 312 } 313 314 if (!p->mm) { 315 WARN_ON(1); 316 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 317 return; 318 } 319 320 if (verbose) 321 printk(KERN_ERR "Killed process %d (%s)\n", 322 task_pid_nr(p), p->comm); 323 324 /* 325 * We give our sacrificial lamb high priority and access to 326 * all the memory it needs. That way it should be able to 327 * exit() and clear out its resources quickly... 328 */ 329 p->rt.time_slice = HZ; 330 set_tsk_thread_flag(p, TIF_MEMDIE); 331 332 force_sig(SIGKILL, p); 333 } 334 335 static int oom_kill_task(struct task_struct *p) 336 { 337 struct mm_struct *mm; 338 struct task_struct *g, *q; 339 340 mm = p->mm; 341 342 /* WARNING: mm may not be dereferenced since we did not obtain its 343 * value from get_task_mm(p). This is OK since all we need to do is 344 * compare mm to q->mm below. 345 * 346 * Furthermore, even if mm contains a non-NULL value, p->mm may 347 * change to NULL at any time since we do not hold task_lock(p). 348 * However, this is of no concern to us. 349 */ 350 351 if (mm == NULL) 352 return 1; 353 354 /* 355 * Don't kill the process if any threads are set to OOM_DISABLE 356 */ 357 do_each_thread(g, q) { 358 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 359 return 1; 360 } while_each_thread(g, q); 361 362 __oom_kill_task(p, 1); 363 364 /* 365 * kill all processes that share the ->mm (i.e. all threads), 366 * but are in a different thread group. Don't let them have access 367 * to memory reserves though, otherwise we might deplete all memory. 368 */ 369 do_each_thread(g, q) { 370 if (q->mm == mm && !same_thread_group(q, p)) 371 force_sig(SIGKILL, q); 372 } while_each_thread(g, q); 373 374 return 0; 375 } 376 377 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 378 unsigned long points, struct mem_cgroup *mem, 379 const char *message) 380 { 381 struct task_struct *c; 382 383 if (printk_ratelimit()) { 384 printk(KERN_WARNING "%s invoked oom-killer: " 385 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 386 current->comm, gfp_mask, order, current->oomkilladj); 387 dump_stack(); 388 show_mem(); 389 if (sysctl_oom_dump_tasks) 390 dump_tasks(mem); 391 } 392 393 /* 394 * If the task is already exiting, don't alarm the sysadmin or kill 395 * its children or threads, just set TIF_MEMDIE so it can die quickly 396 */ 397 if (p->flags & PF_EXITING) { 398 __oom_kill_task(p, 0); 399 return 0; 400 } 401 402 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 403 message, task_pid_nr(p), p->comm, points); 404 405 /* Try to kill a child first */ 406 list_for_each_entry(c, &p->children, sibling) { 407 if (c->mm == p->mm) 408 continue; 409 if (!oom_kill_task(c)) 410 return 0; 411 } 412 return oom_kill_task(p); 413 } 414 415 #ifdef CONFIG_CGROUP_MEM_CONT 416 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 417 { 418 unsigned long points = 0; 419 struct task_struct *p; 420 421 cgroup_lock(); 422 rcu_read_lock(); 423 retry: 424 p = select_bad_process(&points, mem); 425 if (PTR_ERR(p) == -1UL) 426 goto out; 427 428 if (!p) 429 p = current; 430 431 if (oom_kill_process(p, gfp_mask, 0, points, mem, 432 "Memory cgroup out of memory")) 433 goto retry; 434 out: 435 rcu_read_unlock(); 436 cgroup_unlock(); 437 } 438 #endif 439 440 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 441 442 int register_oom_notifier(struct notifier_block *nb) 443 { 444 return blocking_notifier_chain_register(&oom_notify_list, nb); 445 } 446 EXPORT_SYMBOL_GPL(register_oom_notifier); 447 448 int unregister_oom_notifier(struct notifier_block *nb) 449 { 450 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 451 } 452 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 453 454 /* 455 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 456 * if a parallel OOM killing is already taking place that includes a zone in 457 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 458 */ 459 int try_set_zone_oom(struct zonelist *zonelist) 460 { 461 struct zone **z; 462 int ret = 1; 463 464 z = zonelist->zones; 465 466 spin_lock(&zone_scan_mutex); 467 do { 468 if (zone_is_oom_locked(*z)) { 469 ret = 0; 470 goto out; 471 } 472 } while (*(++z) != NULL); 473 474 /* 475 * Lock each zone in the zonelist under zone_scan_mutex so a parallel 476 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't. 477 */ 478 z = zonelist->zones; 479 do { 480 zone_set_flag(*z, ZONE_OOM_LOCKED); 481 } while (*(++z) != NULL); 482 out: 483 spin_unlock(&zone_scan_mutex); 484 return ret; 485 } 486 487 /* 488 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 489 * allocation attempts with zonelists containing them may now recall the OOM 490 * killer, if necessary. 491 */ 492 void clear_zonelist_oom(struct zonelist *zonelist) 493 { 494 struct zone **z; 495 496 z = zonelist->zones; 497 498 spin_lock(&zone_scan_mutex); 499 do { 500 zone_clear_flag(*z, ZONE_OOM_LOCKED); 501 } while (*(++z) != NULL); 502 spin_unlock(&zone_scan_mutex); 503 } 504 505 /** 506 * out_of_memory - kill the "best" process when we run out of memory 507 * 508 * If we run out of memory, we have the choice between either 509 * killing a random task (bad), letting the system crash (worse) 510 * OR try to be smart about which process to kill. Note that we 511 * don't have to be perfect here, we just have to be good. 512 */ 513 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 514 { 515 struct task_struct *p; 516 unsigned long points = 0; 517 unsigned long freed = 0; 518 enum oom_constraint constraint; 519 520 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 521 if (freed > 0) 522 /* Got some memory back in the last second. */ 523 return; 524 525 if (sysctl_panic_on_oom == 2) 526 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 527 528 /* 529 * Check if there were limitations on the allocation (only relevant for 530 * NUMA) that may require different handling. 531 */ 532 constraint = constrained_alloc(zonelist, gfp_mask); 533 read_lock(&tasklist_lock); 534 535 switch (constraint) { 536 case CONSTRAINT_MEMORY_POLICY: 537 oom_kill_process(current, gfp_mask, order, points, NULL, 538 "No available memory (MPOL_BIND)"); 539 break; 540 541 case CONSTRAINT_NONE: 542 if (sysctl_panic_on_oom) 543 panic("out of memory. panic_on_oom is selected\n"); 544 /* Fall-through */ 545 case CONSTRAINT_CPUSET: 546 if (sysctl_oom_kill_allocating_task) { 547 oom_kill_process(current, gfp_mask, order, points, NULL, 548 "Out of memory (oom_kill_allocating_task)"); 549 break; 550 } 551 retry: 552 /* 553 * Rambo mode: Shoot down a process and hope it solves whatever 554 * issues we may have. 555 */ 556 p = select_bad_process(&points, NULL); 557 558 if (PTR_ERR(p) == -1UL) 559 goto out; 560 561 /* Found nothing?!?! Either we hang forever, or we panic. */ 562 if (!p) { 563 read_unlock(&tasklist_lock); 564 panic("Out of memory and no killable processes...\n"); 565 } 566 567 if (oom_kill_process(p, gfp_mask, order, points, NULL, 568 "Out of memory")) 569 goto retry; 570 571 break; 572 } 573 574 out: 575 read_unlock(&tasklist_lock); 576 577 /* 578 * Give "p" a good chance of killing itself before we 579 * retry to allocate memory unless "p" is current 580 */ 581 if (!test_thread_flag(TIF_MEMDIE)) 582 schedule_timeout_uninterruptible(1); 583 } 584