1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/mm.h> 19 #include <linux/sched.h> 20 #include <linux/swap.h> 21 #include <linux/timex.h> 22 #include <linux/jiffies.h> 23 #include <linux/cpuset.h> 24 25 /* #define DEBUG */ 26 27 /** 28 * oom_badness - calculate a numeric value for how bad this task has been 29 * @p: task struct of which task we should calculate 30 * @uptime: current uptime in seconds 31 * 32 * The formula used is relatively simple and documented inline in the 33 * function. The main rationale is that we want to select a good task 34 * to kill when we run out of memory. 35 * 36 * Good in this context means that: 37 * 1) we lose the minimum amount of work done 38 * 2) we recover a large amount of memory 39 * 3) we don't kill anything innocent of eating tons of memory 40 * 4) we want to kill the minimum amount of processes (one) 41 * 5) we try to kill the process the user expects us to kill, this 42 * algorithm has been meticulously tuned to meet the principle 43 * of least surprise ... (be careful when you change it) 44 */ 45 46 unsigned long badness(struct task_struct *p, unsigned long uptime) 47 { 48 unsigned long points, cpu_time, run_time, s; 49 struct list_head *tsk; 50 51 if (!p->mm) 52 return 0; 53 54 /* 55 * The memory size of the process is the basis for the badness. 56 */ 57 points = p->mm->total_vm; 58 59 /* 60 * Processes which fork a lot of child processes are likely 61 * a good choice. We add half the vmsize of the children if they 62 * have an own mm. This prevents forking servers to flood the 63 * machine with an endless amount of children. In case a single 64 * child is eating the vast majority of memory, adding only half 65 * to the parents will make the child our kill candidate of choice. 66 */ 67 list_for_each(tsk, &p->children) { 68 struct task_struct *chld; 69 chld = list_entry(tsk, struct task_struct, sibling); 70 if (chld->mm != p->mm && chld->mm) 71 points += chld->mm->total_vm/2 + 1; 72 } 73 74 /* 75 * CPU time is in tens of seconds and run time is in thousands 76 * of seconds. There is no particular reason for this other than 77 * that it turned out to work very well in practice. 78 */ 79 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 80 >> (SHIFT_HZ + 3); 81 82 if (uptime >= p->start_time.tv_sec) 83 run_time = (uptime - p->start_time.tv_sec) >> 10; 84 else 85 run_time = 0; 86 87 s = int_sqrt(cpu_time); 88 if (s) 89 points /= s; 90 s = int_sqrt(int_sqrt(run_time)); 91 if (s) 92 points /= s; 93 94 /* 95 * Niced processes are most likely less important, so double 96 * their badness points. 97 */ 98 if (task_nice(p) > 0) 99 points *= 2; 100 101 /* 102 * Superuser processes are usually more important, so we make it 103 * less likely that we kill those. 104 */ 105 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) || 106 p->uid == 0 || p->euid == 0) 107 points /= 4; 108 109 /* 110 * We don't want to kill a process with direct hardware access. 111 * Not only could that mess up the hardware, but usually users 112 * tend to only have this flag set on applications they think 113 * of as important. 114 */ 115 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) 116 points /= 4; 117 118 /* 119 * Adjust the score by oomkilladj. 120 */ 121 if (p->oomkilladj) { 122 if (p->oomkilladj > 0) 123 points <<= p->oomkilladj; 124 else 125 points >>= -(p->oomkilladj); 126 } 127 128 #ifdef DEBUG 129 printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n", 130 p->pid, p->comm, points); 131 #endif 132 return points; 133 } 134 135 /* 136 * Types of limitations to the nodes from which allocations may occur 137 */ 138 #define CONSTRAINT_NONE 1 139 #define CONSTRAINT_MEMORY_POLICY 2 140 #define CONSTRAINT_CPUSET 3 141 142 /* 143 * Determine the type of allocation constraint. 144 */ 145 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask) 146 { 147 #ifdef CONFIG_NUMA 148 struct zone **z; 149 nodemask_t nodes = node_online_map; 150 151 for (z = zonelist->zones; *z; z++) 152 if (cpuset_zone_allowed(*z, gfp_mask)) 153 node_clear((*z)->zone_pgdat->node_id, 154 nodes); 155 else 156 return CONSTRAINT_CPUSET; 157 158 if (!nodes_empty(nodes)) 159 return CONSTRAINT_MEMORY_POLICY; 160 #endif 161 162 return CONSTRAINT_NONE; 163 } 164 165 /* 166 * Simple selection loop. We chose the process with the highest 167 * number of 'points'. We expect the caller will lock the tasklist. 168 * 169 * (not docbooked, we don't want this one cluttering up the manual) 170 */ 171 static struct task_struct *select_bad_process(unsigned long *ppoints) 172 { 173 struct task_struct *g, *p; 174 struct task_struct *chosen = NULL; 175 struct timespec uptime; 176 *ppoints = 0; 177 178 do_posix_clock_monotonic_gettime(&uptime); 179 do_each_thread(g, p) { 180 unsigned long points; 181 int releasing; 182 183 /* skip the init task with pid == 1 */ 184 if (p->pid == 1) 185 continue; 186 if (p->oomkilladj == OOM_DISABLE) 187 continue; 188 /* If p's nodes don't overlap ours, it won't help to kill p. */ 189 if (!cpuset_excl_nodes_overlap(p)) 190 continue; 191 192 /* 193 * This is in the process of releasing memory so for wait it 194 * to finish before killing some other task by mistake. 195 */ 196 releasing = test_tsk_thread_flag(p, TIF_MEMDIE) || 197 p->flags & PF_EXITING; 198 if (releasing && !(p->flags & PF_DEAD)) 199 return ERR_PTR(-1UL); 200 if (p->flags & PF_SWAPOFF) 201 return p; 202 203 points = badness(p, uptime.tv_sec); 204 if (points > *ppoints || !chosen) { 205 chosen = p; 206 *ppoints = points; 207 } 208 } while_each_thread(g, p); 209 return chosen; 210 } 211 212 /** 213 * We must be careful though to never send SIGKILL a process with 214 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that 215 * we select a process with CAP_SYS_RAW_IO set). 216 */ 217 static void __oom_kill_task(task_t *p, const char *message) 218 { 219 if (p->pid == 1) { 220 WARN_ON(1); 221 printk(KERN_WARNING "tried to kill init!\n"); 222 return; 223 } 224 225 task_lock(p); 226 if (!p->mm || p->mm == &init_mm) { 227 WARN_ON(1); 228 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 229 task_unlock(p); 230 return; 231 } 232 task_unlock(p); 233 printk(KERN_ERR "%s: Killed process %d (%s).\n", 234 message, p->pid, p->comm); 235 236 /* 237 * We give our sacrificial lamb high priority and access to 238 * all the memory it needs. That way it should be able to 239 * exit() and clear out its resources quickly... 240 */ 241 p->time_slice = HZ; 242 set_tsk_thread_flag(p, TIF_MEMDIE); 243 244 force_sig(SIGKILL, p); 245 } 246 247 static struct mm_struct *oom_kill_task(task_t *p, const char *message) 248 { 249 struct mm_struct *mm = get_task_mm(p); 250 task_t * g, * q; 251 252 if (!mm) 253 return NULL; 254 if (mm == &init_mm) { 255 mmput(mm); 256 return NULL; 257 } 258 259 __oom_kill_task(p, message); 260 /* 261 * kill all processes that share the ->mm (i.e. all threads), 262 * but are in a different thread group 263 */ 264 do_each_thread(g, q) 265 if (q->mm == mm && q->tgid != p->tgid) 266 __oom_kill_task(q, message); 267 while_each_thread(g, q); 268 269 return mm; 270 } 271 272 static struct mm_struct *oom_kill_process(struct task_struct *p, 273 unsigned long points, const char *message) 274 { 275 struct mm_struct *mm; 276 struct task_struct *c; 277 struct list_head *tsk; 278 279 printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and " 280 "children.\n", p->pid, p->comm, points); 281 /* Try to kill a child first */ 282 list_for_each(tsk, &p->children) { 283 c = list_entry(tsk, struct task_struct, sibling); 284 if (c->mm == p->mm) 285 continue; 286 mm = oom_kill_task(c, message); 287 if (mm) 288 return mm; 289 } 290 return oom_kill_task(p, message); 291 } 292 293 /** 294 * oom_kill - kill the "best" process when we run out of memory 295 * 296 * If we run out of memory, we have the choice between either 297 * killing a random task (bad), letting the system crash (worse) 298 * OR try to be smart about which process to kill. Note that we 299 * don't have to be perfect here, we just have to be good. 300 */ 301 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 302 { 303 struct mm_struct *mm = NULL; 304 task_t *p; 305 unsigned long points = 0; 306 307 if (printk_ratelimit()) { 308 printk("oom-killer: gfp_mask=0x%x, order=%d\n", 309 gfp_mask, order); 310 dump_stack(); 311 show_mem(); 312 } 313 314 cpuset_lock(); 315 read_lock(&tasklist_lock); 316 317 /* 318 * Check if there were limitations on the allocation (only relevant for 319 * NUMA) that may require different handling. 320 */ 321 switch (constrained_alloc(zonelist, gfp_mask)) { 322 case CONSTRAINT_MEMORY_POLICY: 323 mm = oom_kill_process(current, points, 324 "No available memory (MPOL_BIND)"); 325 break; 326 327 case CONSTRAINT_CPUSET: 328 mm = oom_kill_process(current, points, 329 "No available memory in cpuset"); 330 break; 331 332 case CONSTRAINT_NONE: 333 retry: 334 /* 335 * Rambo mode: Shoot down a process and hope it solves whatever 336 * issues we may have. 337 */ 338 p = select_bad_process(&points); 339 340 if (PTR_ERR(p) == -1UL) 341 goto out; 342 343 /* Found nothing?!?! Either we hang forever, or we panic. */ 344 if (!p) { 345 read_unlock(&tasklist_lock); 346 cpuset_unlock(); 347 panic("Out of memory and no killable processes...\n"); 348 } 349 350 mm = oom_kill_process(p, points, "Out of memory"); 351 if (!mm) 352 goto retry; 353 354 break; 355 } 356 357 out: 358 read_unlock(&tasklist_lock); 359 cpuset_unlock(); 360 if (mm) 361 mmput(mm); 362 363 /* 364 * Give "p" a good chance of killing itself before we 365 * retry to allocate memory unless "p" is current 366 */ 367 if (!test_thread_flag(TIF_MEMDIE)) 368 schedule_timeout_uninterruptible(1); 369 } 370