1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/module.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 35 int sysctl_panic_on_oom; 36 int sysctl_oom_kill_allocating_task; 37 int sysctl_oom_dump_tasks = 1; 38 static DEFINE_SPINLOCK(zone_scan_lock); 39 40 #ifdef CONFIG_NUMA 41 /** 42 * has_intersects_mems_allowed() - check task eligiblity for kill 43 * @tsk: task struct of which task to consider 44 * @mask: nodemask passed to page allocator for mempolicy ooms 45 * 46 * Task eligibility is determined by whether or not a candidate task, @tsk, 47 * shares the same mempolicy nodes as current if it is bound by such a policy 48 * and whether or not it has the same set of allowed cpuset nodes. 49 */ 50 static bool has_intersects_mems_allowed(struct task_struct *tsk, 51 const nodemask_t *mask) 52 { 53 struct task_struct *start = tsk; 54 55 do { 56 if (mask) { 57 /* 58 * If this is a mempolicy constrained oom, tsk's 59 * cpuset is irrelevant. Only return true if its 60 * mempolicy intersects current, otherwise it may be 61 * needlessly killed. 62 */ 63 if (mempolicy_nodemask_intersects(tsk, mask)) 64 return true; 65 } else { 66 /* 67 * This is not a mempolicy constrained oom, so only 68 * check the mems of tsk's cpuset. 69 */ 70 if (cpuset_mems_allowed_intersects(current, tsk)) 71 return true; 72 } 73 } while_each_thread(start, tsk); 74 75 return false; 76 } 77 #else 78 static bool has_intersects_mems_allowed(struct task_struct *tsk, 79 const nodemask_t *mask) 80 { 81 return true; 82 } 83 #endif /* CONFIG_NUMA */ 84 85 /* 86 * If this is a system OOM (not a memcg OOM) and the task selected to be 87 * killed is not already running at high (RT) priorities, speed up the 88 * recovery by boosting the dying task to the lowest FIFO priority. 89 * That helps with the recovery and avoids interfering with RT tasks. 90 */ 91 static void boost_dying_task_prio(struct task_struct *p, 92 struct mem_cgroup *mem) 93 { 94 struct sched_param param = { .sched_priority = 1 }; 95 96 if (mem) 97 return; 98 99 if (!rt_task(p)) 100 sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); 101 } 102 103 /* 104 * The process p may have detached its own ->mm while exiting or through 105 * use_mm(), but one or more of its subthreads may still have a valid 106 * pointer. Return p, or any of its subthreads with a valid ->mm, with 107 * task_lock() held. 108 */ 109 struct task_struct *find_lock_task_mm(struct task_struct *p) 110 { 111 struct task_struct *t = p; 112 113 do { 114 task_lock(t); 115 if (likely(t->mm)) 116 return t; 117 task_unlock(t); 118 } while_each_thread(p, t); 119 120 return NULL; 121 } 122 123 /* return true if the task is not adequate as candidate victim task. */ 124 static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem, 125 const nodemask_t *nodemask) 126 { 127 if (is_global_init(p)) 128 return true; 129 if (p->flags & PF_KTHREAD) 130 return true; 131 132 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 133 if (mem && !task_in_mem_cgroup(p, mem)) 134 return true; 135 136 /* p may not have freeable memory in nodemask */ 137 if (!has_intersects_mems_allowed(p, nodemask)) 138 return true; 139 140 return false; 141 } 142 143 /** 144 * oom_badness - heuristic function to determine which candidate task to kill 145 * @p: task struct of which task we should calculate 146 * @totalpages: total present RAM allowed for page allocation 147 * 148 * The heuristic for determining which task to kill is made to be as simple and 149 * predictable as possible. The goal is to return the highest value for the 150 * task consuming the most memory to avoid subsequent oom failures. 151 */ 152 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, 153 const nodemask_t *nodemask, unsigned long totalpages) 154 { 155 int points; 156 157 if (oom_unkillable_task(p, mem, nodemask)) 158 return 0; 159 160 p = find_lock_task_mm(p); 161 if (!p) 162 return 0; 163 164 /* 165 * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't 166 * need to be executed for something that cannot be killed. 167 */ 168 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 169 task_unlock(p); 170 return 0; 171 } 172 173 /* 174 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have 175 * priority for oom killing. 176 */ 177 if (p->flags & PF_OOM_ORIGIN) { 178 task_unlock(p); 179 return 1000; 180 } 181 182 /* 183 * The memory controller may have a limit of 0 bytes, so avoid a divide 184 * by zero, if necessary. 185 */ 186 if (!totalpages) 187 totalpages = 1; 188 189 /* 190 * The baseline for the badness score is the proportion of RAM that each 191 * task's rss and swap space use. 192 */ 193 points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 / 194 totalpages; 195 task_unlock(p); 196 197 /* 198 * Root processes get 3% bonus, just like the __vm_enough_memory() 199 * implementation used by LSMs. 200 */ 201 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 202 points -= 30; 203 204 /* 205 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 206 * either completely disable oom killing or always prefer a certain 207 * task. 208 */ 209 points += p->signal->oom_score_adj; 210 211 if (points < 0) 212 return 0; 213 return (points < 1000) ? points : 1000; 214 } 215 216 /* 217 * Determine the type of allocation constraint. 218 */ 219 #ifdef CONFIG_NUMA 220 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 221 gfp_t gfp_mask, nodemask_t *nodemask, 222 unsigned long *totalpages) 223 { 224 struct zone *zone; 225 struct zoneref *z; 226 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 227 bool cpuset_limited = false; 228 int nid; 229 230 /* Default to all available memory */ 231 *totalpages = totalram_pages + total_swap_pages; 232 233 if (!zonelist) 234 return CONSTRAINT_NONE; 235 /* 236 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 237 * to kill current.We have to random task kill in this case. 238 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 239 */ 240 if (gfp_mask & __GFP_THISNODE) 241 return CONSTRAINT_NONE; 242 243 /* 244 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 245 * the page allocator means a mempolicy is in effect. Cpuset policy 246 * is enforced in get_page_from_freelist(). 247 */ 248 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 249 *totalpages = total_swap_pages; 250 for_each_node_mask(nid, *nodemask) 251 *totalpages += node_spanned_pages(nid); 252 return CONSTRAINT_MEMORY_POLICY; 253 } 254 255 /* Check this allocation failure is caused by cpuset's wall function */ 256 for_each_zone_zonelist_nodemask(zone, z, zonelist, 257 high_zoneidx, nodemask) 258 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 259 cpuset_limited = true; 260 261 if (cpuset_limited) { 262 *totalpages = total_swap_pages; 263 for_each_node_mask(nid, cpuset_current_mems_allowed) 264 *totalpages += node_spanned_pages(nid); 265 return CONSTRAINT_CPUSET; 266 } 267 return CONSTRAINT_NONE; 268 } 269 #else 270 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 271 gfp_t gfp_mask, nodemask_t *nodemask, 272 unsigned long *totalpages) 273 { 274 *totalpages = totalram_pages + total_swap_pages; 275 return CONSTRAINT_NONE; 276 } 277 #endif 278 279 /* 280 * Simple selection loop. We chose the process with the highest 281 * number of 'points'. We expect the caller will lock the tasklist. 282 * 283 * (not docbooked, we don't want this one cluttering up the manual) 284 */ 285 static struct task_struct *select_bad_process(unsigned int *ppoints, 286 unsigned long totalpages, struct mem_cgroup *mem, 287 const nodemask_t *nodemask) 288 { 289 struct task_struct *p; 290 struct task_struct *chosen = NULL; 291 *ppoints = 0; 292 293 for_each_process(p) { 294 unsigned int points; 295 296 if (oom_unkillable_task(p, mem, nodemask)) 297 continue; 298 299 /* 300 * This task already has access to memory reserves and is 301 * being killed. Don't allow any other task access to the 302 * memory reserve. 303 * 304 * Note: this may have a chance of deadlock if it gets 305 * blocked waiting for another task which itself is waiting 306 * for memory. Is there a better alternative? 307 */ 308 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 309 return ERR_PTR(-1UL); 310 311 /* 312 * This is in the process of releasing memory so wait for it 313 * to finish before killing some other task by mistake. 314 * 315 * However, if p is the current task, we allow the 'kill' to 316 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 317 * which will allow it to gain access to memory reserves in 318 * the process of exiting and releasing its resources. 319 * Otherwise we could get an easy OOM deadlock. 320 */ 321 if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) { 322 if (p != current) 323 return ERR_PTR(-1UL); 324 325 chosen = p; 326 *ppoints = 1000; 327 } 328 329 points = oom_badness(p, mem, nodemask, totalpages); 330 if (points > *ppoints) { 331 chosen = p; 332 *ppoints = points; 333 } 334 } 335 336 return chosen; 337 } 338 339 /** 340 * dump_tasks - dump current memory state of all system tasks 341 * @mem: current's memory controller, if constrained 342 * 343 * Dumps the current memory state of all system tasks, excluding kernel threads. 344 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 345 * value, oom_score_adj value, and name. 346 * 347 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 348 * shown. 349 * 350 * Call with tasklist_lock read-locked. 351 */ 352 static void dump_tasks(const struct mem_cgroup *mem) 353 { 354 struct task_struct *p; 355 struct task_struct *task; 356 357 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 358 for_each_process(p) { 359 if (p->flags & PF_KTHREAD) 360 continue; 361 if (mem && !task_in_mem_cgroup(p, mem)) 362 continue; 363 364 task = find_lock_task_mm(p); 365 if (!task) { 366 /* 367 * This is a kthread or all of p's threads have already 368 * detached their mm's. There's no need to report 369 * them; they can't be oom killed anyway. 370 */ 371 continue; 372 } 373 374 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 375 task->pid, __task_cred(task)->uid, task->tgid, 376 task->mm->total_vm, get_mm_rss(task->mm), 377 task_cpu(task), task->signal->oom_adj, 378 task->signal->oom_score_adj, task->comm); 379 task_unlock(task); 380 } 381 } 382 383 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 384 struct mem_cgroup *mem) 385 { 386 task_lock(current); 387 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 388 "oom_adj=%d, oom_score_adj=%d\n", 389 current->comm, gfp_mask, order, current->signal->oom_adj, 390 current->signal->oom_score_adj); 391 cpuset_print_task_mems_allowed(current); 392 task_unlock(current); 393 dump_stack(); 394 mem_cgroup_print_oom_info(mem, p); 395 show_mem(); 396 if (sysctl_oom_dump_tasks) 397 dump_tasks(mem); 398 } 399 400 #define K(x) ((x) << (PAGE_SHIFT-10)) 401 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) 402 { 403 p = find_lock_task_mm(p); 404 if (!p) { 405 task_unlock(p); 406 return 1; 407 } 408 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 409 task_pid_nr(p), p->comm, K(p->mm->total_vm), 410 K(get_mm_counter(p->mm, MM_ANONPAGES)), 411 K(get_mm_counter(p->mm, MM_FILEPAGES))); 412 task_unlock(p); 413 414 415 set_tsk_thread_flag(p, TIF_MEMDIE); 416 force_sig(SIGKILL, p); 417 418 /* 419 * We give our sacrificial lamb high priority and access to 420 * all the memory it needs. That way it should be able to 421 * exit() and clear out its resources quickly... 422 */ 423 boost_dying_task_prio(p, mem); 424 425 return 0; 426 } 427 #undef K 428 429 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 430 unsigned int points, unsigned long totalpages, 431 struct mem_cgroup *mem, nodemask_t *nodemask, 432 const char *message) 433 { 434 struct task_struct *victim = p; 435 struct task_struct *child; 436 struct task_struct *t = p; 437 unsigned int victim_points = 0; 438 439 if (printk_ratelimit()) 440 dump_header(p, gfp_mask, order, mem); 441 442 /* 443 * If the task is already exiting, don't alarm the sysadmin or kill 444 * its children or threads, just set TIF_MEMDIE so it can die quickly 445 */ 446 if (p->flags & PF_EXITING) { 447 set_tsk_thread_flag(p, TIF_MEMDIE); 448 boost_dying_task_prio(p, mem); 449 return 0; 450 } 451 452 task_lock(p); 453 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 454 message, task_pid_nr(p), p->comm, points); 455 task_unlock(p); 456 457 /* 458 * If any of p's children has a different mm and is eligible for kill, 459 * the one with the highest badness() score is sacrificed for its 460 * parent. This attempts to lose the minimal amount of work done while 461 * still freeing memory. 462 */ 463 do { 464 list_for_each_entry(child, &t->children, sibling) { 465 unsigned int child_points; 466 467 /* 468 * oom_badness() returns 0 if the thread is unkillable 469 */ 470 child_points = oom_badness(child, mem, nodemask, 471 totalpages); 472 if (child_points > victim_points) { 473 victim = child; 474 victim_points = child_points; 475 } 476 } 477 } while_each_thread(p, t); 478 479 return oom_kill_task(victim, mem); 480 } 481 482 /* 483 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 484 */ 485 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 486 int order) 487 { 488 if (likely(!sysctl_panic_on_oom)) 489 return; 490 if (sysctl_panic_on_oom != 2) { 491 /* 492 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 493 * does not panic for cpuset, mempolicy, or memcg allocation 494 * failures. 495 */ 496 if (constraint != CONSTRAINT_NONE) 497 return; 498 } 499 read_lock(&tasklist_lock); 500 dump_header(NULL, gfp_mask, order, NULL); 501 read_unlock(&tasklist_lock); 502 panic("Out of memory: %s panic_on_oom is enabled\n", 503 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 504 } 505 506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 507 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 508 { 509 unsigned long limit; 510 unsigned int points = 0; 511 struct task_struct *p; 512 513 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0); 514 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; 515 read_lock(&tasklist_lock); 516 retry: 517 p = select_bad_process(&points, limit, mem, NULL); 518 if (!p || PTR_ERR(p) == -1UL) 519 goto out; 520 521 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, 522 "Memory cgroup out of memory")) 523 goto retry; 524 out: 525 read_unlock(&tasklist_lock); 526 } 527 #endif 528 529 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 530 531 int register_oom_notifier(struct notifier_block *nb) 532 { 533 return blocking_notifier_chain_register(&oom_notify_list, nb); 534 } 535 EXPORT_SYMBOL_GPL(register_oom_notifier); 536 537 int unregister_oom_notifier(struct notifier_block *nb) 538 { 539 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 540 } 541 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 542 543 /* 544 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 545 * if a parallel OOM killing is already taking place that includes a zone in 546 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 547 */ 548 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 549 { 550 struct zoneref *z; 551 struct zone *zone; 552 int ret = 1; 553 554 spin_lock(&zone_scan_lock); 555 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 556 if (zone_is_oom_locked(zone)) { 557 ret = 0; 558 goto out; 559 } 560 } 561 562 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 563 /* 564 * Lock each zone in the zonelist under zone_scan_lock so a 565 * parallel invocation of try_set_zonelist_oom() doesn't succeed 566 * when it shouldn't. 567 */ 568 zone_set_flag(zone, ZONE_OOM_LOCKED); 569 } 570 571 out: 572 spin_unlock(&zone_scan_lock); 573 return ret; 574 } 575 576 /* 577 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 578 * allocation attempts with zonelists containing them may now recall the OOM 579 * killer, if necessary. 580 */ 581 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 582 { 583 struct zoneref *z; 584 struct zone *zone; 585 586 spin_lock(&zone_scan_lock); 587 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 588 zone_clear_flag(zone, ZONE_OOM_LOCKED); 589 } 590 spin_unlock(&zone_scan_lock); 591 } 592 593 /* 594 * Try to acquire the oom killer lock for all system zones. Returns zero if a 595 * parallel oom killing is taking place, otherwise locks all zones and returns 596 * non-zero. 597 */ 598 static int try_set_system_oom(void) 599 { 600 struct zone *zone; 601 int ret = 1; 602 603 spin_lock(&zone_scan_lock); 604 for_each_populated_zone(zone) 605 if (zone_is_oom_locked(zone)) { 606 ret = 0; 607 goto out; 608 } 609 for_each_populated_zone(zone) 610 zone_set_flag(zone, ZONE_OOM_LOCKED); 611 out: 612 spin_unlock(&zone_scan_lock); 613 return ret; 614 } 615 616 /* 617 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 618 * attempts or page faults may now recall the oom killer, if necessary. 619 */ 620 static void clear_system_oom(void) 621 { 622 struct zone *zone; 623 624 spin_lock(&zone_scan_lock); 625 for_each_populated_zone(zone) 626 zone_clear_flag(zone, ZONE_OOM_LOCKED); 627 spin_unlock(&zone_scan_lock); 628 } 629 630 /** 631 * out_of_memory - kill the "best" process when we run out of memory 632 * @zonelist: zonelist pointer 633 * @gfp_mask: memory allocation flags 634 * @order: amount of memory being requested as a power of 2 635 * @nodemask: nodemask passed to page allocator 636 * 637 * If we run out of memory, we have the choice between either 638 * killing a random task (bad), letting the system crash (worse) 639 * OR try to be smart about which process to kill. Note that we 640 * don't have to be perfect here, we just have to be good. 641 */ 642 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 643 int order, nodemask_t *nodemask) 644 { 645 struct task_struct *p; 646 unsigned long totalpages; 647 unsigned long freed = 0; 648 unsigned int points; 649 enum oom_constraint constraint = CONSTRAINT_NONE; 650 651 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 652 if (freed > 0) 653 /* Got some memory back in the last second. */ 654 return; 655 656 /* 657 * If current has a pending SIGKILL, then automatically select it. The 658 * goal is to allow it to allocate so that it may quickly exit and free 659 * its memory. 660 */ 661 if (fatal_signal_pending(current)) { 662 set_thread_flag(TIF_MEMDIE); 663 boost_dying_task_prio(current, NULL); 664 return; 665 } 666 667 /* 668 * Check if there were limitations on the allocation (only relevant for 669 * NUMA) that may require different handling. 670 */ 671 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 672 &totalpages); 673 check_panic_on_oom(constraint, gfp_mask, order); 674 675 read_lock(&tasklist_lock); 676 if (sysctl_oom_kill_allocating_task && 677 !oom_unkillable_task(current, NULL, nodemask) && 678 (current->signal->oom_adj != OOM_DISABLE)) { 679 /* 680 * oom_kill_process() needs tasklist_lock held. If it returns 681 * non-zero, current could not be killed so we must fallback to 682 * the tasklist scan. 683 */ 684 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, 685 NULL, nodemask, 686 "Out of memory (oom_kill_allocating_task)")) 687 return; 688 } 689 690 retry: 691 p = select_bad_process(&points, totalpages, NULL, 692 constraint == CONSTRAINT_MEMORY_POLICY ? nodemask : 693 NULL); 694 if (PTR_ERR(p) == -1UL) 695 return; 696 697 /* Found nothing?!?! Either we hang forever, or we panic. */ 698 if (!p) { 699 dump_header(NULL, gfp_mask, order, NULL); 700 read_unlock(&tasklist_lock); 701 panic("Out of memory and no killable processes...\n"); 702 } 703 704 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 705 nodemask, "Out of memory")) 706 goto retry; 707 read_unlock(&tasklist_lock); 708 709 /* 710 * Give "p" a good chance of killing itself before we 711 * retry to allocate memory unless "p" is current 712 */ 713 if (!test_thread_flag(TIF_MEMDIE)) 714 schedule_timeout_uninterruptible(1); 715 } 716 717 /* 718 * The pagefault handler calls here because it is out of memory, so kill a 719 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 720 * oom killing is already in progress so do nothing. If a task is found with 721 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 722 */ 723 void pagefault_out_of_memory(void) 724 { 725 if (try_set_system_oom()) { 726 out_of_memory(NULL, 0, 0, NULL); 727 clear_system_oom(); 728 } 729 if (!test_thread_flag(TIF_MEMDIE)) 730 schedule_timeout_uninterruptible(1); 731 } 732