1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/sched/debug.h> 29 #include <linux/swap.h> 30 #include <linux/syscalls.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/cred.h> 47 #include <linux/nmi.h> 48 49 #include <asm/tlb.h> 50 #include "internal.h" 51 #include "slab.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/oom.h> 55 56 static int sysctl_panic_on_oom; 57 static int sysctl_oom_kill_allocating_task; 58 static int sysctl_oom_dump_tasks = 1; 59 60 /* 61 * Serializes oom killer invocations (out_of_memory()) from all contexts to 62 * prevent from over eager oom killing (e.g. when the oom killer is invoked 63 * from different domains). 64 * 65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 66 * and mark_oom_victim 67 */ 68 DEFINE_MUTEX(oom_lock); 69 /* Serializes oom_score_adj and oom_score_adj_min updates */ 70 DEFINE_MUTEX(oom_adj_mutex); 71 72 static inline bool is_memcg_oom(struct oom_control *oc) 73 { 74 return oc->memcg != NULL; 75 } 76 77 #ifdef CONFIG_NUMA 78 /** 79 * oom_cpuset_eligible() - check task eligibility for kill 80 * @start: task struct of which task to consider 81 * @oc: pointer to struct oom_control 82 * 83 * Task eligibility is determined by whether or not a candidate task, @tsk, 84 * shares the same mempolicy nodes as current if it is bound by such a policy 85 * and whether or not it has the same set of allowed cpuset nodes. 86 * 87 * This function is assuming oom-killer context and 'current' has triggered 88 * the oom-killer. 89 */ 90 static bool oom_cpuset_eligible(struct task_struct *start, 91 struct oom_control *oc) 92 { 93 struct task_struct *tsk; 94 bool ret = false; 95 const nodemask_t *mask = oc->nodemask; 96 97 rcu_read_lock(); 98 for_each_thread(start, tsk) { 99 if (mask) { 100 /* 101 * If this is a mempolicy constrained oom, tsk's 102 * cpuset is irrelevant. Only return true if its 103 * mempolicy intersects current, otherwise it may be 104 * needlessly killed. 105 */ 106 ret = mempolicy_in_oom_domain(tsk, mask); 107 } else { 108 /* 109 * This is not a mempolicy constrained oom, so only 110 * check the mems of tsk's cpuset. 111 */ 112 ret = cpuset_mems_allowed_intersects(current, tsk); 113 } 114 if (ret) 115 break; 116 } 117 rcu_read_unlock(); 118 119 return ret; 120 } 121 #else 122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 123 { 124 return true; 125 } 126 #endif /* CONFIG_NUMA */ 127 128 /* 129 * The process p may have detached its own ->mm while exiting or through 130 * kthread_use_mm(), but one or more of its subthreads may still have a valid 131 * pointer. Return p, or any of its subthreads with a valid ->mm, with 132 * task_lock() held. 133 */ 134 struct task_struct *find_lock_task_mm(struct task_struct *p) 135 { 136 struct task_struct *t; 137 138 rcu_read_lock(); 139 140 for_each_thread(p, t) { 141 task_lock(t); 142 if (likely(t->mm)) 143 goto found; 144 task_unlock(t); 145 } 146 t = NULL; 147 found: 148 rcu_read_unlock(); 149 150 return t; 151 } 152 153 /* 154 * order == -1 means the oom kill is required by sysrq, otherwise only 155 * for display purposes. 156 */ 157 static inline bool is_sysrq_oom(struct oom_control *oc) 158 { 159 return oc->order == -1; 160 } 161 162 /* return true if the task is not adequate as candidate victim task. */ 163 static bool oom_unkillable_task(struct task_struct *p) 164 { 165 if (is_global_init(p)) 166 return true; 167 if (p->flags & PF_KTHREAD) 168 return true; 169 return false; 170 } 171 172 /* 173 * Check whether unreclaimable slab amount is greater than 174 * all user memory(LRU pages). 175 * dump_unreclaimable_slab() could help in the case that 176 * oom due to too much unreclaimable slab used by kernel. 177 */ 178 static bool should_dump_unreclaim_slab(void) 179 { 180 unsigned long nr_lru; 181 182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 183 global_node_page_state(NR_INACTIVE_ANON) + 184 global_node_page_state(NR_ACTIVE_FILE) + 185 global_node_page_state(NR_INACTIVE_FILE) + 186 global_node_page_state(NR_ISOLATED_ANON) + 187 global_node_page_state(NR_ISOLATED_FILE) + 188 global_node_page_state(NR_UNEVICTABLE); 189 190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 191 } 192 193 /** 194 * oom_badness - heuristic function to determine which candidate task to kill 195 * @p: task struct of which task we should calculate 196 * @totalpages: total present RAM allowed for page allocation 197 * 198 * The heuristic for determining which task to kill is made to be as simple and 199 * predictable as possible. The goal is to return the highest value for the 200 * task consuming the most memory to avoid subsequent oom failures. 201 */ 202 long oom_badness(struct task_struct *p, unsigned long totalpages) 203 { 204 long points; 205 long adj; 206 207 if (oom_unkillable_task(p)) 208 return LONG_MIN; 209 210 p = find_lock_task_mm(p); 211 if (!p) 212 return LONG_MIN; 213 214 /* 215 * Do not even consider tasks which are explicitly marked oom 216 * unkillable or have been already oom reaped or the are in 217 * the middle of vfork 218 */ 219 adj = (long)p->signal->oom_score_adj; 220 if (adj == OOM_SCORE_ADJ_MIN || 221 mm_flags_test(MMF_OOM_SKIP, p->mm) || 222 in_vfork(p)) { 223 task_unlock(p); 224 return LONG_MIN; 225 } 226 227 /* 228 * The baseline for the badness score is the proportion of RAM that each 229 * task's rss, pagetable and swap space use. 230 */ 231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 232 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 233 task_unlock(p); 234 235 /* Normalize to oom_score_adj units */ 236 adj *= totalpages / 1000; 237 points += adj; 238 239 return points; 240 } 241 242 static const char * const oom_constraint_text[] = { 243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 247 }; 248 249 /* 250 * Determine the type of allocation constraint. 251 */ 252 static enum oom_constraint constrained_alloc(struct oom_control *oc) 253 { 254 struct zone *zone; 255 struct zoneref *z; 256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 257 bool cpuset_limited = false; 258 int nid; 259 260 if (is_memcg_oom(oc)) { 261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 262 return CONSTRAINT_MEMCG; 263 } 264 265 /* Default to all available memory */ 266 oc->totalpages = totalram_pages() + total_swap_pages; 267 268 if (!IS_ENABLED(CONFIG_NUMA)) 269 return CONSTRAINT_NONE; 270 271 if (!oc->zonelist) 272 return CONSTRAINT_NONE; 273 /* 274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 275 * to kill current.We have to random task kill in this case. 276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 277 */ 278 if (oc->gfp_mask & __GFP_THISNODE) 279 return CONSTRAINT_NONE; 280 281 /* 282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 283 * the page allocator means a mempolicy is in effect. Cpuset policy 284 * is enforced in get_page_from_freelist(). 285 */ 286 if (oc->nodemask && 287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 288 oc->totalpages = total_swap_pages; 289 for_each_node_mask(nid, *oc->nodemask) 290 oc->totalpages += node_present_pages(nid); 291 return CONSTRAINT_MEMORY_POLICY; 292 } 293 294 /* Check this allocation failure is caused by cpuset's wall function */ 295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 296 highest_zoneidx, oc->nodemask) 297 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 298 cpuset_limited = true; 299 300 if (cpuset_limited) { 301 oc->totalpages = total_swap_pages; 302 for_each_node_mask(nid, cpuset_current_mems_allowed) 303 oc->totalpages += node_present_pages(nid); 304 return CONSTRAINT_CPUSET; 305 } 306 return CONSTRAINT_NONE; 307 } 308 309 static int oom_evaluate_task(struct task_struct *task, void *arg) 310 { 311 struct oom_control *oc = arg; 312 long points; 313 314 if (oom_unkillable_task(task)) 315 goto next; 316 317 /* p may not have freeable memory in nodemask */ 318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 319 goto next; 320 321 /* 322 * This task already has access to memory reserves and is being killed. 323 * Don't allow any other task to have access to the reserves unless 324 * the task has MMF_OOM_SKIP because chances that it would release 325 * any memory is quite low. 326 */ 327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 328 if (mm_flags_test(MMF_OOM_SKIP, task->signal->oom_mm)) 329 goto next; 330 goto abort; 331 } 332 333 /* 334 * If task is allocating a lot of memory and has been marked to be 335 * killed first if it triggers an oom, then select it. 336 */ 337 if (oom_task_origin(task)) { 338 points = LONG_MAX; 339 goto select; 340 } 341 342 points = oom_badness(task, oc->totalpages); 343 if (points == LONG_MIN || points < oc->chosen_points) 344 goto next; 345 346 select: 347 if (oc->chosen) 348 put_task_struct(oc->chosen); 349 get_task_struct(task); 350 oc->chosen = task; 351 oc->chosen_points = points; 352 next: 353 return 0; 354 abort: 355 if (oc->chosen) 356 put_task_struct(oc->chosen); 357 oc->chosen = (void *)-1UL; 358 return 1; 359 } 360 361 /* 362 * Simple selection loop. We choose the process with the highest number of 363 * 'points'. In case scan was aborted, oc->chosen is set to -1. 364 */ 365 static void select_bad_process(struct oom_control *oc) 366 { 367 oc->chosen_points = LONG_MIN; 368 369 if (is_memcg_oom(oc)) 370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 371 else { 372 struct task_struct *p; 373 374 rcu_read_lock(); 375 for_each_process(p) 376 if (oom_evaluate_task(p, oc)) 377 break; 378 rcu_read_unlock(); 379 } 380 } 381 382 static int dump_task(struct task_struct *p, void *arg) 383 { 384 struct oom_control *oc = arg; 385 struct task_struct *task; 386 387 if (oom_unkillable_task(p)) 388 return 0; 389 390 /* p may not have freeable memory in nodemask */ 391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 392 return 0; 393 394 task = find_lock_task_mm(p); 395 if (!task) { 396 /* 397 * All of p's threads have already detached their mm's. There's 398 * no need to report them; they can't be oom killed anyway. 399 */ 400 return 0; 401 } 402 403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n", 404 task->pid, from_kuid(&init_user_ns, task_uid(task)), 405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), 407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), 408 get_mm_counter(task->mm, MM_SWAPENTS), 409 task->signal->oom_score_adj, task->comm); 410 task_unlock(task); 411 412 return 0; 413 } 414 415 /** 416 * dump_tasks - dump current memory state of all system tasks 417 * @oc: pointer to struct oom_control 418 * 419 * Dumps the current memory state of all eligible tasks. Tasks not in the same 420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 421 * are not shown. 422 * State information includes task's pid, uid, tgid, vm size, rss, 423 * pgtables_bytes, swapents, oom_score_adj value, and name. 424 */ 425 static void dump_tasks(struct oom_control *oc) 426 { 427 pr_info("Tasks state (memory values in pages):\n"); 428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n"); 429 430 if (is_memcg_oom(oc)) 431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 432 else { 433 struct task_struct *p; 434 int i = 0; 435 436 rcu_read_lock(); 437 for_each_process(p) { 438 /* Avoid potential softlockup warning */ 439 if ((++i & 1023) == 0) 440 touch_softlockup_watchdog(); 441 dump_task(p, oc); 442 } 443 rcu_read_unlock(); 444 } 445 } 446 447 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) 448 { 449 /* one line summary of the oom killer context. */ 450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 451 oom_constraint_text[oc->constraint], 452 nodemask_pr_args(oc->nodemask)); 453 cpuset_print_current_mems_allowed(); 454 mem_cgroup_print_oom_context(oc->memcg, victim); 455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 456 from_kuid(&init_user_ns, task_uid(victim))); 457 } 458 459 static void dump_header(struct oom_control *oc) 460 { 461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 463 current->signal->oom_score_adj); 464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 465 pr_warn("COMPACTION is disabled!!!\n"); 466 467 dump_stack(); 468 if (is_memcg_oom(oc)) 469 mem_cgroup_print_oom_meminfo(oc->memcg); 470 else { 471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask)); 472 if (should_dump_unreclaim_slab()) 473 dump_unreclaimable_slab(); 474 } 475 mem_cgroup_show_protected_memory(oc->memcg); 476 if (sysctl_oom_dump_tasks) 477 dump_tasks(oc); 478 } 479 480 /* 481 * Number of OOM victims in flight 482 */ 483 static atomic_t oom_victims = ATOMIC_INIT(0); 484 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 485 486 static bool oom_killer_disabled __read_mostly; 487 488 /* 489 * task->mm can be NULL if the task is the exited group leader. So to 490 * determine whether the task is using a particular mm, we examine all the 491 * task's threads: if one of those is using this mm then this task was also 492 * using it. 493 */ 494 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm) 495 { 496 const struct task_struct *t; 497 498 for_each_thread(p, t) { 499 const struct mm_struct *t_mm = READ_ONCE(t->mm); 500 if (t_mm) 501 return t_mm == mm; 502 } 503 return false; 504 } 505 506 #ifdef CONFIG_MMU 507 /* 508 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 509 * victim (if that is possible) to help the OOM killer to move on. 510 */ 511 static struct task_struct *oom_reaper_th; 512 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 513 static struct task_struct *oom_reaper_list; 514 static DEFINE_SPINLOCK(oom_reaper_lock); 515 516 static bool __oom_reap_task_mm(struct mm_struct *mm) 517 { 518 struct vm_area_struct *vma; 519 bool ret = true; 520 MA_STATE(mas, &mm->mm_mt, ULONG_MAX, ULONG_MAX); 521 522 /* 523 * Tell all users of get_user/copy_from_user etc... that the content 524 * is no longer stable. No barriers really needed because unmapping 525 * should imply barriers already and the reader would hit a page fault 526 * if it stumbled over a reaped memory. 527 */ 528 mm_flags_set(MMF_UNSTABLE, mm); 529 530 /* 531 * It might start racing with the dying task and compete for shared 532 * resources - e.g. page table lock contention has been observed. 533 * Reduce those races by reaping the oom victim from the other end 534 * of the address space. 535 */ 536 mas_for_each_rev(&mas, vma, 0) { 537 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) 538 continue; 539 540 /* 541 * Only anonymous pages have a good chance to be dropped 542 * without additional steps which we cannot afford as we 543 * are OOM already. 544 * 545 * We do not even care about fs backed pages because all 546 * which are reclaimable have already been reclaimed and 547 * we do not want to block exit_mmap by keeping mm ref 548 * count elevated without a good reason. 549 */ 550 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 551 struct mmu_notifier_range range; 552 struct mmu_gather tlb; 553 554 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 555 mm, vma->vm_start, 556 vma->vm_end); 557 tlb_gather_mmu(&tlb, mm); 558 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 559 tlb_finish_mmu(&tlb); 560 ret = false; 561 continue; 562 } 563 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 564 mmu_notifier_invalidate_range_end(&range); 565 tlb_finish_mmu(&tlb); 566 } 567 } 568 569 return ret; 570 } 571 572 /* 573 * Reaps the address space of the given task. 574 * 575 * Returns true on success and false if none or part of the address space 576 * has been reclaimed and the caller should retry later. 577 */ 578 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 579 { 580 bool ret = true; 581 582 if (!mmap_read_trylock(mm)) { 583 trace_skip_task_reaping(tsk->pid); 584 return false; 585 } 586 587 /* 588 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 589 * work on the mm anymore. The check for MMF_OOM_SKIP must run 590 * under mmap_lock for reading because it serializes against the 591 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 592 */ 593 if (mm_flags_test(MMF_OOM_SKIP, mm)) { 594 trace_skip_task_reaping(tsk->pid); 595 goto out_unlock; 596 } 597 598 trace_start_task_reaping(tsk->pid); 599 600 /* failed to reap part of the address space. Try again later */ 601 ret = __oom_reap_task_mm(mm); 602 if (!ret) 603 goto out_finish; 604 605 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 606 task_pid_nr(tsk), tsk->comm, 607 K(get_mm_counter(mm, MM_ANONPAGES)), 608 K(get_mm_counter(mm, MM_FILEPAGES)), 609 K(get_mm_counter(mm, MM_SHMEMPAGES))); 610 out_finish: 611 trace_finish_task_reaping(tsk->pid); 612 out_unlock: 613 mmap_read_unlock(mm); 614 615 return ret; 616 } 617 618 #define MAX_OOM_REAP_RETRIES 10 619 static void oom_reap_task(struct task_struct *tsk) 620 { 621 int attempts = 0; 622 struct mm_struct *mm = tsk->signal->oom_mm; 623 624 /* Retry the mmap_read_trylock(mm) a few times */ 625 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 626 schedule_timeout_idle(HZ/10); 627 628 if (attempts <= MAX_OOM_REAP_RETRIES || 629 mm_flags_test(MMF_OOM_SKIP, mm)) 630 goto done; 631 632 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 633 task_pid_nr(tsk), tsk->comm); 634 sched_show_task(tsk); 635 debug_show_all_locks(); 636 637 done: 638 tsk->oom_reaper_list = NULL; 639 640 /* 641 * Hide this mm from OOM killer because it has been either reaped or 642 * somebody can't call mmap_write_unlock(mm). 643 */ 644 mm_flags_set(MMF_OOM_SKIP, mm); 645 646 /* Drop a reference taken by queue_oom_reaper */ 647 put_task_struct(tsk); 648 } 649 650 static int oom_reaper(void *unused) 651 { 652 set_freezable(); 653 654 while (true) { 655 struct task_struct *tsk = NULL; 656 657 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 658 spin_lock_irq(&oom_reaper_lock); 659 if (oom_reaper_list != NULL) { 660 tsk = oom_reaper_list; 661 oom_reaper_list = tsk->oom_reaper_list; 662 } 663 spin_unlock_irq(&oom_reaper_lock); 664 665 if (tsk) 666 oom_reap_task(tsk); 667 } 668 669 return 0; 670 } 671 672 static void wake_oom_reaper(struct timer_list *timer) 673 { 674 struct task_struct *tsk = container_of(timer, struct task_struct, 675 oom_reaper_timer); 676 struct mm_struct *mm = tsk->signal->oom_mm; 677 unsigned long flags; 678 679 /* The victim managed to terminate on its own - see exit_mmap */ 680 if (mm_flags_test(MMF_OOM_SKIP, mm)) { 681 put_task_struct(tsk); 682 return; 683 } 684 685 spin_lock_irqsave(&oom_reaper_lock, flags); 686 tsk->oom_reaper_list = oom_reaper_list; 687 oom_reaper_list = tsk; 688 spin_unlock_irqrestore(&oom_reaper_lock, flags); 689 trace_wake_reaper(tsk->pid); 690 wake_up(&oom_reaper_wait); 691 } 692 693 /* 694 * Give the OOM victim time to exit naturally before invoking the oom_reaping. 695 * The timers timeout is arbitrary... the longer it is, the longer the worst 696 * case scenario for the OOM can take. If it is too small, the oom_reaper can 697 * get in the way and release resources needed by the process exit path. 698 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped 699 * before the exit path is able to wake the futex waiters. 700 */ 701 #define OOM_REAPER_DELAY (2*HZ) 702 static void queue_oom_reaper(struct task_struct *tsk) 703 { 704 /* mm is already queued? */ 705 if (mm_flags_test_and_set(MMF_OOM_REAP_QUEUED, tsk->signal->oom_mm)) 706 return; 707 708 get_task_struct(tsk); 709 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); 710 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; 711 add_timer(&tsk->oom_reaper_timer); 712 } 713 714 #ifdef CONFIG_SYSCTL 715 static const struct ctl_table vm_oom_kill_table[] = { 716 { 717 .procname = "panic_on_oom", 718 .data = &sysctl_panic_on_oom, 719 .maxlen = sizeof(sysctl_panic_on_oom), 720 .mode = 0644, 721 .proc_handler = proc_dointvec_minmax, 722 .extra1 = SYSCTL_ZERO, 723 .extra2 = SYSCTL_TWO, 724 }, 725 { 726 .procname = "oom_kill_allocating_task", 727 .data = &sysctl_oom_kill_allocating_task, 728 .maxlen = sizeof(sysctl_oom_kill_allocating_task), 729 .mode = 0644, 730 .proc_handler = proc_dointvec, 731 }, 732 { 733 .procname = "oom_dump_tasks", 734 .data = &sysctl_oom_dump_tasks, 735 .maxlen = sizeof(sysctl_oom_dump_tasks), 736 .mode = 0644, 737 .proc_handler = proc_dointvec, 738 }, 739 }; 740 #endif 741 742 static int __init oom_init(void) 743 { 744 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 745 #ifdef CONFIG_SYSCTL 746 register_sysctl_init("vm", vm_oom_kill_table); 747 #endif 748 return 0; 749 } 750 subsys_initcall(oom_init) 751 #else 752 static inline void queue_oom_reaper(struct task_struct *tsk) 753 { 754 } 755 #endif /* CONFIG_MMU */ 756 757 /** 758 * mark_oom_victim - mark the given task as OOM victim 759 * @tsk: task to mark 760 * 761 * Has to be called with oom_lock held and never after 762 * oom has been disabled already. 763 * 764 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 765 * under task_lock or operate on the current). 766 */ 767 static void mark_oom_victim(struct task_struct *tsk) 768 { 769 const struct cred *cred; 770 struct mm_struct *mm = tsk->mm; 771 772 WARN_ON(oom_killer_disabled); 773 /* OOM killer might race with memcg OOM */ 774 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 775 return; 776 777 /* oom_mm is bound to the signal struct life time. */ 778 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) 779 mmgrab(tsk->signal->oom_mm); 780 781 /* 782 * Make sure that the process is woken up from uninterruptible sleep 783 * if it is frozen because OOM killer wouldn't be able to free any 784 * memory and livelock. The freezer will thaw the tasks that are OOM 785 * victims regardless of the PM freezing and cgroup freezing states. 786 */ 787 thaw_process(tsk); 788 atomic_inc(&oom_victims); 789 cred = get_task_cred(tsk); 790 trace_mark_victim(tsk, cred->uid.val); 791 put_cred(cred); 792 } 793 794 /** 795 * exit_oom_victim - note the exit of an OOM victim 796 */ 797 void exit_oom_victim(void) 798 { 799 clear_thread_flag(TIF_MEMDIE); 800 801 if (!atomic_dec_return(&oom_victims)) 802 wake_up_all(&oom_victims_wait); 803 } 804 805 /** 806 * oom_killer_enable - enable OOM killer 807 */ 808 void oom_killer_enable(void) 809 { 810 oom_killer_disabled = false; 811 pr_info("OOM killer enabled.\n"); 812 } 813 814 /** 815 * oom_killer_disable - disable OOM killer 816 * @timeout: maximum timeout to wait for oom victims in jiffies 817 * 818 * Forces all page allocations to fail rather than trigger OOM killer. 819 * Will block and wait until all OOM victims are killed or the given 820 * timeout expires. 821 * 822 * The function cannot be called when there are runnable user tasks because 823 * the userspace would see unexpected allocation failures as a result. Any 824 * new usage of this function should be consulted with MM people. 825 * 826 * Returns true if successful and false if the OOM killer cannot be 827 * disabled. 828 */ 829 bool oom_killer_disable(signed long timeout) 830 { 831 signed long ret; 832 833 /* 834 * Make sure to not race with an ongoing OOM killer. Check that the 835 * current is not killed (possibly due to sharing the victim's memory). 836 */ 837 if (mutex_lock_killable(&oom_lock)) 838 return false; 839 oom_killer_disabled = true; 840 mutex_unlock(&oom_lock); 841 842 ret = wait_event_interruptible_timeout(oom_victims_wait, 843 !atomic_read(&oom_victims), timeout); 844 if (ret <= 0) { 845 oom_killer_enable(); 846 return false; 847 } 848 pr_info("OOM killer disabled.\n"); 849 850 return true; 851 } 852 853 static inline bool __task_will_free_mem(struct task_struct *task) 854 { 855 struct signal_struct *sig = task->signal; 856 857 /* 858 * A coredumping process may sleep for an extended period in 859 * coredump_task_exit(), so the oom killer cannot assume that 860 * the process will promptly exit and release memory. 861 */ 862 if (sig->core_state) 863 return false; 864 865 if (sig->flags & SIGNAL_GROUP_EXIT) 866 return true; 867 868 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 869 return true; 870 871 return false; 872 } 873 874 /* 875 * Checks whether the given task is dying or exiting and likely to 876 * release its address space. This means that all threads and processes 877 * sharing the same mm have to be killed or exiting. 878 * Caller has to make sure that task->mm is stable (hold task_lock or 879 * it operates on the current). 880 */ 881 static bool task_will_free_mem(struct task_struct *task) 882 { 883 struct mm_struct *mm = task->mm; 884 struct task_struct *p; 885 bool ret = true; 886 887 /* 888 * Skip tasks without mm because it might have passed its exit_mm and 889 * exit_oom_victim. oom_reaper could have rescued that but do not rely 890 * on that for now. We can consider find_lock_task_mm in future. 891 */ 892 if (!mm) 893 return false; 894 895 if (!__task_will_free_mem(task)) 896 return false; 897 898 /* 899 * This task has already been drained by the oom reaper so there are 900 * only small chances it will free some more 901 */ 902 if (mm_flags_test(MMF_OOM_SKIP, mm)) 903 return false; 904 905 if (atomic_read(&mm->mm_users) <= 1) 906 return true; 907 908 /* 909 * Make sure that all tasks which share the mm with the given tasks 910 * are dying as well to make sure that a) nobody pins its mm and 911 * b) the task is also reapable by the oom reaper. 912 */ 913 rcu_read_lock(); 914 for_each_process(p) { 915 if (!process_shares_mm(p, mm)) 916 continue; 917 if (same_thread_group(task, p)) 918 continue; 919 ret = __task_will_free_mem(p); 920 if (!ret) 921 break; 922 } 923 rcu_read_unlock(); 924 925 return ret; 926 } 927 928 static void __oom_kill_process(struct task_struct *victim, const char *message) 929 { 930 struct task_struct *p; 931 struct mm_struct *mm; 932 bool can_oom_reap = true; 933 934 p = find_lock_task_mm(victim); 935 if (!p) { 936 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 937 message, task_pid_nr(victim), victim->comm); 938 put_task_struct(victim); 939 return; 940 } else if (victim != p) { 941 get_task_struct(p); 942 put_task_struct(victim); 943 victim = p; 944 } 945 946 /* Get a reference to safely compare mm after task_unlock(victim) */ 947 mm = victim->mm; 948 mmgrab(mm); 949 950 /* Raise event before sending signal: task reaper must see this */ 951 count_vm_event(OOM_KILL); 952 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 953 954 /* 955 * We should send SIGKILL before granting access to memory reserves 956 * in order to prevent the OOM victim from depleting the memory 957 * reserves from the user space under its control. 958 */ 959 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 960 mark_oom_victim(victim); 961 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 962 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 963 K(get_mm_counter(mm, MM_ANONPAGES)), 964 K(get_mm_counter(mm, MM_FILEPAGES)), 965 K(get_mm_counter(mm, MM_SHMEMPAGES)), 966 from_kuid(&init_user_ns, task_uid(victim)), 967 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 968 task_unlock(victim); 969 970 /* 971 * Kill all user processes sharing victim->mm in other thread groups, if 972 * any. They don't get access to memory reserves, though, to avoid 973 * depletion of all memory. This prevents mm->mmap_lock livelock when an 974 * oom killed thread cannot exit because it requires the semaphore and 975 * its contended by another thread trying to allocate memory itself. 976 * That thread will now get access to memory reserves since it has a 977 * pending fatal signal. 978 */ 979 rcu_read_lock(); 980 for_each_process(p) { 981 if (!process_shares_mm(p, mm)) 982 continue; 983 if (same_thread_group(p, victim)) 984 continue; 985 if (is_global_init(p)) { 986 can_oom_reap = false; 987 mm_flags_set(MMF_OOM_SKIP, mm); 988 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 989 task_pid_nr(victim), victim->comm, 990 task_pid_nr(p), p->comm); 991 continue; 992 } 993 /* 994 * No kthread_use_mm() user needs to read from the userspace so 995 * we are ok to reap it. 996 */ 997 if (unlikely(p->flags & PF_KTHREAD)) 998 continue; 999 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 1000 } 1001 rcu_read_unlock(); 1002 1003 if (can_oom_reap) 1004 queue_oom_reaper(victim); 1005 1006 mmdrop(mm); 1007 put_task_struct(victim); 1008 } 1009 1010 /* 1011 * Kill provided task unless it's secured by setting 1012 * oom_score_adj to OOM_SCORE_ADJ_MIN. 1013 */ 1014 static int oom_kill_memcg_member(struct task_struct *task, void *message) 1015 { 1016 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 1017 !is_global_init(task)) { 1018 get_task_struct(task); 1019 __oom_kill_process(task, message); 1020 } 1021 return 0; 1022 } 1023 1024 static void oom_kill_process(struct oom_control *oc, const char *message) 1025 { 1026 struct task_struct *victim = oc->chosen; 1027 struct mem_cgroup *oom_group; 1028 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1029 DEFAULT_RATELIMIT_BURST); 1030 1031 /* 1032 * If the task is already exiting, don't alarm the sysadmin or kill 1033 * its children or threads, just give it access to memory reserves 1034 * so it can die quickly 1035 */ 1036 task_lock(victim); 1037 if (task_will_free_mem(victim)) { 1038 mark_oom_victim(victim); 1039 queue_oom_reaper(victim); 1040 task_unlock(victim); 1041 put_task_struct(victim); 1042 return; 1043 } 1044 task_unlock(victim); 1045 1046 if (__ratelimit(&oom_rs)) { 1047 dump_header(oc); 1048 dump_oom_victim(oc, victim); 1049 } 1050 1051 /* 1052 * Do we need to kill the entire memory cgroup? 1053 * Or even one of the ancestor memory cgroups? 1054 * Check this out before killing the victim task. 1055 */ 1056 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 1057 1058 __oom_kill_process(victim, message); 1059 1060 /* 1061 * If necessary, kill all tasks in the selected memory cgroup. 1062 */ 1063 if (oom_group) { 1064 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); 1065 mem_cgroup_print_oom_group(oom_group); 1066 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 1067 (void *)message); 1068 mem_cgroup_put(oom_group); 1069 } 1070 } 1071 1072 /* 1073 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1074 */ 1075 static void check_panic_on_oom(struct oom_control *oc) 1076 { 1077 if (likely(!sysctl_panic_on_oom)) 1078 return; 1079 if (sysctl_panic_on_oom != 2) { 1080 /* 1081 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1082 * does not panic for cpuset, mempolicy, or memcg allocation 1083 * failures. 1084 */ 1085 if (oc->constraint != CONSTRAINT_NONE) 1086 return; 1087 } 1088 /* Do not panic for oom kills triggered by sysrq */ 1089 if (is_sysrq_oom(oc)) 1090 return; 1091 dump_header(oc); 1092 panic("Out of memory: %s panic_on_oom is enabled\n", 1093 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1094 } 1095 1096 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1097 1098 int register_oom_notifier(struct notifier_block *nb) 1099 { 1100 return blocking_notifier_chain_register(&oom_notify_list, nb); 1101 } 1102 EXPORT_SYMBOL_GPL(register_oom_notifier); 1103 1104 int unregister_oom_notifier(struct notifier_block *nb) 1105 { 1106 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1107 } 1108 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1109 1110 /** 1111 * out_of_memory - kill the "best" process when we run out of memory 1112 * @oc: pointer to struct oom_control 1113 * 1114 * If we run out of memory, we have the choice between either 1115 * killing a random task (bad), letting the system crash (worse) 1116 * OR try to be smart about which process to kill. Note that we 1117 * don't have to be perfect here, we just have to be good. 1118 */ 1119 bool out_of_memory(struct oom_control *oc) 1120 { 1121 unsigned long freed = 0; 1122 1123 if (oom_killer_disabled) 1124 return false; 1125 1126 if (!is_memcg_oom(oc)) { 1127 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1128 if (freed > 0 && !is_sysrq_oom(oc)) 1129 /* Got some memory back in the last second. */ 1130 return true; 1131 } 1132 1133 /* 1134 * If current has a pending SIGKILL or is exiting, then automatically 1135 * select it. The goal is to allow it to allocate so that it may 1136 * quickly exit and free its memory. 1137 */ 1138 if (task_will_free_mem(current)) { 1139 mark_oom_victim(current); 1140 queue_oom_reaper(current); 1141 return true; 1142 } 1143 1144 /* 1145 * The OOM killer does not compensate for IO-less reclaim. 1146 * But mem_cgroup_oom() has to invoke the OOM killer even 1147 * if it is a GFP_NOFS allocation. 1148 */ 1149 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1150 return true; 1151 1152 /* 1153 * Check if there were limitations on the allocation (only relevant for 1154 * NUMA and memcg) that may require different handling. 1155 */ 1156 oc->constraint = constrained_alloc(oc); 1157 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1158 oc->nodemask = NULL; 1159 check_panic_on_oom(oc); 1160 1161 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1162 current->mm && !oom_unkillable_task(current) && 1163 oom_cpuset_eligible(current, oc) && 1164 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1165 get_task_struct(current); 1166 oc->chosen = current; 1167 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1168 return true; 1169 } 1170 1171 select_bad_process(oc); 1172 /* Found nothing?!?! */ 1173 if (!oc->chosen) { 1174 dump_header(oc); 1175 pr_warn("Out of memory and no killable processes...\n"); 1176 /* 1177 * If we got here due to an actual allocation at the 1178 * system level, we cannot survive this and will enter 1179 * an endless loop in the allocator. Bail out now. 1180 */ 1181 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1182 panic("System is deadlocked on memory\n"); 1183 } 1184 if (oc->chosen && oc->chosen != (void *)-1UL) 1185 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1186 "Memory cgroup out of memory"); 1187 return !!oc->chosen; 1188 } 1189 1190 /* 1191 * The pagefault handler calls here because some allocation has failed. We have 1192 * to take care of the memcg OOM here because this is the only safe context without 1193 * any locks held but let the oom killer triggered from the allocation context care 1194 * about the global OOM. 1195 */ 1196 void pagefault_out_of_memory(void) 1197 { 1198 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, 1199 DEFAULT_RATELIMIT_BURST); 1200 1201 if (mem_cgroup_oom_synchronize(true)) 1202 return; 1203 1204 if (fatal_signal_pending(current)) 1205 return; 1206 1207 if (__ratelimit(&pfoom_rs)) 1208 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); 1209 } 1210 1211 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) 1212 { 1213 #ifdef CONFIG_MMU 1214 struct mm_struct *mm = NULL; 1215 struct task_struct *task; 1216 struct task_struct *p; 1217 unsigned int f_flags; 1218 bool reap = false; 1219 long ret = 0; 1220 1221 if (flags) 1222 return -EINVAL; 1223 1224 task = pidfd_get_task(pidfd, &f_flags); 1225 if (IS_ERR(task)) 1226 return PTR_ERR(task); 1227 1228 /* 1229 * Make sure to choose a thread which still has a reference to mm 1230 * during the group exit 1231 */ 1232 p = find_lock_task_mm(task); 1233 if (!p) { 1234 ret = -ESRCH; 1235 goto put_task; 1236 } 1237 1238 mm = p->mm; 1239 mmgrab(mm); 1240 1241 if (task_will_free_mem(p)) 1242 reap = true; 1243 else { 1244 /* Error only if the work has not been done already */ 1245 if (!mm_flags_test(MMF_OOM_SKIP, mm)) 1246 ret = -EINVAL; 1247 } 1248 task_unlock(p); 1249 1250 if (!reap) 1251 goto drop_mm; 1252 1253 if (mmap_read_lock_killable(mm)) { 1254 ret = -EINTR; 1255 goto drop_mm; 1256 } 1257 /* 1258 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure 1259 * possible change in exit_mmap is seen 1260 */ 1261 if (!mm_flags_test(MMF_OOM_SKIP, mm) && !__oom_reap_task_mm(mm)) 1262 ret = -EAGAIN; 1263 mmap_read_unlock(mm); 1264 1265 drop_mm: 1266 mmdrop(mm); 1267 put_task: 1268 put_task_struct(task); 1269 return ret; 1270 #else 1271 return -ENOSYS; 1272 #endif /* CONFIG_MMU */ 1273 } 1274