1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/export.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 #include <linux/ptrace.h> 35 #include <linux/freezer.h> 36 #include <linux/ftrace.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/oom.h> 40 41 int sysctl_panic_on_oom; 42 int sysctl_oom_kill_allocating_task; 43 int sysctl_oom_dump_tasks = 1; 44 static DEFINE_SPINLOCK(zone_scan_lock); 45 46 /* 47 * compare_swap_oom_score_adj() - compare and swap current's oom_score_adj 48 * @old_val: old oom_score_adj for compare 49 * @new_val: new oom_score_adj for swap 50 * 51 * Sets the oom_score_adj value for current to @new_val iff its present value is 52 * @old_val. Usually used to reinstate a previous value to prevent racing with 53 * userspacing tuning the value in the interim. 54 */ 55 void compare_swap_oom_score_adj(int old_val, int new_val) 56 { 57 struct sighand_struct *sighand = current->sighand; 58 59 spin_lock_irq(&sighand->siglock); 60 if (current->signal->oom_score_adj == old_val) 61 current->signal->oom_score_adj = new_val; 62 trace_oom_score_adj_update(current); 63 spin_unlock_irq(&sighand->siglock); 64 } 65 66 /** 67 * test_set_oom_score_adj() - set current's oom_score_adj and return old value 68 * @new_val: new oom_score_adj value 69 * 70 * Sets the oom_score_adj value for current to @new_val with proper 71 * synchronization and returns the old value. Usually used to temporarily 72 * set a value, save the old value in the caller, and then reinstate it later. 73 */ 74 int test_set_oom_score_adj(int new_val) 75 { 76 struct sighand_struct *sighand = current->sighand; 77 int old_val; 78 79 spin_lock_irq(&sighand->siglock); 80 old_val = current->signal->oom_score_adj; 81 current->signal->oom_score_adj = new_val; 82 trace_oom_score_adj_update(current); 83 spin_unlock_irq(&sighand->siglock); 84 85 return old_val; 86 } 87 88 #ifdef CONFIG_NUMA 89 /** 90 * has_intersects_mems_allowed() - check task eligiblity for kill 91 * @tsk: task struct of which task to consider 92 * @mask: nodemask passed to page allocator for mempolicy ooms 93 * 94 * Task eligibility is determined by whether or not a candidate task, @tsk, 95 * shares the same mempolicy nodes as current if it is bound by such a policy 96 * and whether or not it has the same set of allowed cpuset nodes. 97 */ 98 static bool has_intersects_mems_allowed(struct task_struct *tsk, 99 const nodemask_t *mask) 100 { 101 struct task_struct *start = tsk; 102 103 do { 104 if (mask) { 105 /* 106 * If this is a mempolicy constrained oom, tsk's 107 * cpuset is irrelevant. Only return true if its 108 * mempolicy intersects current, otherwise it may be 109 * needlessly killed. 110 */ 111 if (mempolicy_nodemask_intersects(tsk, mask)) 112 return true; 113 } else { 114 /* 115 * This is not a mempolicy constrained oom, so only 116 * check the mems of tsk's cpuset. 117 */ 118 if (cpuset_mems_allowed_intersects(current, tsk)) 119 return true; 120 } 121 } while_each_thread(start, tsk); 122 123 return false; 124 } 125 #else 126 static bool has_intersects_mems_allowed(struct task_struct *tsk, 127 const nodemask_t *mask) 128 { 129 return true; 130 } 131 #endif /* CONFIG_NUMA */ 132 133 /* 134 * The process p may have detached its own ->mm while exiting or through 135 * use_mm(), but one or more of its subthreads may still have a valid 136 * pointer. Return p, or any of its subthreads with a valid ->mm, with 137 * task_lock() held. 138 */ 139 struct task_struct *find_lock_task_mm(struct task_struct *p) 140 { 141 struct task_struct *t = p; 142 143 do { 144 task_lock(t); 145 if (likely(t->mm)) 146 return t; 147 task_unlock(t); 148 } while_each_thread(p, t); 149 150 return NULL; 151 } 152 153 /* return true if the task is not adequate as candidate victim task. */ 154 static bool oom_unkillable_task(struct task_struct *p, 155 const struct mem_cgroup *memcg, const nodemask_t *nodemask) 156 { 157 if (is_global_init(p)) 158 return true; 159 if (p->flags & PF_KTHREAD) 160 return true; 161 162 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 163 if (memcg && !task_in_mem_cgroup(p, memcg)) 164 return true; 165 166 /* p may not have freeable memory in nodemask */ 167 if (!has_intersects_mems_allowed(p, nodemask)) 168 return true; 169 170 return false; 171 } 172 173 /** 174 * oom_badness - heuristic function to determine which candidate task to kill 175 * @p: task struct of which task we should calculate 176 * @totalpages: total present RAM allowed for page allocation 177 * 178 * The heuristic for determining which task to kill is made to be as simple and 179 * predictable as possible. The goal is to return the highest value for the 180 * task consuming the most memory to avoid subsequent oom failures. 181 */ 182 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 183 const nodemask_t *nodemask, unsigned long totalpages) 184 { 185 long points; 186 187 if (oom_unkillable_task(p, memcg, nodemask)) 188 return 0; 189 190 p = find_lock_task_mm(p); 191 if (!p) 192 return 0; 193 194 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 195 task_unlock(p); 196 return 0; 197 } 198 199 /* 200 * The memory controller may have a limit of 0 bytes, so avoid a divide 201 * by zero, if necessary. 202 */ 203 if (!totalpages) 204 totalpages = 1; 205 206 /* 207 * The baseline for the badness score is the proportion of RAM that each 208 * task's rss, pagetable and swap space use. 209 */ 210 points = get_mm_rss(p->mm) + p->mm->nr_ptes; 211 points += get_mm_counter(p->mm, MM_SWAPENTS); 212 213 points *= 1000; 214 points /= totalpages; 215 task_unlock(p); 216 217 /* 218 * Root processes get 3% bonus, just like the __vm_enough_memory() 219 * implementation used by LSMs. 220 */ 221 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 222 points -= 30; 223 224 /* 225 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 226 * either completely disable oom killing or always prefer a certain 227 * task. 228 */ 229 points += p->signal->oom_score_adj; 230 231 /* 232 * Never return 0 for an eligible task that may be killed since it's 233 * possible that no single user task uses more than 0.1% of memory and 234 * no single admin tasks uses more than 3.0%. 235 */ 236 if (points <= 0) 237 return 1; 238 return (points < 1000) ? points : 1000; 239 } 240 241 /* 242 * Determine the type of allocation constraint. 243 */ 244 #ifdef CONFIG_NUMA 245 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 246 gfp_t gfp_mask, nodemask_t *nodemask, 247 unsigned long *totalpages) 248 { 249 struct zone *zone; 250 struct zoneref *z; 251 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 252 bool cpuset_limited = false; 253 int nid; 254 255 /* Default to all available memory */ 256 *totalpages = totalram_pages + total_swap_pages; 257 258 if (!zonelist) 259 return CONSTRAINT_NONE; 260 /* 261 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 262 * to kill current.We have to random task kill in this case. 263 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 264 */ 265 if (gfp_mask & __GFP_THISNODE) 266 return CONSTRAINT_NONE; 267 268 /* 269 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 270 * the page allocator means a mempolicy is in effect. Cpuset policy 271 * is enforced in get_page_from_freelist(). 272 */ 273 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 274 *totalpages = total_swap_pages; 275 for_each_node_mask(nid, *nodemask) 276 *totalpages += node_spanned_pages(nid); 277 return CONSTRAINT_MEMORY_POLICY; 278 } 279 280 /* Check this allocation failure is caused by cpuset's wall function */ 281 for_each_zone_zonelist_nodemask(zone, z, zonelist, 282 high_zoneidx, nodemask) 283 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 284 cpuset_limited = true; 285 286 if (cpuset_limited) { 287 *totalpages = total_swap_pages; 288 for_each_node_mask(nid, cpuset_current_mems_allowed) 289 *totalpages += node_spanned_pages(nid); 290 return CONSTRAINT_CPUSET; 291 } 292 return CONSTRAINT_NONE; 293 } 294 #else 295 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 296 gfp_t gfp_mask, nodemask_t *nodemask, 297 unsigned long *totalpages) 298 { 299 *totalpages = totalram_pages + total_swap_pages; 300 return CONSTRAINT_NONE; 301 } 302 #endif 303 304 /* 305 * Simple selection loop. We chose the process with the highest 306 * number of 'points'. We expect the caller will lock the tasklist. 307 * 308 * (not docbooked, we don't want this one cluttering up the manual) 309 */ 310 static struct task_struct *select_bad_process(unsigned int *ppoints, 311 unsigned long totalpages, struct mem_cgroup *memcg, 312 const nodemask_t *nodemask) 313 { 314 struct task_struct *g, *p; 315 struct task_struct *chosen = NULL; 316 *ppoints = 0; 317 318 do_each_thread(g, p) { 319 unsigned int points; 320 321 if (p->exit_state) 322 continue; 323 if (oom_unkillable_task(p, memcg, nodemask)) 324 continue; 325 326 /* 327 * This task already has access to memory reserves and is 328 * being killed. Don't allow any other task access to the 329 * memory reserve. 330 * 331 * Note: this may have a chance of deadlock if it gets 332 * blocked waiting for another task which itself is waiting 333 * for memory. Is there a better alternative? 334 */ 335 if (test_tsk_thread_flag(p, TIF_MEMDIE)) { 336 if (unlikely(frozen(p))) 337 __thaw_task(p); 338 return ERR_PTR(-1UL); 339 } 340 if (!p->mm) 341 continue; 342 343 if (p->flags & PF_EXITING) { 344 /* 345 * If p is the current task and is in the process of 346 * releasing memory, we allow the "kill" to set 347 * TIF_MEMDIE, which will allow it to gain access to 348 * memory reserves. Otherwise, it may stall forever. 349 * 350 * The loop isn't broken here, however, in case other 351 * threads are found to have already been oom killed. 352 */ 353 if (p == current) { 354 chosen = p; 355 *ppoints = 1000; 356 } else { 357 /* 358 * If this task is not being ptraced on exit, 359 * then wait for it to finish before killing 360 * some other task unnecessarily. 361 */ 362 if (!(p->group_leader->ptrace & PT_TRACE_EXIT)) 363 return ERR_PTR(-1UL); 364 } 365 } 366 367 points = oom_badness(p, memcg, nodemask, totalpages); 368 if (points > *ppoints) { 369 chosen = p; 370 *ppoints = points; 371 } 372 } while_each_thread(g, p); 373 374 return chosen; 375 } 376 377 /** 378 * dump_tasks - dump current memory state of all system tasks 379 * @mem: current's memory controller, if constrained 380 * @nodemask: nodemask passed to page allocator for mempolicy ooms 381 * 382 * Dumps the current memory state of all eligible tasks. Tasks not in the same 383 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 384 * are not shown. 385 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 386 * value, oom_score_adj value, and name. 387 * 388 * Call with tasklist_lock read-locked. 389 */ 390 static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask) 391 { 392 struct task_struct *p; 393 struct task_struct *task; 394 395 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 396 for_each_process(p) { 397 if (oom_unkillable_task(p, memcg, nodemask)) 398 continue; 399 400 task = find_lock_task_mm(p); 401 if (!task) { 402 /* 403 * This is a kthread or all of p's threads have already 404 * detached their mm's. There's no need to report 405 * them; they can't be oom killed anyway. 406 */ 407 continue; 408 } 409 410 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 411 task->pid, task_uid(task), task->tgid, 412 task->mm->total_vm, get_mm_rss(task->mm), 413 task_cpu(task), task->signal->oom_adj, 414 task->signal->oom_score_adj, task->comm); 415 task_unlock(task); 416 } 417 } 418 419 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 420 struct mem_cgroup *memcg, const nodemask_t *nodemask) 421 { 422 task_lock(current); 423 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 424 "oom_adj=%d, oom_score_adj=%d\n", 425 current->comm, gfp_mask, order, current->signal->oom_adj, 426 current->signal->oom_score_adj); 427 cpuset_print_task_mems_allowed(current); 428 task_unlock(current); 429 dump_stack(); 430 mem_cgroup_print_oom_info(memcg, p); 431 show_mem(SHOW_MEM_FILTER_NODES); 432 if (sysctl_oom_dump_tasks) 433 dump_tasks(memcg, nodemask); 434 } 435 436 #define K(x) ((x) << (PAGE_SHIFT-10)) 437 static int oom_kill_task(struct task_struct *p) 438 { 439 struct task_struct *q; 440 struct mm_struct *mm; 441 442 p = find_lock_task_mm(p); 443 if (!p) 444 return 1; 445 446 /* mm cannot be safely dereferenced after task_unlock(p) */ 447 mm = p->mm; 448 449 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 450 task_pid_nr(p), p->comm, K(p->mm->total_vm), 451 K(get_mm_counter(p->mm, MM_ANONPAGES)), 452 K(get_mm_counter(p->mm, MM_FILEPAGES))); 453 task_unlock(p); 454 455 /* 456 * Kill all user processes sharing p->mm in other thread groups, if any. 457 * They don't get access to memory reserves or a higher scheduler 458 * priority, though, to avoid depletion of all memory or task 459 * starvation. This prevents mm->mmap_sem livelock when an oom killed 460 * task cannot exit because it requires the semaphore and its contended 461 * by another thread trying to allocate memory itself. That thread will 462 * now get access to memory reserves since it has a pending fatal 463 * signal. 464 */ 465 for_each_process(q) 466 if (q->mm == mm && !same_thread_group(q, p) && 467 !(q->flags & PF_KTHREAD)) { 468 if (q->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 469 continue; 470 471 task_lock(q); /* Protect ->comm from prctl() */ 472 pr_err("Kill process %d (%s) sharing same memory\n", 473 task_pid_nr(q), q->comm); 474 task_unlock(q); 475 force_sig(SIGKILL, q); 476 } 477 478 set_tsk_thread_flag(p, TIF_MEMDIE); 479 force_sig(SIGKILL, p); 480 481 return 0; 482 } 483 #undef K 484 485 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 486 unsigned int points, unsigned long totalpages, 487 struct mem_cgroup *memcg, nodemask_t *nodemask, 488 const char *message) 489 { 490 struct task_struct *victim = p; 491 struct task_struct *child; 492 struct task_struct *t = p; 493 unsigned int victim_points = 0; 494 495 if (printk_ratelimit()) 496 dump_header(p, gfp_mask, order, memcg, nodemask); 497 498 /* 499 * If the task is already exiting, don't alarm the sysadmin or kill 500 * its children or threads, just set TIF_MEMDIE so it can die quickly 501 */ 502 if (p->flags & PF_EXITING) { 503 set_tsk_thread_flag(p, TIF_MEMDIE); 504 return 0; 505 } 506 507 task_lock(p); 508 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 509 message, task_pid_nr(p), p->comm, points); 510 task_unlock(p); 511 512 /* 513 * If any of p's children has a different mm and is eligible for kill, 514 * the one with the highest oom_badness() score is sacrificed for its 515 * parent. This attempts to lose the minimal amount of work done while 516 * still freeing memory. 517 */ 518 do { 519 list_for_each_entry(child, &t->children, sibling) { 520 unsigned int child_points; 521 522 if (child->mm == p->mm) 523 continue; 524 /* 525 * oom_badness() returns 0 if the thread is unkillable 526 */ 527 child_points = oom_badness(child, memcg, nodemask, 528 totalpages); 529 if (child_points > victim_points) { 530 victim = child; 531 victim_points = child_points; 532 } 533 } 534 } while_each_thread(p, t); 535 536 return oom_kill_task(victim); 537 } 538 539 /* 540 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 541 */ 542 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 543 int order, const nodemask_t *nodemask) 544 { 545 if (likely(!sysctl_panic_on_oom)) 546 return; 547 if (sysctl_panic_on_oom != 2) { 548 /* 549 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 550 * does not panic for cpuset, mempolicy, or memcg allocation 551 * failures. 552 */ 553 if (constraint != CONSTRAINT_NONE) 554 return; 555 } 556 read_lock(&tasklist_lock); 557 dump_header(NULL, gfp_mask, order, NULL, nodemask); 558 read_unlock(&tasklist_lock); 559 panic("Out of memory: %s panic_on_oom is enabled\n", 560 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 561 } 562 563 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 564 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask) 565 { 566 unsigned long limit; 567 unsigned int points = 0; 568 struct task_struct *p; 569 570 /* 571 * If current has a pending SIGKILL, then automatically select it. The 572 * goal is to allow it to allocate so that it may quickly exit and free 573 * its memory. 574 */ 575 if (fatal_signal_pending(current)) { 576 set_thread_flag(TIF_MEMDIE); 577 return; 578 } 579 580 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); 581 limit = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT; 582 read_lock(&tasklist_lock); 583 retry: 584 p = select_bad_process(&points, limit, memcg, NULL); 585 if (!p || PTR_ERR(p) == -1UL) 586 goto out; 587 588 if (oom_kill_process(p, gfp_mask, 0, points, limit, memcg, NULL, 589 "Memory cgroup out of memory")) 590 goto retry; 591 out: 592 read_unlock(&tasklist_lock); 593 } 594 #endif 595 596 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 597 598 int register_oom_notifier(struct notifier_block *nb) 599 { 600 return blocking_notifier_chain_register(&oom_notify_list, nb); 601 } 602 EXPORT_SYMBOL_GPL(register_oom_notifier); 603 604 int unregister_oom_notifier(struct notifier_block *nb) 605 { 606 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 607 } 608 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 609 610 /* 611 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 612 * if a parallel OOM killing is already taking place that includes a zone in 613 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 614 */ 615 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 616 { 617 struct zoneref *z; 618 struct zone *zone; 619 int ret = 1; 620 621 spin_lock(&zone_scan_lock); 622 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 623 if (zone_is_oom_locked(zone)) { 624 ret = 0; 625 goto out; 626 } 627 } 628 629 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 630 /* 631 * Lock each zone in the zonelist under zone_scan_lock so a 632 * parallel invocation of try_set_zonelist_oom() doesn't succeed 633 * when it shouldn't. 634 */ 635 zone_set_flag(zone, ZONE_OOM_LOCKED); 636 } 637 638 out: 639 spin_unlock(&zone_scan_lock); 640 return ret; 641 } 642 643 /* 644 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 645 * allocation attempts with zonelists containing them may now recall the OOM 646 * killer, if necessary. 647 */ 648 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 649 { 650 struct zoneref *z; 651 struct zone *zone; 652 653 spin_lock(&zone_scan_lock); 654 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 655 zone_clear_flag(zone, ZONE_OOM_LOCKED); 656 } 657 spin_unlock(&zone_scan_lock); 658 } 659 660 /* 661 * Try to acquire the oom killer lock for all system zones. Returns zero if a 662 * parallel oom killing is taking place, otherwise locks all zones and returns 663 * non-zero. 664 */ 665 static int try_set_system_oom(void) 666 { 667 struct zone *zone; 668 int ret = 1; 669 670 spin_lock(&zone_scan_lock); 671 for_each_populated_zone(zone) 672 if (zone_is_oom_locked(zone)) { 673 ret = 0; 674 goto out; 675 } 676 for_each_populated_zone(zone) 677 zone_set_flag(zone, ZONE_OOM_LOCKED); 678 out: 679 spin_unlock(&zone_scan_lock); 680 return ret; 681 } 682 683 /* 684 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 685 * attempts or page faults may now recall the oom killer, if necessary. 686 */ 687 static void clear_system_oom(void) 688 { 689 struct zone *zone; 690 691 spin_lock(&zone_scan_lock); 692 for_each_populated_zone(zone) 693 zone_clear_flag(zone, ZONE_OOM_LOCKED); 694 spin_unlock(&zone_scan_lock); 695 } 696 697 /** 698 * out_of_memory - kill the "best" process when we run out of memory 699 * @zonelist: zonelist pointer 700 * @gfp_mask: memory allocation flags 701 * @order: amount of memory being requested as a power of 2 702 * @nodemask: nodemask passed to page allocator 703 * 704 * If we run out of memory, we have the choice between either 705 * killing a random task (bad), letting the system crash (worse) 706 * OR try to be smart about which process to kill. Note that we 707 * don't have to be perfect here, we just have to be good. 708 */ 709 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 710 int order, nodemask_t *nodemask) 711 { 712 const nodemask_t *mpol_mask; 713 struct task_struct *p; 714 unsigned long totalpages; 715 unsigned long freed = 0; 716 unsigned int points; 717 enum oom_constraint constraint = CONSTRAINT_NONE; 718 int killed = 0; 719 720 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 721 if (freed > 0) 722 /* Got some memory back in the last second. */ 723 return; 724 725 /* 726 * If current has a pending SIGKILL, then automatically select it. The 727 * goal is to allow it to allocate so that it may quickly exit and free 728 * its memory. 729 */ 730 if (fatal_signal_pending(current)) { 731 set_thread_flag(TIF_MEMDIE); 732 return; 733 } 734 735 /* 736 * Check if there were limitations on the allocation (only relevant for 737 * NUMA) that may require different handling. 738 */ 739 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 740 &totalpages); 741 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 742 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 743 744 read_lock(&tasklist_lock); 745 if (sysctl_oom_kill_allocating_task && 746 !oom_unkillable_task(current, NULL, nodemask) && 747 current->mm) { 748 /* 749 * oom_kill_process() needs tasklist_lock held. If it returns 750 * non-zero, current could not be killed so we must fallback to 751 * the tasklist scan. 752 */ 753 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, 754 NULL, nodemask, 755 "Out of memory (oom_kill_allocating_task)")) 756 goto out; 757 } 758 759 retry: 760 p = select_bad_process(&points, totalpages, NULL, mpol_mask); 761 if (PTR_ERR(p) == -1UL) 762 goto out; 763 764 /* Found nothing?!?! Either we hang forever, or we panic. */ 765 if (!p) { 766 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 767 read_unlock(&tasklist_lock); 768 panic("Out of memory and no killable processes...\n"); 769 } 770 771 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 772 nodemask, "Out of memory")) 773 goto retry; 774 killed = 1; 775 out: 776 read_unlock(&tasklist_lock); 777 778 /* 779 * Give "p" a good chance of killing itself before we 780 * retry to allocate memory unless "p" is current 781 */ 782 if (killed && !test_thread_flag(TIF_MEMDIE)) 783 schedule_timeout_uninterruptible(1); 784 } 785 786 /* 787 * The pagefault handler calls here because it is out of memory, so kill a 788 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 789 * oom killing is already in progress so do nothing. If a task is found with 790 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 791 */ 792 void pagefault_out_of_memory(void) 793 { 794 if (try_set_system_oom()) { 795 out_of_memory(NULL, 0, 0, NULL); 796 clear_system_oom(); 797 } 798 if (!test_thread_flag(TIF_MEMDIE)) 799 schedule_timeout_uninterruptible(1); 800 } 801