1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 #include <linux/memcontrol.h> 29 #include <linux/security.h> 30 31 int sysctl_panic_on_oom; 32 int sysctl_oom_kill_allocating_task; 33 int sysctl_oom_dump_tasks; 34 static DEFINE_SPINLOCK(zone_scan_lock); 35 /* #define DEBUG */ 36 37 /** 38 * badness - calculate a numeric value for how bad this task has been 39 * @p: task struct of which task we should calculate 40 * @uptime: current uptime in seconds 41 * 42 * The formula used is relatively simple and documented inline in the 43 * function. The main rationale is that we want to select a good task 44 * to kill when we run out of memory. 45 * 46 * Good in this context means that: 47 * 1) we lose the minimum amount of work done 48 * 2) we recover a large amount of memory 49 * 3) we don't kill anything innocent of eating tons of memory 50 * 4) we want to kill the minimum amount of processes (one) 51 * 5) we try to kill the process the user expects us to kill, this 52 * algorithm has been meticulously tuned to meet the principle 53 * of least surprise ... (be careful when you change it) 54 */ 55 56 unsigned long badness(struct task_struct *p, unsigned long uptime) 57 { 58 unsigned long points, cpu_time, run_time, s; 59 struct mm_struct *mm; 60 struct task_struct *child; 61 62 task_lock(p); 63 mm = p->mm; 64 if (!mm) { 65 task_unlock(p); 66 return 0; 67 } 68 69 /* 70 * The memory size of the process is the basis for the badness. 71 */ 72 points = mm->total_vm; 73 74 /* 75 * After this unlock we can no longer dereference local variable `mm' 76 */ 77 task_unlock(p); 78 79 /* 80 * swapoff can easily use up all memory, so kill those first. 81 */ 82 if (p->flags & PF_SWAPOFF) 83 return ULONG_MAX; 84 85 /* 86 * Processes which fork a lot of child processes are likely 87 * a good choice. We add half the vmsize of the children if they 88 * have an own mm. This prevents forking servers to flood the 89 * machine with an endless amount of children. In case a single 90 * child is eating the vast majority of memory, adding only half 91 * to the parents will make the child our kill candidate of choice. 92 */ 93 list_for_each_entry(child, &p->children, sibling) { 94 task_lock(child); 95 if (child->mm != mm && child->mm) 96 points += child->mm->total_vm/2 + 1; 97 task_unlock(child); 98 } 99 100 /* 101 * CPU time is in tens of seconds and run time is in thousands 102 * of seconds. There is no particular reason for this other than 103 * that it turned out to work very well in practice. 104 */ 105 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 106 >> (SHIFT_HZ + 3); 107 108 if (uptime >= p->start_time.tv_sec) 109 run_time = (uptime - p->start_time.tv_sec) >> 10; 110 else 111 run_time = 0; 112 113 s = int_sqrt(cpu_time); 114 if (s) 115 points /= s; 116 s = int_sqrt(int_sqrt(run_time)); 117 if (s) 118 points /= s; 119 120 /* 121 * Niced processes are most likely less important, so double 122 * their badness points. 123 */ 124 if (task_nice(p) > 0) 125 points *= 2; 126 127 /* 128 * Superuser processes are usually more important, so we make it 129 * less likely that we kill those. 130 */ 131 if (has_capability_noaudit(p, CAP_SYS_ADMIN) || 132 has_capability_noaudit(p, CAP_SYS_RESOURCE)) 133 points /= 4; 134 135 /* 136 * We don't want to kill a process with direct hardware access. 137 * Not only could that mess up the hardware, but usually users 138 * tend to only have this flag set on applications they think 139 * of as important. 140 */ 141 if (has_capability_noaudit(p, CAP_SYS_RAWIO)) 142 points /= 4; 143 144 /* 145 * If p's nodes don't overlap ours, it may still help to kill p 146 * because p may have allocated or otherwise mapped memory on 147 * this node before. However it will be less likely. 148 */ 149 if (!cpuset_mems_allowed_intersects(current, p)) 150 points /= 8; 151 152 /* 153 * Adjust the score by oomkilladj. 154 */ 155 if (p->oomkilladj) { 156 if (p->oomkilladj > 0) { 157 if (!points) 158 points = 1; 159 points <<= p->oomkilladj; 160 } else 161 points >>= -(p->oomkilladj); 162 } 163 164 #ifdef DEBUG 165 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 166 p->pid, p->comm, points); 167 #endif 168 return points; 169 } 170 171 /* 172 * Determine the type of allocation constraint. 173 */ 174 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, 175 gfp_t gfp_mask) 176 { 177 #ifdef CONFIG_NUMA 178 struct zone *zone; 179 struct zoneref *z; 180 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 181 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 182 183 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 184 if (cpuset_zone_allowed_softwall(zone, gfp_mask)) 185 node_clear(zone_to_nid(zone), nodes); 186 else 187 return CONSTRAINT_CPUSET; 188 189 if (!nodes_empty(nodes)) 190 return CONSTRAINT_MEMORY_POLICY; 191 #endif 192 193 return CONSTRAINT_NONE; 194 } 195 196 /* 197 * Simple selection loop. We chose the process with the highest 198 * number of 'points'. We expect the caller will lock the tasklist. 199 * 200 * (not docbooked, we don't want this one cluttering up the manual) 201 */ 202 static struct task_struct *select_bad_process(unsigned long *ppoints, 203 struct mem_cgroup *mem) 204 { 205 struct task_struct *g, *p; 206 struct task_struct *chosen = NULL; 207 struct timespec uptime; 208 *ppoints = 0; 209 210 do_posix_clock_monotonic_gettime(&uptime); 211 do_each_thread(g, p) { 212 unsigned long points; 213 214 /* 215 * skip kernel threads and tasks which have already released 216 * their mm. 217 */ 218 if (!p->mm) 219 continue; 220 /* skip the init task */ 221 if (is_global_init(p)) 222 continue; 223 if (mem && !task_in_mem_cgroup(p, mem)) 224 continue; 225 226 /* 227 * This task already has access to memory reserves and is 228 * being killed. Don't allow any other task access to the 229 * memory reserve. 230 * 231 * Note: this may have a chance of deadlock if it gets 232 * blocked waiting for another task which itself is waiting 233 * for memory. Is there a better alternative? 234 */ 235 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 236 return ERR_PTR(-1UL); 237 238 /* 239 * This is in the process of releasing memory so wait for it 240 * to finish before killing some other task by mistake. 241 * 242 * However, if p is the current task, we allow the 'kill' to 243 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 244 * which will allow it to gain access to memory reserves in 245 * the process of exiting and releasing its resources. 246 * Otherwise we could get an easy OOM deadlock. 247 */ 248 if (p->flags & PF_EXITING) { 249 if (p != current) 250 return ERR_PTR(-1UL); 251 252 chosen = p; 253 *ppoints = ULONG_MAX; 254 } 255 256 if (p->oomkilladj == OOM_DISABLE) 257 continue; 258 259 points = badness(p, uptime.tv_sec); 260 if (points > *ppoints || !chosen) { 261 chosen = p; 262 *ppoints = points; 263 } 264 } while_each_thread(g, p); 265 266 return chosen; 267 } 268 269 /** 270 * dump_tasks - dump current memory state of all system tasks 271 * @mem: target memory controller 272 * 273 * Dumps the current memory state of all system tasks, excluding kernel threads. 274 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 275 * score, and name. 276 * 277 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 278 * shown. 279 * 280 * Call with tasklist_lock read-locked. 281 */ 282 static void dump_tasks(const struct mem_cgroup *mem) 283 { 284 struct task_struct *g, *p; 285 286 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 287 "name\n"); 288 do_each_thread(g, p) { 289 /* 290 * total_vm and rss sizes do not exist for tasks with a 291 * detached mm so there's no need to report them. 292 */ 293 if (!p->mm) 294 continue; 295 if (mem && !task_in_mem_cgroup(p, mem)) 296 continue; 297 if (!thread_group_leader(p)) 298 continue; 299 300 task_lock(p); 301 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", 302 p->pid, __task_cred(p)->uid, p->tgid, 303 p->mm->total_vm, get_mm_rss(p->mm), (int)task_cpu(p), 304 p->oomkilladj, p->comm); 305 task_unlock(p); 306 } while_each_thread(g, p); 307 } 308 309 /* 310 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 311 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 312 * set. 313 */ 314 static void __oom_kill_task(struct task_struct *p, int verbose) 315 { 316 if (is_global_init(p)) { 317 WARN_ON(1); 318 printk(KERN_WARNING "tried to kill init!\n"); 319 return; 320 } 321 322 if (!p->mm) { 323 WARN_ON(1); 324 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 325 return; 326 } 327 328 if (verbose) 329 printk(KERN_ERR "Killed process %d (%s)\n", 330 task_pid_nr(p), p->comm); 331 332 /* 333 * We give our sacrificial lamb high priority and access to 334 * all the memory it needs. That way it should be able to 335 * exit() and clear out its resources quickly... 336 */ 337 p->rt.time_slice = HZ; 338 set_tsk_thread_flag(p, TIF_MEMDIE); 339 340 force_sig(SIGKILL, p); 341 } 342 343 static int oom_kill_task(struct task_struct *p) 344 { 345 struct mm_struct *mm; 346 struct task_struct *g, *q; 347 348 mm = p->mm; 349 350 /* WARNING: mm may not be dereferenced since we did not obtain its 351 * value from get_task_mm(p). This is OK since all we need to do is 352 * compare mm to q->mm below. 353 * 354 * Furthermore, even if mm contains a non-NULL value, p->mm may 355 * change to NULL at any time since we do not hold task_lock(p). 356 * However, this is of no concern to us. 357 */ 358 359 if (mm == NULL) 360 return 1; 361 362 /* 363 * Don't kill the process if any threads are set to OOM_DISABLE 364 */ 365 do_each_thread(g, q) { 366 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 367 return 1; 368 } while_each_thread(g, q); 369 370 __oom_kill_task(p, 1); 371 372 /* 373 * kill all processes that share the ->mm (i.e. all threads), 374 * but are in a different thread group. Don't let them have access 375 * to memory reserves though, otherwise we might deplete all memory. 376 */ 377 do_each_thread(g, q) { 378 if (q->mm == mm && !same_thread_group(q, p)) 379 force_sig(SIGKILL, q); 380 } while_each_thread(g, q); 381 382 return 0; 383 } 384 385 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 386 unsigned long points, struct mem_cgroup *mem, 387 const char *message) 388 { 389 struct task_struct *c; 390 391 if (printk_ratelimit()) { 392 printk(KERN_WARNING "%s invoked oom-killer: " 393 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 394 current->comm, gfp_mask, order, current->oomkilladj); 395 task_lock(current); 396 cpuset_print_task_mems_allowed(current); 397 task_unlock(current); 398 dump_stack(); 399 show_mem(); 400 if (sysctl_oom_dump_tasks) 401 dump_tasks(mem); 402 } 403 404 /* 405 * If the task is already exiting, don't alarm the sysadmin or kill 406 * its children or threads, just set TIF_MEMDIE so it can die quickly 407 */ 408 if (p->flags & PF_EXITING) { 409 __oom_kill_task(p, 0); 410 return 0; 411 } 412 413 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 414 message, task_pid_nr(p), p->comm, points); 415 416 /* Try to kill a child first */ 417 list_for_each_entry(c, &p->children, sibling) { 418 if (c->mm == p->mm) 419 continue; 420 if (!oom_kill_task(c)) 421 return 0; 422 } 423 return oom_kill_task(p); 424 } 425 426 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 427 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 428 { 429 unsigned long points = 0; 430 struct task_struct *p; 431 432 read_lock(&tasklist_lock); 433 retry: 434 p = select_bad_process(&points, mem); 435 if (PTR_ERR(p) == -1UL) 436 goto out; 437 438 if (!p) 439 p = current; 440 441 if (oom_kill_process(p, gfp_mask, 0, points, mem, 442 "Memory cgroup out of memory")) 443 goto retry; 444 out: 445 read_unlock(&tasklist_lock); 446 } 447 #endif 448 449 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 450 451 int register_oom_notifier(struct notifier_block *nb) 452 { 453 return blocking_notifier_chain_register(&oom_notify_list, nb); 454 } 455 EXPORT_SYMBOL_GPL(register_oom_notifier); 456 457 int unregister_oom_notifier(struct notifier_block *nb) 458 { 459 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 460 } 461 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 462 463 /* 464 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 465 * if a parallel OOM killing is already taking place that includes a zone in 466 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 467 */ 468 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) 469 { 470 struct zoneref *z; 471 struct zone *zone; 472 int ret = 1; 473 474 spin_lock(&zone_scan_lock); 475 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 476 if (zone_is_oom_locked(zone)) { 477 ret = 0; 478 goto out; 479 } 480 } 481 482 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 483 /* 484 * Lock each zone in the zonelist under zone_scan_lock so a 485 * parallel invocation of try_set_zone_oom() doesn't succeed 486 * when it shouldn't. 487 */ 488 zone_set_flag(zone, ZONE_OOM_LOCKED); 489 } 490 491 out: 492 spin_unlock(&zone_scan_lock); 493 return ret; 494 } 495 496 /* 497 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 498 * allocation attempts with zonelists containing them may now recall the OOM 499 * killer, if necessary. 500 */ 501 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 502 { 503 struct zoneref *z; 504 struct zone *zone; 505 506 spin_lock(&zone_scan_lock); 507 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 508 zone_clear_flag(zone, ZONE_OOM_LOCKED); 509 } 510 spin_unlock(&zone_scan_lock); 511 } 512 513 /* 514 * Must be called with tasklist_lock held for read. 515 */ 516 static void __out_of_memory(gfp_t gfp_mask, int order) 517 { 518 if (sysctl_oom_kill_allocating_task) { 519 oom_kill_process(current, gfp_mask, order, 0, NULL, 520 "Out of memory (oom_kill_allocating_task)"); 521 522 } else { 523 unsigned long points; 524 struct task_struct *p; 525 526 retry: 527 /* 528 * Rambo mode: Shoot down a process and hope it solves whatever 529 * issues we may have. 530 */ 531 p = select_bad_process(&points, NULL); 532 533 if (PTR_ERR(p) == -1UL) 534 return; 535 536 /* Found nothing?!?! Either we hang forever, or we panic. */ 537 if (!p) { 538 read_unlock(&tasklist_lock); 539 panic("Out of memory and no killable processes...\n"); 540 } 541 542 if (oom_kill_process(p, gfp_mask, order, points, NULL, 543 "Out of memory")) 544 goto retry; 545 } 546 } 547 548 /* 549 * pagefault handler calls into here because it is out of memory but 550 * doesn't know exactly how or why. 551 */ 552 void pagefault_out_of_memory(void) 553 { 554 unsigned long freed = 0; 555 556 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 557 if (freed > 0) 558 /* Got some memory back in the last second. */ 559 return; 560 561 /* 562 * If this is from memcg, oom-killer is already invoked. 563 * and not worth to go system-wide-oom. 564 */ 565 if (mem_cgroup_oom_called(current)) 566 goto rest_and_return; 567 568 if (sysctl_panic_on_oom) 569 panic("out of memory from page fault. panic_on_oom is selected.\n"); 570 571 read_lock(&tasklist_lock); 572 __out_of_memory(0, 0); /* unknown gfp_mask and order */ 573 read_unlock(&tasklist_lock); 574 575 /* 576 * Give "p" a good chance of killing itself before we 577 * retry to allocate memory. 578 */ 579 rest_and_return: 580 if (!test_thread_flag(TIF_MEMDIE)) 581 schedule_timeout_uninterruptible(1); 582 } 583 584 /** 585 * out_of_memory - kill the "best" process when we run out of memory 586 * @zonelist: zonelist pointer 587 * @gfp_mask: memory allocation flags 588 * @order: amount of memory being requested as a power of 2 589 * 590 * If we run out of memory, we have the choice between either 591 * killing a random task (bad), letting the system crash (worse) 592 * OR try to be smart about which process to kill. Note that we 593 * don't have to be perfect here, we just have to be good. 594 */ 595 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 596 { 597 unsigned long freed = 0; 598 enum oom_constraint constraint; 599 600 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 601 if (freed > 0) 602 /* Got some memory back in the last second. */ 603 return; 604 605 if (sysctl_panic_on_oom == 2) 606 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 607 608 /* 609 * Check if there were limitations on the allocation (only relevant for 610 * NUMA) that may require different handling. 611 */ 612 constraint = constrained_alloc(zonelist, gfp_mask); 613 read_lock(&tasklist_lock); 614 615 switch (constraint) { 616 case CONSTRAINT_MEMORY_POLICY: 617 oom_kill_process(current, gfp_mask, order, 0, NULL, 618 "No available memory (MPOL_BIND)"); 619 break; 620 621 case CONSTRAINT_NONE: 622 if (sysctl_panic_on_oom) 623 panic("out of memory. panic_on_oom is selected\n"); 624 /* Fall-through */ 625 case CONSTRAINT_CPUSET: 626 __out_of_memory(gfp_mask, order); 627 break; 628 } 629 630 read_unlock(&tasklist_lock); 631 632 /* 633 * Give "p" a good chance of killing itself before we 634 * retry to allocate memory unless "p" is current 635 */ 636 if (!test_thread_flag(TIF_MEMDIE)) 637 schedule_timeout_uninterruptible(1); 638 } 639