xref: /linux/mm/oom_kill.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/sched.h>
21 #include <linux/swap.h>
22 #include <linux/timex.h>
23 #include <linux/jiffies.h>
24 #include <linux/cpuset.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 
28 int sysctl_panic_on_oom;
29 /* #define DEBUG */
30 
31 /**
32  * badness - calculate a numeric value for how bad this task has been
33  * @p: task struct of which task we should calculate
34  * @uptime: current uptime in seconds
35  *
36  * The formula used is relatively simple and documented inline in the
37  * function. The main rationale is that we want to select a good task
38  * to kill when we run out of memory.
39  *
40  * Good in this context means that:
41  * 1) we lose the minimum amount of work done
42  * 2) we recover a large amount of memory
43  * 3) we don't kill anything innocent of eating tons of memory
44  * 4) we want to kill the minimum amount of processes (one)
45  * 5) we try to kill the process the user expects us to kill, this
46  *    algorithm has been meticulously tuned to meet the principle
47  *    of least surprise ... (be careful when you change it)
48  */
49 
50 unsigned long badness(struct task_struct *p, unsigned long uptime)
51 {
52 	unsigned long points, cpu_time, run_time, s;
53 	struct mm_struct *mm;
54 	struct task_struct *child;
55 
56 	task_lock(p);
57 	mm = p->mm;
58 	if (!mm) {
59 		task_unlock(p);
60 		return 0;
61 	}
62 
63 	/*
64 	 * The memory size of the process is the basis for the badness.
65 	 */
66 	points = mm->total_vm;
67 
68 	/*
69 	 * After this unlock we can no longer dereference local variable `mm'
70 	 */
71 	task_unlock(p);
72 
73 	/*
74 	 * swapoff can easily use up all memory, so kill those first.
75 	 */
76 	if (p->flags & PF_SWAPOFF)
77 		return ULONG_MAX;
78 
79 	/*
80 	 * Processes which fork a lot of child processes are likely
81 	 * a good choice. We add half the vmsize of the children if they
82 	 * have an own mm. This prevents forking servers to flood the
83 	 * machine with an endless amount of children. In case a single
84 	 * child is eating the vast majority of memory, adding only half
85 	 * to the parents will make the child our kill candidate of choice.
86 	 */
87 	list_for_each_entry(child, &p->children, sibling) {
88 		task_lock(child);
89 		if (child->mm != mm && child->mm)
90 			points += child->mm->total_vm/2 + 1;
91 		task_unlock(child);
92 	}
93 
94 	/*
95 	 * CPU time is in tens of seconds and run time is in thousands
96          * of seconds. There is no particular reason for this other than
97          * that it turned out to work very well in practice.
98 	 */
99 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
100 		>> (SHIFT_HZ + 3);
101 
102 	if (uptime >= p->start_time.tv_sec)
103 		run_time = (uptime - p->start_time.tv_sec) >> 10;
104 	else
105 		run_time = 0;
106 
107 	s = int_sqrt(cpu_time);
108 	if (s)
109 		points /= s;
110 	s = int_sqrt(int_sqrt(run_time));
111 	if (s)
112 		points /= s;
113 
114 	/*
115 	 * Niced processes are most likely less important, so double
116 	 * their badness points.
117 	 */
118 	if (task_nice(p) > 0)
119 		points *= 2;
120 
121 	/*
122 	 * Superuser processes are usually more important, so we make it
123 	 * less likely that we kill those.
124 	 */
125 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
126 				p->uid == 0 || p->euid == 0)
127 		points /= 4;
128 
129 	/*
130 	 * We don't want to kill a process with direct hardware access.
131 	 * Not only could that mess up the hardware, but usually users
132 	 * tend to only have this flag set on applications they think
133 	 * of as important.
134 	 */
135 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
136 		points /= 4;
137 
138 	/*
139 	 * If p's nodes don't overlap ours, it may still help to kill p
140 	 * because p may have allocated or otherwise mapped memory on
141 	 * this node before. However it will be less likely.
142 	 */
143 	if (!cpuset_excl_nodes_overlap(p))
144 		points /= 8;
145 
146 	/*
147 	 * Adjust the score by oomkilladj.
148 	 */
149 	if (p->oomkilladj) {
150 		if (p->oomkilladj > 0)
151 			points <<= p->oomkilladj;
152 		else
153 			points >>= -(p->oomkilladj);
154 	}
155 
156 #ifdef DEBUG
157 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
158 	p->pid, p->comm, points);
159 #endif
160 	return points;
161 }
162 
163 /*
164  * Types of limitations to the nodes from which allocations may occur
165  */
166 #define CONSTRAINT_NONE 1
167 #define CONSTRAINT_MEMORY_POLICY 2
168 #define CONSTRAINT_CPUSET 3
169 
170 /*
171  * Determine the type of allocation constraint.
172  */
173 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
174 {
175 #ifdef CONFIG_NUMA
176 	struct zone **z;
177 	nodemask_t nodes;
178 	int node;
179 	/* node has memory ? */
180 	for_each_online_node(node)
181 		if (NODE_DATA(node)->node_present_pages)
182 			node_set(node, nodes);
183 
184 	for (z = zonelist->zones; *z; z++)
185 		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
186 			node_clear(zone_to_nid(*z), nodes);
187 		else
188 			return CONSTRAINT_CPUSET;
189 
190 	if (!nodes_empty(nodes))
191 		return CONSTRAINT_MEMORY_POLICY;
192 #endif
193 
194 	return CONSTRAINT_NONE;
195 }
196 
197 /*
198  * Simple selection loop. We chose the process with the highest
199  * number of 'points'. We expect the caller will lock the tasklist.
200  *
201  * (not docbooked, we don't want this one cluttering up the manual)
202  */
203 static struct task_struct *select_bad_process(unsigned long *ppoints)
204 {
205 	struct task_struct *g, *p;
206 	struct task_struct *chosen = NULL;
207 	struct timespec uptime;
208 	*ppoints = 0;
209 
210 	do_posix_clock_monotonic_gettime(&uptime);
211 	do_each_thread(g, p) {
212 		unsigned long points;
213 
214 		/*
215 		 * skip kernel threads and tasks which have already released
216 		 * their mm.
217 		 */
218 		if (!p->mm)
219 			continue;
220 		/* skip the init task */
221 		if (is_init(p))
222 			continue;
223 
224 		/*
225 		 * This task already has access to memory reserves and is
226 		 * being killed. Don't allow any other task access to the
227 		 * memory reserve.
228 		 *
229 		 * Note: this may have a chance of deadlock if it gets
230 		 * blocked waiting for another task which itself is waiting
231 		 * for memory. Is there a better alternative?
232 		 */
233 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
234 			return ERR_PTR(-1UL);
235 
236 		/*
237 		 * This is in the process of releasing memory so wait for it
238 		 * to finish before killing some other task by mistake.
239 		 *
240 		 * However, if p is the current task, we allow the 'kill' to
241 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
242 		 * which will allow it to gain access to memory reserves in
243 		 * the process of exiting and releasing its resources.
244 		 * Otherwise we could get an easy OOM deadlock.
245 		 */
246 		if (p->flags & PF_EXITING) {
247 			if (p != current)
248 				return ERR_PTR(-1UL);
249 
250 			chosen = p;
251 			*ppoints = ULONG_MAX;
252 		}
253 
254 		if (p->oomkilladj == OOM_DISABLE)
255 			continue;
256 
257 		points = badness(p, uptime.tv_sec);
258 		if (points > *ppoints || !chosen) {
259 			chosen = p;
260 			*ppoints = points;
261 		}
262 	} while_each_thread(g, p);
263 
264 	return chosen;
265 }
266 
267 /**
268  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
269  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
270  * set.
271  */
272 static void __oom_kill_task(struct task_struct *p, int verbose)
273 {
274 	if (is_init(p)) {
275 		WARN_ON(1);
276 		printk(KERN_WARNING "tried to kill init!\n");
277 		return;
278 	}
279 
280 	if (!p->mm) {
281 		WARN_ON(1);
282 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
283 		return;
284 	}
285 
286 	if (verbose)
287 		printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
288 
289 	/*
290 	 * We give our sacrificial lamb high priority and access to
291 	 * all the memory it needs. That way it should be able to
292 	 * exit() and clear out its resources quickly...
293 	 */
294 	p->time_slice = HZ;
295 	set_tsk_thread_flag(p, TIF_MEMDIE);
296 
297 	force_sig(SIGKILL, p);
298 }
299 
300 static int oom_kill_task(struct task_struct *p)
301 {
302 	struct mm_struct *mm;
303 	struct task_struct *g, *q;
304 
305 	mm = p->mm;
306 
307 	/* WARNING: mm may not be dereferenced since we did not obtain its
308 	 * value from get_task_mm(p).  This is OK since all we need to do is
309 	 * compare mm to q->mm below.
310 	 *
311 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
312 	 * change to NULL at any time since we do not hold task_lock(p).
313 	 * However, this is of no concern to us.
314 	 */
315 
316 	if (mm == NULL)
317 		return 1;
318 
319 	/*
320 	 * Don't kill the process if any threads are set to OOM_DISABLE
321 	 */
322 	do_each_thread(g, q) {
323 		if (q->mm == mm && p->oomkilladj == OOM_DISABLE)
324 			return 1;
325 	} while_each_thread(g, q);
326 
327 	__oom_kill_task(p, 1);
328 
329 	/*
330 	 * kill all processes that share the ->mm (i.e. all threads),
331 	 * but are in a different thread group. Don't let them have access
332 	 * to memory reserves though, otherwise we might deplete all memory.
333 	 */
334 	do_each_thread(g, q) {
335 		if (q->mm == mm && q->tgid != p->tgid)
336 			force_sig(SIGKILL, p);
337 	} while_each_thread(g, q);
338 
339 	return 0;
340 }
341 
342 static int oom_kill_process(struct task_struct *p, unsigned long points,
343 		const char *message)
344 {
345 	struct task_struct *c;
346 	struct list_head *tsk;
347 
348 	/*
349 	 * If the task is already exiting, don't alarm the sysadmin or kill
350 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
351 	 */
352 	if (p->flags & PF_EXITING) {
353 		__oom_kill_task(p, 0);
354 		return 0;
355 	}
356 
357 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
358 					message, p->pid, p->comm, points);
359 
360 	/* Try to kill a child first */
361 	list_for_each(tsk, &p->children) {
362 		c = list_entry(tsk, struct task_struct, sibling);
363 		if (c->mm == p->mm)
364 			continue;
365 		if (!oom_kill_task(c))
366 			return 0;
367 	}
368 	return oom_kill_task(p);
369 }
370 
371 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
372 
373 int register_oom_notifier(struct notifier_block *nb)
374 {
375 	return blocking_notifier_chain_register(&oom_notify_list, nb);
376 }
377 EXPORT_SYMBOL_GPL(register_oom_notifier);
378 
379 int unregister_oom_notifier(struct notifier_block *nb)
380 {
381 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
382 }
383 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
384 
385 /**
386  * out_of_memory - kill the "best" process when we run out of memory
387  *
388  * If we run out of memory, we have the choice between either
389  * killing a random task (bad), letting the system crash (worse)
390  * OR try to be smart about which process to kill. Note that we
391  * don't have to be perfect here, we just have to be good.
392  */
393 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
394 {
395 	struct task_struct *p;
396 	unsigned long points = 0;
397 	unsigned long freed = 0;
398 
399 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
400 	if (freed > 0)
401 		/* Got some memory back in the last second. */
402 		return;
403 
404 	if (printk_ratelimit()) {
405 		printk(KERN_WARNING "%s invoked oom-killer: "
406 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
407 			current->comm, gfp_mask, order, current->oomkilladj);
408 		dump_stack();
409 		show_mem();
410 	}
411 
412 	cpuset_lock();
413 	read_lock(&tasklist_lock);
414 
415 	/*
416 	 * Check if there were limitations on the allocation (only relevant for
417 	 * NUMA) that may require different handling.
418 	 */
419 	switch (constrained_alloc(zonelist, gfp_mask)) {
420 	case CONSTRAINT_MEMORY_POLICY:
421 		oom_kill_process(current, points,
422 				"No available memory (MPOL_BIND)");
423 		break;
424 
425 	case CONSTRAINT_CPUSET:
426 		oom_kill_process(current, points,
427 				"No available memory in cpuset");
428 		break;
429 
430 	case CONSTRAINT_NONE:
431 		if (sysctl_panic_on_oom)
432 			panic("out of memory. panic_on_oom is selected\n");
433 retry:
434 		/*
435 		 * Rambo mode: Shoot down a process and hope it solves whatever
436 		 * issues we may have.
437 		 */
438 		p = select_bad_process(&points);
439 
440 		if (PTR_ERR(p) == -1UL)
441 			goto out;
442 
443 		/* Found nothing?!?! Either we hang forever, or we panic. */
444 		if (!p) {
445 			read_unlock(&tasklist_lock);
446 			cpuset_unlock();
447 			panic("Out of memory and no killable processes...\n");
448 		}
449 
450 		if (oom_kill_process(p, points, "Out of memory"))
451 			goto retry;
452 
453 		break;
454 	}
455 
456 out:
457 	read_unlock(&tasklist_lock);
458 	cpuset_unlock();
459 
460 	/*
461 	 * Give "p" a good chance of killing itself before we
462 	 * retry to allocate memory unless "p" is current
463 	 */
464 	if (!test_thread_flag(TIF_MEMDIE))
465 		schedule_timeout_uninterruptible(1);
466 }
467