1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/debug.h> 30 #include <linux/swap.h> 31 #include <linux/syscalls.h> 32 #include <linux/timex.h> 33 #include <linux/jiffies.h> 34 #include <linux/cpuset.h> 35 #include <linux/export.h> 36 #include <linux/notifier.h> 37 #include <linux/memcontrol.h> 38 #include <linux/mempolicy.h> 39 #include <linux/security.h> 40 #include <linux/ptrace.h> 41 #include <linux/freezer.h> 42 #include <linux/ftrace.h> 43 #include <linux/ratelimit.h> 44 #include <linux/kthread.h> 45 #include <linux/init.h> 46 #include <linux/mmu_notifier.h> 47 48 #include <asm/tlb.h> 49 #include "internal.h" 50 #include "slab.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/oom.h> 54 55 static int sysctl_panic_on_oom; 56 static int sysctl_oom_kill_allocating_task; 57 static int sysctl_oom_dump_tasks = 1; 58 59 /* 60 * Serializes oom killer invocations (out_of_memory()) from all contexts to 61 * prevent from over eager oom killing (e.g. when the oom killer is invoked 62 * from different domains). 63 * 64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 65 * and mark_oom_victim 66 */ 67 DEFINE_MUTEX(oom_lock); 68 /* Serializes oom_score_adj and oom_score_adj_min updates */ 69 DEFINE_MUTEX(oom_adj_mutex); 70 71 static inline bool is_memcg_oom(struct oom_control *oc) 72 { 73 return oc->memcg != NULL; 74 } 75 76 #ifdef CONFIG_NUMA 77 /** 78 * oom_cpuset_eligible() - check task eligibility for kill 79 * @start: task struct of which task to consider 80 * @oc: pointer to struct oom_control 81 * 82 * Task eligibility is determined by whether or not a candidate task, @tsk, 83 * shares the same mempolicy nodes as current if it is bound by such a policy 84 * and whether or not it has the same set of allowed cpuset nodes. 85 * 86 * This function is assuming oom-killer context and 'current' has triggered 87 * the oom-killer. 88 */ 89 static bool oom_cpuset_eligible(struct task_struct *start, 90 struct oom_control *oc) 91 { 92 struct task_struct *tsk; 93 bool ret = false; 94 const nodemask_t *mask = oc->nodemask; 95 96 rcu_read_lock(); 97 for_each_thread(start, tsk) { 98 if (mask) { 99 /* 100 * If this is a mempolicy constrained oom, tsk's 101 * cpuset is irrelevant. Only return true if its 102 * mempolicy intersects current, otherwise it may be 103 * needlessly killed. 104 */ 105 ret = mempolicy_in_oom_domain(tsk, mask); 106 } else { 107 /* 108 * This is not a mempolicy constrained oom, so only 109 * check the mems of tsk's cpuset. 110 */ 111 ret = cpuset_mems_allowed_intersects(current, tsk); 112 } 113 if (ret) 114 break; 115 } 116 rcu_read_unlock(); 117 118 return ret; 119 } 120 #else 121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 122 { 123 return true; 124 } 125 #endif /* CONFIG_NUMA */ 126 127 /* 128 * The process p may have detached its own ->mm while exiting or through 129 * kthread_use_mm(), but one or more of its subthreads may still have a valid 130 * pointer. Return p, or any of its subthreads with a valid ->mm, with 131 * task_lock() held. 132 */ 133 struct task_struct *find_lock_task_mm(struct task_struct *p) 134 { 135 struct task_struct *t; 136 137 rcu_read_lock(); 138 139 for_each_thread(p, t) { 140 task_lock(t); 141 if (likely(t->mm)) 142 goto found; 143 task_unlock(t); 144 } 145 t = NULL; 146 found: 147 rcu_read_unlock(); 148 149 return t; 150 } 151 152 /* 153 * order == -1 means the oom kill is required by sysrq, otherwise only 154 * for display purposes. 155 */ 156 static inline bool is_sysrq_oom(struct oom_control *oc) 157 { 158 return oc->order == -1; 159 } 160 161 /* return true if the task is not adequate as candidate victim task. */ 162 static bool oom_unkillable_task(struct task_struct *p) 163 { 164 if (is_global_init(p)) 165 return true; 166 if (p->flags & PF_KTHREAD) 167 return true; 168 return false; 169 } 170 171 /* 172 * Check whether unreclaimable slab amount is greater than 173 * all user memory(LRU pages). 174 * dump_unreclaimable_slab() could help in the case that 175 * oom due to too much unreclaimable slab used by kernel. 176 */ 177 static bool should_dump_unreclaim_slab(void) 178 { 179 unsigned long nr_lru; 180 181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 182 global_node_page_state(NR_INACTIVE_ANON) + 183 global_node_page_state(NR_ACTIVE_FILE) + 184 global_node_page_state(NR_INACTIVE_FILE) + 185 global_node_page_state(NR_ISOLATED_ANON) + 186 global_node_page_state(NR_ISOLATED_FILE) + 187 global_node_page_state(NR_UNEVICTABLE); 188 189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 190 } 191 192 /** 193 * oom_badness - heuristic function to determine which candidate task to kill 194 * @p: task struct of which task we should calculate 195 * @totalpages: total present RAM allowed for page allocation 196 * 197 * The heuristic for determining which task to kill is made to be as simple and 198 * predictable as possible. The goal is to return the highest value for the 199 * task consuming the most memory to avoid subsequent oom failures. 200 */ 201 long oom_badness(struct task_struct *p, unsigned long totalpages) 202 { 203 long points; 204 long adj; 205 206 if (oom_unkillable_task(p)) 207 return LONG_MIN; 208 209 p = find_lock_task_mm(p); 210 if (!p) 211 return LONG_MIN; 212 213 /* 214 * Do not even consider tasks which are explicitly marked oom 215 * unkillable or have been already oom reaped or the are in 216 * the middle of vfork 217 */ 218 adj = (long)p->signal->oom_score_adj; 219 if (adj == OOM_SCORE_ADJ_MIN || 220 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 221 in_vfork(p)) { 222 task_unlock(p); 223 return LONG_MIN; 224 } 225 226 /* 227 * The baseline for the badness score is the proportion of RAM that each 228 * task's rss, pagetable and swap space use. 229 */ 230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 231 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 232 task_unlock(p); 233 234 /* Normalize to oom_score_adj units */ 235 adj *= totalpages / 1000; 236 points += adj; 237 238 return points; 239 } 240 241 static const char * const oom_constraint_text[] = { 242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 246 }; 247 248 /* 249 * Determine the type of allocation constraint. 250 */ 251 static enum oom_constraint constrained_alloc(struct oom_control *oc) 252 { 253 struct zone *zone; 254 struct zoneref *z; 255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 256 bool cpuset_limited = false; 257 int nid; 258 259 if (is_memcg_oom(oc)) { 260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 261 return CONSTRAINT_MEMCG; 262 } 263 264 /* Default to all available memory */ 265 oc->totalpages = totalram_pages() + total_swap_pages; 266 267 if (!IS_ENABLED(CONFIG_NUMA)) 268 return CONSTRAINT_NONE; 269 270 if (!oc->zonelist) 271 return CONSTRAINT_NONE; 272 /* 273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 274 * to kill current.We have to random task kill in this case. 275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 276 */ 277 if (oc->gfp_mask & __GFP_THISNODE) 278 return CONSTRAINT_NONE; 279 280 /* 281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 282 * the page allocator means a mempolicy is in effect. Cpuset policy 283 * is enforced in get_page_from_freelist(). 284 */ 285 if (oc->nodemask && 286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 287 oc->totalpages = total_swap_pages; 288 for_each_node_mask(nid, *oc->nodemask) 289 oc->totalpages += node_present_pages(nid); 290 return CONSTRAINT_MEMORY_POLICY; 291 } 292 293 /* Check this allocation failure is caused by cpuset's wall function */ 294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 295 highest_zoneidx, oc->nodemask) 296 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 297 cpuset_limited = true; 298 299 if (cpuset_limited) { 300 oc->totalpages = total_swap_pages; 301 for_each_node_mask(nid, cpuset_current_mems_allowed) 302 oc->totalpages += node_present_pages(nid); 303 return CONSTRAINT_CPUSET; 304 } 305 return CONSTRAINT_NONE; 306 } 307 308 static int oom_evaluate_task(struct task_struct *task, void *arg) 309 { 310 struct oom_control *oc = arg; 311 long points; 312 313 if (oom_unkillable_task(task)) 314 goto next; 315 316 /* p may not have freeable memory in nodemask */ 317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 318 goto next; 319 320 /* 321 * This task already has access to memory reserves and is being killed. 322 * Don't allow any other task to have access to the reserves unless 323 * the task has MMF_OOM_SKIP because chances that it would release 324 * any memory is quite low. 325 */ 326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 328 goto next; 329 goto abort; 330 } 331 332 /* 333 * If task is allocating a lot of memory and has been marked to be 334 * killed first if it triggers an oom, then select it. 335 */ 336 if (oom_task_origin(task)) { 337 points = LONG_MAX; 338 goto select; 339 } 340 341 points = oom_badness(task, oc->totalpages); 342 if (points == LONG_MIN || points < oc->chosen_points) 343 goto next; 344 345 select: 346 if (oc->chosen) 347 put_task_struct(oc->chosen); 348 get_task_struct(task); 349 oc->chosen = task; 350 oc->chosen_points = points; 351 next: 352 return 0; 353 abort: 354 if (oc->chosen) 355 put_task_struct(oc->chosen); 356 oc->chosen = (void *)-1UL; 357 return 1; 358 } 359 360 /* 361 * Simple selection loop. We choose the process with the highest number of 362 * 'points'. In case scan was aborted, oc->chosen is set to -1. 363 */ 364 static void select_bad_process(struct oom_control *oc) 365 { 366 oc->chosen_points = LONG_MIN; 367 368 if (is_memcg_oom(oc)) 369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 370 else { 371 struct task_struct *p; 372 373 rcu_read_lock(); 374 for_each_process(p) 375 if (oom_evaluate_task(p, oc)) 376 break; 377 rcu_read_unlock(); 378 } 379 } 380 381 static int dump_task(struct task_struct *p, void *arg) 382 { 383 struct oom_control *oc = arg; 384 struct task_struct *task; 385 386 if (oom_unkillable_task(p)) 387 return 0; 388 389 /* p may not have freeable memory in nodemask */ 390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 391 return 0; 392 393 task = find_lock_task_mm(p); 394 if (!task) { 395 /* 396 * All of p's threads have already detached their mm's. There's 397 * no need to report them; they can't be oom killed anyway. 398 */ 399 return 0; 400 } 401 402 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n", 403 task->pid, from_kuid(&init_user_ns, task_uid(task)), 404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 405 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), 406 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), 407 get_mm_counter(task->mm, MM_SWAPENTS), 408 task->signal->oom_score_adj, task->comm); 409 task_unlock(task); 410 411 return 0; 412 } 413 414 /** 415 * dump_tasks - dump current memory state of all system tasks 416 * @oc: pointer to struct oom_control 417 * 418 * Dumps the current memory state of all eligible tasks. Tasks not in the same 419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 420 * are not shown. 421 * State information includes task's pid, uid, tgid, vm size, rss, 422 * pgtables_bytes, swapents, oom_score_adj value, and name. 423 */ 424 static void dump_tasks(struct oom_control *oc) 425 { 426 pr_info("Tasks state (memory values in pages):\n"); 427 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n"); 428 429 if (is_memcg_oom(oc)) 430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 431 else { 432 struct task_struct *p; 433 434 rcu_read_lock(); 435 for_each_process(p) 436 dump_task(p, oc); 437 rcu_read_unlock(); 438 } 439 } 440 441 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) 442 { 443 /* one line summary of the oom killer context. */ 444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 445 oom_constraint_text[oc->constraint], 446 nodemask_pr_args(oc->nodemask)); 447 cpuset_print_current_mems_allowed(); 448 mem_cgroup_print_oom_context(oc->memcg, victim); 449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 450 from_kuid(&init_user_ns, task_uid(victim))); 451 } 452 453 static void dump_header(struct oom_control *oc) 454 { 455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 457 current->signal->oom_score_adj); 458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 459 pr_warn("COMPACTION is disabled!!!\n"); 460 461 dump_stack(); 462 if (is_memcg_oom(oc)) 463 mem_cgroup_print_oom_meminfo(oc->memcg); 464 else { 465 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask)); 466 if (should_dump_unreclaim_slab()) 467 dump_unreclaimable_slab(); 468 } 469 if (sysctl_oom_dump_tasks) 470 dump_tasks(oc); 471 } 472 473 /* 474 * Number of OOM victims in flight 475 */ 476 static atomic_t oom_victims = ATOMIC_INIT(0); 477 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 478 479 static bool oom_killer_disabled __read_mostly; 480 481 /* 482 * task->mm can be NULL if the task is the exited group leader. So to 483 * determine whether the task is using a particular mm, we examine all the 484 * task's threads: if one of those is using this mm then this task was also 485 * using it. 486 */ 487 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 488 { 489 struct task_struct *t; 490 491 for_each_thread(p, t) { 492 struct mm_struct *t_mm = READ_ONCE(t->mm); 493 if (t_mm) 494 return t_mm == mm; 495 } 496 return false; 497 } 498 499 #ifdef CONFIG_MMU 500 /* 501 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 502 * victim (if that is possible) to help the OOM killer to move on. 503 */ 504 static struct task_struct *oom_reaper_th; 505 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 506 static struct task_struct *oom_reaper_list; 507 static DEFINE_SPINLOCK(oom_reaper_lock); 508 509 static bool __oom_reap_task_mm(struct mm_struct *mm) 510 { 511 struct vm_area_struct *vma; 512 bool ret = true; 513 VMA_ITERATOR(vmi, mm, 0); 514 515 /* 516 * Tell all users of get_user/copy_from_user etc... that the content 517 * is no longer stable. No barriers really needed because unmapping 518 * should imply barriers already and the reader would hit a page fault 519 * if it stumbled over a reaped memory. 520 */ 521 set_bit(MMF_UNSTABLE, &mm->flags); 522 523 for_each_vma(vmi, vma) { 524 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) 525 continue; 526 527 /* 528 * Only anonymous pages have a good chance to be dropped 529 * without additional steps which we cannot afford as we 530 * are OOM already. 531 * 532 * We do not even care about fs backed pages because all 533 * which are reclaimable have already been reclaimed and 534 * we do not want to block exit_mmap by keeping mm ref 535 * count elevated without a good reason. 536 */ 537 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 538 struct mmu_notifier_range range; 539 struct mmu_gather tlb; 540 541 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 542 mm, vma->vm_start, 543 vma->vm_end); 544 tlb_gather_mmu(&tlb, mm); 545 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 546 tlb_finish_mmu(&tlb); 547 ret = false; 548 continue; 549 } 550 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 551 mmu_notifier_invalidate_range_end(&range); 552 tlb_finish_mmu(&tlb); 553 } 554 } 555 556 return ret; 557 } 558 559 /* 560 * Reaps the address space of the give task. 561 * 562 * Returns true on success and false if none or part of the address space 563 * has been reclaimed and the caller should retry later. 564 */ 565 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 566 { 567 bool ret = true; 568 569 if (!mmap_read_trylock(mm)) { 570 trace_skip_task_reaping(tsk->pid); 571 return false; 572 } 573 574 /* 575 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 576 * work on the mm anymore. The check for MMF_OOM_SKIP must run 577 * under mmap_lock for reading because it serializes against the 578 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 579 */ 580 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 581 trace_skip_task_reaping(tsk->pid); 582 goto out_unlock; 583 } 584 585 trace_start_task_reaping(tsk->pid); 586 587 /* failed to reap part of the address space. Try again later */ 588 ret = __oom_reap_task_mm(mm); 589 if (!ret) 590 goto out_finish; 591 592 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 593 task_pid_nr(tsk), tsk->comm, 594 K(get_mm_counter(mm, MM_ANONPAGES)), 595 K(get_mm_counter(mm, MM_FILEPAGES)), 596 K(get_mm_counter(mm, MM_SHMEMPAGES))); 597 out_finish: 598 trace_finish_task_reaping(tsk->pid); 599 out_unlock: 600 mmap_read_unlock(mm); 601 602 return ret; 603 } 604 605 #define MAX_OOM_REAP_RETRIES 10 606 static void oom_reap_task(struct task_struct *tsk) 607 { 608 int attempts = 0; 609 struct mm_struct *mm = tsk->signal->oom_mm; 610 611 /* Retry the mmap_read_trylock(mm) a few times */ 612 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 613 schedule_timeout_idle(HZ/10); 614 615 if (attempts <= MAX_OOM_REAP_RETRIES || 616 test_bit(MMF_OOM_SKIP, &mm->flags)) 617 goto done; 618 619 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 620 task_pid_nr(tsk), tsk->comm); 621 sched_show_task(tsk); 622 debug_show_all_locks(); 623 624 done: 625 tsk->oom_reaper_list = NULL; 626 627 /* 628 * Hide this mm from OOM killer because it has been either reaped or 629 * somebody can't call mmap_write_unlock(mm). 630 */ 631 set_bit(MMF_OOM_SKIP, &mm->flags); 632 633 /* Drop a reference taken by queue_oom_reaper */ 634 put_task_struct(tsk); 635 } 636 637 static int oom_reaper(void *unused) 638 { 639 set_freezable(); 640 641 while (true) { 642 struct task_struct *tsk = NULL; 643 644 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 645 spin_lock_irq(&oom_reaper_lock); 646 if (oom_reaper_list != NULL) { 647 tsk = oom_reaper_list; 648 oom_reaper_list = tsk->oom_reaper_list; 649 } 650 spin_unlock_irq(&oom_reaper_lock); 651 652 if (tsk) 653 oom_reap_task(tsk); 654 } 655 656 return 0; 657 } 658 659 static void wake_oom_reaper(struct timer_list *timer) 660 { 661 struct task_struct *tsk = container_of(timer, struct task_struct, 662 oom_reaper_timer); 663 struct mm_struct *mm = tsk->signal->oom_mm; 664 unsigned long flags; 665 666 /* The victim managed to terminate on its own - see exit_mmap */ 667 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 668 put_task_struct(tsk); 669 return; 670 } 671 672 spin_lock_irqsave(&oom_reaper_lock, flags); 673 tsk->oom_reaper_list = oom_reaper_list; 674 oom_reaper_list = tsk; 675 spin_unlock_irqrestore(&oom_reaper_lock, flags); 676 trace_wake_reaper(tsk->pid); 677 wake_up(&oom_reaper_wait); 678 } 679 680 /* 681 * Give the OOM victim time to exit naturally before invoking the oom_reaping. 682 * The timers timeout is arbitrary... the longer it is, the longer the worst 683 * case scenario for the OOM can take. If it is too small, the oom_reaper can 684 * get in the way and release resources needed by the process exit path. 685 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped 686 * before the exit path is able to wake the futex waiters. 687 */ 688 #define OOM_REAPER_DELAY (2*HZ) 689 static void queue_oom_reaper(struct task_struct *tsk) 690 { 691 /* mm is already queued? */ 692 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 693 return; 694 695 get_task_struct(tsk); 696 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); 697 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; 698 add_timer(&tsk->oom_reaper_timer); 699 } 700 701 #ifdef CONFIG_SYSCTL 702 static struct ctl_table vm_oom_kill_table[] = { 703 { 704 .procname = "panic_on_oom", 705 .data = &sysctl_panic_on_oom, 706 .maxlen = sizeof(sysctl_panic_on_oom), 707 .mode = 0644, 708 .proc_handler = proc_dointvec_minmax, 709 .extra1 = SYSCTL_ZERO, 710 .extra2 = SYSCTL_TWO, 711 }, 712 { 713 .procname = "oom_kill_allocating_task", 714 .data = &sysctl_oom_kill_allocating_task, 715 .maxlen = sizeof(sysctl_oom_kill_allocating_task), 716 .mode = 0644, 717 .proc_handler = proc_dointvec, 718 }, 719 { 720 .procname = "oom_dump_tasks", 721 .data = &sysctl_oom_dump_tasks, 722 .maxlen = sizeof(sysctl_oom_dump_tasks), 723 .mode = 0644, 724 .proc_handler = proc_dointvec, 725 }, 726 {} 727 }; 728 #endif 729 730 static int __init oom_init(void) 731 { 732 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 733 #ifdef CONFIG_SYSCTL 734 register_sysctl_init("vm", vm_oom_kill_table); 735 #endif 736 return 0; 737 } 738 subsys_initcall(oom_init) 739 #else 740 static inline void queue_oom_reaper(struct task_struct *tsk) 741 { 742 } 743 #endif /* CONFIG_MMU */ 744 745 /** 746 * mark_oom_victim - mark the given task as OOM victim 747 * @tsk: task to mark 748 * 749 * Has to be called with oom_lock held and never after 750 * oom has been disabled already. 751 * 752 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 753 * under task_lock or operate on the current). 754 */ 755 static void mark_oom_victim(struct task_struct *tsk) 756 { 757 struct mm_struct *mm = tsk->mm; 758 759 WARN_ON(oom_killer_disabled); 760 /* OOM killer might race with memcg OOM */ 761 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 762 return; 763 764 /* oom_mm is bound to the signal struct life time. */ 765 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) 766 mmgrab(tsk->signal->oom_mm); 767 768 /* 769 * Make sure that the task is woken up from uninterruptible sleep 770 * if it is frozen because OOM killer wouldn't be able to free 771 * any memory and livelock. freezing_slow_path will tell the freezer 772 * that TIF_MEMDIE tasks should be ignored. 773 */ 774 __thaw_task(tsk); 775 atomic_inc(&oom_victims); 776 trace_mark_victim(tsk->pid); 777 } 778 779 /** 780 * exit_oom_victim - note the exit of an OOM victim 781 */ 782 void exit_oom_victim(void) 783 { 784 clear_thread_flag(TIF_MEMDIE); 785 786 if (!atomic_dec_return(&oom_victims)) 787 wake_up_all(&oom_victims_wait); 788 } 789 790 /** 791 * oom_killer_enable - enable OOM killer 792 */ 793 void oom_killer_enable(void) 794 { 795 oom_killer_disabled = false; 796 pr_info("OOM killer enabled.\n"); 797 } 798 799 /** 800 * oom_killer_disable - disable OOM killer 801 * @timeout: maximum timeout to wait for oom victims in jiffies 802 * 803 * Forces all page allocations to fail rather than trigger OOM killer. 804 * Will block and wait until all OOM victims are killed or the given 805 * timeout expires. 806 * 807 * The function cannot be called when there are runnable user tasks because 808 * the userspace would see unexpected allocation failures as a result. Any 809 * new usage of this function should be consulted with MM people. 810 * 811 * Returns true if successful and false if the OOM killer cannot be 812 * disabled. 813 */ 814 bool oom_killer_disable(signed long timeout) 815 { 816 signed long ret; 817 818 /* 819 * Make sure to not race with an ongoing OOM killer. Check that the 820 * current is not killed (possibly due to sharing the victim's memory). 821 */ 822 if (mutex_lock_killable(&oom_lock)) 823 return false; 824 oom_killer_disabled = true; 825 mutex_unlock(&oom_lock); 826 827 ret = wait_event_interruptible_timeout(oom_victims_wait, 828 !atomic_read(&oom_victims), timeout); 829 if (ret <= 0) { 830 oom_killer_enable(); 831 return false; 832 } 833 pr_info("OOM killer disabled.\n"); 834 835 return true; 836 } 837 838 static inline bool __task_will_free_mem(struct task_struct *task) 839 { 840 struct signal_struct *sig = task->signal; 841 842 /* 843 * A coredumping process may sleep for an extended period in 844 * coredump_task_exit(), so the oom killer cannot assume that 845 * the process will promptly exit and release memory. 846 */ 847 if (sig->core_state) 848 return false; 849 850 if (sig->flags & SIGNAL_GROUP_EXIT) 851 return true; 852 853 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 854 return true; 855 856 return false; 857 } 858 859 /* 860 * Checks whether the given task is dying or exiting and likely to 861 * release its address space. This means that all threads and processes 862 * sharing the same mm have to be killed or exiting. 863 * Caller has to make sure that task->mm is stable (hold task_lock or 864 * it operates on the current). 865 */ 866 static bool task_will_free_mem(struct task_struct *task) 867 { 868 struct mm_struct *mm = task->mm; 869 struct task_struct *p; 870 bool ret = true; 871 872 /* 873 * Skip tasks without mm because it might have passed its exit_mm and 874 * exit_oom_victim. oom_reaper could have rescued that but do not rely 875 * on that for now. We can consider find_lock_task_mm in future. 876 */ 877 if (!mm) 878 return false; 879 880 if (!__task_will_free_mem(task)) 881 return false; 882 883 /* 884 * This task has already been drained by the oom reaper so there are 885 * only small chances it will free some more 886 */ 887 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 888 return false; 889 890 if (atomic_read(&mm->mm_users) <= 1) 891 return true; 892 893 /* 894 * Make sure that all tasks which share the mm with the given tasks 895 * are dying as well to make sure that a) nobody pins its mm and 896 * b) the task is also reapable by the oom reaper. 897 */ 898 rcu_read_lock(); 899 for_each_process(p) { 900 if (!process_shares_mm(p, mm)) 901 continue; 902 if (same_thread_group(task, p)) 903 continue; 904 ret = __task_will_free_mem(p); 905 if (!ret) 906 break; 907 } 908 rcu_read_unlock(); 909 910 return ret; 911 } 912 913 static void __oom_kill_process(struct task_struct *victim, const char *message) 914 { 915 struct task_struct *p; 916 struct mm_struct *mm; 917 bool can_oom_reap = true; 918 919 p = find_lock_task_mm(victim); 920 if (!p) { 921 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 922 message, task_pid_nr(victim), victim->comm); 923 put_task_struct(victim); 924 return; 925 } else if (victim != p) { 926 get_task_struct(p); 927 put_task_struct(victim); 928 victim = p; 929 } 930 931 /* Get a reference to safely compare mm after task_unlock(victim) */ 932 mm = victim->mm; 933 mmgrab(mm); 934 935 /* Raise event before sending signal: task reaper must see this */ 936 count_vm_event(OOM_KILL); 937 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 938 939 /* 940 * We should send SIGKILL before granting access to memory reserves 941 * in order to prevent the OOM victim from depleting the memory 942 * reserves from the user space under its control. 943 */ 944 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 945 mark_oom_victim(victim); 946 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 947 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 948 K(get_mm_counter(mm, MM_ANONPAGES)), 949 K(get_mm_counter(mm, MM_FILEPAGES)), 950 K(get_mm_counter(mm, MM_SHMEMPAGES)), 951 from_kuid(&init_user_ns, task_uid(victim)), 952 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 953 task_unlock(victim); 954 955 /* 956 * Kill all user processes sharing victim->mm in other thread groups, if 957 * any. They don't get access to memory reserves, though, to avoid 958 * depletion of all memory. This prevents mm->mmap_lock livelock when an 959 * oom killed thread cannot exit because it requires the semaphore and 960 * its contended by another thread trying to allocate memory itself. 961 * That thread will now get access to memory reserves since it has a 962 * pending fatal signal. 963 */ 964 rcu_read_lock(); 965 for_each_process(p) { 966 if (!process_shares_mm(p, mm)) 967 continue; 968 if (same_thread_group(p, victim)) 969 continue; 970 if (is_global_init(p)) { 971 can_oom_reap = false; 972 set_bit(MMF_OOM_SKIP, &mm->flags); 973 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 974 task_pid_nr(victim), victim->comm, 975 task_pid_nr(p), p->comm); 976 continue; 977 } 978 /* 979 * No kthread_use_mm() user needs to read from the userspace so 980 * we are ok to reap it. 981 */ 982 if (unlikely(p->flags & PF_KTHREAD)) 983 continue; 984 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 985 } 986 rcu_read_unlock(); 987 988 if (can_oom_reap) 989 queue_oom_reaper(victim); 990 991 mmdrop(mm); 992 put_task_struct(victim); 993 } 994 995 /* 996 * Kill provided task unless it's secured by setting 997 * oom_score_adj to OOM_SCORE_ADJ_MIN. 998 */ 999 static int oom_kill_memcg_member(struct task_struct *task, void *message) 1000 { 1001 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 1002 !is_global_init(task)) { 1003 get_task_struct(task); 1004 __oom_kill_process(task, message); 1005 } 1006 return 0; 1007 } 1008 1009 static void oom_kill_process(struct oom_control *oc, const char *message) 1010 { 1011 struct task_struct *victim = oc->chosen; 1012 struct mem_cgroup *oom_group; 1013 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1014 DEFAULT_RATELIMIT_BURST); 1015 1016 /* 1017 * If the task is already exiting, don't alarm the sysadmin or kill 1018 * its children or threads, just give it access to memory reserves 1019 * so it can die quickly 1020 */ 1021 task_lock(victim); 1022 if (task_will_free_mem(victim)) { 1023 mark_oom_victim(victim); 1024 queue_oom_reaper(victim); 1025 task_unlock(victim); 1026 put_task_struct(victim); 1027 return; 1028 } 1029 task_unlock(victim); 1030 1031 if (__ratelimit(&oom_rs)) { 1032 dump_header(oc); 1033 dump_oom_victim(oc, victim); 1034 } 1035 1036 /* 1037 * Do we need to kill the entire memory cgroup? 1038 * Or even one of the ancestor memory cgroups? 1039 * Check this out before killing the victim task. 1040 */ 1041 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 1042 1043 __oom_kill_process(victim, message); 1044 1045 /* 1046 * If necessary, kill all tasks in the selected memory cgroup. 1047 */ 1048 if (oom_group) { 1049 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); 1050 mem_cgroup_print_oom_group(oom_group); 1051 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 1052 (void *)message); 1053 mem_cgroup_put(oom_group); 1054 } 1055 } 1056 1057 /* 1058 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1059 */ 1060 static void check_panic_on_oom(struct oom_control *oc) 1061 { 1062 if (likely(!sysctl_panic_on_oom)) 1063 return; 1064 if (sysctl_panic_on_oom != 2) { 1065 /* 1066 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1067 * does not panic for cpuset, mempolicy, or memcg allocation 1068 * failures. 1069 */ 1070 if (oc->constraint != CONSTRAINT_NONE) 1071 return; 1072 } 1073 /* Do not panic for oom kills triggered by sysrq */ 1074 if (is_sysrq_oom(oc)) 1075 return; 1076 dump_header(oc); 1077 panic("Out of memory: %s panic_on_oom is enabled\n", 1078 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1079 } 1080 1081 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1082 1083 int register_oom_notifier(struct notifier_block *nb) 1084 { 1085 return blocking_notifier_chain_register(&oom_notify_list, nb); 1086 } 1087 EXPORT_SYMBOL_GPL(register_oom_notifier); 1088 1089 int unregister_oom_notifier(struct notifier_block *nb) 1090 { 1091 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1092 } 1093 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1094 1095 /** 1096 * out_of_memory - kill the "best" process when we run out of memory 1097 * @oc: pointer to struct oom_control 1098 * 1099 * If we run out of memory, we have the choice between either 1100 * killing a random task (bad), letting the system crash (worse) 1101 * OR try to be smart about which process to kill. Note that we 1102 * don't have to be perfect here, we just have to be good. 1103 */ 1104 bool out_of_memory(struct oom_control *oc) 1105 { 1106 unsigned long freed = 0; 1107 1108 if (oom_killer_disabled) 1109 return false; 1110 1111 if (!is_memcg_oom(oc)) { 1112 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1113 if (freed > 0 && !is_sysrq_oom(oc)) 1114 /* Got some memory back in the last second. */ 1115 return true; 1116 } 1117 1118 /* 1119 * If current has a pending SIGKILL or is exiting, then automatically 1120 * select it. The goal is to allow it to allocate so that it may 1121 * quickly exit and free its memory. 1122 */ 1123 if (task_will_free_mem(current)) { 1124 mark_oom_victim(current); 1125 queue_oom_reaper(current); 1126 return true; 1127 } 1128 1129 /* 1130 * The OOM killer does not compensate for IO-less reclaim. 1131 * But mem_cgroup_oom() has to invoke the OOM killer even 1132 * if it is a GFP_NOFS allocation. 1133 */ 1134 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1135 return true; 1136 1137 /* 1138 * Check if there were limitations on the allocation (only relevant for 1139 * NUMA and memcg) that may require different handling. 1140 */ 1141 oc->constraint = constrained_alloc(oc); 1142 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1143 oc->nodemask = NULL; 1144 check_panic_on_oom(oc); 1145 1146 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1147 current->mm && !oom_unkillable_task(current) && 1148 oom_cpuset_eligible(current, oc) && 1149 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1150 get_task_struct(current); 1151 oc->chosen = current; 1152 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1153 return true; 1154 } 1155 1156 select_bad_process(oc); 1157 /* Found nothing?!?! */ 1158 if (!oc->chosen) { 1159 dump_header(oc); 1160 pr_warn("Out of memory and no killable processes...\n"); 1161 /* 1162 * If we got here due to an actual allocation at the 1163 * system level, we cannot survive this and will enter 1164 * an endless loop in the allocator. Bail out now. 1165 */ 1166 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1167 panic("System is deadlocked on memory\n"); 1168 } 1169 if (oc->chosen && oc->chosen != (void *)-1UL) 1170 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1171 "Memory cgroup out of memory"); 1172 return !!oc->chosen; 1173 } 1174 1175 /* 1176 * The pagefault handler calls here because some allocation has failed. We have 1177 * to take care of the memcg OOM here because this is the only safe context without 1178 * any locks held but let the oom killer triggered from the allocation context care 1179 * about the global OOM. 1180 */ 1181 void pagefault_out_of_memory(void) 1182 { 1183 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, 1184 DEFAULT_RATELIMIT_BURST); 1185 1186 if (mem_cgroup_oom_synchronize(true)) 1187 return; 1188 1189 if (fatal_signal_pending(current)) 1190 return; 1191 1192 if (__ratelimit(&pfoom_rs)) 1193 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); 1194 } 1195 1196 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) 1197 { 1198 #ifdef CONFIG_MMU 1199 struct mm_struct *mm = NULL; 1200 struct task_struct *task; 1201 struct task_struct *p; 1202 unsigned int f_flags; 1203 bool reap = false; 1204 long ret = 0; 1205 1206 if (flags) 1207 return -EINVAL; 1208 1209 task = pidfd_get_task(pidfd, &f_flags); 1210 if (IS_ERR(task)) 1211 return PTR_ERR(task); 1212 1213 /* 1214 * Make sure to choose a thread which still has a reference to mm 1215 * during the group exit 1216 */ 1217 p = find_lock_task_mm(task); 1218 if (!p) { 1219 ret = -ESRCH; 1220 goto put_task; 1221 } 1222 1223 mm = p->mm; 1224 mmgrab(mm); 1225 1226 if (task_will_free_mem(p)) 1227 reap = true; 1228 else { 1229 /* Error only if the work has not been done already */ 1230 if (!test_bit(MMF_OOM_SKIP, &mm->flags)) 1231 ret = -EINVAL; 1232 } 1233 task_unlock(p); 1234 1235 if (!reap) 1236 goto drop_mm; 1237 1238 if (mmap_read_lock_killable(mm)) { 1239 ret = -EINTR; 1240 goto drop_mm; 1241 } 1242 /* 1243 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure 1244 * possible change in exit_mmap is seen 1245 */ 1246 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) 1247 ret = -EAGAIN; 1248 mmap_read_unlock(mm); 1249 1250 drop_mm: 1251 mmdrop(mm); 1252 put_task: 1253 put_task_struct(task); 1254 return ret; 1255 #else 1256 return -ENOSYS; 1257 #endif /* CONFIG_MMU */ 1258 } 1259