xref: /linux/mm/oom_kill.c (revision a97f9c8fcc6ed16f956346368fde3b1198163f6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 static int sysctl_panic_on_oom;
56 static int sysctl_oom_kill_allocating_task;
57 static int sysctl_oom_dump_tasks = 1;
58 
59 /*
60  * Serializes oom killer invocations (out_of_memory()) from all contexts to
61  * prevent from over eager oom killing (e.g. when the oom killer is invoked
62  * from different domains).
63  *
64  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65  * and mark_oom_victim
66  */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70 
71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 	return oc->memcg != NULL;
74 }
75 
76 #ifdef CONFIG_NUMA
77 /**
78  * oom_cpuset_eligible() - check task eligibility for kill
79  * @start: task struct of which task to consider
80  * @oc: pointer to struct oom_control
81  *
82  * Task eligibility is determined by whether or not a candidate task, @tsk,
83  * shares the same mempolicy nodes as current if it is bound by such a policy
84  * and whether or not it has the same set of allowed cpuset nodes.
85  *
86  * This function is assuming oom-killer context and 'current' has triggered
87  * the oom-killer.
88  */
89 static bool oom_cpuset_eligible(struct task_struct *start,
90 				struct oom_control *oc)
91 {
92 	struct task_struct *tsk;
93 	bool ret = false;
94 	const nodemask_t *mask = oc->nodemask;
95 
96 	rcu_read_lock();
97 	for_each_thread(start, tsk) {
98 		if (mask) {
99 			/*
100 			 * If this is a mempolicy constrained oom, tsk's
101 			 * cpuset is irrelevant.  Only return true if its
102 			 * mempolicy intersects current, otherwise it may be
103 			 * needlessly killed.
104 			 */
105 			ret = mempolicy_in_oom_domain(tsk, mask);
106 		} else {
107 			/*
108 			 * This is not a mempolicy constrained oom, so only
109 			 * check the mems of tsk's cpuset.
110 			 */
111 			ret = cpuset_mems_allowed_intersects(current, tsk);
112 		}
113 		if (ret)
114 			break;
115 	}
116 	rcu_read_unlock();
117 
118 	return ret;
119 }
120 #else
121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
122 {
123 	return true;
124 }
125 #endif /* CONFIG_NUMA */
126 
127 /*
128  * The process p may have detached its own ->mm while exiting or through
129  * kthread_use_mm(), but one or more of its subthreads may still have a valid
130  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
131  * task_lock() held.
132  */
133 struct task_struct *find_lock_task_mm(struct task_struct *p)
134 {
135 	struct task_struct *t;
136 
137 	rcu_read_lock();
138 
139 	for_each_thread(p, t) {
140 		task_lock(t);
141 		if (likely(t->mm))
142 			goto found;
143 		task_unlock(t);
144 	}
145 	t = NULL;
146 found:
147 	rcu_read_unlock();
148 
149 	return t;
150 }
151 
152 /*
153  * order == -1 means the oom kill is required by sysrq, otherwise only
154  * for display purposes.
155  */
156 static inline bool is_sysrq_oom(struct oom_control *oc)
157 {
158 	return oc->order == -1;
159 }
160 
161 /* return true if the task is not adequate as candidate victim task. */
162 static bool oom_unkillable_task(struct task_struct *p)
163 {
164 	if (is_global_init(p))
165 		return true;
166 	if (p->flags & PF_KTHREAD)
167 		return true;
168 	return false;
169 }
170 
171 /*
172  * Check whether unreclaimable slab amount is greater than
173  * all user memory(LRU pages).
174  * dump_unreclaimable_slab() could help in the case that
175  * oom due to too much unreclaimable slab used by kernel.
176 */
177 static bool should_dump_unreclaim_slab(void)
178 {
179 	unsigned long nr_lru;
180 
181 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 		 global_node_page_state(NR_INACTIVE_ANON) +
183 		 global_node_page_state(NR_ACTIVE_FILE) +
184 		 global_node_page_state(NR_INACTIVE_FILE) +
185 		 global_node_page_state(NR_ISOLATED_ANON) +
186 		 global_node_page_state(NR_ISOLATED_FILE) +
187 		 global_node_page_state(NR_UNEVICTABLE);
188 
189 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190 }
191 
192 /**
193  * oom_badness - heuristic function to determine which candidate task to kill
194  * @p: task struct of which task we should calculate
195  * @totalpages: total present RAM allowed for page allocation
196  *
197  * The heuristic for determining which task to kill is made to be as simple and
198  * predictable as possible.  The goal is to return the highest value for the
199  * task consuming the most memory to avoid subsequent oom failures.
200  */
201 long oom_badness(struct task_struct *p, unsigned long totalpages)
202 {
203 	long points;
204 	long adj;
205 
206 	if (oom_unkillable_task(p))
207 		return LONG_MIN;
208 
209 	p = find_lock_task_mm(p);
210 	if (!p)
211 		return LONG_MIN;
212 
213 	/*
214 	 * Do not even consider tasks which are explicitly marked oom
215 	 * unkillable or have been already oom reaped or the are in
216 	 * the middle of vfork
217 	 */
218 	adj = (long)p->signal->oom_score_adj;
219 	if (adj == OOM_SCORE_ADJ_MIN ||
220 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 			in_vfork(p)) {
222 		task_unlock(p);
223 		return LONG_MIN;
224 	}
225 
226 	/*
227 	 * The baseline for the badness score is the proportion of RAM that each
228 	 * task's rss, pagetable and swap space use.
229 	 */
230 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 	task_unlock(p);
233 
234 	/* Normalize to oom_score_adj units */
235 	adj *= totalpages / 1000;
236 	points += adj;
237 
238 	return points;
239 }
240 
241 static const char * const oom_constraint_text[] = {
242 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246 };
247 
248 /*
249  * Determine the type of allocation constraint.
250  */
251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
252 {
253 	struct zone *zone;
254 	struct zoneref *z;
255 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 	bool cpuset_limited = false;
257 	int nid;
258 
259 	if (is_memcg_oom(oc)) {
260 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 		return CONSTRAINT_MEMCG;
262 	}
263 
264 	/* Default to all available memory */
265 	oc->totalpages = totalram_pages() + total_swap_pages;
266 
267 	if (!IS_ENABLED(CONFIG_NUMA))
268 		return CONSTRAINT_NONE;
269 
270 	if (!oc->zonelist)
271 		return CONSTRAINT_NONE;
272 	/*
273 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 	 * to kill current.We have to random task kill in this case.
275 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 	 */
277 	if (oc->gfp_mask & __GFP_THISNODE)
278 		return CONSTRAINT_NONE;
279 
280 	/*
281 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
283 	 * is enforced in get_page_from_freelist().
284 	 */
285 	if (oc->nodemask &&
286 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 		oc->totalpages = total_swap_pages;
288 		for_each_node_mask(nid, *oc->nodemask)
289 			oc->totalpages += node_present_pages(nid);
290 		return CONSTRAINT_MEMORY_POLICY;
291 	}
292 
293 	/* Check this allocation failure is caused by cpuset's wall function */
294 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 			highest_zoneidx, oc->nodemask)
296 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 			cpuset_limited = true;
298 
299 	if (cpuset_limited) {
300 		oc->totalpages = total_swap_pages;
301 		for_each_node_mask(nid, cpuset_current_mems_allowed)
302 			oc->totalpages += node_present_pages(nid);
303 		return CONSTRAINT_CPUSET;
304 	}
305 	return CONSTRAINT_NONE;
306 }
307 
308 static int oom_evaluate_task(struct task_struct *task, void *arg)
309 {
310 	struct oom_control *oc = arg;
311 	long points;
312 
313 	if (oom_unkillable_task(task))
314 		goto next;
315 
316 	/* p may not have freeable memory in nodemask */
317 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 		goto next;
319 
320 	/*
321 	 * This task already has access to memory reserves and is being killed.
322 	 * Don't allow any other task to have access to the reserves unless
323 	 * the task has MMF_OOM_SKIP because chances that it would release
324 	 * any memory is quite low.
325 	 */
326 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 			goto next;
329 		goto abort;
330 	}
331 
332 	/*
333 	 * If task is allocating a lot of memory and has been marked to be
334 	 * killed first if it triggers an oom, then select it.
335 	 */
336 	if (oom_task_origin(task)) {
337 		points = LONG_MAX;
338 		goto select;
339 	}
340 
341 	points = oom_badness(task, oc->totalpages);
342 	if (points == LONG_MIN || points < oc->chosen_points)
343 		goto next;
344 
345 select:
346 	if (oc->chosen)
347 		put_task_struct(oc->chosen);
348 	get_task_struct(task);
349 	oc->chosen = task;
350 	oc->chosen_points = points;
351 next:
352 	return 0;
353 abort:
354 	if (oc->chosen)
355 		put_task_struct(oc->chosen);
356 	oc->chosen = (void *)-1UL;
357 	return 1;
358 }
359 
360 /*
361  * Simple selection loop. We choose the process with the highest number of
362  * 'points'. In case scan was aborted, oc->chosen is set to -1.
363  */
364 static void select_bad_process(struct oom_control *oc)
365 {
366 	oc->chosen_points = LONG_MIN;
367 
368 	if (is_memcg_oom(oc))
369 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 	else {
371 		struct task_struct *p;
372 
373 		rcu_read_lock();
374 		for_each_process(p)
375 			if (oom_evaluate_task(p, oc))
376 				break;
377 		rcu_read_unlock();
378 	}
379 }
380 
381 static int dump_task(struct task_struct *p, void *arg)
382 {
383 	struct oom_control *oc = arg;
384 	struct task_struct *task;
385 
386 	if (oom_unkillable_task(p))
387 		return 0;
388 
389 	/* p may not have freeable memory in nodemask */
390 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 		return 0;
392 
393 	task = find_lock_task_mm(p);
394 	if (!task) {
395 		/*
396 		 * All of p's threads have already detached their mm's. There's
397 		 * no need to report them; they can't be oom killed anyway.
398 		 */
399 		return 0;
400 	}
401 
402 	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
403 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
406 		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
407 		get_mm_counter(task->mm, MM_SWAPENTS),
408 		task->signal->oom_score_adj, task->comm);
409 	task_unlock(task);
410 
411 	return 0;
412 }
413 
414 /**
415  * dump_tasks - dump current memory state of all system tasks
416  * @oc: pointer to struct oom_control
417  *
418  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
419  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420  * are not shown.
421  * State information includes task's pid, uid, tgid, vm size, rss,
422  * pgtables_bytes, swapents, oom_score_adj value, and name.
423  */
424 static void dump_tasks(struct oom_control *oc)
425 {
426 	pr_info("Tasks state (memory values in pages):\n");
427 	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
428 
429 	if (is_memcg_oom(oc))
430 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431 	else {
432 		struct task_struct *p;
433 
434 		rcu_read_lock();
435 		for_each_process(p)
436 			dump_task(p, oc);
437 		rcu_read_unlock();
438 	}
439 }
440 
441 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
442 {
443 	/* one line summary of the oom killer context. */
444 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 			oom_constraint_text[oc->constraint],
446 			nodemask_pr_args(oc->nodemask));
447 	cpuset_print_current_mems_allowed();
448 	mem_cgroup_print_oom_context(oc->memcg, victim);
449 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450 		from_kuid(&init_user_ns, task_uid(victim)));
451 }
452 
453 static void dump_header(struct oom_control *oc)
454 {
455 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457 			current->signal->oom_score_adj);
458 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459 		pr_warn("COMPACTION is disabled!!!\n");
460 
461 	dump_stack();
462 	if (is_memcg_oom(oc))
463 		mem_cgroup_print_oom_meminfo(oc->memcg);
464 	else {
465 		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
466 		if (should_dump_unreclaim_slab())
467 			dump_unreclaimable_slab();
468 	}
469 	if (sysctl_oom_dump_tasks)
470 		dump_tasks(oc);
471 }
472 
473 /*
474  * Number of OOM victims in flight
475  */
476 static atomic_t oom_victims = ATOMIC_INIT(0);
477 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
478 
479 static bool oom_killer_disabled __read_mostly;
480 
481 /*
482  * task->mm can be NULL if the task is the exited group leader.  So to
483  * determine whether the task is using a particular mm, we examine all the
484  * task's threads: if one of those is using this mm then this task was also
485  * using it.
486  */
487 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
488 {
489 	struct task_struct *t;
490 
491 	for_each_thread(p, t) {
492 		struct mm_struct *t_mm = READ_ONCE(t->mm);
493 		if (t_mm)
494 			return t_mm == mm;
495 	}
496 	return false;
497 }
498 
499 #ifdef CONFIG_MMU
500 /*
501  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
502  * victim (if that is possible) to help the OOM killer to move on.
503  */
504 static struct task_struct *oom_reaper_th;
505 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
506 static struct task_struct *oom_reaper_list;
507 static DEFINE_SPINLOCK(oom_reaper_lock);
508 
509 static bool __oom_reap_task_mm(struct mm_struct *mm)
510 {
511 	struct vm_area_struct *vma;
512 	bool ret = true;
513 	VMA_ITERATOR(vmi, mm, 0);
514 
515 	/*
516 	 * Tell all users of get_user/copy_from_user etc... that the content
517 	 * is no longer stable. No barriers really needed because unmapping
518 	 * should imply barriers already and the reader would hit a page fault
519 	 * if it stumbled over a reaped memory.
520 	 */
521 	set_bit(MMF_UNSTABLE, &mm->flags);
522 
523 	for_each_vma(vmi, vma) {
524 		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
525 			continue;
526 
527 		/*
528 		 * Only anonymous pages have a good chance to be dropped
529 		 * without additional steps which we cannot afford as we
530 		 * are OOM already.
531 		 *
532 		 * We do not even care about fs backed pages because all
533 		 * which are reclaimable have already been reclaimed and
534 		 * we do not want to block exit_mmap by keeping mm ref
535 		 * count elevated without a good reason.
536 		 */
537 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
538 			struct mmu_notifier_range range;
539 			struct mmu_gather tlb;
540 
541 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
542 						mm, vma->vm_start,
543 						vma->vm_end);
544 			tlb_gather_mmu(&tlb, mm);
545 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
546 				tlb_finish_mmu(&tlb);
547 				ret = false;
548 				continue;
549 			}
550 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
551 			mmu_notifier_invalidate_range_end(&range);
552 			tlb_finish_mmu(&tlb);
553 		}
554 	}
555 
556 	return ret;
557 }
558 
559 /*
560  * Reaps the address space of the give task.
561  *
562  * Returns true on success and false if none or part of the address space
563  * has been reclaimed and the caller should retry later.
564  */
565 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
566 {
567 	bool ret = true;
568 
569 	if (!mmap_read_trylock(mm)) {
570 		trace_skip_task_reaping(tsk->pid);
571 		return false;
572 	}
573 
574 	/*
575 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
576 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
577 	 * under mmap_lock for reading because it serializes against the
578 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
579 	 */
580 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
581 		trace_skip_task_reaping(tsk->pid);
582 		goto out_unlock;
583 	}
584 
585 	trace_start_task_reaping(tsk->pid);
586 
587 	/* failed to reap part of the address space. Try again later */
588 	ret = __oom_reap_task_mm(mm);
589 	if (!ret)
590 		goto out_finish;
591 
592 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
593 			task_pid_nr(tsk), tsk->comm,
594 			K(get_mm_counter(mm, MM_ANONPAGES)),
595 			K(get_mm_counter(mm, MM_FILEPAGES)),
596 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
597 out_finish:
598 	trace_finish_task_reaping(tsk->pid);
599 out_unlock:
600 	mmap_read_unlock(mm);
601 
602 	return ret;
603 }
604 
605 #define MAX_OOM_REAP_RETRIES 10
606 static void oom_reap_task(struct task_struct *tsk)
607 {
608 	int attempts = 0;
609 	struct mm_struct *mm = tsk->signal->oom_mm;
610 
611 	/* Retry the mmap_read_trylock(mm) a few times */
612 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
613 		schedule_timeout_idle(HZ/10);
614 
615 	if (attempts <= MAX_OOM_REAP_RETRIES ||
616 	    test_bit(MMF_OOM_SKIP, &mm->flags))
617 		goto done;
618 
619 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
620 		task_pid_nr(tsk), tsk->comm);
621 	sched_show_task(tsk);
622 	debug_show_all_locks();
623 
624 done:
625 	tsk->oom_reaper_list = NULL;
626 
627 	/*
628 	 * Hide this mm from OOM killer because it has been either reaped or
629 	 * somebody can't call mmap_write_unlock(mm).
630 	 */
631 	set_bit(MMF_OOM_SKIP, &mm->flags);
632 
633 	/* Drop a reference taken by queue_oom_reaper */
634 	put_task_struct(tsk);
635 }
636 
637 static int oom_reaper(void *unused)
638 {
639 	set_freezable();
640 
641 	while (true) {
642 		struct task_struct *tsk = NULL;
643 
644 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
645 		spin_lock_irq(&oom_reaper_lock);
646 		if (oom_reaper_list != NULL) {
647 			tsk = oom_reaper_list;
648 			oom_reaper_list = tsk->oom_reaper_list;
649 		}
650 		spin_unlock_irq(&oom_reaper_lock);
651 
652 		if (tsk)
653 			oom_reap_task(tsk);
654 	}
655 
656 	return 0;
657 }
658 
659 static void wake_oom_reaper(struct timer_list *timer)
660 {
661 	struct task_struct *tsk = container_of(timer, struct task_struct,
662 			oom_reaper_timer);
663 	struct mm_struct *mm = tsk->signal->oom_mm;
664 	unsigned long flags;
665 
666 	/* The victim managed to terminate on its own - see exit_mmap */
667 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
668 		put_task_struct(tsk);
669 		return;
670 	}
671 
672 	spin_lock_irqsave(&oom_reaper_lock, flags);
673 	tsk->oom_reaper_list = oom_reaper_list;
674 	oom_reaper_list = tsk;
675 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
676 	trace_wake_reaper(tsk->pid);
677 	wake_up(&oom_reaper_wait);
678 }
679 
680 /*
681  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
682  * The timers timeout is arbitrary... the longer it is, the longer the worst
683  * case scenario for the OOM can take. If it is too small, the oom_reaper can
684  * get in the way and release resources needed by the process exit path.
685  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
686  * before the exit path is able to wake the futex waiters.
687  */
688 #define OOM_REAPER_DELAY (2*HZ)
689 static void queue_oom_reaper(struct task_struct *tsk)
690 {
691 	/* mm is already queued? */
692 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
693 		return;
694 
695 	get_task_struct(tsk);
696 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
697 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
698 	add_timer(&tsk->oom_reaper_timer);
699 }
700 
701 #ifdef CONFIG_SYSCTL
702 static struct ctl_table vm_oom_kill_table[] = {
703 	{
704 		.procname	= "panic_on_oom",
705 		.data		= &sysctl_panic_on_oom,
706 		.maxlen		= sizeof(sysctl_panic_on_oom),
707 		.mode		= 0644,
708 		.proc_handler	= proc_dointvec_minmax,
709 		.extra1		= SYSCTL_ZERO,
710 		.extra2		= SYSCTL_TWO,
711 	},
712 	{
713 		.procname	= "oom_kill_allocating_task",
714 		.data		= &sysctl_oom_kill_allocating_task,
715 		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
716 		.mode		= 0644,
717 		.proc_handler	= proc_dointvec,
718 	},
719 	{
720 		.procname	= "oom_dump_tasks",
721 		.data		= &sysctl_oom_dump_tasks,
722 		.maxlen		= sizeof(sysctl_oom_dump_tasks),
723 		.mode		= 0644,
724 		.proc_handler	= proc_dointvec,
725 	},
726 	{}
727 };
728 #endif
729 
730 static int __init oom_init(void)
731 {
732 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
733 #ifdef CONFIG_SYSCTL
734 	register_sysctl_init("vm", vm_oom_kill_table);
735 #endif
736 	return 0;
737 }
738 subsys_initcall(oom_init)
739 #else
740 static inline void queue_oom_reaper(struct task_struct *tsk)
741 {
742 }
743 #endif /* CONFIG_MMU */
744 
745 /**
746  * mark_oom_victim - mark the given task as OOM victim
747  * @tsk: task to mark
748  *
749  * Has to be called with oom_lock held and never after
750  * oom has been disabled already.
751  *
752  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
753  * under task_lock or operate on the current).
754  */
755 static void mark_oom_victim(struct task_struct *tsk)
756 {
757 	struct mm_struct *mm = tsk->mm;
758 
759 	WARN_ON(oom_killer_disabled);
760 	/* OOM killer might race with memcg OOM */
761 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
762 		return;
763 
764 	/* oom_mm is bound to the signal struct life time. */
765 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
766 		mmgrab(tsk->signal->oom_mm);
767 
768 	/*
769 	 * Make sure that the task is woken up from uninterruptible sleep
770 	 * if it is frozen because OOM killer wouldn't be able to free
771 	 * any memory and livelock. freezing_slow_path will tell the freezer
772 	 * that TIF_MEMDIE tasks should be ignored.
773 	 */
774 	__thaw_task(tsk);
775 	atomic_inc(&oom_victims);
776 	trace_mark_victim(tsk->pid);
777 }
778 
779 /**
780  * exit_oom_victim - note the exit of an OOM victim
781  */
782 void exit_oom_victim(void)
783 {
784 	clear_thread_flag(TIF_MEMDIE);
785 
786 	if (!atomic_dec_return(&oom_victims))
787 		wake_up_all(&oom_victims_wait);
788 }
789 
790 /**
791  * oom_killer_enable - enable OOM killer
792  */
793 void oom_killer_enable(void)
794 {
795 	oom_killer_disabled = false;
796 	pr_info("OOM killer enabled.\n");
797 }
798 
799 /**
800  * oom_killer_disable - disable OOM killer
801  * @timeout: maximum timeout to wait for oom victims in jiffies
802  *
803  * Forces all page allocations to fail rather than trigger OOM killer.
804  * Will block and wait until all OOM victims are killed or the given
805  * timeout expires.
806  *
807  * The function cannot be called when there are runnable user tasks because
808  * the userspace would see unexpected allocation failures as a result. Any
809  * new usage of this function should be consulted with MM people.
810  *
811  * Returns true if successful and false if the OOM killer cannot be
812  * disabled.
813  */
814 bool oom_killer_disable(signed long timeout)
815 {
816 	signed long ret;
817 
818 	/*
819 	 * Make sure to not race with an ongoing OOM killer. Check that the
820 	 * current is not killed (possibly due to sharing the victim's memory).
821 	 */
822 	if (mutex_lock_killable(&oom_lock))
823 		return false;
824 	oom_killer_disabled = true;
825 	mutex_unlock(&oom_lock);
826 
827 	ret = wait_event_interruptible_timeout(oom_victims_wait,
828 			!atomic_read(&oom_victims), timeout);
829 	if (ret <= 0) {
830 		oom_killer_enable();
831 		return false;
832 	}
833 	pr_info("OOM killer disabled.\n");
834 
835 	return true;
836 }
837 
838 static inline bool __task_will_free_mem(struct task_struct *task)
839 {
840 	struct signal_struct *sig = task->signal;
841 
842 	/*
843 	 * A coredumping process may sleep for an extended period in
844 	 * coredump_task_exit(), so the oom killer cannot assume that
845 	 * the process will promptly exit and release memory.
846 	 */
847 	if (sig->core_state)
848 		return false;
849 
850 	if (sig->flags & SIGNAL_GROUP_EXIT)
851 		return true;
852 
853 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
854 		return true;
855 
856 	return false;
857 }
858 
859 /*
860  * Checks whether the given task is dying or exiting and likely to
861  * release its address space. This means that all threads and processes
862  * sharing the same mm have to be killed or exiting.
863  * Caller has to make sure that task->mm is stable (hold task_lock or
864  * it operates on the current).
865  */
866 static bool task_will_free_mem(struct task_struct *task)
867 {
868 	struct mm_struct *mm = task->mm;
869 	struct task_struct *p;
870 	bool ret = true;
871 
872 	/*
873 	 * Skip tasks without mm because it might have passed its exit_mm and
874 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
875 	 * on that for now. We can consider find_lock_task_mm in future.
876 	 */
877 	if (!mm)
878 		return false;
879 
880 	if (!__task_will_free_mem(task))
881 		return false;
882 
883 	/*
884 	 * This task has already been drained by the oom reaper so there are
885 	 * only small chances it will free some more
886 	 */
887 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
888 		return false;
889 
890 	if (atomic_read(&mm->mm_users) <= 1)
891 		return true;
892 
893 	/*
894 	 * Make sure that all tasks which share the mm with the given tasks
895 	 * are dying as well to make sure that a) nobody pins its mm and
896 	 * b) the task is also reapable by the oom reaper.
897 	 */
898 	rcu_read_lock();
899 	for_each_process(p) {
900 		if (!process_shares_mm(p, mm))
901 			continue;
902 		if (same_thread_group(task, p))
903 			continue;
904 		ret = __task_will_free_mem(p);
905 		if (!ret)
906 			break;
907 	}
908 	rcu_read_unlock();
909 
910 	return ret;
911 }
912 
913 static void __oom_kill_process(struct task_struct *victim, const char *message)
914 {
915 	struct task_struct *p;
916 	struct mm_struct *mm;
917 	bool can_oom_reap = true;
918 
919 	p = find_lock_task_mm(victim);
920 	if (!p) {
921 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
922 			message, task_pid_nr(victim), victim->comm);
923 		put_task_struct(victim);
924 		return;
925 	} else if (victim != p) {
926 		get_task_struct(p);
927 		put_task_struct(victim);
928 		victim = p;
929 	}
930 
931 	/* Get a reference to safely compare mm after task_unlock(victim) */
932 	mm = victim->mm;
933 	mmgrab(mm);
934 
935 	/* Raise event before sending signal: task reaper must see this */
936 	count_vm_event(OOM_KILL);
937 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
938 
939 	/*
940 	 * We should send SIGKILL before granting access to memory reserves
941 	 * in order to prevent the OOM victim from depleting the memory
942 	 * reserves from the user space under its control.
943 	 */
944 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
945 	mark_oom_victim(victim);
946 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
947 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
948 		K(get_mm_counter(mm, MM_ANONPAGES)),
949 		K(get_mm_counter(mm, MM_FILEPAGES)),
950 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
951 		from_kuid(&init_user_ns, task_uid(victim)),
952 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
953 	task_unlock(victim);
954 
955 	/*
956 	 * Kill all user processes sharing victim->mm in other thread groups, if
957 	 * any.  They don't get access to memory reserves, though, to avoid
958 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
959 	 * oom killed thread cannot exit because it requires the semaphore and
960 	 * its contended by another thread trying to allocate memory itself.
961 	 * That thread will now get access to memory reserves since it has a
962 	 * pending fatal signal.
963 	 */
964 	rcu_read_lock();
965 	for_each_process(p) {
966 		if (!process_shares_mm(p, mm))
967 			continue;
968 		if (same_thread_group(p, victim))
969 			continue;
970 		if (is_global_init(p)) {
971 			can_oom_reap = false;
972 			set_bit(MMF_OOM_SKIP, &mm->flags);
973 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
974 					task_pid_nr(victim), victim->comm,
975 					task_pid_nr(p), p->comm);
976 			continue;
977 		}
978 		/*
979 		 * No kthread_use_mm() user needs to read from the userspace so
980 		 * we are ok to reap it.
981 		 */
982 		if (unlikely(p->flags & PF_KTHREAD))
983 			continue;
984 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
985 	}
986 	rcu_read_unlock();
987 
988 	if (can_oom_reap)
989 		queue_oom_reaper(victim);
990 
991 	mmdrop(mm);
992 	put_task_struct(victim);
993 }
994 
995 /*
996  * Kill provided task unless it's secured by setting
997  * oom_score_adj to OOM_SCORE_ADJ_MIN.
998  */
999 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1000 {
1001 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1002 	    !is_global_init(task)) {
1003 		get_task_struct(task);
1004 		__oom_kill_process(task, message);
1005 	}
1006 	return 0;
1007 }
1008 
1009 static void oom_kill_process(struct oom_control *oc, const char *message)
1010 {
1011 	struct task_struct *victim = oc->chosen;
1012 	struct mem_cgroup *oom_group;
1013 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1014 					      DEFAULT_RATELIMIT_BURST);
1015 
1016 	/*
1017 	 * If the task is already exiting, don't alarm the sysadmin or kill
1018 	 * its children or threads, just give it access to memory reserves
1019 	 * so it can die quickly
1020 	 */
1021 	task_lock(victim);
1022 	if (task_will_free_mem(victim)) {
1023 		mark_oom_victim(victim);
1024 		queue_oom_reaper(victim);
1025 		task_unlock(victim);
1026 		put_task_struct(victim);
1027 		return;
1028 	}
1029 	task_unlock(victim);
1030 
1031 	if (__ratelimit(&oom_rs)) {
1032 		dump_header(oc);
1033 		dump_oom_victim(oc, victim);
1034 	}
1035 
1036 	/*
1037 	 * Do we need to kill the entire memory cgroup?
1038 	 * Or even one of the ancestor memory cgroups?
1039 	 * Check this out before killing the victim task.
1040 	 */
1041 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1042 
1043 	__oom_kill_process(victim, message);
1044 
1045 	/*
1046 	 * If necessary, kill all tasks in the selected memory cgroup.
1047 	 */
1048 	if (oom_group) {
1049 		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1050 		mem_cgroup_print_oom_group(oom_group);
1051 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1052 				      (void *)message);
1053 		mem_cgroup_put(oom_group);
1054 	}
1055 }
1056 
1057 /*
1058  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1059  */
1060 static void check_panic_on_oom(struct oom_control *oc)
1061 {
1062 	if (likely(!sysctl_panic_on_oom))
1063 		return;
1064 	if (sysctl_panic_on_oom != 2) {
1065 		/*
1066 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1067 		 * does not panic for cpuset, mempolicy, or memcg allocation
1068 		 * failures.
1069 		 */
1070 		if (oc->constraint != CONSTRAINT_NONE)
1071 			return;
1072 	}
1073 	/* Do not panic for oom kills triggered by sysrq */
1074 	if (is_sysrq_oom(oc))
1075 		return;
1076 	dump_header(oc);
1077 	panic("Out of memory: %s panic_on_oom is enabled\n",
1078 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1079 }
1080 
1081 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1082 
1083 int register_oom_notifier(struct notifier_block *nb)
1084 {
1085 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1086 }
1087 EXPORT_SYMBOL_GPL(register_oom_notifier);
1088 
1089 int unregister_oom_notifier(struct notifier_block *nb)
1090 {
1091 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1092 }
1093 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1094 
1095 /**
1096  * out_of_memory - kill the "best" process when we run out of memory
1097  * @oc: pointer to struct oom_control
1098  *
1099  * If we run out of memory, we have the choice between either
1100  * killing a random task (bad), letting the system crash (worse)
1101  * OR try to be smart about which process to kill. Note that we
1102  * don't have to be perfect here, we just have to be good.
1103  */
1104 bool out_of_memory(struct oom_control *oc)
1105 {
1106 	unsigned long freed = 0;
1107 
1108 	if (oom_killer_disabled)
1109 		return false;
1110 
1111 	if (!is_memcg_oom(oc)) {
1112 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1113 		if (freed > 0 && !is_sysrq_oom(oc))
1114 			/* Got some memory back in the last second. */
1115 			return true;
1116 	}
1117 
1118 	/*
1119 	 * If current has a pending SIGKILL or is exiting, then automatically
1120 	 * select it.  The goal is to allow it to allocate so that it may
1121 	 * quickly exit and free its memory.
1122 	 */
1123 	if (task_will_free_mem(current)) {
1124 		mark_oom_victim(current);
1125 		queue_oom_reaper(current);
1126 		return true;
1127 	}
1128 
1129 	/*
1130 	 * The OOM killer does not compensate for IO-less reclaim.
1131 	 * But mem_cgroup_oom() has to invoke the OOM killer even
1132 	 * if it is a GFP_NOFS allocation.
1133 	 */
1134 	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1135 		return true;
1136 
1137 	/*
1138 	 * Check if there were limitations on the allocation (only relevant for
1139 	 * NUMA and memcg) that may require different handling.
1140 	 */
1141 	oc->constraint = constrained_alloc(oc);
1142 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1143 		oc->nodemask = NULL;
1144 	check_panic_on_oom(oc);
1145 
1146 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1147 	    current->mm && !oom_unkillable_task(current) &&
1148 	    oom_cpuset_eligible(current, oc) &&
1149 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1150 		get_task_struct(current);
1151 		oc->chosen = current;
1152 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1153 		return true;
1154 	}
1155 
1156 	select_bad_process(oc);
1157 	/* Found nothing?!?! */
1158 	if (!oc->chosen) {
1159 		dump_header(oc);
1160 		pr_warn("Out of memory and no killable processes...\n");
1161 		/*
1162 		 * If we got here due to an actual allocation at the
1163 		 * system level, we cannot survive this and will enter
1164 		 * an endless loop in the allocator. Bail out now.
1165 		 */
1166 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1167 			panic("System is deadlocked on memory\n");
1168 	}
1169 	if (oc->chosen && oc->chosen != (void *)-1UL)
1170 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1171 				 "Memory cgroup out of memory");
1172 	return !!oc->chosen;
1173 }
1174 
1175 /*
1176  * The pagefault handler calls here because some allocation has failed. We have
1177  * to take care of the memcg OOM here because this is the only safe context without
1178  * any locks held but let the oom killer triggered from the allocation context care
1179  * about the global OOM.
1180  */
1181 void pagefault_out_of_memory(void)
1182 {
1183 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1184 				      DEFAULT_RATELIMIT_BURST);
1185 
1186 	if (mem_cgroup_oom_synchronize(true))
1187 		return;
1188 
1189 	if (fatal_signal_pending(current))
1190 		return;
1191 
1192 	if (__ratelimit(&pfoom_rs))
1193 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1194 }
1195 
1196 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1197 {
1198 #ifdef CONFIG_MMU
1199 	struct mm_struct *mm = NULL;
1200 	struct task_struct *task;
1201 	struct task_struct *p;
1202 	unsigned int f_flags;
1203 	bool reap = false;
1204 	long ret = 0;
1205 
1206 	if (flags)
1207 		return -EINVAL;
1208 
1209 	task = pidfd_get_task(pidfd, &f_flags);
1210 	if (IS_ERR(task))
1211 		return PTR_ERR(task);
1212 
1213 	/*
1214 	 * Make sure to choose a thread which still has a reference to mm
1215 	 * during the group exit
1216 	 */
1217 	p = find_lock_task_mm(task);
1218 	if (!p) {
1219 		ret = -ESRCH;
1220 		goto put_task;
1221 	}
1222 
1223 	mm = p->mm;
1224 	mmgrab(mm);
1225 
1226 	if (task_will_free_mem(p))
1227 		reap = true;
1228 	else {
1229 		/* Error only if the work has not been done already */
1230 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1231 			ret = -EINVAL;
1232 	}
1233 	task_unlock(p);
1234 
1235 	if (!reap)
1236 		goto drop_mm;
1237 
1238 	if (mmap_read_lock_killable(mm)) {
1239 		ret = -EINTR;
1240 		goto drop_mm;
1241 	}
1242 	/*
1243 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1244 	 * possible change in exit_mmap is seen
1245 	 */
1246 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1247 		ret = -EAGAIN;
1248 	mmap_read_unlock(mm);
1249 
1250 drop_mm:
1251 	mmdrop(mm);
1252 put_task:
1253 	put_task_struct(task);
1254 	return ret;
1255 #else
1256 	return -ENOSYS;
1257 #endif /* CONFIG_MMU */
1258 }
1259