xref: /linux/mm/oom_kill.c (revision a1e58bbdc969c3fe60addca7f2729779d22a83c1)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 
30 int sysctl_panic_on_oom;
31 int sysctl_oom_kill_allocating_task;
32 int sysctl_oom_dump_tasks;
33 static DEFINE_SPINLOCK(zone_scan_mutex);
34 /* #define DEBUG */
35 
36 /**
37  * badness - calculate a numeric value for how bad this task has been
38  * @p: task struct of which task we should calculate
39  * @uptime: current uptime in seconds
40  * @mem: target memory controller
41  *
42  * The formula used is relatively simple and documented inline in the
43  * function. The main rationale is that we want to select a good task
44  * to kill when we run out of memory.
45  *
46  * Good in this context means that:
47  * 1) we lose the minimum amount of work done
48  * 2) we recover a large amount of memory
49  * 3) we don't kill anything innocent of eating tons of memory
50  * 4) we want to kill the minimum amount of processes (one)
51  * 5) we try to kill the process the user expects us to kill, this
52  *    algorithm has been meticulously tuned to meet the principle
53  *    of least surprise ... (be careful when you change it)
54  */
55 
56 unsigned long badness(struct task_struct *p, unsigned long uptime,
57 			struct mem_cgroup *mem)
58 {
59 	unsigned long points, cpu_time, run_time, s;
60 	struct mm_struct *mm;
61 	struct task_struct *child;
62 
63 	task_lock(p);
64 	mm = p->mm;
65 	if (!mm) {
66 		task_unlock(p);
67 		return 0;
68 	}
69 
70 	/*
71 	 * The memory size of the process is the basis for the badness.
72 	 */
73 	points = mm->total_vm;
74 
75 	/*
76 	 * After this unlock we can no longer dereference local variable `mm'
77 	 */
78 	task_unlock(p);
79 
80 	/*
81 	 * swapoff can easily use up all memory, so kill those first.
82 	 */
83 	if (p->flags & PF_SWAPOFF)
84 		return ULONG_MAX;
85 
86 	/*
87 	 * Processes which fork a lot of child processes are likely
88 	 * a good choice. We add half the vmsize of the children if they
89 	 * have an own mm. This prevents forking servers to flood the
90 	 * machine with an endless amount of children. In case a single
91 	 * child is eating the vast majority of memory, adding only half
92 	 * to the parents will make the child our kill candidate of choice.
93 	 */
94 	list_for_each_entry(child, &p->children, sibling) {
95 		task_lock(child);
96 		if (child->mm != mm && child->mm)
97 			points += child->mm->total_vm/2 + 1;
98 		task_unlock(child);
99 	}
100 
101 	/*
102 	 * CPU time is in tens of seconds and run time is in thousands
103          * of seconds. There is no particular reason for this other than
104          * that it turned out to work very well in practice.
105 	 */
106 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
107 		>> (SHIFT_HZ + 3);
108 
109 	if (uptime >= p->start_time.tv_sec)
110 		run_time = (uptime - p->start_time.tv_sec) >> 10;
111 	else
112 		run_time = 0;
113 
114 	s = int_sqrt(cpu_time);
115 	if (s)
116 		points /= s;
117 	s = int_sqrt(int_sqrt(run_time));
118 	if (s)
119 		points /= s;
120 
121 	/*
122 	 * Niced processes are most likely less important, so double
123 	 * their badness points.
124 	 */
125 	if (task_nice(p) > 0)
126 		points *= 2;
127 
128 	/*
129 	 * Superuser processes are usually more important, so we make it
130 	 * less likely that we kill those.
131 	 */
132 	if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE))
133 		points /= 4;
134 
135 	/*
136 	 * We don't want to kill a process with direct hardware access.
137 	 * Not only could that mess up the hardware, but usually users
138 	 * tend to only have this flag set on applications they think
139 	 * of as important.
140 	 */
141 	if (__capable(p, CAP_SYS_RAWIO))
142 		points /= 4;
143 
144 	/*
145 	 * If p's nodes don't overlap ours, it may still help to kill p
146 	 * because p may have allocated or otherwise mapped memory on
147 	 * this node before. However it will be less likely.
148 	 */
149 	if (!cpuset_mems_allowed_intersects(current, p))
150 		points /= 8;
151 
152 	/*
153 	 * Adjust the score by oomkilladj.
154 	 */
155 	if (p->oomkilladj) {
156 		if (p->oomkilladj > 0) {
157 			if (!points)
158 				points = 1;
159 			points <<= p->oomkilladj;
160 		} else
161 			points >>= -(p->oomkilladj);
162 	}
163 
164 #ifdef DEBUG
165 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
166 	p->pid, p->comm, points);
167 #endif
168 	return points;
169 }
170 
171 /*
172  * Determine the type of allocation constraint.
173  */
174 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
175 						    gfp_t gfp_mask)
176 {
177 #ifdef CONFIG_NUMA
178 	struct zone **z;
179 	nodemask_t nodes = node_states[N_HIGH_MEMORY];
180 
181 	for (z = zonelist->zones; *z; z++)
182 		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
183 			node_clear(zone_to_nid(*z), nodes);
184 		else
185 			return CONSTRAINT_CPUSET;
186 
187 	if (!nodes_empty(nodes))
188 		return CONSTRAINT_MEMORY_POLICY;
189 #endif
190 
191 	return CONSTRAINT_NONE;
192 }
193 
194 /*
195  * Simple selection loop. We chose the process with the highest
196  * number of 'points'. We expect the caller will lock the tasklist.
197  *
198  * (not docbooked, we don't want this one cluttering up the manual)
199  */
200 static struct task_struct *select_bad_process(unsigned long *ppoints,
201 						struct mem_cgroup *mem)
202 {
203 	struct task_struct *g, *p;
204 	struct task_struct *chosen = NULL;
205 	struct timespec uptime;
206 	*ppoints = 0;
207 
208 	do_posix_clock_monotonic_gettime(&uptime);
209 	do_each_thread(g, p) {
210 		unsigned long points;
211 
212 		/*
213 		 * skip kernel threads and tasks which have already released
214 		 * their mm.
215 		 */
216 		if (!p->mm)
217 			continue;
218 		/* skip the init task */
219 		if (is_global_init(p))
220 			continue;
221 		if (mem && !task_in_mem_cgroup(p, mem))
222 			continue;
223 
224 		/*
225 		 * This task already has access to memory reserves and is
226 		 * being killed. Don't allow any other task access to the
227 		 * memory reserve.
228 		 *
229 		 * Note: this may have a chance of deadlock if it gets
230 		 * blocked waiting for another task which itself is waiting
231 		 * for memory. Is there a better alternative?
232 		 */
233 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
234 			return ERR_PTR(-1UL);
235 
236 		/*
237 		 * This is in the process of releasing memory so wait for it
238 		 * to finish before killing some other task by mistake.
239 		 *
240 		 * However, if p is the current task, we allow the 'kill' to
241 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
242 		 * which will allow it to gain access to memory reserves in
243 		 * the process of exiting and releasing its resources.
244 		 * Otherwise we could get an easy OOM deadlock.
245 		 */
246 		if (p->flags & PF_EXITING) {
247 			if (p != current)
248 				return ERR_PTR(-1UL);
249 
250 			chosen = p;
251 			*ppoints = ULONG_MAX;
252 		}
253 
254 		if (p->oomkilladj == OOM_DISABLE)
255 			continue;
256 
257 		points = badness(p, uptime.tv_sec, mem);
258 		if (points > *ppoints || !chosen) {
259 			chosen = p;
260 			*ppoints = points;
261 		}
262 	} while_each_thread(g, p);
263 
264 	return chosen;
265 }
266 
267 /**
268  * dump_tasks - dump current memory state of all system tasks
269  * @mem: target memory controller
270  *
271  * Dumps the current memory state of all system tasks, excluding kernel threads.
272  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
273  * score, and name.
274  *
275  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
276  * shown.
277  *
278  * Call with tasklist_lock read-locked.
279  */
280 static void dump_tasks(const struct mem_cgroup *mem)
281 {
282 	struct task_struct *g, *p;
283 
284 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
285 	       "name\n");
286 	do_each_thread(g, p) {
287 		/*
288 		 * total_vm and rss sizes do not exist for tasks with a
289 		 * detached mm so there's no need to report them.
290 		 */
291 		if (!p->mm)
292 			continue;
293 		if (mem && !task_in_mem_cgroup(p, mem))
294 			continue;
295 
296 		task_lock(p);
297 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
298 		       p->pid, p->uid, p->tgid, p->mm->total_vm,
299 		       get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
300 		       p->comm);
301 		task_unlock(p);
302 	} while_each_thread(g, p);
303 }
304 
305 /*
306  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
307  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
308  * set.
309  */
310 static void __oom_kill_task(struct task_struct *p, int verbose)
311 {
312 	if (is_global_init(p)) {
313 		WARN_ON(1);
314 		printk(KERN_WARNING "tried to kill init!\n");
315 		return;
316 	}
317 
318 	if (!p->mm) {
319 		WARN_ON(1);
320 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
321 		return;
322 	}
323 
324 	if (verbose)
325 		printk(KERN_ERR "Killed process %d (%s)\n",
326 				task_pid_nr(p), p->comm);
327 
328 	/*
329 	 * We give our sacrificial lamb high priority and access to
330 	 * all the memory it needs. That way it should be able to
331 	 * exit() and clear out its resources quickly...
332 	 */
333 	p->rt.time_slice = HZ;
334 	set_tsk_thread_flag(p, TIF_MEMDIE);
335 
336 	force_sig(SIGKILL, p);
337 }
338 
339 static int oom_kill_task(struct task_struct *p)
340 {
341 	struct mm_struct *mm;
342 	struct task_struct *g, *q;
343 
344 	mm = p->mm;
345 
346 	/* WARNING: mm may not be dereferenced since we did not obtain its
347 	 * value from get_task_mm(p).  This is OK since all we need to do is
348 	 * compare mm to q->mm below.
349 	 *
350 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
351 	 * change to NULL at any time since we do not hold task_lock(p).
352 	 * However, this is of no concern to us.
353 	 */
354 
355 	if (mm == NULL)
356 		return 1;
357 
358 	/*
359 	 * Don't kill the process if any threads are set to OOM_DISABLE
360 	 */
361 	do_each_thread(g, q) {
362 		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
363 			return 1;
364 	} while_each_thread(g, q);
365 
366 	__oom_kill_task(p, 1);
367 
368 	/*
369 	 * kill all processes that share the ->mm (i.e. all threads),
370 	 * but are in a different thread group. Don't let them have access
371 	 * to memory reserves though, otherwise we might deplete all memory.
372 	 */
373 	do_each_thread(g, q) {
374 		if (q->mm == mm && !same_thread_group(q, p))
375 			force_sig(SIGKILL, q);
376 	} while_each_thread(g, q);
377 
378 	return 0;
379 }
380 
381 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
382 			    unsigned long points, struct mem_cgroup *mem,
383 			    const char *message)
384 {
385 	struct task_struct *c;
386 
387 	if (printk_ratelimit()) {
388 		printk(KERN_WARNING "%s invoked oom-killer: "
389 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
390 			current->comm, gfp_mask, order, current->oomkilladj);
391 		dump_stack();
392 		show_mem();
393 		if (sysctl_oom_dump_tasks)
394 			dump_tasks(mem);
395 	}
396 
397 	/*
398 	 * If the task is already exiting, don't alarm the sysadmin or kill
399 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
400 	 */
401 	if (p->flags & PF_EXITING) {
402 		__oom_kill_task(p, 0);
403 		return 0;
404 	}
405 
406 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
407 					message, task_pid_nr(p), p->comm, points);
408 
409 	/* Try to kill a child first */
410 	list_for_each_entry(c, &p->children, sibling) {
411 		if (c->mm == p->mm)
412 			continue;
413 		if (!oom_kill_task(c))
414 			return 0;
415 	}
416 	return oom_kill_task(p);
417 }
418 
419 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
420 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
421 {
422 	unsigned long points = 0;
423 	struct task_struct *p;
424 
425 	cgroup_lock();
426 	rcu_read_lock();
427 retry:
428 	p = select_bad_process(&points, mem);
429 	if (PTR_ERR(p) == -1UL)
430 		goto out;
431 
432 	if (!p)
433 		p = current;
434 
435 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
436 				"Memory cgroup out of memory"))
437 		goto retry;
438 out:
439 	rcu_read_unlock();
440 	cgroup_unlock();
441 }
442 #endif
443 
444 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
445 
446 int register_oom_notifier(struct notifier_block *nb)
447 {
448 	return blocking_notifier_chain_register(&oom_notify_list, nb);
449 }
450 EXPORT_SYMBOL_GPL(register_oom_notifier);
451 
452 int unregister_oom_notifier(struct notifier_block *nb)
453 {
454 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
455 }
456 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
457 
458 /*
459  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
460  * if a parallel OOM killing is already taking place that includes a zone in
461  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
462  */
463 int try_set_zone_oom(struct zonelist *zonelist)
464 {
465 	struct zone **z;
466 	int ret = 1;
467 
468 	z = zonelist->zones;
469 
470 	spin_lock(&zone_scan_mutex);
471 	do {
472 		if (zone_is_oom_locked(*z)) {
473 			ret = 0;
474 			goto out;
475 		}
476 	} while (*(++z) != NULL);
477 
478 	/*
479 	 * Lock each zone in the zonelist under zone_scan_mutex so a parallel
480 	 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
481 	 */
482 	z = zonelist->zones;
483 	do {
484 		zone_set_flag(*z, ZONE_OOM_LOCKED);
485 	} while (*(++z) != NULL);
486 out:
487 	spin_unlock(&zone_scan_mutex);
488 	return ret;
489 }
490 
491 /*
492  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
493  * allocation attempts with zonelists containing them may now recall the OOM
494  * killer, if necessary.
495  */
496 void clear_zonelist_oom(struct zonelist *zonelist)
497 {
498 	struct zone **z;
499 
500 	z = zonelist->zones;
501 
502 	spin_lock(&zone_scan_mutex);
503 	do {
504 		zone_clear_flag(*z, ZONE_OOM_LOCKED);
505 	} while (*(++z) != NULL);
506 	spin_unlock(&zone_scan_mutex);
507 }
508 
509 /**
510  * out_of_memory - kill the "best" process when we run out of memory
511  * @zonelist: zonelist pointer
512  * @gfp_mask: memory allocation flags
513  * @order: amount of memory being requested as a power of 2
514  *
515  * If we run out of memory, we have the choice between either
516  * killing a random task (bad), letting the system crash (worse)
517  * OR try to be smart about which process to kill. Note that we
518  * don't have to be perfect here, we just have to be good.
519  */
520 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
521 {
522 	struct task_struct *p;
523 	unsigned long points = 0;
524 	unsigned long freed = 0;
525 	enum oom_constraint constraint;
526 
527 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
528 	if (freed > 0)
529 		/* Got some memory back in the last second. */
530 		return;
531 
532 	if (sysctl_panic_on_oom == 2)
533 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
534 
535 	/*
536 	 * Check if there were limitations on the allocation (only relevant for
537 	 * NUMA) that may require different handling.
538 	 */
539 	constraint = constrained_alloc(zonelist, gfp_mask);
540 	read_lock(&tasklist_lock);
541 
542 	switch (constraint) {
543 	case CONSTRAINT_MEMORY_POLICY:
544 		oom_kill_process(current, gfp_mask, order, points, NULL,
545 				"No available memory (MPOL_BIND)");
546 		break;
547 
548 	case CONSTRAINT_NONE:
549 		if (sysctl_panic_on_oom)
550 			panic("out of memory. panic_on_oom is selected\n");
551 		/* Fall-through */
552 	case CONSTRAINT_CPUSET:
553 		if (sysctl_oom_kill_allocating_task) {
554 			oom_kill_process(current, gfp_mask, order, points, NULL,
555 					"Out of memory (oom_kill_allocating_task)");
556 			break;
557 		}
558 retry:
559 		/*
560 		 * Rambo mode: Shoot down a process and hope it solves whatever
561 		 * issues we may have.
562 		 */
563 		p = select_bad_process(&points, NULL);
564 
565 		if (PTR_ERR(p) == -1UL)
566 			goto out;
567 
568 		/* Found nothing?!?! Either we hang forever, or we panic. */
569 		if (!p) {
570 			read_unlock(&tasklist_lock);
571 			panic("Out of memory and no killable processes...\n");
572 		}
573 
574 		if (oom_kill_process(p, gfp_mask, order, points, NULL,
575 				     "Out of memory"))
576 			goto retry;
577 
578 		break;
579 	}
580 
581 out:
582 	read_unlock(&tasklist_lock);
583 
584 	/*
585 	 * Give "p" a good chance of killing itself before we
586 	 * retry to allocate memory unless "p" is current
587 	 */
588 	if (!test_thread_flag(TIF_MEMDIE))
589 		schedule_timeout_uninterruptible(1);
590 }
591