1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 #include <linux/memcontrol.h> 29 30 int sysctl_panic_on_oom; 31 int sysctl_oom_kill_allocating_task; 32 int sysctl_oom_dump_tasks; 33 static DEFINE_SPINLOCK(zone_scan_mutex); 34 /* #define DEBUG */ 35 36 /** 37 * badness - calculate a numeric value for how bad this task has been 38 * @p: task struct of which task we should calculate 39 * @uptime: current uptime in seconds 40 * @mem: target memory controller 41 * 42 * The formula used is relatively simple and documented inline in the 43 * function. The main rationale is that we want to select a good task 44 * to kill when we run out of memory. 45 * 46 * Good in this context means that: 47 * 1) we lose the minimum amount of work done 48 * 2) we recover a large amount of memory 49 * 3) we don't kill anything innocent of eating tons of memory 50 * 4) we want to kill the minimum amount of processes (one) 51 * 5) we try to kill the process the user expects us to kill, this 52 * algorithm has been meticulously tuned to meet the principle 53 * of least surprise ... (be careful when you change it) 54 */ 55 56 unsigned long badness(struct task_struct *p, unsigned long uptime, 57 struct mem_cgroup *mem) 58 { 59 unsigned long points, cpu_time, run_time, s; 60 struct mm_struct *mm; 61 struct task_struct *child; 62 63 task_lock(p); 64 mm = p->mm; 65 if (!mm) { 66 task_unlock(p); 67 return 0; 68 } 69 70 /* 71 * The memory size of the process is the basis for the badness. 72 */ 73 points = mm->total_vm; 74 75 /* 76 * After this unlock we can no longer dereference local variable `mm' 77 */ 78 task_unlock(p); 79 80 /* 81 * swapoff can easily use up all memory, so kill those first. 82 */ 83 if (p->flags & PF_SWAPOFF) 84 return ULONG_MAX; 85 86 /* 87 * Processes which fork a lot of child processes are likely 88 * a good choice. We add half the vmsize of the children if they 89 * have an own mm. This prevents forking servers to flood the 90 * machine with an endless amount of children. In case a single 91 * child is eating the vast majority of memory, adding only half 92 * to the parents will make the child our kill candidate of choice. 93 */ 94 list_for_each_entry(child, &p->children, sibling) { 95 task_lock(child); 96 if (child->mm != mm && child->mm) 97 points += child->mm->total_vm/2 + 1; 98 task_unlock(child); 99 } 100 101 /* 102 * CPU time is in tens of seconds and run time is in thousands 103 * of seconds. There is no particular reason for this other than 104 * that it turned out to work very well in practice. 105 */ 106 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 107 >> (SHIFT_HZ + 3); 108 109 if (uptime >= p->start_time.tv_sec) 110 run_time = (uptime - p->start_time.tv_sec) >> 10; 111 else 112 run_time = 0; 113 114 s = int_sqrt(cpu_time); 115 if (s) 116 points /= s; 117 s = int_sqrt(int_sqrt(run_time)); 118 if (s) 119 points /= s; 120 121 /* 122 * Niced processes are most likely less important, so double 123 * their badness points. 124 */ 125 if (task_nice(p) > 0) 126 points *= 2; 127 128 /* 129 * Superuser processes are usually more important, so we make it 130 * less likely that we kill those. 131 */ 132 if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE)) 133 points /= 4; 134 135 /* 136 * We don't want to kill a process with direct hardware access. 137 * Not only could that mess up the hardware, but usually users 138 * tend to only have this flag set on applications they think 139 * of as important. 140 */ 141 if (__capable(p, CAP_SYS_RAWIO)) 142 points /= 4; 143 144 /* 145 * If p's nodes don't overlap ours, it may still help to kill p 146 * because p may have allocated or otherwise mapped memory on 147 * this node before. However it will be less likely. 148 */ 149 if (!cpuset_mems_allowed_intersects(current, p)) 150 points /= 8; 151 152 /* 153 * Adjust the score by oomkilladj. 154 */ 155 if (p->oomkilladj) { 156 if (p->oomkilladj > 0) { 157 if (!points) 158 points = 1; 159 points <<= p->oomkilladj; 160 } else 161 points >>= -(p->oomkilladj); 162 } 163 164 #ifdef DEBUG 165 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 166 p->pid, p->comm, points); 167 #endif 168 return points; 169 } 170 171 /* 172 * Determine the type of allocation constraint. 173 */ 174 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, 175 gfp_t gfp_mask) 176 { 177 #ifdef CONFIG_NUMA 178 struct zone **z; 179 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 180 181 for (z = zonelist->zones; *z; z++) 182 if (cpuset_zone_allowed_softwall(*z, gfp_mask)) 183 node_clear(zone_to_nid(*z), nodes); 184 else 185 return CONSTRAINT_CPUSET; 186 187 if (!nodes_empty(nodes)) 188 return CONSTRAINT_MEMORY_POLICY; 189 #endif 190 191 return CONSTRAINT_NONE; 192 } 193 194 /* 195 * Simple selection loop. We chose the process with the highest 196 * number of 'points'. We expect the caller will lock the tasklist. 197 * 198 * (not docbooked, we don't want this one cluttering up the manual) 199 */ 200 static struct task_struct *select_bad_process(unsigned long *ppoints, 201 struct mem_cgroup *mem) 202 { 203 struct task_struct *g, *p; 204 struct task_struct *chosen = NULL; 205 struct timespec uptime; 206 *ppoints = 0; 207 208 do_posix_clock_monotonic_gettime(&uptime); 209 do_each_thread(g, p) { 210 unsigned long points; 211 212 /* 213 * skip kernel threads and tasks which have already released 214 * their mm. 215 */ 216 if (!p->mm) 217 continue; 218 /* skip the init task */ 219 if (is_global_init(p)) 220 continue; 221 if (mem && !task_in_mem_cgroup(p, mem)) 222 continue; 223 224 /* 225 * This task already has access to memory reserves and is 226 * being killed. Don't allow any other task access to the 227 * memory reserve. 228 * 229 * Note: this may have a chance of deadlock if it gets 230 * blocked waiting for another task which itself is waiting 231 * for memory. Is there a better alternative? 232 */ 233 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 234 return ERR_PTR(-1UL); 235 236 /* 237 * This is in the process of releasing memory so wait for it 238 * to finish before killing some other task by mistake. 239 * 240 * However, if p is the current task, we allow the 'kill' to 241 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 242 * which will allow it to gain access to memory reserves in 243 * the process of exiting and releasing its resources. 244 * Otherwise we could get an easy OOM deadlock. 245 */ 246 if (p->flags & PF_EXITING) { 247 if (p != current) 248 return ERR_PTR(-1UL); 249 250 chosen = p; 251 *ppoints = ULONG_MAX; 252 } 253 254 if (p->oomkilladj == OOM_DISABLE) 255 continue; 256 257 points = badness(p, uptime.tv_sec, mem); 258 if (points > *ppoints || !chosen) { 259 chosen = p; 260 *ppoints = points; 261 } 262 } while_each_thread(g, p); 263 264 return chosen; 265 } 266 267 /** 268 * dump_tasks - dump current memory state of all system tasks 269 * @mem: target memory controller 270 * 271 * Dumps the current memory state of all system tasks, excluding kernel threads. 272 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 273 * score, and name. 274 * 275 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 276 * shown. 277 * 278 * Call with tasklist_lock read-locked. 279 */ 280 static void dump_tasks(const struct mem_cgroup *mem) 281 { 282 struct task_struct *g, *p; 283 284 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 285 "name\n"); 286 do_each_thread(g, p) { 287 /* 288 * total_vm and rss sizes do not exist for tasks with a 289 * detached mm so there's no need to report them. 290 */ 291 if (!p->mm) 292 continue; 293 if (mem && !task_in_mem_cgroup(p, mem)) 294 continue; 295 296 task_lock(p); 297 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", 298 p->pid, p->uid, p->tgid, p->mm->total_vm, 299 get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj, 300 p->comm); 301 task_unlock(p); 302 } while_each_thread(g, p); 303 } 304 305 /* 306 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 307 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 308 * set. 309 */ 310 static void __oom_kill_task(struct task_struct *p, int verbose) 311 { 312 if (is_global_init(p)) { 313 WARN_ON(1); 314 printk(KERN_WARNING "tried to kill init!\n"); 315 return; 316 } 317 318 if (!p->mm) { 319 WARN_ON(1); 320 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 321 return; 322 } 323 324 if (verbose) 325 printk(KERN_ERR "Killed process %d (%s)\n", 326 task_pid_nr(p), p->comm); 327 328 /* 329 * We give our sacrificial lamb high priority and access to 330 * all the memory it needs. That way it should be able to 331 * exit() and clear out its resources quickly... 332 */ 333 p->rt.time_slice = HZ; 334 set_tsk_thread_flag(p, TIF_MEMDIE); 335 336 force_sig(SIGKILL, p); 337 } 338 339 static int oom_kill_task(struct task_struct *p) 340 { 341 struct mm_struct *mm; 342 struct task_struct *g, *q; 343 344 mm = p->mm; 345 346 /* WARNING: mm may not be dereferenced since we did not obtain its 347 * value from get_task_mm(p). This is OK since all we need to do is 348 * compare mm to q->mm below. 349 * 350 * Furthermore, even if mm contains a non-NULL value, p->mm may 351 * change to NULL at any time since we do not hold task_lock(p). 352 * However, this is of no concern to us. 353 */ 354 355 if (mm == NULL) 356 return 1; 357 358 /* 359 * Don't kill the process if any threads are set to OOM_DISABLE 360 */ 361 do_each_thread(g, q) { 362 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 363 return 1; 364 } while_each_thread(g, q); 365 366 __oom_kill_task(p, 1); 367 368 /* 369 * kill all processes that share the ->mm (i.e. all threads), 370 * but are in a different thread group. Don't let them have access 371 * to memory reserves though, otherwise we might deplete all memory. 372 */ 373 do_each_thread(g, q) { 374 if (q->mm == mm && !same_thread_group(q, p)) 375 force_sig(SIGKILL, q); 376 } while_each_thread(g, q); 377 378 return 0; 379 } 380 381 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 382 unsigned long points, struct mem_cgroup *mem, 383 const char *message) 384 { 385 struct task_struct *c; 386 387 if (printk_ratelimit()) { 388 printk(KERN_WARNING "%s invoked oom-killer: " 389 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 390 current->comm, gfp_mask, order, current->oomkilladj); 391 dump_stack(); 392 show_mem(); 393 if (sysctl_oom_dump_tasks) 394 dump_tasks(mem); 395 } 396 397 /* 398 * If the task is already exiting, don't alarm the sysadmin or kill 399 * its children or threads, just set TIF_MEMDIE so it can die quickly 400 */ 401 if (p->flags & PF_EXITING) { 402 __oom_kill_task(p, 0); 403 return 0; 404 } 405 406 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 407 message, task_pid_nr(p), p->comm, points); 408 409 /* Try to kill a child first */ 410 list_for_each_entry(c, &p->children, sibling) { 411 if (c->mm == p->mm) 412 continue; 413 if (!oom_kill_task(c)) 414 return 0; 415 } 416 return oom_kill_task(p); 417 } 418 419 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 420 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 421 { 422 unsigned long points = 0; 423 struct task_struct *p; 424 425 cgroup_lock(); 426 rcu_read_lock(); 427 retry: 428 p = select_bad_process(&points, mem); 429 if (PTR_ERR(p) == -1UL) 430 goto out; 431 432 if (!p) 433 p = current; 434 435 if (oom_kill_process(p, gfp_mask, 0, points, mem, 436 "Memory cgroup out of memory")) 437 goto retry; 438 out: 439 rcu_read_unlock(); 440 cgroup_unlock(); 441 } 442 #endif 443 444 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 445 446 int register_oom_notifier(struct notifier_block *nb) 447 { 448 return blocking_notifier_chain_register(&oom_notify_list, nb); 449 } 450 EXPORT_SYMBOL_GPL(register_oom_notifier); 451 452 int unregister_oom_notifier(struct notifier_block *nb) 453 { 454 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 455 } 456 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 457 458 /* 459 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 460 * if a parallel OOM killing is already taking place that includes a zone in 461 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 462 */ 463 int try_set_zone_oom(struct zonelist *zonelist) 464 { 465 struct zone **z; 466 int ret = 1; 467 468 z = zonelist->zones; 469 470 spin_lock(&zone_scan_mutex); 471 do { 472 if (zone_is_oom_locked(*z)) { 473 ret = 0; 474 goto out; 475 } 476 } while (*(++z) != NULL); 477 478 /* 479 * Lock each zone in the zonelist under zone_scan_mutex so a parallel 480 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't. 481 */ 482 z = zonelist->zones; 483 do { 484 zone_set_flag(*z, ZONE_OOM_LOCKED); 485 } while (*(++z) != NULL); 486 out: 487 spin_unlock(&zone_scan_mutex); 488 return ret; 489 } 490 491 /* 492 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 493 * allocation attempts with zonelists containing them may now recall the OOM 494 * killer, if necessary. 495 */ 496 void clear_zonelist_oom(struct zonelist *zonelist) 497 { 498 struct zone **z; 499 500 z = zonelist->zones; 501 502 spin_lock(&zone_scan_mutex); 503 do { 504 zone_clear_flag(*z, ZONE_OOM_LOCKED); 505 } while (*(++z) != NULL); 506 spin_unlock(&zone_scan_mutex); 507 } 508 509 /** 510 * out_of_memory - kill the "best" process when we run out of memory 511 * @zonelist: zonelist pointer 512 * @gfp_mask: memory allocation flags 513 * @order: amount of memory being requested as a power of 2 514 * 515 * If we run out of memory, we have the choice between either 516 * killing a random task (bad), letting the system crash (worse) 517 * OR try to be smart about which process to kill. Note that we 518 * don't have to be perfect here, we just have to be good. 519 */ 520 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 521 { 522 struct task_struct *p; 523 unsigned long points = 0; 524 unsigned long freed = 0; 525 enum oom_constraint constraint; 526 527 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 528 if (freed > 0) 529 /* Got some memory back in the last second. */ 530 return; 531 532 if (sysctl_panic_on_oom == 2) 533 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 534 535 /* 536 * Check if there were limitations on the allocation (only relevant for 537 * NUMA) that may require different handling. 538 */ 539 constraint = constrained_alloc(zonelist, gfp_mask); 540 read_lock(&tasklist_lock); 541 542 switch (constraint) { 543 case CONSTRAINT_MEMORY_POLICY: 544 oom_kill_process(current, gfp_mask, order, points, NULL, 545 "No available memory (MPOL_BIND)"); 546 break; 547 548 case CONSTRAINT_NONE: 549 if (sysctl_panic_on_oom) 550 panic("out of memory. panic_on_oom is selected\n"); 551 /* Fall-through */ 552 case CONSTRAINT_CPUSET: 553 if (sysctl_oom_kill_allocating_task) { 554 oom_kill_process(current, gfp_mask, order, points, NULL, 555 "Out of memory (oom_kill_allocating_task)"); 556 break; 557 } 558 retry: 559 /* 560 * Rambo mode: Shoot down a process and hope it solves whatever 561 * issues we may have. 562 */ 563 p = select_bad_process(&points, NULL); 564 565 if (PTR_ERR(p) == -1UL) 566 goto out; 567 568 /* Found nothing?!?! Either we hang forever, or we panic. */ 569 if (!p) { 570 read_unlock(&tasklist_lock); 571 panic("Out of memory and no killable processes...\n"); 572 } 573 574 if (oom_kill_process(p, gfp_mask, order, points, NULL, 575 "Out of memory")) 576 goto retry; 577 578 break; 579 } 580 581 out: 582 read_unlock(&tasklist_lock); 583 584 /* 585 * Give "p" a good chance of killing itself before we 586 * retry to allocate memory unless "p" is current 587 */ 588 if (!test_thread_flag(TIF_MEMDIE)) 589 schedule_timeout_uninterruptible(1); 590 } 591