xref: /linux/mm/oom_kill.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/module.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 
36 int sysctl_panic_on_oom;
37 int sysctl_oom_kill_allocating_task;
38 int sysctl_oom_dump_tasks = 1;
39 static DEFINE_SPINLOCK(zone_scan_lock);
40 
41 #ifdef CONFIG_NUMA
42 /**
43  * has_intersects_mems_allowed() - check task eligiblity for kill
44  * @tsk: task struct of which task to consider
45  * @mask: nodemask passed to page allocator for mempolicy ooms
46  *
47  * Task eligibility is determined by whether or not a candidate task, @tsk,
48  * shares the same mempolicy nodes as current if it is bound by such a policy
49  * and whether or not it has the same set of allowed cpuset nodes.
50  */
51 static bool has_intersects_mems_allowed(struct task_struct *tsk,
52 					const nodemask_t *mask)
53 {
54 	struct task_struct *start = tsk;
55 
56 	do {
57 		if (mask) {
58 			/*
59 			 * If this is a mempolicy constrained oom, tsk's
60 			 * cpuset is irrelevant.  Only return true if its
61 			 * mempolicy intersects current, otherwise it may be
62 			 * needlessly killed.
63 			 */
64 			if (mempolicy_nodemask_intersects(tsk, mask))
65 				return true;
66 		} else {
67 			/*
68 			 * This is not a mempolicy constrained oom, so only
69 			 * check the mems of tsk's cpuset.
70 			 */
71 			if (cpuset_mems_allowed_intersects(current, tsk))
72 				return true;
73 		}
74 	} while_each_thread(start, tsk);
75 
76 	return false;
77 }
78 #else
79 static bool has_intersects_mems_allowed(struct task_struct *tsk,
80 					const nodemask_t *mask)
81 {
82 	return true;
83 }
84 #endif /* CONFIG_NUMA */
85 
86 /*
87  * If this is a system OOM (not a memcg OOM) and the task selected to be
88  * killed is not already running at high (RT) priorities, speed up the
89  * recovery by boosting the dying task to the lowest FIFO priority.
90  * That helps with the recovery and avoids interfering with RT tasks.
91  */
92 static void boost_dying_task_prio(struct task_struct *p,
93 				  struct mem_cgroup *mem)
94 {
95 	struct sched_param param = { .sched_priority = 1 };
96 
97 	if (mem)
98 		return;
99 
100 	if (!rt_task(p))
101 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
102 }
103 
104 /*
105  * The process p may have detached its own ->mm while exiting or through
106  * use_mm(), but one or more of its subthreads may still have a valid
107  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
108  * task_lock() held.
109  */
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
111 {
112 	struct task_struct *t = p;
113 
114 	do {
115 		task_lock(t);
116 		if (likely(t->mm))
117 			return t;
118 		task_unlock(t);
119 	} while_each_thread(p, t);
120 
121 	return NULL;
122 }
123 
124 /* return true if the task is not adequate as candidate victim task. */
125 static bool oom_unkillable_task(struct task_struct *p,
126 		const struct mem_cgroup *mem, const nodemask_t *nodemask)
127 {
128 	if (is_global_init(p))
129 		return true;
130 	if (p->flags & PF_KTHREAD)
131 		return true;
132 
133 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
134 	if (mem && !task_in_mem_cgroup(p, mem))
135 		return true;
136 
137 	/* p may not have freeable memory in nodemask */
138 	if (!has_intersects_mems_allowed(p, nodemask))
139 		return true;
140 
141 	return false;
142 }
143 
144 /**
145  * oom_badness - heuristic function to determine which candidate task to kill
146  * @p: task struct of which task we should calculate
147  * @totalpages: total present RAM allowed for page allocation
148  *
149  * The heuristic for determining which task to kill is made to be as simple and
150  * predictable as possible.  The goal is to return the highest value for the
151  * task consuming the most memory to avoid subsequent oom failures.
152  */
153 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
154 		      const nodemask_t *nodemask, unsigned long totalpages)
155 {
156 	int points;
157 
158 	if (oom_unkillable_task(p, mem, nodemask))
159 		return 0;
160 
161 	p = find_lock_task_mm(p);
162 	if (!p)
163 		return 0;
164 
165 	/*
166 	 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
167 	 * so the entire heuristic doesn't need to be executed for something
168 	 * that cannot be killed.
169 	 */
170 	if (atomic_read(&p->mm->oom_disable_count)) {
171 		task_unlock(p);
172 		return 0;
173 	}
174 
175 	/*
176 	 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
177 	 * priority for oom killing.
178 	 */
179 	if (p->flags & PF_OOM_ORIGIN) {
180 		task_unlock(p);
181 		return 1000;
182 	}
183 
184 	/*
185 	 * The memory controller may have a limit of 0 bytes, so avoid a divide
186 	 * by zero, if necessary.
187 	 */
188 	if (!totalpages)
189 		totalpages = 1;
190 
191 	/*
192 	 * The baseline for the badness score is the proportion of RAM that each
193 	 * task's rss and swap space use.
194 	 */
195 	points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
196 			totalpages;
197 	task_unlock(p);
198 
199 	/*
200 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
201 	 * implementation used by LSMs.
202 	 */
203 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
204 		points -= 30;
205 
206 	/*
207 	 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
208 	 * either completely disable oom killing or always prefer a certain
209 	 * task.
210 	 */
211 	points += p->signal->oom_score_adj;
212 
213 	/*
214 	 * Never return 0 for an eligible task that may be killed since it's
215 	 * possible that no single user task uses more than 0.1% of memory and
216 	 * no single admin tasks uses more than 3.0%.
217 	 */
218 	if (points <= 0)
219 		return 1;
220 	return (points < 1000) ? points : 1000;
221 }
222 
223 /*
224  * Determine the type of allocation constraint.
225  */
226 #ifdef CONFIG_NUMA
227 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
228 				gfp_t gfp_mask, nodemask_t *nodemask,
229 				unsigned long *totalpages)
230 {
231 	struct zone *zone;
232 	struct zoneref *z;
233 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
234 	bool cpuset_limited = false;
235 	int nid;
236 
237 	/* Default to all available memory */
238 	*totalpages = totalram_pages + total_swap_pages;
239 
240 	if (!zonelist)
241 		return CONSTRAINT_NONE;
242 	/*
243 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
244 	 * to kill current.We have to random task kill in this case.
245 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
246 	 */
247 	if (gfp_mask & __GFP_THISNODE)
248 		return CONSTRAINT_NONE;
249 
250 	/*
251 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
252 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
253 	 * is enforced in get_page_from_freelist().
254 	 */
255 	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
256 		*totalpages = total_swap_pages;
257 		for_each_node_mask(nid, *nodemask)
258 			*totalpages += node_spanned_pages(nid);
259 		return CONSTRAINT_MEMORY_POLICY;
260 	}
261 
262 	/* Check this allocation failure is caused by cpuset's wall function */
263 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
264 			high_zoneidx, nodemask)
265 		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
266 			cpuset_limited = true;
267 
268 	if (cpuset_limited) {
269 		*totalpages = total_swap_pages;
270 		for_each_node_mask(nid, cpuset_current_mems_allowed)
271 			*totalpages += node_spanned_pages(nid);
272 		return CONSTRAINT_CPUSET;
273 	}
274 	return CONSTRAINT_NONE;
275 }
276 #else
277 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
278 				gfp_t gfp_mask, nodemask_t *nodemask,
279 				unsigned long *totalpages)
280 {
281 	*totalpages = totalram_pages + total_swap_pages;
282 	return CONSTRAINT_NONE;
283 }
284 #endif
285 
286 /*
287  * Simple selection loop. We chose the process with the highest
288  * number of 'points'. We expect the caller will lock the tasklist.
289  *
290  * (not docbooked, we don't want this one cluttering up the manual)
291  */
292 static struct task_struct *select_bad_process(unsigned int *ppoints,
293 		unsigned long totalpages, struct mem_cgroup *mem,
294 		const nodemask_t *nodemask)
295 {
296 	struct task_struct *g, *p;
297 	struct task_struct *chosen = NULL;
298 	*ppoints = 0;
299 
300 	do_each_thread(g, p) {
301 		unsigned int points;
302 
303 		if (!p->mm)
304 			continue;
305 		if (oom_unkillable_task(p, mem, nodemask))
306 			continue;
307 
308 		/*
309 		 * This task already has access to memory reserves and is
310 		 * being killed. Don't allow any other task access to the
311 		 * memory reserve.
312 		 *
313 		 * Note: this may have a chance of deadlock if it gets
314 		 * blocked waiting for another task which itself is waiting
315 		 * for memory. Is there a better alternative?
316 		 */
317 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
318 			return ERR_PTR(-1UL);
319 
320 		if (p->flags & PF_EXITING) {
321 			/*
322 			 * If p is the current task and is in the process of
323 			 * releasing memory, we allow the "kill" to set
324 			 * TIF_MEMDIE, which will allow it to gain access to
325 			 * memory reserves.  Otherwise, it may stall forever.
326 			 *
327 			 * The loop isn't broken here, however, in case other
328 			 * threads are found to have already been oom killed.
329 			 */
330 			if (p == current) {
331 				chosen = p;
332 				*ppoints = 1000;
333 			} else {
334 				/*
335 				 * If this task is not being ptraced on exit,
336 				 * then wait for it to finish before killing
337 				 * some other task unnecessarily.
338 				 */
339 				if (!(task_ptrace(p->group_leader) &
340 							PT_TRACE_EXIT))
341 					return ERR_PTR(-1UL);
342 			}
343 		}
344 
345 		points = oom_badness(p, mem, nodemask, totalpages);
346 		if (points > *ppoints) {
347 			chosen = p;
348 			*ppoints = points;
349 		}
350 	} while_each_thread(g, p);
351 
352 	return chosen;
353 }
354 
355 /**
356  * dump_tasks - dump current memory state of all system tasks
357  * @mem: current's memory controller, if constrained
358  * @nodemask: nodemask passed to page allocator for mempolicy ooms
359  *
360  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
361  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
362  * are not shown.
363  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
364  * value, oom_score_adj value, and name.
365  *
366  * Call with tasklist_lock read-locked.
367  */
368 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
369 {
370 	struct task_struct *p;
371 	struct task_struct *task;
372 
373 	pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
374 	for_each_process(p) {
375 		if (oom_unkillable_task(p, mem, nodemask))
376 			continue;
377 
378 		task = find_lock_task_mm(p);
379 		if (!task) {
380 			/*
381 			 * This is a kthread or all of p's threads have already
382 			 * detached their mm's.  There's no need to report
383 			 * them; they can't be oom killed anyway.
384 			 */
385 			continue;
386 		}
387 
388 		pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
389 			task->pid, task_uid(task), task->tgid,
390 			task->mm->total_vm, get_mm_rss(task->mm),
391 			task_cpu(task), task->signal->oom_adj,
392 			task->signal->oom_score_adj, task->comm);
393 		task_unlock(task);
394 	}
395 }
396 
397 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
398 			struct mem_cgroup *mem, const nodemask_t *nodemask)
399 {
400 	task_lock(current);
401 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
402 		"oom_adj=%d, oom_score_adj=%d\n",
403 		current->comm, gfp_mask, order, current->signal->oom_adj,
404 		current->signal->oom_score_adj);
405 	cpuset_print_task_mems_allowed(current);
406 	task_unlock(current);
407 	dump_stack();
408 	mem_cgroup_print_oom_info(mem, p);
409 	__show_mem(SHOW_MEM_FILTER_NODES);
410 	if (sysctl_oom_dump_tasks)
411 		dump_tasks(mem, nodemask);
412 }
413 
414 #define K(x) ((x) << (PAGE_SHIFT-10))
415 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
416 {
417 	struct task_struct *q;
418 	struct mm_struct *mm;
419 
420 	p = find_lock_task_mm(p);
421 	if (!p)
422 		return 1;
423 
424 	/* mm cannot be safely dereferenced after task_unlock(p) */
425 	mm = p->mm;
426 
427 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
428 		task_pid_nr(p), p->comm, K(p->mm->total_vm),
429 		K(get_mm_counter(p->mm, MM_ANONPAGES)),
430 		K(get_mm_counter(p->mm, MM_FILEPAGES)));
431 	task_unlock(p);
432 
433 	/*
434 	 * Kill all processes sharing p->mm in other thread groups, if any.
435 	 * They don't get access to memory reserves or a higher scheduler
436 	 * priority, though, to avoid depletion of all memory or task
437 	 * starvation.  This prevents mm->mmap_sem livelock when an oom killed
438 	 * task cannot exit because it requires the semaphore and its contended
439 	 * by another thread trying to allocate memory itself.  That thread will
440 	 * now get access to memory reserves since it has a pending fatal
441 	 * signal.
442 	 */
443 	for_each_process(q)
444 		if (q->mm == mm && !same_thread_group(q, p)) {
445 			task_lock(q);	/* Protect ->comm from prctl() */
446 			pr_err("Kill process %d (%s) sharing same memory\n",
447 				task_pid_nr(q), q->comm);
448 			task_unlock(q);
449 			force_sig(SIGKILL, q);
450 		}
451 
452 	set_tsk_thread_flag(p, TIF_MEMDIE);
453 	force_sig(SIGKILL, p);
454 
455 	/*
456 	 * We give our sacrificial lamb high priority and access to
457 	 * all the memory it needs. That way it should be able to
458 	 * exit() and clear out its resources quickly...
459 	 */
460 	boost_dying_task_prio(p, mem);
461 
462 	return 0;
463 }
464 #undef K
465 
466 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
467 			    unsigned int points, unsigned long totalpages,
468 			    struct mem_cgroup *mem, nodemask_t *nodemask,
469 			    const char *message)
470 {
471 	struct task_struct *victim = p;
472 	struct task_struct *child;
473 	struct task_struct *t = p;
474 	unsigned int victim_points = 0;
475 
476 	if (printk_ratelimit())
477 		dump_header(p, gfp_mask, order, mem, nodemask);
478 
479 	/*
480 	 * If the task is already exiting, don't alarm the sysadmin or kill
481 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
482 	 */
483 	if (p->flags & PF_EXITING) {
484 		set_tsk_thread_flag(p, TIF_MEMDIE);
485 		boost_dying_task_prio(p, mem);
486 		return 0;
487 	}
488 
489 	task_lock(p);
490 	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
491 		message, task_pid_nr(p), p->comm, points);
492 	task_unlock(p);
493 
494 	/*
495 	 * If any of p's children has a different mm and is eligible for kill,
496 	 * the one with the highest badness() score is sacrificed for its
497 	 * parent.  This attempts to lose the minimal amount of work done while
498 	 * still freeing memory.
499 	 */
500 	do {
501 		list_for_each_entry(child, &t->children, sibling) {
502 			unsigned int child_points;
503 
504 			if (child->mm == p->mm)
505 				continue;
506 			/*
507 			 * oom_badness() returns 0 if the thread is unkillable
508 			 */
509 			child_points = oom_badness(child, mem, nodemask,
510 								totalpages);
511 			if (child_points > victim_points) {
512 				victim = child;
513 				victim_points = child_points;
514 			}
515 		}
516 	} while_each_thread(p, t);
517 
518 	return oom_kill_task(victim, mem);
519 }
520 
521 /*
522  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
523  */
524 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
525 				int order, const nodemask_t *nodemask)
526 {
527 	if (likely(!sysctl_panic_on_oom))
528 		return;
529 	if (sysctl_panic_on_oom != 2) {
530 		/*
531 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
532 		 * does not panic for cpuset, mempolicy, or memcg allocation
533 		 * failures.
534 		 */
535 		if (constraint != CONSTRAINT_NONE)
536 			return;
537 	}
538 	read_lock(&tasklist_lock);
539 	dump_header(NULL, gfp_mask, order, NULL, nodemask);
540 	read_unlock(&tasklist_lock);
541 	panic("Out of memory: %s panic_on_oom is enabled\n",
542 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
543 }
544 
545 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
546 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
547 {
548 	unsigned long limit;
549 	unsigned int points = 0;
550 	struct task_struct *p;
551 
552 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
553 	limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
554 	read_lock(&tasklist_lock);
555 retry:
556 	p = select_bad_process(&points, limit, mem, NULL);
557 	if (!p || PTR_ERR(p) == -1UL)
558 		goto out;
559 
560 	if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
561 				"Memory cgroup out of memory"))
562 		goto retry;
563 out:
564 	read_unlock(&tasklist_lock);
565 }
566 #endif
567 
568 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
569 
570 int register_oom_notifier(struct notifier_block *nb)
571 {
572 	return blocking_notifier_chain_register(&oom_notify_list, nb);
573 }
574 EXPORT_SYMBOL_GPL(register_oom_notifier);
575 
576 int unregister_oom_notifier(struct notifier_block *nb)
577 {
578 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
579 }
580 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
581 
582 /*
583  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
584  * if a parallel OOM killing is already taking place that includes a zone in
585  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
586  */
587 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
588 {
589 	struct zoneref *z;
590 	struct zone *zone;
591 	int ret = 1;
592 
593 	spin_lock(&zone_scan_lock);
594 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
595 		if (zone_is_oom_locked(zone)) {
596 			ret = 0;
597 			goto out;
598 		}
599 	}
600 
601 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
602 		/*
603 		 * Lock each zone in the zonelist under zone_scan_lock so a
604 		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
605 		 * when it shouldn't.
606 		 */
607 		zone_set_flag(zone, ZONE_OOM_LOCKED);
608 	}
609 
610 out:
611 	spin_unlock(&zone_scan_lock);
612 	return ret;
613 }
614 
615 /*
616  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
617  * allocation attempts with zonelists containing them may now recall the OOM
618  * killer, if necessary.
619  */
620 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
621 {
622 	struct zoneref *z;
623 	struct zone *zone;
624 
625 	spin_lock(&zone_scan_lock);
626 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
627 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
628 	}
629 	spin_unlock(&zone_scan_lock);
630 }
631 
632 /*
633  * Try to acquire the oom killer lock for all system zones.  Returns zero if a
634  * parallel oom killing is taking place, otherwise locks all zones and returns
635  * non-zero.
636  */
637 static int try_set_system_oom(void)
638 {
639 	struct zone *zone;
640 	int ret = 1;
641 
642 	spin_lock(&zone_scan_lock);
643 	for_each_populated_zone(zone)
644 		if (zone_is_oom_locked(zone)) {
645 			ret = 0;
646 			goto out;
647 		}
648 	for_each_populated_zone(zone)
649 		zone_set_flag(zone, ZONE_OOM_LOCKED);
650 out:
651 	spin_unlock(&zone_scan_lock);
652 	return ret;
653 }
654 
655 /*
656  * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
657  * attempts or page faults may now recall the oom killer, if necessary.
658  */
659 static void clear_system_oom(void)
660 {
661 	struct zone *zone;
662 
663 	spin_lock(&zone_scan_lock);
664 	for_each_populated_zone(zone)
665 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
666 	spin_unlock(&zone_scan_lock);
667 }
668 
669 /**
670  * out_of_memory - kill the "best" process when we run out of memory
671  * @zonelist: zonelist pointer
672  * @gfp_mask: memory allocation flags
673  * @order: amount of memory being requested as a power of 2
674  * @nodemask: nodemask passed to page allocator
675  *
676  * If we run out of memory, we have the choice between either
677  * killing a random task (bad), letting the system crash (worse)
678  * OR try to be smart about which process to kill. Note that we
679  * don't have to be perfect here, we just have to be good.
680  */
681 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
682 		int order, nodemask_t *nodemask)
683 {
684 	const nodemask_t *mpol_mask;
685 	struct task_struct *p;
686 	unsigned long totalpages;
687 	unsigned long freed = 0;
688 	unsigned int points;
689 	enum oom_constraint constraint = CONSTRAINT_NONE;
690 	int killed = 0;
691 
692 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
693 	if (freed > 0)
694 		/* Got some memory back in the last second. */
695 		return;
696 
697 	/*
698 	 * If current has a pending SIGKILL, then automatically select it.  The
699 	 * goal is to allow it to allocate so that it may quickly exit and free
700 	 * its memory.
701 	 */
702 	if (fatal_signal_pending(current)) {
703 		set_thread_flag(TIF_MEMDIE);
704 		boost_dying_task_prio(current, NULL);
705 		return;
706 	}
707 
708 	/*
709 	 * Check if there were limitations on the allocation (only relevant for
710 	 * NUMA) that may require different handling.
711 	 */
712 	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
713 						&totalpages);
714 	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
715 	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
716 
717 	read_lock(&tasklist_lock);
718 	if (sysctl_oom_kill_allocating_task &&
719 	    !oom_unkillable_task(current, NULL, nodemask) &&
720 	    current->mm && !atomic_read(&current->mm->oom_disable_count)) {
721 		/*
722 		 * oom_kill_process() needs tasklist_lock held.  If it returns
723 		 * non-zero, current could not be killed so we must fallback to
724 		 * the tasklist scan.
725 		 */
726 		if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
727 				NULL, nodemask,
728 				"Out of memory (oom_kill_allocating_task)"))
729 			goto out;
730 	}
731 
732 retry:
733 	p = select_bad_process(&points, totalpages, NULL, mpol_mask);
734 	if (PTR_ERR(p) == -1UL)
735 		goto out;
736 
737 	/* Found nothing?!?! Either we hang forever, or we panic. */
738 	if (!p) {
739 		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
740 		read_unlock(&tasklist_lock);
741 		panic("Out of memory and no killable processes...\n");
742 	}
743 
744 	if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
745 				nodemask, "Out of memory"))
746 		goto retry;
747 	killed = 1;
748 out:
749 	read_unlock(&tasklist_lock);
750 
751 	/*
752 	 * Give "p" a good chance of killing itself before we
753 	 * retry to allocate memory unless "p" is current
754 	 */
755 	if (killed && !test_thread_flag(TIF_MEMDIE))
756 		schedule_timeout_uninterruptible(1);
757 }
758 
759 /*
760  * The pagefault handler calls here because it is out of memory, so kill a
761  * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
762  * oom killing is already in progress so do nothing.  If a task is found with
763  * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
764  */
765 void pagefault_out_of_memory(void)
766 {
767 	if (try_set_system_oom()) {
768 		out_of_memory(NULL, 0, 0, NULL);
769 		clear_system_oom();
770 	}
771 	if (!test_thread_flag(TIF_MEMDIE))
772 		schedule_timeout_uninterruptible(1);
773 }
774