1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/debug.h> 30 #include <linux/swap.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 47 #include <asm/tlb.h> 48 #include "internal.h" 49 #include "slab.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/oom.h> 53 54 int sysctl_panic_on_oom; 55 int sysctl_oom_kill_allocating_task; 56 int sysctl_oom_dump_tasks = 1; 57 58 /* 59 * Serializes oom killer invocations (out_of_memory()) from all contexts to 60 * prevent from over eager oom killing (e.g. when the oom killer is invoked 61 * from different domains). 62 * 63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 64 * and mark_oom_victim 65 */ 66 DEFINE_MUTEX(oom_lock); 67 68 static inline bool is_memcg_oom(struct oom_control *oc) 69 { 70 return oc->memcg != NULL; 71 } 72 73 #ifdef CONFIG_NUMA 74 /** 75 * oom_cpuset_eligible() - check task eligiblity for kill 76 * @start: task struct of which task to consider 77 * @oc: pointer to struct oom_control 78 * 79 * Task eligibility is determined by whether or not a candidate task, @tsk, 80 * shares the same mempolicy nodes as current if it is bound by such a policy 81 * and whether or not it has the same set of allowed cpuset nodes. 82 * 83 * This function is assuming oom-killer context and 'current' has triggered 84 * the oom-killer. 85 */ 86 static bool oom_cpuset_eligible(struct task_struct *start, 87 struct oom_control *oc) 88 { 89 struct task_struct *tsk; 90 bool ret = false; 91 const nodemask_t *mask = oc->nodemask; 92 93 if (is_memcg_oom(oc)) 94 return true; 95 96 rcu_read_lock(); 97 for_each_thread(start, tsk) { 98 if (mask) { 99 /* 100 * If this is a mempolicy constrained oom, tsk's 101 * cpuset is irrelevant. Only return true if its 102 * mempolicy intersects current, otherwise it may be 103 * needlessly killed. 104 */ 105 ret = mempolicy_nodemask_intersects(tsk, mask); 106 } else { 107 /* 108 * This is not a mempolicy constrained oom, so only 109 * check the mems of tsk's cpuset. 110 */ 111 ret = cpuset_mems_allowed_intersects(current, tsk); 112 } 113 if (ret) 114 break; 115 } 116 rcu_read_unlock(); 117 118 return ret; 119 } 120 #else 121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 122 { 123 return true; 124 } 125 #endif /* CONFIG_NUMA */ 126 127 /* 128 * The process p may have detached its own ->mm while exiting or through 129 * kthread_use_mm(), but one or more of its subthreads may still have a valid 130 * pointer. Return p, or any of its subthreads with a valid ->mm, with 131 * task_lock() held. 132 */ 133 struct task_struct *find_lock_task_mm(struct task_struct *p) 134 { 135 struct task_struct *t; 136 137 rcu_read_lock(); 138 139 for_each_thread(p, t) { 140 task_lock(t); 141 if (likely(t->mm)) 142 goto found; 143 task_unlock(t); 144 } 145 t = NULL; 146 found: 147 rcu_read_unlock(); 148 149 return t; 150 } 151 152 /* 153 * order == -1 means the oom kill is required by sysrq, otherwise only 154 * for display purposes. 155 */ 156 static inline bool is_sysrq_oom(struct oom_control *oc) 157 { 158 return oc->order == -1; 159 } 160 161 /* return true if the task is not adequate as candidate victim task. */ 162 static bool oom_unkillable_task(struct task_struct *p) 163 { 164 if (is_global_init(p)) 165 return true; 166 if (p->flags & PF_KTHREAD) 167 return true; 168 return false; 169 } 170 171 /* 172 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 173 * than all user memory (LRU pages) 174 */ 175 static bool is_dump_unreclaim_slabs(void) 176 { 177 unsigned long nr_lru; 178 179 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 180 global_node_page_state(NR_INACTIVE_ANON) + 181 global_node_page_state(NR_ACTIVE_FILE) + 182 global_node_page_state(NR_INACTIVE_FILE) + 183 global_node_page_state(NR_ISOLATED_ANON) + 184 global_node_page_state(NR_ISOLATED_FILE) + 185 global_node_page_state(NR_UNEVICTABLE); 186 187 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 188 } 189 190 /** 191 * oom_badness - heuristic function to determine which candidate task to kill 192 * @p: task struct of which task we should calculate 193 * @totalpages: total present RAM allowed for page allocation 194 * 195 * The heuristic for determining which task to kill is made to be as simple and 196 * predictable as possible. The goal is to return the highest value for the 197 * task consuming the most memory to avoid subsequent oom failures. 198 */ 199 long oom_badness(struct task_struct *p, unsigned long totalpages) 200 { 201 long points; 202 long adj; 203 204 if (oom_unkillable_task(p)) 205 return LONG_MIN; 206 207 p = find_lock_task_mm(p); 208 if (!p) 209 return LONG_MIN; 210 211 /* 212 * Do not even consider tasks which are explicitly marked oom 213 * unkillable or have been already oom reaped or the are in 214 * the middle of vfork 215 */ 216 adj = (long)p->signal->oom_score_adj; 217 if (adj == OOM_SCORE_ADJ_MIN || 218 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 219 in_vfork(p)) { 220 task_unlock(p); 221 return LONG_MIN; 222 } 223 224 /* 225 * The baseline for the badness score is the proportion of RAM that each 226 * task's rss, pagetable and swap space use. 227 */ 228 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 229 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 230 task_unlock(p); 231 232 /* Normalize to oom_score_adj units */ 233 adj *= totalpages / 1000; 234 points += adj; 235 236 return points; 237 } 238 239 static const char * const oom_constraint_text[] = { 240 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 241 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 242 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 243 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 244 }; 245 246 /* 247 * Determine the type of allocation constraint. 248 */ 249 static enum oom_constraint constrained_alloc(struct oom_control *oc) 250 { 251 struct zone *zone; 252 struct zoneref *z; 253 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 254 bool cpuset_limited = false; 255 int nid; 256 257 if (is_memcg_oom(oc)) { 258 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 259 return CONSTRAINT_MEMCG; 260 } 261 262 /* Default to all available memory */ 263 oc->totalpages = totalram_pages() + total_swap_pages; 264 265 if (!IS_ENABLED(CONFIG_NUMA)) 266 return CONSTRAINT_NONE; 267 268 if (!oc->zonelist) 269 return CONSTRAINT_NONE; 270 /* 271 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 272 * to kill current.We have to random task kill in this case. 273 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 274 */ 275 if (oc->gfp_mask & __GFP_THISNODE) 276 return CONSTRAINT_NONE; 277 278 /* 279 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 280 * the page allocator means a mempolicy is in effect. Cpuset policy 281 * is enforced in get_page_from_freelist(). 282 */ 283 if (oc->nodemask && 284 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 285 oc->totalpages = total_swap_pages; 286 for_each_node_mask(nid, *oc->nodemask) 287 oc->totalpages += node_present_pages(nid); 288 return CONSTRAINT_MEMORY_POLICY; 289 } 290 291 /* Check this allocation failure is caused by cpuset's wall function */ 292 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 293 highest_zoneidx, oc->nodemask) 294 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 295 cpuset_limited = true; 296 297 if (cpuset_limited) { 298 oc->totalpages = total_swap_pages; 299 for_each_node_mask(nid, cpuset_current_mems_allowed) 300 oc->totalpages += node_present_pages(nid); 301 return CONSTRAINT_CPUSET; 302 } 303 return CONSTRAINT_NONE; 304 } 305 306 static int oom_evaluate_task(struct task_struct *task, void *arg) 307 { 308 struct oom_control *oc = arg; 309 long points; 310 311 if (oom_unkillable_task(task)) 312 goto next; 313 314 /* p may not have freeable memory in nodemask */ 315 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 316 goto next; 317 318 /* 319 * This task already has access to memory reserves and is being killed. 320 * Don't allow any other task to have access to the reserves unless 321 * the task has MMF_OOM_SKIP because chances that it would release 322 * any memory is quite low. 323 */ 324 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 325 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 326 goto next; 327 goto abort; 328 } 329 330 /* 331 * If task is allocating a lot of memory and has been marked to be 332 * killed first if it triggers an oom, then select it. 333 */ 334 if (oom_task_origin(task)) { 335 points = LONG_MAX; 336 goto select; 337 } 338 339 points = oom_badness(task, oc->totalpages); 340 if (points == LONG_MIN || points < oc->chosen_points) 341 goto next; 342 343 select: 344 if (oc->chosen) 345 put_task_struct(oc->chosen); 346 get_task_struct(task); 347 oc->chosen = task; 348 oc->chosen_points = points; 349 next: 350 return 0; 351 abort: 352 if (oc->chosen) 353 put_task_struct(oc->chosen); 354 oc->chosen = (void *)-1UL; 355 return 1; 356 } 357 358 /* 359 * Simple selection loop. We choose the process with the highest number of 360 * 'points'. In case scan was aborted, oc->chosen is set to -1. 361 */ 362 static void select_bad_process(struct oom_control *oc) 363 { 364 oc->chosen_points = LONG_MIN; 365 366 if (is_memcg_oom(oc)) 367 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 368 else { 369 struct task_struct *p; 370 371 rcu_read_lock(); 372 for_each_process(p) 373 if (oom_evaluate_task(p, oc)) 374 break; 375 rcu_read_unlock(); 376 } 377 } 378 379 static int dump_task(struct task_struct *p, void *arg) 380 { 381 struct oom_control *oc = arg; 382 struct task_struct *task; 383 384 if (oom_unkillable_task(p)) 385 return 0; 386 387 /* p may not have freeable memory in nodemask */ 388 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 389 return 0; 390 391 task = find_lock_task_mm(p); 392 if (!task) { 393 /* 394 * This is a kthread or all of p's threads have already 395 * detached their mm's. There's no need to report 396 * them; they can't be oom killed anyway. 397 */ 398 return 0; 399 } 400 401 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 402 task->pid, from_kuid(&init_user_ns, task_uid(task)), 403 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 404 mm_pgtables_bytes(task->mm), 405 get_mm_counter(task->mm, MM_SWAPENTS), 406 task->signal->oom_score_adj, task->comm); 407 task_unlock(task); 408 409 return 0; 410 } 411 412 /** 413 * dump_tasks - dump current memory state of all system tasks 414 * @oc: pointer to struct oom_control 415 * 416 * Dumps the current memory state of all eligible tasks. Tasks not in the same 417 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 418 * are not shown. 419 * State information includes task's pid, uid, tgid, vm size, rss, 420 * pgtables_bytes, swapents, oom_score_adj value, and name. 421 */ 422 static void dump_tasks(struct oom_control *oc) 423 { 424 pr_info("Tasks state (memory values in pages):\n"); 425 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 426 427 if (is_memcg_oom(oc)) 428 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 429 else { 430 struct task_struct *p; 431 432 rcu_read_lock(); 433 for_each_process(p) 434 dump_task(p, oc); 435 rcu_read_unlock(); 436 } 437 } 438 439 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 440 { 441 /* one line summary of the oom killer context. */ 442 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 443 oom_constraint_text[oc->constraint], 444 nodemask_pr_args(oc->nodemask)); 445 cpuset_print_current_mems_allowed(); 446 mem_cgroup_print_oom_context(oc->memcg, victim); 447 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 448 from_kuid(&init_user_ns, task_uid(victim))); 449 } 450 451 static void dump_header(struct oom_control *oc, struct task_struct *p) 452 { 453 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 454 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 455 current->signal->oom_score_adj); 456 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 457 pr_warn("COMPACTION is disabled!!!\n"); 458 459 dump_stack(); 460 if (is_memcg_oom(oc)) 461 mem_cgroup_print_oom_meminfo(oc->memcg); 462 else { 463 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 464 if (is_dump_unreclaim_slabs()) 465 dump_unreclaimable_slab(); 466 } 467 if (sysctl_oom_dump_tasks) 468 dump_tasks(oc); 469 if (p) 470 dump_oom_summary(oc, p); 471 } 472 473 /* 474 * Number of OOM victims in flight 475 */ 476 static atomic_t oom_victims = ATOMIC_INIT(0); 477 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 478 479 static bool oom_killer_disabled __read_mostly; 480 481 #define K(x) ((x) << (PAGE_SHIFT-10)) 482 483 /* 484 * task->mm can be NULL if the task is the exited group leader. So to 485 * determine whether the task is using a particular mm, we examine all the 486 * task's threads: if one of those is using this mm then this task was also 487 * using it. 488 */ 489 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 490 { 491 struct task_struct *t; 492 493 for_each_thread(p, t) { 494 struct mm_struct *t_mm = READ_ONCE(t->mm); 495 if (t_mm) 496 return t_mm == mm; 497 } 498 return false; 499 } 500 501 #ifdef CONFIG_MMU 502 /* 503 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 504 * victim (if that is possible) to help the OOM killer to move on. 505 */ 506 static struct task_struct *oom_reaper_th; 507 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 508 static struct task_struct *oom_reaper_list; 509 static DEFINE_SPINLOCK(oom_reaper_lock); 510 511 bool __oom_reap_task_mm(struct mm_struct *mm) 512 { 513 struct vm_area_struct *vma; 514 bool ret = true; 515 516 /* 517 * Tell all users of get_user/copy_from_user etc... that the content 518 * is no longer stable. No barriers really needed because unmapping 519 * should imply barriers already and the reader would hit a page fault 520 * if it stumbled over a reaped memory. 521 */ 522 set_bit(MMF_UNSTABLE, &mm->flags); 523 524 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 525 if (!can_madv_lru_vma(vma)) 526 continue; 527 528 /* 529 * Only anonymous pages have a good chance to be dropped 530 * without additional steps which we cannot afford as we 531 * are OOM already. 532 * 533 * We do not even care about fs backed pages because all 534 * which are reclaimable have already been reclaimed and 535 * we do not want to block exit_mmap by keeping mm ref 536 * count elevated without a good reason. 537 */ 538 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 539 struct mmu_notifier_range range; 540 struct mmu_gather tlb; 541 542 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 543 vma, mm, vma->vm_start, 544 vma->vm_end); 545 tlb_gather_mmu(&tlb, mm, range.start, range.end); 546 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 547 tlb_finish_mmu(&tlb, range.start, range.end); 548 ret = false; 549 continue; 550 } 551 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 552 mmu_notifier_invalidate_range_end(&range); 553 tlb_finish_mmu(&tlb, range.start, range.end); 554 } 555 } 556 557 return ret; 558 } 559 560 /* 561 * Reaps the address space of the give task. 562 * 563 * Returns true on success and false if none or part of the address space 564 * has been reclaimed and the caller should retry later. 565 */ 566 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 567 { 568 bool ret = true; 569 570 if (!mmap_read_trylock(mm)) { 571 trace_skip_task_reaping(tsk->pid); 572 return false; 573 } 574 575 /* 576 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 577 * work on the mm anymore. The check for MMF_OOM_SKIP must run 578 * under mmap_lock for reading because it serializes against the 579 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 580 */ 581 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 582 trace_skip_task_reaping(tsk->pid); 583 goto out_unlock; 584 } 585 586 trace_start_task_reaping(tsk->pid); 587 588 /* failed to reap part of the address space. Try again later */ 589 ret = __oom_reap_task_mm(mm); 590 if (!ret) 591 goto out_finish; 592 593 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 594 task_pid_nr(tsk), tsk->comm, 595 K(get_mm_counter(mm, MM_ANONPAGES)), 596 K(get_mm_counter(mm, MM_FILEPAGES)), 597 K(get_mm_counter(mm, MM_SHMEMPAGES))); 598 out_finish: 599 trace_finish_task_reaping(tsk->pid); 600 out_unlock: 601 mmap_read_unlock(mm); 602 603 return ret; 604 } 605 606 #define MAX_OOM_REAP_RETRIES 10 607 static void oom_reap_task(struct task_struct *tsk) 608 { 609 int attempts = 0; 610 struct mm_struct *mm = tsk->signal->oom_mm; 611 612 /* Retry the mmap_read_trylock(mm) a few times */ 613 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 614 schedule_timeout_idle(HZ/10); 615 616 if (attempts <= MAX_OOM_REAP_RETRIES || 617 test_bit(MMF_OOM_SKIP, &mm->flags)) 618 goto done; 619 620 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 621 task_pid_nr(tsk), tsk->comm); 622 sched_show_task(tsk); 623 debug_show_all_locks(); 624 625 done: 626 tsk->oom_reaper_list = NULL; 627 628 /* 629 * Hide this mm from OOM killer because it has been either reaped or 630 * somebody can't call mmap_write_unlock(mm). 631 */ 632 set_bit(MMF_OOM_SKIP, &mm->flags); 633 634 /* Drop a reference taken by wake_oom_reaper */ 635 put_task_struct(tsk); 636 } 637 638 static int oom_reaper(void *unused) 639 { 640 while (true) { 641 struct task_struct *tsk = NULL; 642 643 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 644 spin_lock(&oom_reaper_lock); 645 if (oom_reaper_list != NULL) { 646 tsk = oom_reaper_list; 647 oom_reaper_list = tsk->oom_reaper_list; 648 } 649 spin_unlock(&oom_reaper_lock); 650 651 if (tsk) 652 oom_reap_task(tsk); 653 } 654 655 return 0; 656 } 657 658 static void wake_oom_reaper(struct task_struct *tsk) 659 { 660 /* mm is already queued? */ 661 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 662 return; 663 664 get_task_struct(tsk); 665 666 spin_lock(&oom_reaper_lock); 667 tsk->oom_reaper_list = oom_reaper_list; 668 oom_reaper_list = tsk; 669 spin_unlock(&oom_reaper_lock); 670 trace_wake_reaper(tsk->pid); 671 wake_up(&oom_reaper_wait); 672 } 673 674 static int __init oom_init(void) 675 { 676 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 677 return 0; 678 } 679 subsys_initcall(oom_init) 680 #else 681 static inline void wake_oom_reaper(struct task_struct *tsk) 682 { 683 } 684 #endif /* CONFIG_MMU */ 685 686 /** 687 * mark_oom_victim - mark the given task as OOM victim 688 * @tsk: task to mark 689 * 690 * Has to be called with oom_lock held and never after 691 * oom has been disabled already. 692 * 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 694 * under task_lock or operate on the current). 695 */ 696 static void mark_oom_victim(struct task_struct *tsk) 697 { 698 struct mm_struct *mm = tsk->mm; 699 700 WARN_ON(oom_killer_disabled); 701 /* OOM killer might race with memcg OOM */ 702 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 703 return; 704 705 /* oom_mm is bound to the signal struct life time. */ 706 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 707 mmgrab(tsk->signal->oom_mm); 708 set_bit(MMF_OOM_VICTIM, &mm->flags); 709 } 710 711 /* 712 * Make sure that the task is woken up from uninterruptible sleep 713 * if it is frozen because OOM killer wouldn't be able to free 714 * any memory and livelock. freezing_slow_path will tell the freezer 715 * that TIF_MEMDIE tasks should be ignored. 716 */ 717 __thaw_task(tsk); 718 atomic_inc(&oom_victims); 719 trace_mark_victim(tsk->pid); 720 } 721 722 /** 723 * exit_oom_victim - note the exit of an OOM victim 724 */ 725 void exit_oom_victim(void) 726 { 727 clear_thread_flag(TIF_MEMDIE); 728 729 if (!atomic_dec_return(&oom_victims)) 730 wake_up_all(&oom_victims_wait); 731 } 732 733 /** 734 * oom_killer_enable - enable OOM killer 735 */ 736 void oom_killer_enable(void) 737 { 738 oom_killer_disabled = false; 739 pr_info("OOM killer enabled.\n"); 740 } 741 742 /** 743 * oom_killer_disable - disable OOM killer 744 * @timeout: maximum timeout to wait for oom victims in jiffies 745 * 746 * Forces all page allocations to fail rather than trigger OOM killer. 747 * Will block and wait until all OOM victims are killed or the given 748 * timeout expires. 749 * 750 * The function cannot be called when there are runnable user tasks because 751 * the userspace would see unexpected allocation failures as a result. Any 752 * new usage of this function should be consulted with MM people. 753 * 754 * Returns true if successful and false if the OOM killer cannot be 755 * disabled. 756 */ 757 bool oom_killer_disable(signed long timeout) 758 { 759 signed long ret; 760 761 /* 762 * Make sure to not race with an ongoing OOM killer. Check that the 763 * current is not killed (possibly due to sharing the victim's memory). 764 */ 765 if (mutex_lock_killable(&oom_lock)) 766 return false; 767 oom_killer_disabled = true; 768 mutex_unlock(&oom_lock); 769 770 ret = wait_event_interruptible_timeout(oom_victims_wait, 771 !atomic_read(&oom_victims), timeout); 772 if (ret <= 0) { 773 oom_killer_enable(); 774 return false; 775 } 776 pr_info("OOM killer disabled.\n"); 777 778 return true; 779 } 780 781 static inline bool __task_will_free_mem(struct task_struct *task) 782 { 783 struct signal_struct *sig = task->signal; 784 785 /* 786 * A coredumping process may sleep for an extended period in exit_mm(), 787 * so the oom killer cannot assume that the process will promptly exit 788 * and release memory. 789 */ 790 if (sig->flags & SIGNAL_GROUP_COREDUMP) 791 return false; 792 793 if (sig->flags & SIGNAL_GROUP_EXIT) 794 return true; 795 796 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 797 return true; 798 799 return false; 800 } 801 802 /* 803 * Checks whether the given task is dying or exiting and likely to 804 * release its address space. This means that all threads and processes 805 * sharing the same mm have to be killed or exiting. 806 * Caller has to make sure that task->mm is stable (hold task_lock or 807 * it operates on the current). 808 */ 809 static bool task_will_free_mem(struct task_struct *task) 810 { 811 struct mm_struct *mm = task->mm; 812 struct task_struct *p; 813 bool ret = true; 814 815 /* 816 * Skip tasks without mm because it might have passed its exit_mm and 817 * exit_oom_victim. oom_reaper could have rescued that but do not rely 818 * on that for now. We can consider find_lock_task_mm in future. 819 */ 820 if (!mm) 821 return false; 822 823 if (!__task_will_free_mem(task)) 824 return false; 825 826 /* 827 * This task has already been drained by the oom reaper so there are 828 * only small chances it will free some more 829 */ 830 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 831 return false; 832 833 if (atomic_read(&mm->mm_users) <= 1) 834 return true; 835 836 /* 837 * Make sure that all tasks which share the mm with the given tasks 838 * are dying as well to make sure that a) nobody pins its mm and 839 * b) the task is also reapable by the oom reaper. 840 */ 841 rcu_read_lock(); 842 for_each_process(p) { 843 if (!process_shares_mm(p, mm)) 844 continue; 845 if (same_thread_group(task, p)) 846 continue; 847 ret = __task_will_free_mem(p); 848 if (!ret) 849 break; 850 } 851 rcu_read_unlock(); 852 853 return ret; 854 } 855 856 static void __oom_kill_process(struct task_struct *victim, const char *message) 857 { 858 struct task_struct *p; 859 struct mm_struct *mm; 860 bool can_oom_reap = true; 861 862 p = find_lock_task_mm(victim); 863 if (!p) { 864 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 865 message, task_pid_nr(victim), victim->comm); 866 put_task_struct(victim); 867 return; 868 } else if (victim != p) { 869 get_task_struct(p); 870 put_task_struct(victim); 871 victim = p; 872 } 873 874 /* Get a reference to safely compare mm after task_unlock(victim) */ 875 mm = victim->mm; 876 mmgrab(mm); 877 878 /* Raise event before sending signal: task reaper must see this */ 879 count_vm_event(OOM_KILL); 880 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 881 882 /* 883 * We should send SIGKILL before granting access to memory reserves 884 * in order to prevent the OOM victim from depleting the memory 885 * reserves from the user space under its control. 886 */ 887 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 888 mark_oom_victim(victim); 889 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 890 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 891 K(get_mm_counter(mm, MM_ANONPAGES)), 892 K(get_mm_counter(mm, MM_FILEPAGES)), 893 K(get_mm_counter(mm, MM_SHMEMPAGES)), 894 from_kuid(&init_user_ns, task_uid(victim)), 895 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 896 task_unlock(victim); 897 898 /* 899 * Kill all user processes sharing victim->mm in other thread groups, if 900 * any. They don't get access to memory reserves, though, to avoid 901 * depletion of all memory. This prevents mm->mmap_lock livelock when an 902 * oom killed thread cannot exit because it requires the semaphore and 903 * its contended by another thread trying to allocate memory itself. 904 * That thread will now get access to memory reserves since it has a 905 * pending fatal signal. 906 */ 907 rcu_read_lock(); 908 for_each_process(p) { 909 if (!process_shares_mm(p, mm)) 910 continue; 911 if (same_thread_group(p, victim)) 912 continue; 913 if (is_global_init(p)) { 914 can_oom_reap = false; 915 set_bit(MMF_OOM_SKIP, &mm->flags); 916 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 917 task_pid_nr(victim), victim->comm, 918 task_pid_nr(p), p->comm); 919 continue; 920 } 921 /* 922 * No kthead_use_mm() user needs to read from the userspace so 923 * we are ok to reap it. 924 */ 925 if (unlikely(p->flags & PF_KTHREAD)) 926 continue; 927 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 928 } 929 rcu_read_unlock(); 930 931 if (can_oom_reap) 932 wake_oom_reaper(victim); 933 934 mmdrop(mm); 935 put_task_struct(victim); 936 } 937 #undef K 938 939 /* 940 * Kill provided task unless it's secured by setting 941 * oom_score_adj to OOM_SCORE_ADJ_MIN. 942 */ 943 static int oom_kill_memcg_member(struct task_struct *task, void *message) 944 { 945 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 946 !is_global_init(task)) { 947 get_task_struct(task); 948 __oom_kill_process(task, message); 949 } 950 return 0; 951 } 952 953 static void oom_kill_process(struct oom_control *oc, const char *message) 954 { 955 struct task_struct *victim = oc->chosen; 956 struct mem_cgroup *oom_group; 957 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 958 DEFAULT_RATELIMIT_BURST); 959 960 /* 961 * If the task is already exiting, don't alarm the sysadmin or kill 962 * its children or threads, just give it access to memory reserves 963 * so it can die quickly 964 */ 965 task_lock(victim); 966 if (task_will_free_mem(victim)) { 967 mark_oom_victim(victim); 968 wake_oom_reaper(victim); 969 task_unlock(victim); 970 put_task_struct(victim); 971 return; 972 } 973 task_unlock(victim); 974 975 if (__ratelimit(&oom_rs)) 976 dump_header(oc, victim); 977 978 /* 979 * Do we need to kill the entire memory cgroup? 980 * Or even one of the ancestor memory cgroups? 981 * Check this out before killing the victim task. 982 */ 983 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 984 985 __oom_kill_process(victim, message); 986 987 /* 988 * If necessary, kill all tasks in the selected memory cgroup. 989 */ 990 if (oom_group) { 991 mem_cgroup_print_oom_group(oom_group); 992 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 993 (void*)message); 994 mem_cgroup_put(oom_group); 995 } 996 } 997 998 /* 999 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1000 */ 1001 static void check_panic_on_oom(struct oom_control *oc) 1002 { 1003 if (likely(!sysctl_panic_on_oom)) 1004 return; 1005 if (sysctl_panic_on_oom != 2) { 1006 /* 1007 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1008 * does not panic for cpuset, mempolicy, or memcg allocation 1009 * failures. 1010 */ 1011 if (oc->constraint != CONSTRAINT_NONE) 1012 return; 1013 } 1014 /* Do not panic for oom kills triggered by sysrq */ 1015 if (is_sysrq_oom(oc)) 1016 return; 1017 dump_header(oc, NULL); 1018 panic("Out of memory: %s panic_on_oom is enabled\n", 1019 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1020 } 1021 1022 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1023 1024 int register_oom_notifier(struct notifier_block *nb) 1025 { 1026 return blocking_notifier_chain_register(&oom_notify_list, nb); 1027 } 1028 EXPORT_SYMBOL_GPL(register_oom_notifier); 1029 1030 int unregister_oom_notifier(struct notifier_block *nb) 1031 { 1032 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1033 } 1034 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1035 1036 /** 1037 * out_of_memory - kill the "best" process when we run out of memory 1038 * @oc: pointer to struct oom_control 1039 * 1040 * If we run out of memory, we have the choice between either 1041 * killing a random task (bad), letting the system crash (worse) 1042 * OR try to be smart about which process to kill. Note that we 1043 * don't have to be perfect here, we just have to be good. 1044 */ 1045 bool out_of_memory(struct oom_control *oc) 1046 { 1047 unsigned long freed = 0; 1048 1049 if (oom_killer_disabled) 1050 return false; 1051 1052 if (!is_memcg_oom(oc)) { 1053 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1054 if (freed > 0) 1055 /* Got some memory back in the last second. */ 1056 return true; 1057 } 1058 1059 /* 1060 * If current has a pending SIGKILL or is exiting, then automatically 1061 * select it. The goal is to allow it to allocate so that it may 1062 * quickly exit and free its memory. 1063 */ 1064 if (task_will_free_mem(current)) { 1065 mark_oom_victim(current); 1066 wake_oom_reaper(current); 1067 return true; 1068 } 1069 1070 /* 1071 * The OOM killer does not compensate for IO-less reclaim. 1072 * pagefault_out_of_memory lost its gfp context so we have to 1073 * make sure exclude 0 mask - all other users should have at least 1074 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1075 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1076 */ 1077 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1078 return true; 1079 1080 /* 1081 * Check if there were limitations on the allocation (only relevant for 1082 * NUMA and memcg) that may require different handling. 1083 */ 1084 oc->constraint = constrained_alloc(oc); 1085 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1086 oc->nodemask = NULL; 1087 check_panic_on_oom(oc); 1088 1089 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1090 current->mm && !oom_unkillable_task(current) && 1091 oom_cpuset_eligible(current, oc) && 1092 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1093 get_task_struct(current); 1094 oc->chosen = current; 1095 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1096 return true; 1097 } 1098 1099 select_bad_process(oc); 1100 /* Found nothing?!?! */ 1101 if (!oc->chosen) { 1102 dump_header(oc, NULL); 1103 pr_warn("Out of memory and no killable processes...\n"); 1104 /* 1105 * If we got here due to an actual allocation at the 1106 * system level, we cannot survive this and will enter 1107 * an endless loop in the allocator. Bail out now. 1108 */ 1109 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1110 panic("System is deadlocked on memory\n"); 1111 } 1112 if (oc->chosen && oc->chosen != (void *)-1UL) 1113 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1114 "Memory cgroup out of memory"); 1115 return !!oc->chosen; 1116 } 1117 1118 /* 1119 * The pagefault handler calls here because it is out of memory, so kill a 1120 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1121 * killing is already in progress so do nothing. 1122 */ 1123 void pagefault_out_of_memory(void) 1124 { 1125 struct oom_control oc = { 1126 .zonelist = NULL, 1127 .nodemask = NULL, 1128 .memcg = NULL, 1129 .gfp_mask = 0, 1130 .order = 0, 1131 }; 1132 1133 if (mem_cgroup_oom_synchronize(true)) 1134 return; 1135 1136 if (!mutex_trylock(&oom_lock)) 1137 return; 1138 out_of_memory(&oc); 1139 mutex_unlock(&oom_lock); 1140 } 1141