xref: /linux/mm/oom_kill.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
30 
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
35 /* #define DEBUG */
36 
37 /*
38  * Is all threads of the target process nodes overlap ours?
39  */
40 static int has_intersects_mems_allowed(struct task_struct *tsk)
41 {
42 	struct task_struct *t;
43 
44 	t = tsk;
45 	do {
46 		if (cpuset_mems_allowed_intersects(current, t))
47 			return 1;
48 		t = next_thread(t);
49 	} while (t != tsk);
50 
51 	return 0;
52 }
53 
54 /**
55  * badness - calculate a numeric value for how bad this task has been
56  * @p: task struct of which task we should calculate
57  * @uptime: current uptime in seconds
58  *
59  * The formula used is relatively simple and documented inline in the
60  * function. The main rationale is that we want to select a good task
61  * to kill when we run out of memory.
62  *
63  * Good in this context means that:
64  * 1) we lose the minimum amount of work done
65  * 2) we recover a large amount of memory
66  * 3) we don't kill anything innocent of eating tons of memory
67  * 4) we want to kill the minimum amount of processes (one)
68  * 5) we try to kill the process the user expects us to kill, this
69  *    algorithm has been meticulously tuned to meet the principle
70  *    of least surprise ... (be careful when you change it)
71  */
72 
73 unsigned long badness(struct task_struct *p, unsigned long uptime)
74 {
75 	unsigned long points, cpu_time, run_time;
76 	struct mm_struct *mm;
77 	struct task_struct *child;
78 	int oom_adj = p->signal->oom_adj;
79 	struct task_cputime task_time;
80 	unsigned long utime;
81 	unsigned long stime;
82 
83 	if (oom_adj == OOM_DISABLE)
84 		return 0;
85 
86 	task_lock(p);
87 	mm = p->mm;
88 	if (!mm) {
89 		task_unlock(p);
90 		return 0;
91 	}
92 
93 	/*
94 	 * The memory size of the process is the basis for the badness.
95 	 */
96 	points = mm->total_vm;
97 
98 	/*
99 	 * After this unlock we can no longer dereference local variable `mm'
100 	 */
101 	task_unlock(p);
102 
103 	/*
104 	 * swapoff can easily use up all memory, so kill those first.
105 	 */
106 	if (p->flags & PF_OOM_ORIGIN)
107 		return ULONG_MAX;
108 
109 	/*
110 	 * Processes which fork a lot of child processes are likely
111 	 * a good choice. We add half the vmsize of the children if they
112 	 * have an own mm. This prevents forking servers to flood the
113 	 * machine with an endless amount of children. In case a single
114 	 * child is eating the vast majority of memory, adding only half
115 	 * to the parents will make the child our kill candidate of choice.
116 	 */
117 	list_for_each_entry(child, &p->children, sibling) {
118 		task_lock(child);
119 		if (child->mm != mm && child->mm)
120 			points += child->mm->total_vm/2 + 1;
121 		task_unlock(child);
122 	}
123 
124 	/*
125 	 * CPU time is in tens of seconds and run time is in thousands
126          * of seconds. There is no particular reason for this other than
127          * that it turned out to work very well in practice.
128 	 */
129 	thread_group_cputime(p, &task_time);
130 	utime = cputime_to_jiffies(task_time.utime);
131 	stime = cputime_to_jiffies(task_time.stime);
132 	cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
133 
134 
135 	if (uptime >= p->start_time.tv_sec)
136 		run_time = (uptime - p->start_time.tv_sec) >> 10;
137 	else
138 		run_time = 0;
139 
140 	if (cpu_time)
141 		points /= int_sqrt(cpu_time);
142 	if (run_time)
143 		points /= int_sqrt(int_sqrt(run_time));
144 
145 	/*
146 	 * Niced processes are most likely less important, so double
147 	 * their badness points.
148 	 */
149 	if (task_nice(p) > 0)
150 		points *= 2;
151 
152 	/*
153 	 * Superuser processes are usually more important, so we make it
154 	 * less likely that we kill those.
155 	 */
156 	if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
157 	    has_capability_noaudit(p, CAP_SYS_RESOURCE))
158 		points /= 4;
159 
160 	/*
161 	 * We don't want to kill a process with direct hardware access.
162 	 * Not only could that mess up the hardware, but usually users
163 	 * tend to only have this flag set on applications they think
164 	 * of as important.
165 	 */
166 	if (has_capability_noaudit(p, CAP_SYS_RAWIO))
167 		points /= 4;
168 
169 	/*
170 	 * If p's nodes don't overlap ours, it may still help to kill p
171 	 * because p may have allocated or otherwise mapped memory on
172 	 * this node before. However it will be less likely.
173 	 */
174 	if (!has_intersects_mems_allowed(p))
175 		points /= 8;
176 
177 	/*
178 	 * Adjust the score by oom_adj.
179 	 */
180 	if (oom_adj) {
181 		if (oom_adj > 0) {
182 			if (!points)
183 				points = 1;
184 			points <<= oom_adj;
185 		} else
186 			points >>= -(oom_adj);
187 	}
188 
189 #ifdef DEBUG
190 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
191 	p->pid, p->comm, points);
192 #endif
193 	return points;
194 }
195 
196 /*
197  * Determine the type of allocation constraint.
198  */
199 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
200 						    gfp_t gfp_mask)
201 {
202 #ifdef CONFIG_NUMA
203 	struct zone *zone;
204 	struct zoneref *z;
205 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
206 	nodemask_t nodes = node_states[N_HIGH_MEMORY];
207 
208 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
209 		if (cpuset_zone_allowed_softwall(zone, gfp_mask))
210 			node_clear(zone_to_nid(zone), nodes);
211 		else
212 			return CONSTRAINT_CPUSET;
213 
214 	if (!nodes_empty(nodes))
215 		return CONSTRAINT_MEMORY_POLICY;
216 #endif
217 
218 	return CONSTRAINT_NONE;
219 }
220 
221 /*
222  * Simple selection loop. We chose the process with the highest
223  * number of 'points'. We expect the caller will lock the tasklist.
224  *
225  * (not docbooked, we don't want this one cluttering up the manual)
226  */
227 static struct task_struct *select_bad_process(unsigned long *ppoints,
228 						struct mem_cgroup *mem)
229 {
230 	struct task_struct *p;
231 	struct task_struct *chosen = NULL;
232 	struct timespec uptime;
233 	*ppoints = 0;
234 
235 	do_posix_clock_monotonic_gettime(&uptime);
236 	for_each_process(p) {
237 		unsigned long points;
238 
239 		/*
240 		 * skip kernel threads and tasks which have already released
241 		 * their mm.
242 		 */
243 		if (!p->mm)
244 			continue;
245 		/* skip the init task */
246 		if (is_global_init(p))
247 			continue;
248 		if (mem && !task_in_mem_cgroup(p, mem))
249 			continue;
250 
251 		/*
252 		 * This task already has access to memory reserves and is
253 		 * being killed. Don't allow any other task access to the
254 		 * memory reserve.
255 		 *
256 		 * Note: this may have a chance of deadlock if it gets
257 		 * blocked waiting for another task which itself is waiting
258 		 * for memory. Is there a better alternative?
259 		 */
260 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
261 			return ERR_PTR(-1UL);
262 
263 		/*
264 		 * This is in the process of releasing memory so wait for it
265 		 * to finish before killing some other task by mistake.
266 		 *
267 		 * However, if p is the current task, we allow the 'kill' to
268 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
269 		 * which will allow it to gain access to memory reserves in
270 		 * the process of exiting and releasing its resources.
271 		 * Otherwise we could get an easy OOM deadlock.
272 		 */
273 		if (p->flags & PF_EXITING) {
274 			if (p != current)
275 				return ERR_PTR(-1UL);
276 
277 			chosen = p;
278 			*ppoints = ULONG_MAX;
279 		}
280 
281 		if (p->signal->oom_adj == OOM_DISABLE)
282 			continue;
283 
284 		points = badness(p, uptime.tv_sec);
285 		if (points > *ppoints || !chosen) {
286 			chosen = p;
287 			*ppoints = points;
288 		}
289 	}
290 
291 	return chosen;
292 }
293 
294 /**
295  * dump_tasks - dump current memory state of all system tasks
296  * @mem: target memory controller
297  *
298  * Dumps the current memory state of all system tasks, excluding kernel threads.
299  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
300  * score, and name.
301  *
302  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
303  * shown.
304  *
305  * Call with tasklist_lock read-locked.
306  */
307 static void dump_tasks(const struct mem_cgroup *mem)
308 {
309 	struct task_struct *g, *p;
310 
311 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
312 	       "name\n");
313 	do_each_thread(g, p) {
314 		struct mm_struct *mm;
315 
316 		if (mem && !task_in_mem_cgroup(p, mem))
317 			continue;
318 		if (!thread_group_leader(p))
319 			continue;
320 
321 		task_lock(p);
322 		mm = p->mm;
323 		if (!mm) {
324 			/*
325 			 * total_vm and rss sizes do not exist for tasks with no
326 			 * mm so there's no need to report them; they can't be
327 			 * oom killed anyway.
328 			 */
329 			task_unlock(p);
330 			continue;
331 		}
332 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
333 		       p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
334 		       get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
335 		       p->comm);
336 		task_unlock(p);
337 	} while_each_thread(g, p);
338 }
339 
340 /*
341  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
342  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
343  * set.
344  */
345 static void __oom_kill_task(struct task_struct *p, int verbose)
346 {
347 	if (is_global_init(p)) {
348 		WARN_ON(1);
349 		printk(KERN_WARNING "tried to kill init!\n");
350 		return;
351 	}
352 
353 	if (!p->mm) {
354 		WARN_ON(1);
355 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
356 		return;
357 	}
358 
359 	if (verbose)
360 		printk(KERN_ERR "Killed process %d (%s)\n",
361 				task_pid_nr(p), p->comm);
362 
363 	/*
364 	 * We give our sacrificial lamb high priority and access to
365 	 * all the memory it needs. That way it should be able to
366 	 * exit() and clear out its resources quickly...
367 	 */
368 	p->rt.time_slice = HZ;
369 	set_tsk_thread_flag(p, TIF_MEMDIE);
370 
371 	force_sig(SIGKILL, p);
372 }
373 
374 static int oom_kill_task(struct task_struct *p)
375 {
376 	/* WARNING: mm may not be dereferenced since we did not obtain its
377 	 * value from get_task_mm(p).  This is OK since all we need to do is
378 	 * compare mm to q->mm below.
379 	 *
380 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
381 	 * change to NULL at any time since we do not hold task_lock(p).
382 	 * However, this is of no concern to us.
383 	 */
384 	if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
385 		return 1;
386 
387 	__oom_kill_task(p, 1);
388 
389 	return 0;
390 }
391 
392 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
393 			    unsigned long points, struct mem_cgroup *mem,
394 			    const char *message)
395 {
396 	struct task_struct *c;
397 
398 	if (printk_ratelimit()) {
399 		printk(KERN_WARNING "%s invoked oom-killer: "
400 			"gfp_mask=0x%x, order=%d, oom_adj=%d\n",
401 			current->comm, gfp_mask, order,
402 			current->signal->oom_adj);
403 		task_lock(current);
404 		cpuset_print_task_mems_allowed(current);
405 		task_unlock(current);
406 		dump_stack();
407 		mem_cgroup_print_oom_info(mem, current);
408 		show_mem();
409 		if (sysctl_oom_dump_tasks)
410 			dump_tasks(mem);
411 	}
412 
413 	/*
414 	 * If the task is already exiting, don't alarm the sysadmin or kill
415 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
416 	 */
417 	if (p->flags & PF_EXITING) {
418 		__oom_kill_task(p, 0);
419 		return 0;
420 	}
421 
422 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
423 					message, task_pid_nr(p), p->comm, points);
424 
425 	/* Try to kill a child first */
426 	list_for_each_entry(c, &p->children, sibling) {
427 		if (c->mm == p->mm)
428 			continue;
429 		if (!oom_kill_task(c))
430 			return 0;
431 	}
432 	return oom_kill_task(p);
433 }
434 
435 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
436 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
437 {
438 	unsigned long points = 0;
439 	struct task_struct *p;
440 
441 	read_lock(&tasklist_lock);
442 retry:
443 	p = select_bad_process(&points, mem);
444 	if (PTR_ERR(p) == -1UL)
445 		goto out;
446 
447 	if (!p)
448 		p = current;
449 
450 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
451 				"Memory cgroup out of memory"))
452 		goto retry;
453 out:
454 	read_unlock(&tasklist_lock);
455 }
456 #endif
457 
458 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
459 
460 int register_oom_notifier(struct notifier_block *nb)
461 {
462 	return blocking_notifier_chain_register(&oom_notify_list, nb);
463 }
464 EXPORT_SYMBOL_GPL(register_oom_notifier);
465 
466 int unregister_oom_notifier(struct notifier_block *nb)
467 {
468 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
469 }
470 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
471 
472 /*
473  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
474  * if a parallel OOM killing is already taking place that includes a zone in
475  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
476  */
477 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
478 {
479 	struct zoneref *z;
480 	struct zone *zone;
481 	int ret = 1;
482 
483 	spin_lock(&zone_scan_lock);
484 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
485 		if (zone_is_oom_locked(zone)) {
486 			ret = 0;
487 			goto out;
488 		}
489 	}
490 
491 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
492 		/*
493 		 * Lock each zone in the zonelist under zone_scan_lock so a
494 		 * parallel invocation of try_set_zone_oom() doesn't succeed
495 		 * when it shouldn't.
496 		 */
497 		zone_set_flag(zone, ZONE_OOM_LOCKED);
498 	}
499 
500 out:
501 	spin_unlock(&zone_scan_lock);
502 	return ret;
503 }
504 
505 /*
506  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
507  * allocation attempts with zonelists containing them may now recall the OOM
508  * killer, if necessary.
509  */
510 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
511 {
512 	struct zoneref *z;
513 	struct zone *zone;
514 
515 	spin_lock(&zone_scan_lock);
516 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
517 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
518 	}
519 	spin_unlock(&zone_scan_lock);
520 }
521 
522 /*
523  * Must be called with tasklist_lock held for read.
524  */
525 static void __out_of_memory(gfp_t gfp_mask, int order)
526 {
527 	struct task_struct *p;
528 	unsigned long points;
529 
530 	if (sysctl_oom_kill_allocating_task)
531 		if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
532 				"Out of memory (oom_kill_allocating_task)"))
533 			return;
534 retry:
535 	/*
536 	 * Rambo mode: Shoot down a process and hope it solves whatever
537 	 * issues we may have.
538 	 */
539 	p = select_bad_process(&points, NULL);
540 
541 	if (PTR_ERR(p) == -1UL)
542 		return;
543 
544 	/* Found nothing?!?! Either we hang forever, or we panic. */
545 	if (!p) {
546 		read_unlock(&tasklist_lock);
547 		panic("Out of memory and no killable processes...\n");
548 	}
549 
550 	if (oom_kill_process(p, gfp_mask, order, points, NULL,
551 			     "Out of memory"))
552 		goto retry;
553 }
554 
555 /*
556  * pagefault handler calls into here because it is out of memory but
557  * doesn't know exactly how or why.
558  */
559 void pagefault_out_of_memory(void)
560 {
561 	unsigned long freed = 0;
562 
563 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
564 	if (freed > 0)
565 		/* Got some memory back in the last second. */
566 		return;
567 
568 	/*
569 	 * If this is from memcg, oom-killer is already invoked.
570 	 * and not worth to go system-wide-oom.
571 	 */
572 	if (mem_cgroup_oom_called(current))
573 		goto rest_and_return;
574 
575 	if (sysctl_panic_on_oom)
576 		panic("out of memory from page fault. panic_on_oom is selected.\n");
577 
578 	read_lock(&tasklist_lock);
579 	__out_of_memory(0, 0); /* unknown gfp_mask and order */
580 	read_unlock(&tasklist_lock);
581 
582 	/*
583 	 * Give "p" a good chance of killing itself before we
584 	 * retry to allocate memory.
585 	 */
586 rest_and_return:
587 	if (!test_thread_flag(TIF_MEMDIE))
588 		schedule_timeout_uninterruptible(1);
589 }
590 
591 /**
592  * out_of_memory - kill the "best" process when we run out of memory
593  * @zonelist: zonelist pointer
594  * @gfp_mask: memory allocation flags
595  * @order: amount of memory being requested as a power of 2
596  *
597  * If we run out of memory, we have the choice between either
598  * killing a random task (bad), letting the system crash (worse)
599  * OR try to be smart about which process to kill. Note that we
600  * don't have to be perfect here, we just have to be good.
601  */
602 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
603 {
604 	unsigned long freed = 0;
605 	enum oom_constraint constraint;
606 
607 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
608 	if (freed > 0)
609 		/* Got some memory back in the last second. */
610 		return;
611 
612 	if (sysctl_panic_on_oom == 2)
613 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
614 
615 	/*
616 	 * Check if there were limitations on the allocation (only relevant for
617 	 * NUMA) that may require different handling.
618 	 */
619 	constraint = constrained_alloc(zonelist, gfp_mask);
620 	read_lock(&tasklist_lock);
621 
622 	switch (constraint) {
623 	case CONSTRAINT_MEMORY_POLICY:
624 		oom_kill_process(current, gfp_mask, order, 0, NULL,
625 				"No available memory (MPOL_BIND)");
626 		break;
627 
628 	case CONSTRAINT_NONE:
629 		if (sysctl_panic_on_oom)
630 			panic("out of memory. panic_on_oom is selected\n");
631 		/* Fall-through */
632 	case CONSTRAINT_CPUSET:
633 		__out_of_memory(gfp_mask, order);
634 		break;
635 	}
636 
637 	read_unlock(&tasklist_lock);
638 
639 	/*
640 	 * Give "p" a good chance of killing itself before we
641 	 * retry to allocate memory unless "p" is current
642 	 */
643 	if (!test_thread_flag(TIF_MEMDIE))
644 		schedule_timeout_uninterruptible(1);
645 }
646