xref: /linux/mm/oom_kill.c (revision 834f0c353ae430c1a6ce023c9b77bbd3ff9241a7)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/module.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 
36 int sysctl_panic_on_oom;
37 int sysctl_oom_kill_allocating_task;
38 int sysctl_oom_dump_tasks = 1;
39 static DEFINE_SPINLOCK(zone_scan_lock);
40 
41 #ifdef CONFIG_NUMA
42 /**
43  * has_intersects_mems_allowed() - check task eligiblity for kill
44  * @tsk: task struct of which task to consider
45  * @mask: nodemask passed to page allocator for mempolicy ooms
46  *
47  * Task eligibility is determined by whether or not a candidate task, @tsk,
48  * shares the same mempolicy nodes as current if it is bound by such a policy
49  * and whether or not it has the same set of allowed cpuset nodes.
50  */
51 static bool has_intersects_mems_allowed(struct task_struct *tsk,
52 					const nodemask_t *mask)
53 {
54 	struct task_struct *start = tsk;
55 
56 	do {
57 		if (mask) {
58 			/*
59 			 * If this is a mempolicy constrained oom, tsk's
60 			 * cpuset is irrelevant.  Only return true if its
61 			 * mempolicy intersects current, otherwise it may be
62 			 * needlessly killed.
63 			 */
64 			if (mempolicy_nodemask_intersects(tsk, mask))
65 				return true;
66 		} else {
67 			/*
68 			 * This is not a mempolicy constrained oom, so only
69 			 * check the mems of tsk's cpuset.
70 			 */
71 			if (cpuset_mems_allowed_intersects(current, tsk))
72 				return true;
73 		}
74 	} while_each_thread(start, tsk);
75 
76 	return false;
77 }
78 #else
79 static bool has_intersects_mems_allowed(struct task_struct *tsk,
80 					const nodemask_t *mask)
81 {
82 	return true;
83 }
84 #endif /* CONFIG_NUMA */
85 
86 /*
87  * The process p may have detached its own ->mm while exiting or through
88  * use_mm(), but one or more of its subthreads may still have a valid
89  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
90  * task_lock() held.
91  */
92 struct task_struct *find_lock_task_mm(struct task_struct *p)
93 {
94 	struct task_struct *t = p;
95 
96 	do {
97 		task_lock(t);
98 		if (likely(t->mm))
99 			return t;
100 		task_unlock(t);
101 	} while_each_thread(p, t);
102 
103 	return NULL;
104 }
105 
106 /* return true if the task is not adequate as candidate victim task. */
107 static bool oom_unkillable_task(struct task_struct *p,
108 		const struct mem_cgroup *mem, const nodemask_t *nodemask)
109 {
110 	if (is_global_init(p))
111 		return true;
112 	if (p->flags & PF_KTHREAD)
113 		return true;
114 
115 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
116 	if (mem && !task_in_mem_cgroup(p, mem))
117 		return true;
118 
119 	/* p may not have freeable memory in nodemask */
120 	if (!has_intersects_mems_allowed(p, nodemask))
121 		return true;
122 
123 	return false;
124 }
125 
126 /**
127  * oom_badness - heuristic function to determine which candidate task to kill
128  * @p: task struct of which task we should calculate
129  * @totalpages: total present RAM allowed for page allocation
130  *
131  * The heuristic for determining which task to kill is made to be as simple and
132  * predictable as possible.  The goal is to return the highest value for the
133  * task consuming the most memory to avoid subsequent oom failures.
134  */
135 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
136 		      const nodemask_t *nodemask, unsigned long totalpages)
137 {
138 	int points;
139 
140 	if (oom_unkillable_task(p, mem, nodemask))
141 		return 0;
142 
143 	p = find_lock_task_mm(p);
144 	if (!p)
145 		return 0;
146 
147 	/*
148 	 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
149 	 * so the entire heuristic doesn't need to be executed for something
150 	 * that cannot be killed.
151 	 */
152 	if (atomic_read(&p->mm->oom_disable_count)) {
153 		task_unlock(p);
154 		return 0;
155 	}
156 
157 	/*
158 	 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
159 	 * priority for oom killing.
160 	 */
161 	if (p->flags & PF_OOM_ORIGIN) {
162 		task_unlock(p);
163 		return 1000;
164 	}
165 
166 	/*
167 	 * The memory controller may have a limit of 0 bytes, so avoid a divide
168 	 * by zero, if necessary.
169 	 */
170 	if (!totalpages)
171 		totalpages = 1;
172 
173 	/*
174 	 * The baseline for the badness score is the proportion of RAM that each
175 	 * task's rss and swap space use.
176 	 */
177 	points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
178 			totalpages;
179 	task_unlock(p);
180 
181 	/*
182 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
183 	 * implementation used by LSMs.
184 	 */
185 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
186 		points -= 30;
187 
188 	/*
189 	 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
190 	 * either completely disable oom killing or always prefer a certain
191 	 * task.
192 	 */
193 	points += p->signal->oom_score_adj;
194 
195 	/*
196 	 * Never return 0 for an eligible task that may be killed since it's
197 	 * possible that no single user task uses more than 0.1% of memory and
198 	 * no single admin tasks uses more than 3.0%.
199 	 */
200 	if (points <= 0)
201 		return 1;
202 	return (points < 1000) ? points : 1000;
203 }
204 
205 /*
206  * Determine the type of allocation constraint.
207  */
208 #ifdef CONFIG_NUMA
209 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
210 				gfp_t gfp_mask, nodemask_t *nodemask,
211 				unsigned long *totalpages)
212 {
213 	struct zone *zone;
214 	struct zoneref *z;
215 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
216 	bool cpuset_limited = false;
217 	int nid;
218 
219 	/* Default to all available memory */
220 	*totalpages = totalram_pages + total_swap_pages;
221 
222 	if (!zonelist)
223 		return CONSTRAINT_NONE;
224 	/*
225 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
226 	 * to kill current.We have to random task kill in this case.
227 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
228 	 */
229 	if (gfp_mask & __GFP_THISNODE)
230 		return CONSTRAINT_NONE;
231 
232 	/*
233 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
234 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
235 	 * is enforced in get_page_from_freelist().
236 	 */
237 	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
238 		*totalpages = total_swap_pages;
239 		for_each_node_mask(nid, *nodemask)
240 			*totalpages += node_spanned_pages(nid);
241 		return CONSTRAINT_MEMORY_POLICY;
242 	}
243 
244 	/* Check this allocation failure is caused by cpuset's wall function */
245 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
246 			high_zoneidx, nodemask)
247 		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
248 			cpuset_limited = true;
249 
250 	if (cpuset_limited) {
251 		*totalpages = total_swap_pages;
252 		for_each_node_mask(nid, cpuset_current_mems_allowed)
253 			*totalpages += node_spanned_pages(nid);
254 		return CONSTRAINT_CPUSET;
255 	}
256 	return CONSTRAINT_NONE;
257 }
258 #else
259 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
260 				gfp_t gfp_mask, nodemask_t *nodemask,
261 				unsigned long *totalpages)
262 {
263 	*totalpages = totalram_pages + total_swap_pages;
264 	return CONSTRAINT_NONE;
265 }
266 #endif
267 
268 /*
269  * Simple selection loop. We chose the process with the highest
270  * number of 'points'. We expect the caller will lock the tasklist.
271  *
272  * (not docbooked, we don't want this one cluttering up the manual)
273  */
274 static struct task_struct *select_bad_process(unsigned int *ppoints,
275 		unsigned long totalpages, struct mem_cgroup *mem,
276 		const nodemask_t *nodemask)
277 {
278 	struct task_struct *g, *p;
279 	struct task_struct *chosen = NULL;
280 	*ppoints = 0;
281 
282 	do_each_thread(g, p) {
283 		unsigned int points;
284 
285 		if (!p->mm)
286 			continue;
287 		if (oom_unkillable_task(p, mem, nodemask))
288 			continue;
289 
290 		/*
291 		 * This task already has access to memory reserves and is
292 		 * being killed. Don't allow any other task access to the
293 		 * memory reserve.
294 		 *
295 		 * Note: this may have a chance of deadlock if it gets
296 		 * blocked waiting for another task which itself is waiting
297 		 * for memory. Is there a better alternative?
298 		 */
299 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
300 			return ERR_PTR(-1UL);
301 
302 		if (p->flags & PF_EXITING) {
303 			/*
304 			 * If p is the current task and is in the process of
305 			 * releasing memory, we allow the "kill" to set
306 			 * TIF_MEMDIE, which will allow it to gain access to
307 			 * memory reserves.  Otherwise, it may stall forever.
308 			 *
309 			 * The loop isn't broken here, however, in case other
310 			 * threads are found to have already been oom killed.
311 			 */
312 			if (p == current) {
313 				chosen = p;
314 				*ppoints = 1000;
315 			} else {
316 				/*
317 				 * If this task is not being ptraced on exit,
318 				 * then wait for it to finish before killing
319 				 * some other task unnecessarily.
320 				 */
321 				if (!(task_ptrace(p->group_leader) &
322 							PT_TRACE_EXIT))
323 					return ERR_PTR(-1UL);
324 			}
325 		}
326 
327 		points = oom_badness(p, mem, nodemask, totalpages);
328 		if (points > *ppoints) {
329 			chosen = p;
330 			*ppoints = points;
331 		}
332 	} while_each_thread(g, p);
333 
334 	return chosen;
335 }
336 
337 /**
338  * dump_tasks - dump current memory state of all system tasks
339  * @mem: current's memory controller, if constrained
340  * @nodemask: nodemask passed to page allocator for mempolicy ooms
341  *
342  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
343  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
344  * are not shown.
345  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
346  * value, oom_score_adj value, and name.
347  *
348  * Call with tasklist_lock read-locked.
349  */
350 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
351 {
352 	struct task_struct *p;
353 	struct task_struct *task;
354 
355 	pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
356 	for_each_process(p) {
357 		if (oom_unkillable_task(p, mem, nodemask))
358 			continue;
359 
360 		task = find_lock_task_mm(p);
361 		if (!task) {
362 			/*
363 			 * This is a kthread or all of p's threads have already
364 			 * detached their mm's.  There's no need to report
365 			 * them; they can't be oom killed anyway.
366 			 */
367 			continue;
368 		}
369 
370 		pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
371 			task->pid, task_uid(task), task->tgid,
372 			task->mm->total_vm, get_mm_rss(task->mm),
373 			task_cpu(task), task->signal->oom_adj,
374 			task->signal->oom_score_adj, task->comm);
375 		task_unlock(task);
376 	}
377 }
378 
379 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
380 			struct mem_cgroup *mem, const nodemask_t *nodemask)
381 {
382 	task_lock(current);
383 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
384 		"oom_adj=%d, oom_score_adj=%d\n",
385 		current->comm, gfp_mask, order, current->signal->oom_adj,
386 		current->signal->oom_score_adj);
387 	cpuset_print_task_mems_allowed(current);
388 	task_unlock(current);
389 	dump_stack();
390 	mem_cgroup_print_oom_info(mem, p);
391 	show_mem(SHOW_MEM_FILTER_NODES);
392 	if (sysctl_oom_dump_tasks)
393 		dump_tasks(mem, nodemask);
394 }
395 
396 #define K(x) ((x) << (PAGE_SHIFT-10))
397 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
398 {
399 	struct task_struct *q;
400 	struct mm_struct *mm;
401 
402 	p = find_lock_task_mm(p);
403 	if (!p)
404 		return 1;
405 
406 	/* mm cannot be safely dereferenced after task_unlock(p) */
407 	mm = p->mm;
408 
409 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
410 		task_pid_nr(p), p->comm, K(p->mm->total_vm),
411 		K(get_mm_counter(p->mm, MM_ANONPAGES)),
412 		K(get_mm_counter(p->mm, MM_FILEPAGES)));
413 	task_unlock(p);
414 
415 	/*
416 	 * Kill all processes sharing p->mm in other thread groups, if any.
417 	 * They don't get access to memory reserves or a higher scheduler
418 	 * priority, though, to avoid depletion of all memory or task
419 	 * starvation.  This prevents mm->mmap_sem livelock when an oom killed
420 	 * task cannot exit because it requires the semaphore and its contended
421 	 * by another thread trying to allocate memory itself.  That thread will
422 	 * now get access to memory reserves since it has a pending fatal
423 	 * signal.
424 	 */
425 	for_each_process(q)
426 		if (q->mm == mm && !same_thread_group(q, p)) {
427 			task_lock(q);	/* Protect ->comm from prctl() */
428 			pr_err("Kill process %d (%s) sharing same memory\n",
429 				task_pid_nr(q), q->comm);
430 			task_unlock(q);
431 			force_sig(SIGKILL, q);
432 		}
433 
434 	set_tsk_thread_flag(p, TIF_MEMDIE);
435 	force_sig(SIGKILL, p);
436 
437 	return 0;
438 }
439 #undef K
440 
441 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
442 			    unsigned int points, unsigned long totalpages,
443 			    struct mem_cgroup *mem, nodemask_t *nodemask,
444 			    const char *message)
445 {
446 	struct task_struct *victim = p;
447 	struct task_struct *child;
448 	struct task_struct *t = p;
449 	unsigned int victim_points = 0;
450 
451 	if (printk_ratelimit())
452 		dump_header(p, gfp_mask, order, mem, nodemask);
453 
454 	/*
455 	 * If the task is already exiting, don't alarm the sysadmin or kill
456 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
457 	 */
458 	if (p->flags & PF_EXITING) {
459 		set_tsk_thread_flag(p, TIF_MEMDIE);
460 		return 0;
461 	}
462 
463 	task_lock(p);
464 	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
465 		message, task_pid_nr(p), p->comm, points);
466 	task_unlock(p);
467 
468 	/*
469 	 * If any of p's children has a different mm and is eligible for kill,
470 	 * the one with the highest badness() score is sacrificed for its
471 	 * parent.  This attempts to lose the minimal amount of work done while
472 	 * still freeing memory.
473 	 */
474 	do {
475 		list_for_each_entry(child, &t->children, sibling) {
476 			unsigned int child_points;
477 
478 			if (child->mm == p->mm)
479 				continue;
480 			/*
481 			 * oom_badness() returns 0 if the thread is unkillable
482 			 */
483 			child_points = oom_badness(child, mem, nodemask,
484 								totalpages);
485 			if (child_points > victim_points) {
486 				victim = child;
487 				victim_points = child_points;
488 			}
489 		}
490 	} while_each_thread(p, t);
491 
492 	return oom_kill_task(victim, mem);
493 }
494 
495 /*
496  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
497  */
498 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
499 				int order, const nodemask_t *nodemask)
500 {
501 	if (likely(!sysctl_panic_on_oom))
502 		return;
503 	if (sysctl_panic_on_oom != 2) {
504 		/*
505 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
506 		 * does not panic for cpuset, mempolicy, or memcg allocation
507 		 * failures.
508 		 */
509 		if (constraint != CONSTRAINT_NONE)
510 			return;
511 	}
512 	read_lock(&tasklist_lock);
513 	dump_header(NULL, gfp_mask, order, NULL, nodemask);
514 	read_unlock(&tasklist_lock);
515 	panic("Out of memory: %s panic_on_oom is enabled\n",
516 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
517 }
518 
519 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
520 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
521 {
522 	unsigned long limit;
523 	unsigned int points = 0;
524 	struct task_struct *p;
525 
526 	/*
527 	 * If current has a pending SIGKILL, then automatically select it.  The
528 	 * goal is to allow it to allocate so that it may quickly exit and free
529 	 * its memory.
530 	 */
531 	if (fatal_signal_pending(current)) {
532 		set_thread_flag(TIF_MEMDIE);
533 		return;
534 	}
535 
536 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
537 	limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
538 	read_lock(&tasklist_lock);
539 retry:
540 	p = select_bad_process(&points, limit, mem, NULL);
541 	if (!p || PTR_ERR(p) == -1UL)
542 		goto out;
543 
544 	if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
545 				"Memory cgroup out of memory"))
546 		goto retry;
547 out:
548 	read_unlock(&tasklist_lock);
549 }
550 #endif
551 
552 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
553 
554 int register_oom_notifier(struct notifier_block *nb)
555 {
556 	return blocking_notifier_chain_register(&oom_notify_list, nb);
557 }
558 EXPORT_SYMBOL_GPL(register_oom_notifier);
559 
560 int unregister_oom_notifier(struct notifier_block *nb)
561 {
562 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
563 }
564 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
565 
566 /*
567  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
568  * if a parallel OOM killing is already taking place that includes a zone in
569  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
570  */
571 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
572 {
573 	struct zoneref *z;
574 	struct zone *zone;
575 	int ret = 1;
576 
577 	spin_lock(&zone_scan_lock);
578 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
579 		if (zone_is_oom_locked(zone)) {
580 			ret = 0;
581 			goto out;
582 		}
583 	}
584 
585 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
586 		/*
587 		 * Lock each zone in the zonelist under zone_scan_lock so a
588 		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
589 		 * when it shouldn't.
590 		 */
591 		zone_set_flag(zone, ZONE_OOM_LOCKED);
592 	}
593 
594 out:
595 	spin_unlock(&zone_scan_lock);
596 	return ret;
597 }
598 
599 /*
600  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
601  * allocation attempts with zonelists containing them may now recall the OOM
602  * killer, if necessary.
603  */
604 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
605 {
606 	struct zoneref *z;
607 	struct zone *zone;
608 
609 	spin_lock(&zone_scan_lock);
610 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
611 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
612 	}
613 	spin_unlock(&zone_scan_lock);
614 }
615 
616 /*
617  * Try to acquire the oom killer lock for all system zones.  Returns zero if a
618  * parallel oom killing is taking place, otherwise locks all zones and returns
619  * non-zero.
620  */
621 static int try_set_system_oom(void)
622 {
623 	struct zone *zone;
624 	int ret = 1;
625 
626 	spin_lock(&zone_scan_lock);
627 	for_each_populated_zone(zone)
628 		if (zone_is_oom_locked(zone)) {
629 			ret = 0;
630 			goto out;
631 		}
632 	for_each_populated_zone(zone)
633 		zone_set_flag(zone, ZONE_OOM_LOCKED);
634 out:
635 	spin_unlock(&zone_scan_lock);
636 	return ret;
637 }
638 
639 /*
640  * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
641  * attempts or page faults may now recall the oom killer, if necessary.
642  */
643 static void clear_system_oom(void)
644 {
645 	struct zone *zone;
646 
647 	spin_lock(&zone_scan_lock);
648 	for_each_populated_zone(zone)
649 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
650 	spin_unlock(&zone_scan_lock);
651 }
652 
653 /**
654  * out_of_memory - kill the "best" process when we run out of memory
655  * @zonelist: zonelist pointer
656  * @gfp_mask: memory allocation flags
657  * @order: amount of memory being requested as a power of 2
658  * @nodemask: nodemask passed to page allocator
659  *
660  * If we run out of memory, we have the choice between either
661  * killing a random task (bad), letting the system crash (worse)
662  * OR try to be smart about which process to kill. Note that we
663  * don't have to be perfect here, we just have to be good.
664  */
665 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
666 		int order, nodemask_t *nodemask)
667 {
668 	const nodemask_t *mpol_mask;
669 	struct task_struct *p;
670 	unsigned long totalpages;
671 	unsigned long freed = 0;
672 	unsigned int points;
673 	enum oom_constraint constraint = CONSTRAINT_NONE;
674 	int killed = 0;
675 
676 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
677 	if (freed > 0)
678 		/* Got some memory back in the last second. */
679 		return;
680 
681 	/*
682 	 * If current has a pending SIGKILL, then automatically select it.  The
683 	 * goal is to allow it to allocate so that it may quickly exit and free
684 	 * its memory.
685 	 */
686 	if (fatal_signal_pending(current)) {
687 		set_thread_flag(TIF_MEMDIE);
688 		return;
689 	}
690 
691 	/*
692 	 * Check if there were limitations on the allocation (only relevant for
693 	 * NUMA) that may require different handling.
694 	 */
695 	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
696 						&totalpages);
697 	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
698 	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
699 
700 	read_lock(&tasklist_lock);
701 	if (sysctl_oom_kill_allocating_task &&
702 	    !oom_unkillable_task(current, NULL, nodemask) &&
703 	    current->mm && !atomic_read(&current->mm->oom_disable_count)) {
704 		/*
705 		 * oom_kill_process() needs tasklist_lock held.  If it returns
706 		 * non-zero, current could not be killed so we must fallback to
707 		 * the tasklist scan.
708 		 */
709 		if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
710 				NULL, nodemask,
711 				"Out of memory (oom_kill_allocating_task)"))
712 			goto out;
713 	}
714 
715 retry:
716 	p = select_bad_process(&points, totalpages, NULL, mpol_mask);
717 	if (PTR_ERR(p) == -1UL)
718 		goto out;
719 
720 	/* Found nothing?!?! Either we hang forever, or we panic. */
721 	if (!p) {
722 		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
723 		read_unlock(&tasklist_lock);
724 		panic("Out of memory and no killable processes...\n");
725 	}
726 
727 	if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
728 				nodemask, "Out of memory"))
729 		goto retry;
730 	killed = 1;
731 out:
732 	read_unlock(&tasklist_lock);
733 
734 	/*
735 	 * Give "p" a good chance of killing itself before we
736 	 * retry to allocate memory unless "p" is current
737 	 */
738 	if (killed && !test_thread_flag(TIF_MEMDIE))
739 		schedule_timeout_uninterruptible(1);
740 }
741 
742 /*
743  * The pagefault handler calls here because it is out of memory, so kill a
744  * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
745  * oom killing is already in progress so do nothing.  If a task is found with
746  * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
747  */
748 void pagefault_out_of_memory(void)
749 {
750 	if (try_set_system_oom()) {
751 		out_of_memory(NULL, 0, 0, NULL);
752 		clear_system_oom();
753 	}
754 	if (!test_thread_flag(TIF_MEMDIE))
755 		schedule_timeout_uninterruptible(1);
756 }
757