1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/sched/debug.h> 29 #include <linux/swap.h> 30 #include <linux/syscalls.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/cred.h> 47 48 #include <asm/tlb.h> 49 #include "internal.h" 50 #include "slab.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/oom.h> 54 55 static int sysctl_panic_on_oom; 56 static int sysctl_oom_kill_allocating_task; 57 static int sysctl_oom_dump_tasks = 1; 58 59 /* 60 * Serializes oom killer invocations (out_of_memory()) from all contexts to 61 * prevent from over eager oom killing (e.g. when the oom killer is invoked 62 * from different domains). 63 * 64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 65 * and mark_oom_victim 66 */ 67 DEFINE_MUTEX(oom_lock); 68 /* Serializes oom_score_adj and oom_score_adj_min updates */ 69 DEFINE_MUTEX(oom_adj_mutex); 70 71 static inline bool is_memcg_oom(struct oom_control *oc) 72 { 73 return oc->memcg != NULL; 74 } 75 76 #ifdef CONFIG_NUMA 77 /** 78 * oom_cpuset_eligible() - check task eligibility for kill 79 * @start: task struct of which task to consider 80 * @oc: pointer to struct oom_control 81 * 82 * Task eligibility is determined by whether or not a candidate task, @tsk, 83 * shares the same mempolicy nodes as current if it is bound by such a policy 84 * and whether or not it has the same set of allowed cpuset nodes. 85 * 86 * This function is assuming oom-killer context and 'current' has triggered 87 * the oom-killer. 88 */ 89 static bool oom_cpuset_eligible(struct task_struct *start, 90 struct oom_control *oc) 91 { 92 struct task_struct *tsk; 93 bool ret = false; 94 const nodemask_t *mask = oc->nodemask; 95 96 rcu_read_lock(); 97 for_each_thread(start, tsk) { 98 if (mask) { 99 /* 100 * If this is a mempolicy constrained oom, tsk's 101 * cpuset is irrelevant. Only return true if its 102 * mempolicy intersects current, otherwise it may be 103 * needlessly killed. 104 */ 105 ret = mempolicy_in_oom_domain(tsk, mask); 106 } else { 107 /* 108 * This is not a mempolicy constrained oom, so only 109 * check the mems of tsk's cpuset. 110 */ 111 ret = cpuset_mems_allowed_intersects(current, tsk); 112 } 113 if (ret) 114 break; 115 } 116 rcu_read_unlock(); 117 118 return ret; 119 } 120 #else 121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 122 { 123 return true; 124 } 125 #endif /* CONFIG_NUMA */ 126 127 /* 128 * The process p may have detached its own ->mm while exiting or through 129 * kthread_use_mm(), but one or more of its subthreads may still have a valid 130 * pointer. Return p, or any of its subthreads with a valid ->mm, with 131 * task_lock() held. 132 */ 133 struct task_struct *find_lock_task_mm(struct task_struct *p) 134 { 135 struct task_struct *t; 136 137 rcu_read_lock(); 138 139 for_each_thread(p, t) { 140 task_lock(t); 141 if (likely(t->mm)) 142 goto found; 143 task_unlock(t); 144 } 145 t = NULL; 146 found: 147 rcu_read_unlock(); 148 149 return t; 150 } 151 152 /* 153 * order == -1 means the oom kill is required by sysrq, otherwise only 154 * for display purposes. 155 */ 156 static inline bool is_sysrq_oom(struct oom_control *oc) 157 { 158 return oc->order == -1; 159 } 160 161 /* return true if the task is not adequate as candidate victim task. */ 162 static bool oom_unkillable_task(struct task_struct *p) 163 { 164 if (is_global_init(p)) 165 return true; 166 if (p->flags & PF_KTHREAD) 167 return true; 168 return false; 169 } 170 171 /* 172 * Check whether unreclaimable slab amount is greater than 173 * all user memory(LRU pages). 174 * dump_unreclaimable_slab() could help in the case that 175 * oom due to too much unreclaimable slab used by kernel. 176 */ 177 static bool should_dump_unreclaim_slab(void) 178 { 179 unsigned long nr_lru; 180 181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 182 global_node_page_state(NR_INACTIVE_ANON) + 183 global_node_page_state(NR_ACTIVE_FILE) + 184 global_node_page_state(NR_INACTIVE_FILE) + 185 global_node_page_state(NR_ISOLATED_ANON) + 186 global_node_page_state(NR_ISOLATED_FILE) + 187 global_node_page_state(NR_UNEVICTABLE); 188 189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 190 } 191 192 /** 193 * oom_badness - heuristic function to determine which candidate task to kill 194 * @p: task struct of which task we should calculate 195 * @totalpages: total present RAM allowed for page allocation 196 * 197 * The heuristic for determining which task to kill is made to be as simple and 198 * predictable as possible. The goal is to return the highest value for the 199 * task consuming the most memory to avoid subsequent oom failures. 200 */ 201 long oom_badness(struct task_struct *p, unsigned long totalpages) 202 { 203 long points; 204 long adj; 205 206 if (oom_unkillable_task(p)) 207 return LONG_MIN; 208 209 p = find_lock_task_mm(p); 210 if (!p) 211 return LONG_MIN; 212 213 /* 214 * Do not even consider tasks which are explicitly marked oom 215 * unkillable or have been already oom reaped or the are in 216 * the middle of vfork 217 */ 218 adj = (long)p->signal->oom_score_adj; 219 if (adj == OOM_SCORE_ADJ_MIN || 220 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 221 in_vfork(p)) { 222 task_unlock(p); 223 return LONG_MIN; 224 } 225 226 /* 227 * The baseline for the badness score is the proportion of RAM that each 228 * task's rss, pagetable and swap space use. 229 */ 230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 231 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 232 task_unlock(p); 233 234 /* Normalize to oom_score_adj units */ 235 adj *= totalpages / 1000; 236 points += adj; 237 238 return points; 239 } 240 241 static const char * const oom_constraint_text[] = { 242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 246 }; 247 248 /* 249 * Determine the type of allocation constraint. 250 */ 251 static enum oom_constraint constrained_alloc(struct oom_control *oc) 252 { 253 struct zone *zone; 254 struct zoneref *z; 255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 256 bool cpuset_limited = false; 257 int nid; 258 259 if (is_memcg_oom(oc)) { 260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 261 return CONSTRAINT_MEMCG; 262 } 263 264 /* Default to all available memory */ 265 oc->totalpages = totalram_pages() + total_swap_pages; 266 267 if (!IS_ENABLED(CONFIG_NUMA)) 268 return CONSTRAINT_NONE; 269 270 if (!oc->zonelist) 271 return CONSTRAINT_NONE; 272 /* 273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 274 * to kill current.We have to random task kill in this case. 275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 276 */ 277 if (oc->gfp_mask & __GFP_THISNODE) 278 return CONSTRAINT_NONE; 279 280 /* 281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 282 * the page allocator means a mempolicy is in effect. Cpuset policy 283 * is enforced in get_page_from_freelist(). 284 */ 285 if (oc->nodemask && 286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 287 oc->totalpages = total_swap_pages; 288 for_each_node_mask(nid, *oc->nodemask) 289 oc->totalpages += node_present_pages(nid); 290 return CONSTRAINT_MEMORY_POLICY; 291 } 292 293 /* Check this allocation failure is caused by cpuset's wall function */ 294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 295 highest_zoneidx, oc->nodemask) 296 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 297 cpuset_limited = true; 298 299 if (cpuset_limited) { 300 oc->totalpages = total_swap_pages; 301 for_each_node_mask(nid, cpuset_current_mems_allowed) 302 oc->totalpages += node_present_pages(nid); 303 return CONSTRAINT_CPUSET; 304 } 305 return CONSTRAINT_NONE; 306 } 307 308 static int oom_evaluate_task(struct task_struct *task, void *arg) 309 { 310 struct oom_control *oc = arg; 311 long points; 312 313 if (oom_unkillable_task(task)) 314 goto next; 315 316 /* p may not have freeable memory in nodemask */ 317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 318 goto next; 319 320 /* 321 * This task already has access to memory reserves and is being killed. 322 * Don't allow any other task to have access to the reserves unless 323 * the task has MMF_OOM_SKIP because chances that it would release 324 * any memory is quite low. 325 */ 326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 328 goto next; 329 goto abort; 330 } 331 332 /* 333 * If task is allocating a lot of memory and has been marked to be 334 * killed first if it triggers an oom, then select it. 335 */ 336 if (oom_task_origin(task)) { 337 points = LONG_MAX; 338 goto select; 339 } 340 341 points = oom_badness(task, oc->totalpages); 342 if (points == LONG_MIN || points < oc->chosen_points) 343 goto next; 344 345 select: 346 if (oc->chosen) 347 put_task_struct(oc->chosen); 348 get_task_struct(task); 349 oc->chosen = task; 350 oc->chosen_points = points; 351 next: 352 return 0; 353 abort: 354 if (oc->chosen) 355 put_task_struct(oc->chosen); 356 oc->chosen = (void *)-1UL; 357 return 1; 358 } 359 360 /* 361 * Simple selection loop. We choose the process with the highest number of 362 * 'points'. In case scan was aborted, oc->chosen is set to -1. 363 */ 364 static void select_bad_process(struct oom_control *oc) 365 { 366 oc->chosen_points = LONG_MIN; 367 368 if (is_memcg_oom(oc)) 369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 370 else { 371 struct task_struct *p; 372 373 rcu_read_lock(); 374 for_each_process(p) 375 if (oom_evaluate_task(p, oc)) 376 break; 377 rcu_read_unlock(); 378 } 379 } 380 381 static int dump_task(struct task_struct *p, void *arg) 382 { 383 struct oom_control *oc = arg; 384 struct task_struct *task; 385 386 if (oom_unkillable_task(p)) 387 return 0; 388 389 /* p may not have freeable memory in nodemask */ 390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 391 return 0; 392 393 task = find_lock_task_mm(p); 394 if (!task) { 395 /* 396 * All of p's threads have already detached their mm's. There's 397 * no need to report them; they can't be oom killed anyway. 398 */ 399 return 0; 400 } 401 402 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n", 403 task->pid, from_kuid(&init_user_ns, task_uid(task)), 404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 405 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), 406 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), 407 get_mm_counter(task->mm, MM_SWAPENTS), 408 task->signal->oom_score_adj, task->comm); 409 task_unlock(task); 410 411 return 0; 412 } 413 414 /** 415 * dump_tasks - dump current memory state of all system tasks 416 * @oc: pointer to struct oom_control 417 * 418 * Dumps the current memory state of all eligible tasks. Tasks not in the same 419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 420 * are not shown. 421 * State information includes task's pid, uid, tgid, vm size, rss, 422 * pgtables_bytes, swapents, oom_score_adj value, and name. 423 */ 424 static void dump_tasks(struct oom_control *oc) 425 { 426 pr_info("Tasks state (memory values in pages):\n"); 427 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n"); 428 429 if (is_memcg_oom(oc)) 430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 431 else { 432 struct task_struct *p; 433 434 rcu_read_lock(); 435 for_each_process(p) 436 dump_task(p, oc); 437 rcu_read_unlock(); 438 } 439 } 440 441 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) 442 { 443 /* one line summary of the oom killer context. */ 444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 445 oom_constraint_text[oc->constraint], 446 nodemask_pr_args(oc->nodemask)); 447 cpuset_print_current_mems_allowed(); 448 mem_cgroup_print_oom_context(oc->memcg, victim); 449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 450 from_kuid(&init_user_ns, task_uid(victim))); 451 } 452 453 static void dump_header(struct oom_control *oc) 454 { 455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 457 current->signal->oom_score_adj); 458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 459 pr_warn("COMPACTION is disabled!!!\n"); 460 461 dump_stack(); 462 if (is_memcg_oom(oc)) 463 mem_cgroup_print_oom_meminfo(oc->memcg); 464 else { 465 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask)); 466 if (should_dump_unreclaim_slab()) 467 dump_unreclaimable_slab(); 468 } 469 if (sysctl_oom_dump_tasks) 470 dump_tasks(oc); 471 } 472 473 /* 474 * Number of OOM victims in flight 475 */ 476 static atomic_t oom_victims = ATOMIC_INIT(0); 477 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 478 479 static bool oom_killer_disabled __read_mostly; 480 481 /* 482 * task->mm can be NULL if the task is the exited group leader. So to 483 * determine whether the task is using a particular mm, we examine all the 484 * task's threads: if one of those is using this mm then this task was also 485 * using it. 486 */ 487 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 488 { 489 struct task_struct *t; 490 491 for_each_thread(p, t) { 492 struct mm_struct *t_mm = READ_ONCE(t->mm); 493 if (t_mm) 494 return t_mm == mm; 495 } 496 return false; 497 } 498 499 #ifdef CONFIG_MMU 500 /* 501 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 502 * victim (if that is possible) to help the OOM killer to move on. 503 */ 504 static struct task_struct *oom_reaper_th; 505 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 506 static struct task_struct *oom_reaper_list; 507 static DEFINE_SPINLOCK(oom_reaper_lock); 508 509 static bool __oom_reap_task_mm(struct mm_struct *mm) 510 { 511 struct vm_area_struct *vma; 512 bool ret = true; 513 VMA_ITERATOR(vmi, mm, 0); 514 515 /* 516 * Tell all users of get_user/copy_from_user etc... that the content 517 * is no longer stable. No barriers really needed because unmapping 518 * should imply barriers already and the reader would hit a page fault 519 * if it stumbled over a reaped memory. 520 */ 521 set_bit(MMF_UNSTABLE, &mm->flags); 522 523 for_each_vma(vmi, vma) { 524 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) 525 continue; 526 527 /* 528 * Only anonymous pages have a good chance to be dropped 529 * without additional steps which we cannot afford as we 530 * are OOM already. 531 * 532 * We do not even care about fs backed pages because all 533 * which are reclaimable have already been reclaimed and 534 * we do not want to block exit_mmap by keeping mm ref 535 * count elevated without a good reason. 536 */ 537 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 538 struct mmu_notifier_range range; 539 struct mmu_gather tlb; 540 541 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 542 mm, vma->vm_start, 543 vma->vm_end); 544 tlb_gather_mmu(&tlb, mm); 545 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 546 tlb_finish_mmu(&tlb); 547 ret = false; 548 continue; 549 } 550 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 551 mmu_notifier_invalidate_range_end(&range); 552 tlb_finish_mmu(&tlb); 553 } 554 } 555 556 return ret; 557 } 558 559 /* 560 * Reaps the address space of the give task. 561 * 562 * Returns true on success and false if none or part of the address space 563 * has been reclaimed and the caller should retry later. 564 */ 565 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 566 { 567 bool ret = true; 568 569 if (!mmap_read_trylock(mm)) { 570 trace_skip_task_reaping(tsk->pid); 571 return false; 572 } 573 574 /* 575 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 576 * work on the mm anymore. The check for MMF_OOM_SKIP must run 577 * under mmap_lock for reading because it serializes against the 578 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 579 */ 580 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 581 trace_skip_task_reaping(tsk->pid); 582 goto out_unlock; 583 } 584 585 trace_start_task_reaping(tsk->pid); 586 587 /* failed to reap part of the address space. Try again later */ 588 ret = __oom_reap_task_mm(mm); 589 if (!ret) 590 goto out_finish; 591 592 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 593 task_pid_nr(tsk), tsk->comm, 594 K(get_mm_counter(mm, MM_ANONPAGES)), 595 K(get_mm_counter(mm, MM_FILEPAGES)), 596 K(get_mm_counter(mm, MM_SHMEMPAGES))); 597 out_finish: 598 trace_finish_task_reaping(tsk->pid); 599 out_unlock: 600 mmap_read_unlock(mm); 601 602 return ret; 603 } 604 605 #define MAX_OOM_REAP_RETRIES 10 606 static void oom_reap_task(struct task_struct *tsk) 607 { 608 int attempts = 0; 609 struct mm_struct *mm = tsk->signal->oom_mm; 610 611 /* Retry the mmap_read_trylock(mm) a few times */ 612 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 613 schedule_timeout_idle(HZ/10); 614 615 if (attempts <= MAX_OOM_REAP_RETRIES || 616 test_bit(MMF_OOM_SKIP, &mm->flags)) 617 goto done; 618 619 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 620 task_pid_nr(tsk), tsk->comm); 621 sched_show_task(tsk); 622 debug_show_all_locks(); 623 624 done: 625 tsk->oom_reaper_list = NULL; 626 627 /* 628 * Hide this mm from OOM killer because it has been either reaped or 629 * somebody can't call mmap_write_unlock(mm). 630 */ 631 set_bit(MMF_OOM_SKIP, &mm->flags); 632 633 /* Drop a reference taken by queue_oom_reaper */ 634 put_task_struct(tsk); 635 } 636 637 static int oom_reaper(void *unused) 638 { 639 set_freezable(); 640 641 while (true) { 642 struct task_struct *tsk = NULL; 643 644 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 645 spin_lock_irq(&oom_reaper_lock); 646 if (oom_reaper_list != NULL) { 647 tsk = oom_reaper_list; 648 oom_reaper_list = tsk->oom_reaper_list; 649 } 650 spin_unlock_irq(&oom_reaper_lock); 651 652 if (tsk) 653 oom_reap_task(tsk); 654 } 655 656 return 0; 657 } 658 659 static void wake_oom_reaper(struct timer_list *timer) 660 { 661 struct task_struct *tsk = container_of(timer, struct task_struct, 662 oom_reaper_timer); 663 struct mm_struct *mm = tsk->signal->oom_mm; 664 unsigned long flags; 665 666 /* The victim managed to terminate on its own - see exit_mmap */ 667 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 668 put_task_struct(tsk); 669 return; 670 } 671 672 spin_lock_irqsave(&oom_reaper_lock, flags); 673 tsk->oom_reaper_list = oom_reaper_list; 674 oom_reaper_list = tsk; 675 spin_unlock_irqrestore(&oom_reaper_lock, flags); 676 trace_wake_reaper(tsk->pid); 677 wake_up(&oom_reaper_wait); 678 } 679 680 /* 681 * Give the OOM victim time to exit naturally before invoking the oom_reaping. 682 * The timers timeout is arbitrary... the longer it is, the longer the worst 683 * case scenario for the OOM can take. If it is too small, the oom_reaper can 684 * get in the way and release resources needed by the process exit path. 685 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped 686 * before the exit path is able to wake the futex waiters. 687 */ 688 #define OOM_REAPER_DELAY (2*HZ) 689 static void queue_oom_reaper(struct task_struct *tsk) 690 { 691 /* mm is already queued? */ 692 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 693 return; 694 695 get_task_struct(tsk); 696 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); 697 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; 698 add_timer(&tsk->oom_reaper_timer); 699 } 700 701 #ifdef CONFIG_SYSCTL 702 static struct ctl_table vm_oom_kill_table[] = { 703 { 704 .procname = "panic_on_oom", 705 .data = &sysctl_panic_on_oom, 706 .maxlen = sizeof(sysctl_panic_on_oom), 707 .mode = 0644, 708 .proc_handler = proc_dointvec_minmax, 709 .extra1 = SYSCTL_ZERO, 710 .extra2 = SYSCTL_TWO, 711 }, 712 { 713 .procname = "oom_kill_allocating_task", 714 .data = &sysctl_oom_kill_allocating_task, 715 .maxlen = sizeof(sysctl_oom_kill_allocating_task), 716 .mode = 0644, 717 .proc_handler = proc_dointvec, 718 }, 719 { 720 .procname = "oom_dump_tasks", 721 .data = &sysctl_oom_dump_tasks, 722 .maxlen = sizeof(sysctl_oom_dump_tasks), 723 .mode = 0644, 724 .proc_handler = proc_dointvec, 725 }, 726 }; 727 #endif 728 729 static int __init oom_init(void) 730 { 731 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 732 #ifdef CONFIG_SYSCTL 733 register_sysctl_init("vm", vm_oom_kill_table); 734 #endif 735 return 0; 736 } 737 subsys_initcall(oom_init) 738 #else 739 static inline void queue_oom_reaper(struct task_struct *tsk) 740 { 741 } 742 #endif /* CONFIG_MMU */ 743 744 /** 745 * mark_oom_victim - mark the given task as OOM victim 746 * @tsk: task to mark 747 * 748 * Has to be called with oom_lock held and never after 749 * oom has been disabled already. 750 * 751 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 752 * under task_lock or operate on the current). 753 */ 754 static void mark_oom_victim(struct task_struct *tsk) 755 { 756 const struct cred *cred; 757 struct mm_struct *mm = tsk->mm; 758 759 WARN_ON(oom_killer_disabled); 760 /* OOM killer might race with memcg OOM */ 761 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 762 return; 763 764 /* oom_mm is bound to the signal struct life time. */ 765 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) 766 mmgrab(tsk->signal->oom_mm); 767 768 /* 769 * Make sure that the task is woken up from uninterruptible sleep 770 * if it is frozen because OOM killer wouldn't be able to free 771 * any memory and livelock. freezing_slow_path will tell the freezer 772 * that TIF_MEMDIE tasks should be ignored. 773 */ 774 __thaw_task(tsk); 775 atomic_inc(&oom_victims); 776 cred = get_task_cred(tsk); 777 trace_mark_victim(tsk, cred->uid.val); 778 put_cred(cred); 779 } 780 781 /** 782 * exit_oom_victim - note the exit of an OOM victim 783 */ 784 void exit_oom_victim(void) 785 { 786 clear_thread_flag(TIF_MEMDIE); 787 788 if (!atomic_dec_return(&oom_victims)) 789 wake_up_all(&oom_victims_wait); 790 } 791 792 /** 793 * oom_killer_enable - enable OOM killer 794 */ 795 void oom_killer_enable(void) 796 { 797 oom_killer_disabled = false; 798 pr_info("OOM killer enabled.\n"); 799 } 800 801 /** 802 * oom_killer_disable - disable OOM killer 803 * @timeout: maximum timeout to wait for oom victims in jiffies 804 * 805 * Forces all page allocations to fail rather than trigger OOM killer. 806 * Will block and wait until all OOM victims are killed or the given 807 * timeout expires. 808 * 809 * The function cannot be called when there are runnable user tasks because 810 * the userspace would see unexpected allocation failures as a result. Any 811 * new usage of this function should be consulted with MM people. 812 * 813 * Returns true if successful and false if the OOM killer cannot be 814 * disabled. 815 */ 816 bool oom_killer_disable(signed long timeout) 817 { 818 signed long ret; 819 820 /* 821 * Make sure to not race with an ongoing OOM killer. Check that the 822 * current is not killed (possibly due to sharing the victim's memory). 823 */ 824 if (mutex_lock_killable(&oom_lock)) 825 return false; 826 oom_killer_disabled = true; 827 mutex_unlock(&oom_lock); 828 829 ret = wait_event_interruptible_timeout(oom_victims_wait, 830 !atomic_read(&oom_victims), timeout); 831 if (ret <= 0) { 832 oom_killer_enable(); 833 return false; 834 } 835 pr_info("OOM killer disabled.\n"); 836 837 return true; 838 } 839 840 static inline bool __task_will_free_mem(struct task_struct *task) 841 { 842 struct signal_struct *sig = task->signal; 843 844 /* 845 * A coredumping process may sleep for an extended period in 846 * coredump_task_exit(), so the oom killer cannot assume that 847 * the process will promptly exit and release memory. 848 */ 849 if (sig->core_state) 850 return false; 851 852 if (sig->flags & SIGNAL_GROUP_EXIT) 853 return true; 854 855 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 856 return true; 857 858 return false; 859 } 860 861 /* 862 * Checks whether the given task is dying or exiting and likely to 863 * release its address space. This means that all threads and processes 864 * sharing the same mm have to be killed or exiting. 865 * Caller has to make sure that task->mm is stable (hold task_lock or 866 * it operates on the current). 867 */ 868 static bool task_will_free_mem(struct task_struct *task) 869 { 870 struct mm_struct *mm = task->mm; 871 struct task_struct *p; 872 bool ret = true; 873 874 /* 875 * Skip tasks without mm because it might have passed its exit_mm and 876 * exit_oom_victim. oom_reaper could have rescued that but do not rely 877 * on that for now. We can consider find_lock_task_mm in future. 878 */ 879 if (!mm) 880 return false; 881 882 if (!__task_will_free_mem(task)) 883 return false; 884 885 /* 886 * This task has already been drained by the oom reaper so there are 887 * only small chances it will free some more 888 */ 889 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 890 return false; 891 892 if (atomic_read(&mm->mm_users) <= 1) 893 return true; 894 895 /* 896 * Make sure that all tasks which share the mm with the given tasks 897 * are dying as well to make sure that a) nobody pins its mm and 898 * b) the task is also reapable by the oom reaper. 899 */ 900 rcu_read_lock(); 901 for_each_process(p) { 902 if (!process_shares_mm(p, mm)) 903 continue; 904 if (same_thread_group(task, p)) 905 continue; 906 ret = __task_will_free_mem(p); 907 if (!ret) 908 break; 909 } 910 rcu_read_unlock(); 911 912 return ret; 913 } 914 915 static void __oom_kill_process(struct task_struct *victim, const char *message) 916 { 917 struct task_struct *p; 918 struct mm_struct *mm; 919 bool can_oom_reap = true; 920 921 p = find_lock_task_mm(victim); 922 if (!p) { 923 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 924 message, task_pid_nr(victim), victim->comm); 925 put_task_struct(victim); 926 return; 927 } else if (victim != p) { 928 get_task_struct(p); 929 put_task_struct(victim); 930 victim = p; 931 } 932 933 /* Get a reference to safely compare mm after task_unlock(victim) */ 934 mm = victim->mm; 935 mmgrab(mm); 936 937 /* Raise event before sending signal: task reaper must see this */ 938 count_vm_event(OOM_KILL); 939 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 940 941 /* 942 * We should send SIGKILL before granting access to memory reserves 943 * in order to prevent the OOM victim from depleting the memory 944 * reserves from the user space under its control. 945 */ 946 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 947 mark_oom_victim(victim); 948 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 949 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 950 K(get_mm_counter(mm, MM_ANONPAGES)), 951 K(get_mm_counter(mm, MM_FILEPAGES)), 952 K(get_mm_counter(mm, MM_SHMEMPAGES)), 953 from_kuid(&init_user_ns, task_uid(victim)), 954 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 955 task_unlock(victim); 956 957 /* 958 * Kill all user processes sharing victim->mm in other thread groups, if 959 * any. They don't get access to memory reserves, though, to avoid 960 * depletion of all memory. This prevents mm->mmap_lock livelock when an 961 * oom killed thread cannot exit because it requires the semaphore and 962 * its contended by another thread trying to allocate memory itself. 963 * That thread will now get access to memory reserves since it has a 964 * pending fatal signal. 965 */ 966 rcu_read_lock(); 967 for_each_process(p) { 968 if (!process_shares_mm(p, mm)) 969 continue; 970 if (same_thread_group(p, victim)) 971 continue; 972 if (is_global_init(p)) { 973 can_oom_reap = false; 974 set_bit(MMF_OOM_SKIP, &mm->flags); 975 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 976 task_pid_nr(victim), victim->comm, 977 task_pid_nr(p), p->comm); 978 continue; 979 } 980 /* 981 * No kthread_use_mm() user needs to read from the userspace so 982 * we are ok to reap it. 983 */ 984 if (unlikely(p->flags & PF_KTHREAD)) 985 continue; 986 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 987 } 988 rcu_read_unlock(); 989 990 if (can_oom_reap) 991 queue_oom_reaper(victim); 992 993 mmdrop(mm); 994 put_task_struct(victim); 995 } 996 997 /* 998 * Kill provided task unless it's secured by setting 999 * oom_score_adj to OOM_SCORE_ADJ_MIN. 1000 */ 1001 static int oom_kill_memcg_member(struct task_struct *task, void *message) 1002 { 1003 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 1004 !is_global_init(task)) { 1005 get_task_struct(task); 1006 __oom_kill_process(task, message); 1007 } 1008 return 0; 1009 } 1010 1011 static void oom_kill_process(struct oom_control *oc, const char *message) 1012 { 1013 struct task_struct *victim = oc->chosen; 1014 struct mem_cgroup *oom_group; 1015 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1016 DEFAULT_RATELIMIT_BURST); 1017 1018 /* 1019 * If the task is already exiting, don't alarm the sysadmin or kill 1020 * its children or threads, just give it access to memory reserves 1021 * so it can die quickly 1022 */ 1023 task_lock(victim); 1024 if (task_will_free_mem(victim)) { 1025 mark_oom_victim(victim); 1026 queue_oom_reaper(victim); 1027 task_unlock(victim); 1028 put_task_struct(victim); 1029 return; 1030 } 1031 task_unlock(victim); 1032 1033 if (__ratelimit(&oom_rs)) { 1034 dump_header(oc); 1035 dump_oom_victim(oc, victim); 1036 } 1037 1038 /* 1039 * Do we need to kill the entire memory cgroup? 1040 * Or even one of the ancestor memory cgroups? 1041 * Check this out before killing the victim task. 1042 */ 1043 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 1044 1045 __oom_kill_process(victim, message); 1046 1047 /* 1048 * If necessary, kill all tasks in the selected memory cgroup. 1049 */ 1050 if (oom_group) { 1051 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); 1052 mem_cgroup_print_oom_group(oom_group); 1053 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 1054 (void *)message); 1055 mem_cgroup_put(oom_group); 1056 } 1057 } 1058 1059 /* 1060 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1061 */ 1062 static void check_panic_on_oom(struct oom_control *oc) 1063 { 1064 if (likely(!sysctl_panic_on_oom)) 1065 return; 1066 if (sysctl_panic_on_oom != 2) { 1067 /* 1068 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1069 * does not panic for cpuset, mempolicy, or memcg allocation 1070 * failures. 1071 */ 1072 if (oc->constraint != CONSTRAINT_NONE) 1073 return; 1074 } 1075 /* Do not panic for oom kills triggered by sysrq */ 1076 if (is_sysrq_oom(oc)) 1077 return; 1078 dump_header(oc); 1079 panic("Out of memory: %s panic_on_oom is enabled\n", 1080 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1081 } 1082 1083 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1084 1085 int register_oom_notifier(struct notifier_block *nb) 1086 { 1087 return blocking_notifier_chain_register(&oom_notify_list, nb); 1088 } 1089 EXPORT_SYMBOL_GPL(register_oom_notifier); 1090 1091 int unregister_oom_notifier(struct notifier_block *nb) 1092 { 1093 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1094 } 1095 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1096 1097 /** 1098 * out_of_memory - kill the "best" process when we run out of memory 1099 * @oc: pointer to struct oom_control 1100 * 1101 * If we run out of memory, we have the choice between either 1102 * killing a random task (bad), letting the system crash (worse) 1103 * OR try to be smart about which process to kill. Note that we 1104 * don't have to be perfect here, we just have to be good. 1105 */ 1106 bool out_of_memory(struct oom_control *oc) 1107 { 1108 unsigned long freed = 0; 1109 1110 if (oom_killer_disabled) 1111 return false; 1112 1113 if (!is_memcg_oom(oc)) { 1114 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1115 if (freed > 0 && !is_sysrq_oom(oc)) 1116 /* Got some memory back in the last second. */ 1117 return true; 1118 } 1119 1120 /* 1121 * If current has a pending SIGKILL or is exiting, then automatically 1122 * select it. The goal is to allow it to allocate so that it may 1123 * quickly exit and free its memory. 1124 */ 1125 if (task_will_free_mem(current)) { 1126 mark_oom_victim(current); 1127 queue_oom_reaper(current); 1128 return true; 1129 } 1130 1131 /* 1132 * The OOM killer does not compensate for IO-less reclaim. 1133 * But mem_cgroup_oom() has to invoke the OOM killer even 1134 * if it is a GFP_NOFS allocation. 1135 */ 1136 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1137 return true; 1138 1139 /* 1140 * Check if there were limitations on the allocation (only relevant for 1141 * NUMA and memcg) that may require different handling. 1142 */ 1143 oc->constraint = constrained_alloc(oc); 1144 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1145 oc->nodemask = NULL; 1146 check_panic_on_oom(oc); 1147 1148 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1149 current->mm && !oom_unkillable_task(current) && 1150 oom_cpuset_eligible(current, oc) && 1151 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1152 get_task_struct(current); 1153 oc->chosen = current; 1154 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1155 return true; 1156 } 1157 1158 select_bad_process(oc); 1159 /* Found nothing?!?! */ 1160 if (!oc->chosen) { 1161 dump_header(oc); 1162 pr_warn("Out of memory and no killable processes...\n"); 1163 /* 1164 * If we got here due to an actual allocation at the 1165 * system level, we cannot survive this and will enter 1166 * an endless loop in the allocator. Bail out now. 1167 */ 1168 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1169 panic("System is deadlocked on memory\n"); 1170 } 1171 if (oc->chosen && oc->chosen != (void *)-1UL) 1172 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1173 "Memory cgroup out of memory"); 1174 return !!oc->chosen; 1175 } 1176 1177 /* 1178 * The pagefault handler calls here because some allocation has failed. We have 1179 * to take care of the memcg OOM here because this is the only safe context without 1180 * any locks held but let the oom killer triggered from the allocation context care 1181 * about the global OOM. 1182 */ 1183 void pagefault_out_of_memory(void) 1184 { 1185 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, 1186 DEFAULT_RATELIMIT_BURST); 1187 1188 if (mem_cgroup_oom_synchronize(true)) 1189 return; 1190 1191 if (fatal_signal_pending(current)) 1192 return; 1193 1194 if (__ratelimit(&pfoom_rs)) 1195 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); 1196 } 1197 1198 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) 1199 { 1200 #ifdef CONFIG_MMU 1201 struct mm_struct *mm = NULL; 1202 struct task_struct *task; 1203 struct task_struct *p; 1204 unsigned int f_flags; 1205 bool reap = false; 1206 long ret = 0; 1207 1208 if (flags) 1209 return -EINVAL; 1210 1211 task = pidfd_get_task(pidfd, &f_flags); 1212 if (IS_ERR(task)) 1213 return PTR_ERR(task); 1214 1215 /* 1216 * Make sure to choose a thread which still has a reference to mm 1217 * during the group exit 1218 */ 1219 p = find_lock_task_mm(task); 1220 if (!p) { 1221 ret = -ESRCH; 1222 goto put_task; 1223 } 1224 1225 mm = p->mm; 1226 mmgrab(mm); 1227 1228 if (task_will_free_mem(p)) 1229 reap = true; 1230 else { 1231 /* Error only if the work has not been done already */ 1232 if (!test_bit(MMF_OOM_SKIP, &mm->flags)) 1233 ret = -EINVAL; 1234 } 1235 task_unlock(p); 1236 1237 if (!reap) 1238 goto drop_mm; 1239 1240 if (mmap_read_lock_killable(mm)) { 1241 ret = -EINTR; 1242 goto drop_mm; 1243 } 1244 /* 1245 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure 1246 * possible change in exit_mmap is seen 1247 */ 1248 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) 1249 ret = -EAGAIN; 1250 mmap_read_unlock(mm); 1251 1252 drop_mm: 1253 mmdrop(mm); 1254 put_task: 1255 put_task_struct(task); 1256 return ret; 1257 #else 1258 return -ENOSYS; 1259 #endif /* CONFIG_MMU */ 1260 } 1261