1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/sched/debug.h> 29 #include <linux/swap.h> 30 #include <linux/syscalls.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/cred.h> 47 #include <linux/nmi.h> 48 49 #include <asm/tlb.h> 50 #include "internal.h" 51 #include "slab.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/oom.h> 55 56 static int sysctl_panic_on_oom; 57 static int sysctl_oom_kill_allocating_task; 58 static int sysctl_oom_dump_tasks = 1; 59 60 /* 61 * Serializes oom killer invocations (out_of_memory()) from all contexts to 62 * prevent from over eager oom killing (e.g. when the oom killer is invoked 63 * from different domains). 64 * 65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 66 * and mark_oom_victim 67 */ 68 DEFINE_MUTEX(oom_lock); 69 /* Serializes oom_score_adj and oom_score_adj_min updates */ 70 DEFINE_MUTEX(oom_adj_mutex); 71 72 static inline bool is_memcg_oom(struct oom_control *oc) 73 { 74 return oc->memcg != NULL; 75 } 76 77 #ifdef CONFIG_NUMA 78 /** 79 * oom_cpuset_eligible() - check task eligibility for kill 80 * @start: task struct of which task to consider 81 * @oc: pointer to struct oom_control 82 * 83 * Task eligibility is determined by whether or not a candidate task, @tsk, 84 * shares the same mempolicy nodes as current if it is bound by such a policy 85 * and whether or not it has the same set of allowed cpuset nodes. 86 * 87 * This function is assuming oom-killer context and 'current' has triggered 88 * the oom-killer. 89 */ 90 static bool oom_cpuset_eligible(struct task_struct *start, 91 struct oom_control *oc) 92 { 93 struct task_struct *tsk; 94 bool ret = false; 95 const nodemask_t *mask = oc->nodemask; 96 97 rcu_read_lock(); 98 for_each_thread(start, tsk) { 99 if (mask) { 100 /* 101 * If this is a mempolicy constrained oom, tsk's 102 * cpuset is irrelevant. Only return true if its 103 * mempolicy intersects current, otherwise it may be 104 * needlessly killed. 105 */ 106 ret = mempolicy_in_oom_domain(tsk, mask); 107 } else { 108 /* 109 * This is not a mempolicy constrained oom, so only 110 * check the mems of tsk's cpuset. 111 */ 112 ret = cpuset_mems_allowed_intersects(current, tsk); 113 } 114 if (ret) 115 break; 116 } 117 rcu_read_unlock(); 118 119 return ret; 120 } 121 #else 122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 123 { 124 return true; 125 } 126 #endif /* CONFIG_NUMA */ 127 128 /* 129 * The process p may have detached its own ->mm while exiting or through 130 * kthread_use_mm(), but one or more of its subthreads may still have a valid 131 * pointer. Return p, or any of its subthreads with a valid ->mm, with 132 * task_lock() held. 133 */ 134 struct task_struct *find_lock_task_mm(struct task_struct *p) 135 { 136 struct task_struct *t; 137 138 rcu_read_lock(); 139 140 for_each_thread(p, t) { 141 task_lock(t); 142 if (likely(t->mm)) 143 goto found; 144 task_unlock(t); 145 } 146 t = NULL; 147 found: 148 rcu_read_unlock(); 149 150 return t; 151 } 152 153 /* 154 * order == -1 means the oom kill is required by sysrq, otherwise only 155 * for display purposes. 156 */ 157 static inline bool is_sysrq_oom(struct oom_control *oc) 158 { 159 return oc->order == -1; 160 } 161 162 /* return true if the task is not adequate as candidate victim task. */ 163 static bool oom_unkillable_task(struct task_struct *p) 164 { 165 if (is_global_init(p)) 166 return true; 167 if (p->flags & PF_KTHREAD) 168 return true; 169 return false; 170 } 171 172 /* 173 * Check whether unreclaimable slab amount is greater than 174 * all user memory(LRU pages). 175 * dump_unreclaimable_slab() could help in the case that 176 * oom due to too much unreclaimable slab used by kernel. 177 */ 178 static bool should_dump_unreclaim_slab(void) 179 { 180 unsigned long nr_lru; 181 182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 183 global_node_page_state(NR_INACTIVE_ANON) + 184 global_node_page_state(NR_ACTIVE_FILE) + 185 global_node_page_state(NR_INACTIVE_FILE) + 186 global_node_page_state(NR_ISOLATED_ANON) + 187 global_node_page_state(NR_ISOLATED_FILE) + 188 global_node_page_state(NR_UNEVICTABLE); 189 190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 191 } 192 193 /** 194 * oom_badness - heuristic function to determine which candidate task to kill 195 * @p: task struct of which task we should calculate 196 * @totalpages: total present RAM allowed for page allocation 197 * 198 * The heuristic for determining which task to kill is made to be as simple and 199 * predictable as possible. The goal is to return the highest value for the 200 * task consuming the most memory to avoid subsequent oom failures. 201 */ 202 long oom_badness(struct task_struct *p, unsigned long totalpages) 203 { 204 long points; 205 long adj; 206 207 if (oom_unkillable_task(p)) 208 return LONG_MIN; 209 210 p = find_lock_task_mm(p); 211 if (!p) 212 return LONG_MIN; 213 214 /* 215 * Do not even consider tasks which are explicitly marked oom 216 * unkillable or have been already oom reaped or the are in 217 * the middle of vfork 218 */ 219 adj = (long)p->signal->oom_score_adj; 220 if (adj == OOM_SCORE_ADJ_MIN || 221 mm_flags_test(MMF_OOM_SKIP, p->mm) || 222 in_vfork(p)) { 223 task_unlock(p); 224 return LONG_MIN; 225 } 226 227 /* 228 * The baseline for the badness score is the proportion of RAM that each 229 * task's rss, pagetable and swap space use. 230 */ 231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 232 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 233 task_unlock(p); 234 235 /* Normalize to oom_score_adj units */ 236 adj *= totalpages / 1000; 237 points += adj; 238 239 return points; 240 } 241 242 static const char * const oom_constraint_text[] = { 243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 247 }; 248 249 /* 250 * Determine the type of allocation constraint. 251 */ 252 static enum oom_constraint constrained_alloc(struct oom_control *oc) 253 { 254 struct zone *zone; 255 struct zoneref *z; 256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 257 bool cpuset_limited = false; 258 int nid; 259 260 if (is_memcg_oom(oc)) { 261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 262 return CONSTRAINT_MEMCG; 263 } 264 265 /* Default to all available memory */ 266 oc->totalpages = totalram_pages() + total_swap_pages; 267 268 if (!IS_ENABLED(CONFIG_NUMA)) 269 return CONSTRAINT_NONE; 270 271 if (!oc->zonelist) 272 return CONSTRAINT_NONE; 273 /* 274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 275 * to kill current.We have to random task kill in this case. 276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 277 */ 278 if (oc->gfp_mask & __GFP_THISNODE) 279 return CONSTRAINT_NONE; 280 281 /* 282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 283 * the page allocator means a mempolicy is in effect. Cpuset policy 284 * is enforced in get_page_from_freelist(). 285 */ 286 if (oc->nodemask && 287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 288 oc->totalpages = total_swap_pages; 289 for_each_node_mask(nid, *oc->nodemask) 290 oc->totalpages += node_present_pages(nid); 291 return CONSTRAINT_MEMORY_POLICY; 292 } 293 294 /* Check this allocation failure is caused by cpuset's wall function */ 295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 296 highest_zoneidx, oc->nodemask) 297 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 298 cpuset_limited = true; 299 300 if (cpuset_limited) { 301 oc->totalpages = total_swap_pages; 302 for_each_node_mask(nid, cpuset_current_mems_allowed) 303 oc->totalpages += node_present_pages(nid); 304 return CONSTRAINT_CPUSET; 305 } 306 return CONSTRAINT_NONE; 307 } 308 309 static int oom_evaluate_task(struct task_struct *task, void *arg) 310 { 311 struct oom_control *oc = arg; 312 long points; 313 314 if (oom_unkillable_task(task)) 315 goto next; 316 317 /* p may not have freeable memory in nodemask */ 318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 319 goto next; 320 321 /* 322 * This task already has access to memory reserves and is being killed. 323 * Don't allow any other task to have access to the reserves unless 324 * the task has MMF_OOM_SKIP because chances that it would release 325 * any memory is quite low. 326 */ 327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 328 if (mm_flags_test(MMF_OOM_SKIP, task->signal->oom_mm)) 329 goto next; 330 goto abort; 331 } 332 333 /* 334 * If task is allocating a lot of memory and has been marked to be 335 * killed first if it triggers an oom, then select it. 336 */ 337 if (oom_task_origin(task)) { 338 points = LONG_MAX; 339 goto select; 340 } 341 342 points = oom_badness(task, oc->totalpages); 343 if (points == LONG_MIN || points < oc->chosen_points) 344 goto next; 345 346 select: 347 if (oc->chosen) 348 put_task_struct(oc->chosen); 349 get_task_struct(task); 350 oc->chosen = task; 351 oc->chosen_points = points; 352 next: 353 return 0; 354 abort: 355 if (oc->chosen) 356 put_task_struct(oc->chosen); 357 oc->chosen = (void *)-1UL; 358 return 1; 359 } 360 361 /* 362 * Simple selection loop. We choose the process with the highest number of 363 * 'points'. In case scan was aborted, oc->chosen is set to -1. 364 */ 365 static void select_bad_process(struct oom_control *oc) 366 { 367 oc->chosen_points = LONG_MIN; 368 369 if (is_memcg_oom(oc)) 370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 371 else { 372 struct task_struct *p; 373 374 rcu_read_lock(); 375 for_each_process(p) 376 if (oom_evaluate_task(p, oc)) 377 break; 378 rcu_read_unlock(); 379 } 380 } 381 382 static int dump_task(struct task_struct *p, void *arg) 383 { 384 struct oom_control *oc = arg; 385 struct task_struct *task; 386 387 if (oom_unkillable_task(p)) 388 return 0; 389 390 /* p may not have freeable memory in nodemask */ 391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 392 return 0; 393 394 task = find_lock_task_mm(p); 395 if (!task) { 396 /* 397 * All of p's threads have already detached their mm's. There's 398 * no need to report them; they can't be oom killed anyway. 399 */ 400 return 0; 401 } 402 403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n", 404 task->pid, from_kuid(&init_user_ns, task_uid(task)), 405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), 407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), 408 get_mm_counter(task->mm, MM_SWAPENTS), 409 task->signal->oom_score_adj, task->comm); 410 task_unlock(task); 411 412 return 0; 413 } 414 415 /** 416 * dump_tasks - dump current memory state of all system tasks 417 * @oc: pointer to struct oom_control 418 * 419 * Dumps the current memory state of all eligible tasks. Tasks not in the same 420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 421 * are not shown. 422 * State information includes task's pid, uid, tgid, vm size, rss, 423 * pgtables_bytes, swapents, oom_score_adj value, and name. 424 */ 425 static void dump_tasks(struct oom_control *oc) 426 { 427 pr_info("Tasks state (memory values in pages):\n"); 428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n"); 429 430 if (is_memcg_oom(oc)) 431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 432 else { 433 struct task_struct *p; 434 int i = 0; 435 436 rcu_read_lock(); 437 for_each_process(p) { 438 /* Avoid potential softlockup warning */ 439 if ((++i & 1023) == 0) 440 touch_softlockup_watchdog(); 441 dump_task(p, oc); 442 } 443 rcu_read_unlock(); 444 } 445 } 446 447 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) 448 { 449 /* one line summary of the oom killer context. */ 450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 451 oom_constraint_text[oc->constraint], 452 nodemask_pr_args(oc->nodemask)); 453 cpuset_print_current_mems_allowed(); 454 mem_cgroup_print_oom_context(oc->memcg, victim); 455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 456 from_kuid(&init_user_ns, task_uid(victim))); 457 } 458 459 static void dump_header(struct oom_control *oc) 460 { 461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 463 current->signal->oom_score_adj); 464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 465 pr_warn("COMPACTION is disabled!!!\n"); 466 467 dump_stack(); 468 if (is_memcg_oom(oc)) 469 mem_cgroup_print_oom_meminfo(oc->memcg); 470 else { 471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask)); 472 if (should_dump_unreclaim_slab()) 473 dump_unreclaimable_slab(); 474 } 475 if (sysctl_oom_dump_tasks) 476 dump_tasks(oc); 477 } 478 479 /* 480 * Number of OOM victims in flight 481 */ 482 static atomic_t oom_victims = ATOMIC_INIT(0); 483 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 484 485 static bool oom_killer_disabled __read_mostly; 486 487 /* 488 * task->mm can be NULL if the task is the exited group leader. So to 489 * determine whether the task is using a particular mm, we examine all the 490 * task's threads: if one of those is using this mm then this task was also 491 * using it. 492 */ 493 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm) 494 { 495 const struct task_struct *t; 496 497 for_each_thread(p, t) { 498 const struct mm_struct *t_mm = READ_ONCE(t->mm); 499 if (t_mm) 500 return t_mm == mm; 501 } 502 return false; 503 } 504 505 #ifdef CONFIG_MMU 506 /* 507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 508 * victim (if that is possible) to help the OOM killer to move on. 509 */ 510 static struct task_struct *oom_reaper_th; 511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 512 static struct task_struct *oom_reaper_list; 513 static DEFINE_SPINLOCK(oom_reaper_lock); 514 515 static bool __oom_reap_task_mm(struct mm_struct *mm) 516 { 517 struct vm_area_struct *vma; 518 bool ret = true; 519 MA_STATE(mas, &mm->mm_mt, ULONG_MAX, ULONG_MAX); 520 521 /* 522 * Tell all users of get_user/copy_from_user etc... that the content 523 * is no longer stable. No barriers really needed because unmapping 524 * should imply barriers already and the reader would hit a page fault 525 * if it stumbled over a reaped memory. 526 */ 527 mm_flags_set(MMF_UNSTABLE, mm); 528 529 /* 530 * It might start racing with the dying task and compete for shared 531 * resources - e.g. page table lock contention has been observed. 532 * Reduce those races by reaping the oom victim from the other end 533 * of the address space. 534 */ 535 mas_for_each_rev(&mas, vma, 0) { 536 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) 537 continue; 538 539 /* 540 * Only anonymous pages have a good chance to be dropped 541 * without additional steps which we cannot afford as we 542 * are OOM already. 543 * 544 * We do not even care about fs backed pages because all 545 * which are reclaimable have already been reclaimed and 546 * we do not want to block exit_mmap by keeping mm ref 547 * count elevated without a good reason. 548 */ 549 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 550 struct mmu_notifier_range range; 551 struct mmu_gather tlb; 552 553 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 554 mm, vma->vm_start, 555 vma->vm_end); 556 tlb_gather_mmu(&tlb, mm); 557 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 558 tlb_finish_mmu(&tlb); 559 ret = false; 560 continue; 561 } 562 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 563 mmu_notifier_invalidate_range_end(&range); 564 tlb_finish_mmu(&tlb); 565 } 566 } 567 568 return ret; 569 } 570 571 /* 572 * Reaps the address space of the given task. 573 * 574 * Returns true on success and false if none or part of the address space 575 * has been reclaimed and the caller should retry later. 576 */ 577 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 578 { 579 bool ret = true; 580 581 if (!mmap_read_trylock(mm)) { 582 trace_skip_task_reaping(tsk->pid); 583 return false; 584 } 585 586 /* 587 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 588 * work on the mm anymore. The check for MMF_OOM_SKIP must run 589 * under mmap_lock for reading because it serializes against the 590 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 591 */ 592 if (mm_flags_test(MMF_OOM_SKIP, mm)) { 593 trace_skip_task_reaping(tsk->pid); 594 goto out_unlock; 595 } 596 597 trace_start_task_reaping(tsk->pid); 598 599 /* failed to reap part of the address space. Try again later */ 600 ret = __oom_reap_task_mm(mm); 601 if (!ret) 602 goto out_finish; 603 604 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 605 task_pid_nr(tsk), tsk->comm, 606 K(get_mm_counter(mm, MM_ANONPAGES)), 607 K(get_mm_counter(mm, MM_FILEPAGES)), 608 K(get_mm_counter(mm, MM_SHMEMPAGES))); 609 out_finish: 610 trace_finish_task_reaping(tsk->pid); 611 out_unlock: 612 mmap_read_unlock(mm); 613 614 return ret; 615 } 616 617 #define MAX_OOM_REAP_RETRIES 10 618 static void oom_reap_task(struct task_struct *tsk) 619 { 620 int attempts = 0; 621 struct mm_struct *mm = tsk->signal->oom_mm; 622 623 /* Retry the mmap_read_trylock(mm) a few times */ 624 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 625 schedule_timeout_idle(HZ/10); 626 627 if (attempts <= MAX_OOM_REAP_RETRIES || 628 mm_flags_test(MMF_OOM_SKIP, mm)) 629 goto done; 630 631 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 632 task_pid_nr(tsk), tsk->comm); 633 sched_show_task(tsk); 634 debug_show_all_locks(); 635 636 done: 637 tsk->oom_reaper_list = NULL; 638 639 /* 640 * Hide this mm from OOM killer because it has been either reaped or 641 * somebody can't call mmap_write_unlock(mm). 642 */ 643 mm_flags_set(MMF_OOM_SKIP, mm); 644 645 /* Drop a reference taken by queue_oom_reaper */ 646 put_task_struct(tsk); 647 } 648 649 static int oom_reaper(void *unused) 650 { 651 set_freezable(); 652 653 while (true) { 654 struct task_struct *tsk = NULL; 655 656 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 657 spin_lock_irq(&oom_reaper_lock); 658 if (oom_reaper_list != NULL) { 659 tsk = oom_reaper_list; 660 oom_reaper_list = tsk->oom_reaper_list; 661 } 662 spin_unlock_irq(&oom_reaper_lock); 663 664 if (tsk) 665 oom_reap_task(tsk); 666 } 667 668 return 0; 669 } 670 671 static void wake_oom_reaper(struct timer_list *timer) 672 { 673 struct task_struct *tsk = container_of(timer, struct task_struct, 674 oom_reaper_timer); 675 struct mm_struct *mm = tsk->signal->oom_mm; 676 unsigned long flags; 677 678 /* The victim managed to terminate on its own - see exit_mmap */ 679 if (mm_flags_test(MMF_OOM_SKIP, mm)) { 680 put_task_struct(tsk); 681 return; 682 } 683 684 spin_lock_irqsave(&oom_reaper_lock, flags); 685 tsk->oom_reaper_list = oom_reaper_list; 686 oom_reaper_list = tsk; 687 spin_unlock_irqrestore(&oom_reaper_lock, flags); 688 trace_wake_reaper(tsk->pid); 689 wake_up(&oom_reaper_wait); 690 } 691 692 /* 693 * Give the OOM victim time to exit naturally before invoking the oom_reaping. 694 * The timers timeout is arbitrary... the longer it is, the longer the worst 695 * case scenario for the OOM can take. If it is too small, the oom_reaper can 696 * get in the way and release resources needed by the process exit path. 697 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped 698 * before the exit path is able to wake the futex waiters. 699 */ 700 #define OOM_REAPER_DELAY (2*HZ) 701 static void queue_oom_reaper(struct task_struct *tsk) 702 { 703 /* mm is already queued? */ 704 if (mm_flags_test_and_set(MMF_OOM_REAP_QUEUED, tsk->signal->oom_mm)) 705 return; 706 707 get_task_struct(tsk); 708 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); 709 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; 710 add_timer(&tsk->oom_reaper_timer); 711 } 712 713 #ifdef CONFIG_SYSCTL 714 static const struct ctl_table vm_oom_kill_table[] = { 715 { 716 .procname = "panic_on_oom", 717 .data = &sysctl_panic_on_oom, 718 .maxlen = sizeof(sysctl_panic_on_oom), 719 .mode = 0644, 720 .proc_handler = proc_dointvec_minmax, 721 .extra1 = SYSCTL_ZERO, 722 .extra2 = SYSCTL_TWO, 723 }, 724 { 725 .procname = "oom_kill_allocating_task", 726 .data = &sysctl_oom_kill_allocating_task, 727 .maxlen = sizeof(sysctl_oom_kill_allocating_task), 728 .mode = 0644, 729 .proc_handler = proc_dointvec, 730 }, 731 { 732 .procname = "oom_dump_tasks", 733 .data = &sysctl_oom_dump_tasks, 734 .maxlen = sizeof(sysctl_oom_dump_tasks), 735 .mode = 0644, 736 .proc_handler = proc_dointvec, 737 }, 738 }; 739 #endif 740 741 static int __init oom_init(void) 742 { 743 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 744 #ifdef CONFIG_SYSCTL 745 register_sysctl_init("vm", vm_oom_kill_table); 746 #endif 747 return 0; 748 } 749 subsys_initcall(oom_init) 750 #else 751 static inline void queue_oom_reaper(struct task_struct *tsk) 752 { 753 } 754 #endif /* CONFIG_MMU */ 755 756 /** 757 * mark_oom_victim - mark the given task as OOM victim 758 * @tsk: task to mark 759 * 760 * Has to be called with oom_lock held and never after 761 * oom has been disabled already. 762 * 763 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 764 * under task_lock or operate on the current). 765 */ 766 static void mark_oom_victim(struct task_struct *tsk) 767 { 768 const struct cred *cred; 769 struct mm_struct *mm = tsk->mm; 770 771 WARN_ON(oom_killer_disabled); 772 /* OOM killer might race with memcg OOM */ 773 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 774 return; 775 776 /* oom_mm is bound to the signal struct life time. */ 777 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) 778 mmgrab(tsk->signal->oom_mm); 779 780 /* 781 * Make sure that the process is woken up from uninterruptible sleep 782 * if it is frozen because OOM killer wouldn't be able to free any 783 * memory and livelock. The freezer will thaw the tasks that are OOM 784 * victims regardless of the PM freezing and cgroup freezing states. 785 */ 786 thaw_process(tsk); 787 atomic_inc(&oom_victims); 788 cred = get_task_cred(tsk); 789 trace_mark_victim(tsk, cred->uid.val); 790 put_cred(cred); 791 } 792 793 /** 794 * exit_oom_victim - note the exit of an OOM victim 795 */ 796 void exit_oom_victim(void) 797 { 798 clear_thread_flag(TIF_MEMDIE); 799 800 if (!atomic_dec_return(&oom_victims)) 801 wake_up_all(&oom_victims_wait); 802 } 803 804 /** 805 * oom_killer_enable - enable OOM killer 806 */ 807 void oom_killer_enable(void) 808 { 809 oom_killer_disabled = false; 810 pr_info("OOM killer enabled.\n"); 811 } 812 813 /** 814 * oom_killer_disable - disable OOM killer 815 * @timeout: maximum timeout to wait for oom victims in jiffies 816 * 817 * Forces all page allocations to fail rather than trigger OOM killer. 818 * Will block and wait until all OOM victims are killed or the given 819 * timeout expires. 820 * 821 * The function cannot be called when there are runnable user tasks because 822 * the userspace would see unexpected allocation failures as a result. Any 823 * new usage of this function should be consulted with MM people. 824 * 825 * Returns true if successful and false if the OOM killer cannot be 826 * disabled. 827 */ 828 bool oom_killer_disable(signed long timeout) 829 { 830 signed long ret; 831 832 /* 833 * Make sure to not race with an ongoing OOM killer. Check that the 834 * current is not killed (possibly due to sharing the victim's memory). 835 */ 836 if (mutex_lock_killable(&oom_lock)) 837 return false; 838 oom_killer_disabled = true; 839 mutex_unlock(&oom_lock); 840 841 ret = wait_event_interruptible_timeout(oom_victims_wait, 842 !atomic_read(&oom_victims), timeout); 843 if (ret <= 0) { 844 oom_killer_enable(); 845 return false; 846 } 847 pr_info("OOM killer disabled.\n"); 848 849 return true; 850 } 851 852 static inline bool __task_will_free_mem(struct task_struct *task) 853 { 854 struct signal_struct *sig = task->signal; 855 856 /* 857 * A coredumping process may sleep for an extended period in 858 * coredump_task_exit(), so the oom killer cannot assume that 859 * the process will promptly exit and release memory. 860 */ 861 if (sig->core_state) 862 return false; 863 864 if (sig->flags & SIGNAL_GROUP_EXIT) 865 return true; 866 867 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 868 return true; 869 870 return false; 871 } 872 873 /* 874 * Checks whether the given task is dying or exiting and likely to 875 * release its address space. This means that all threads and processes 876 * sharing the same mm have to be killed or exiting. 877 * Caller has to make sure that task->mm is stable (hold task_lock or 878 * it operates on the current). 879 */ 880 static bool task_will_free_mem(struct task_struct *task) 881 { 882 struct mm_struct *mm = task->mm; 883 struct task_struct *p; 884 bool ret = true; 885 886 /* 887 * Skip tasks without mm because it might have passed its exit_mm and 888 * exit_oom_victim. oom_reaper could have rescued that but do not rely 889 * on that for now. We can consider find_lock_task_mm in future. 890 */ 891 if (!mm) 892 return false; 893 894 if (!__task_will_free_mem(task)) 895 return false; 896 897 /* 898 * This task has already been drained by the oom reaper so there are 899 * only small chances it will free some more 900 */ 901 if (mm_flags_test(MMF_OOM_SKIP, mm)) 902 return false; 903 904 if (atomic_read(&mm->mm_users) <= 1) 905 return true; 906 907 /* 908 * Make sure that all tasks which share the mm with the given tasks 909 * are dying as well to make sure that a) nobody pins its mm and 910 * b) the task is also reapable by the oom reaper. 911 */ 912 rcu_read_lock(); 913 for_each_process(p) { 914 if (!process_shares_mm(p, mm)) 915 continue; 916 if (same_thread_group(task, p)) 917 continue; 918 ret = __task_will_free_mem(p); 919 if (!ret) 920 break; 921 } 922 rcu_read_unlock(); 923 924 return ret; 925 } 926 927 static void __oom_kill_process(struct task_struct *victim, const char *message) 928 { 929 struct task_struct *p; 930 struct mm_struct *mm; 931 bool can_oom_reap = true; 932 933 p = find_lock_task_mm(victim); 934 if (!p) { 935 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 936 message, task_pid_nr(victim), victim->comm); 937 put_task_struct(victim); 938 return; 939 } else if (victim != p) { 940 get_task_struct(p); 941 put_task_struct(victim); 942 victim = p; 943 } 944 945 /* Get a reference to safely compare mm after task_unlock(victim) */ 946 mm = victim->mm; 947 mmgrab(mm); 948 949 /* Raise event before sending signal: task reaper must see this */ 950 count_vm_event(OOM_KILL); 951 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 952 953 /* 954 * We should send SIGKILL before granting access to memory reserves 955 * in order to prevent the OOM victim from depleting the memory 956 * reserves from the user space under its control. 957 */ 958 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 959 mark_oom_victim(victim); 960 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 961 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 962 K(get_mm_counter(mm, MM_ANONPAGES)), 963 K(get_mm_counter(mm, MM_FILEPAGES)), 964 K(get_mm_counter(mm, MM_SHMEMPAGES)), 965 from_kuid(&init_user_ns, task_uid(victim)), 966 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 967 task_unlock(victim); 968 969 /* 970 * Kill all user processes sharing victim->mm in other thread groups, if 971 * any. They don't get access to memory reserves, though, to avoid 972 * depletion of all memory. This prevents mm->mmap_lock livelock when an 973 * oom killed thread cannot exit because it requires the semaphore and 974 * its contended by another thread trying to allocate memory itself. 975 * That thread will now get access to memory reserves since it has a 976 * pending fatal signal. 977 */ 978 rcu_read_lock(); 979 for_each_process(p) { 980 if (!process_shares_mm(p, mm)) 981 continue; 982 if (same_thread_group(p, victim)) 983 continue; 984 if (is_global_init(p)) { 985 can_oom_reap = false; 986 mm_flags_set(MMF_OOM_SKIP, mm); 987 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 988 task_pid_nr(victim), victim->comm, 989 task_pid_nr(p), p->comm); 990 continue; 991 } 992 /* 993 * No kthread_use_mm() user needs to read from the userspace so 994 * we are ok to reap it. 995 */ 996 if (unlikely(p->flags & PF_KTHREAD)) 997 continue; 998 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 999 } 1000 rcu_read_unlock(); 1001 1002 if (can_oom_reap) 1003 queue_oom_reaper(victim); 1004 1005 mmdrop(mm); 1006 put_task_struct(victim); 1007 } 1008 1009 /* 1010 * Kill provided task unless it's secured by setting 1011 * oom_score_adj to OOM_SCORE_ADJ_MIN. 1012 */ 1013 static int oom_kill_memcg_member(struct task_struct *task, void *message) 1014 { 1015 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 1016 !is_global_init(task)) { 1017 get_task_struct(task); 1018 __oom_kill_process(task, message); 1019 } 1020 return 0; 1021 } 1022 1023 static void oom_kill_process(struct oom_control *oc, const char *message) 1024 { 1025 struct task_struct *victim = oc->chosen; 1026 struct mem_cgroup *oom_group; 1027 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1028 DEFAULT_RATELIMIT_BURST); 1029 1030 /* 1031 * If the task is already exiting, don't alarm the sysadmin or kill 1032 * its children or threads, just give it access to memory reserves 1033 * so it can die quickly 1034 */ 1035 task_lock(victim); 1036 if (task_will_free_mem(victim)) { 1037 mark_oom_victim(victim); 1038 queue_oom_reaper(victim); 1039 task_unlock(victim); 1040 put_task_struct(victim); 1041 return; 1042 } 1043 task_unlock(victim); 1044 1045 if (__ratelimit(&oom_rs)) { 1046 dump_header(oc); 1047 dump_oom_victim(oc, victim); 1048 } 1049 1050 /* 1051 * Do we need to kill the entire memory cgroup? 1052 * Or even one of the ancestor memory cgroups? 1053 * Check this out before killing the victim task. 1054 */ 1055 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 1056 1057 __oom_kill_process(victim, message); 1058 1059 /* 1060 * If necessary, kill all tasks in the selected memory cgroup. 1061 */ 1062 if (oom_group) { 1063 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); 1064 mem_cgroup_print_oom_group(oom_group); 1065 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 1066 (void *)message); 1067 mem_cgroup_put(oom_group); 1068 } 1069 } 1070 1071 /* 1072 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1073 */ 1074 static void check_panic_on_oom(struct oom_control *oc) 1075 { 1076 if (likely(!sysctl_panic_on_oom)) 1077 return; 1078 if (sysctl_panic_on_oom != 2) { 1079 /* 1080 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1081 * does not panic for cpuset, mempolicy, or memcg allocation 1082 * failures. 1083 */ 1084 if (oc->constraint != CONSTRAINT_NONE) 1085 return; 1086 } 1087 /* Do not panic for oom kills triggered by sysrq */ 1088 if (is_sysrq_oom(oc)) 1089 return; 1090 dump_header(oc); 1091 panic("Out of memory: %s panic_on_oom is enabled\n", 1092 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1093 } 1094 1095 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1096 1097 int register_oom_notifier(struct notifier_block *nb) 1098 { 1099 return blocking_notifier_chain_register(&oom_notify_list, nb); 1100 } 1101 EXPORT_SYMBOL_GPL(register_oom_notifier); 1102 1103 int unregister_oom_notifier(struct notifier_block *nb) 1104 { 1105 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1106 } 1107 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1108 1109 /** 1110 * out_of_memory - kill the "best" process when we run out of memory 1111 * @oc: pointer to struct oom_control 1112 * 1113 * If we run out of memory, we have the choice between either 1114 * killing a random task (bad), letting the system crash (worse) 1115 * OR try to be smart about which process to kill. Note that we 1116 * don't have to be perfect here, we just have to be good. 1117 */ 1118 bool out_of_memory(struct oom_control *oc) 1119 { 1120 unsigned long freed = 0; 1121 1122 if (oom_killer_disabled) 1123 return false; 1124 1125 if (!is_memcg_oom(oc)) { 1126 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1127 if (freed > 0 && !is_sysrq_oom(oc)) 1128 /* Got some memory back in the last second. */ 1129 return true; 1130 } 1131 1132 /* 1133 * If current has a pending SIGKILL or is exiting, then automatically 1134 * select it. The goal is to allow it to allocate so that it may 1135 * quickly exit and free its memory. 1136 */ 1137 if (task_will_free_mem(current)) { 1138 mark_oom_victim(current); 1139 queue_oom_reaper(current); 1140 return true; 1141 } 1142 1143 /* 1144 * The OOM killer does not compensate for IO-less reclaim. 1145 * But mem_cgroup_oom() has to invoke the OOM killer even 1146 * if it is a GFP_NOFS allocation. 1147 */ 1148 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1149 return true; 1150 1151 /* 1152 * Check if there were limitations on the allocation (only relevant for 1153 * NUMA and memcg) that may require different handling. 1154 */ 1155 oc->constraint = constrained_alloc(oc); 1156 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1157 oc->nodemask = NULL; 1158 check_panic_on_oom(oc); 1159 1160 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1161 current->mm && !oom_unkillable_task(current) && 1162 oom_cpuset_eligible(current, oc) && 1163 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1164 get_task_struct(current); 1165 oc->chosen = current; 1166 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1167 return true; 1168 } 1169 1170 select_bad_process(oc); 1171 /* Found nothing?!?! */ 1172 if (!oc->chosen) { 1173 dump_header(oc); 1174 pr_warn("Out of memory and no killable processes...\n"); 1175 /* 1176 * If we got here due to an actual allocation at the 1177 * system level, we cannot survive this and will enter 1178 * an endless loop in the allocator. Bail out now. 1179 */ 1180 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1181 panic("System is deadlocked on memory\n"); 1182 } 1183 if (oc->chosen && oc->chosen != (void *)-1UL) 1184 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1185 "Memory cgroup out of memory"); 1186 return !!oc->chosen; 1187 } 1188 1189 /* 1190 * The pagefault handler calls here because some allocation has failed. We have 1191 * to take care of the memcg OOM here because this is the only safe context without 1192 * any locks held but let the oom killer triggered from the allocation context care 1193 * about the global OOM. 1194 */ 1195 void pagefault_out_of_memory(void) 1196 { 1197 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, 1198 DEFAULT_RATELIMIT_BURST); 1199 1200 if (mem_cgroup_oom_synchronize(true)) 1201 return; 1202 1203 if (fatal_signal_pending(current)) 1204 return; 1205 1206 if (__ratelimit(&pfoom_rs)) 1207 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); 1208 } 1209 1210 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) 1211 { 1212 #ifdef CONFIG_MMU 1213 struct mm_struct *mm = NULL; 1214 struct task_struct *task; 1215 struct task_struct *p; 1216 unsigned int f_flags; 1217 bool reap = false; 1218 long ret = 0; 1219 1220 if (flags) 1221 return -EINVAL; 1222 1223 task = pidfd_get_task(pidfd, &f_flags); 1224 if (IS_ERR(task)) 1225 return PTR_ERR(task); 1226 1227 /* 1228 * Make sure to choose a thread which still has a reference to mm 1229 * during the group exit 1230 */ 1231 p = find_lock_task_mm(task); 1232 if (!p) { 1233 ret = -ESRCH; 1234 goto put_task; 1235 } 1236 1237 mm = p->mm; 1238 mmgrab(mm); 1239 1240 if (task_will_free_mem(p)) 1241 reap = true; 1242 else { 1243 /* Error only if the work has not been done already */ 1244 if (!mm_flags_test(MMF_OOM_SKIP, mm)) 1245 ret = -EINVAL; 1246 } 1247 task_unlock(p); 1248 1249 if (!reap) 1250 goto drop_mm; 1251 1252 if (mmap_read_lock_killable(mm)) { 1253 ret = -EINTR; 1254 goto drop_mm; 1255 } 1256 /* 1257 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure 1258 * possible change in exit_mmap is seen 1259 */ 1260 if (!mm_flags_test(MMF_OOM_SKIP, mm) && !__oom_reap_task_mm(mm)) 1261 ret = -EAGAIN; 1262 mmap_read_unlock(mm); 1263 1264 drop_mm: 1265 mmdrop(mm); 1266 put_task: 1267 put_task_struct(task); 1268 return ret; 1269 #else 1270 return -ENOSYS; 1271 #endif /* CONFIG_MMU */ 1272 } 1273