1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 29 int sysctl_panic_on_oom; 30 /* #define DEBUG */ 31 32 /** 33 * badness - calculate a numeric value for how bad this task has been 34 * @p: task struct of which task we should calculate 35 * @uptime: current uptime in seconds 36 * 37 * The formula used is relatively simple and documented inline in the 38 * function. The main rationale is that we want to select a good task 39 * to kill when we run out of memory. 40 * 41 * Good in this context means that: 42 * 1) we lose the minimum amount of work done 43 * 2) we recover a large amount of memory 44 * 3) we don't kill anything innocent of eating tons of memory 45 * 4) we want to kill the minimum amount of processes (one) 46 * 5) we try to kill the process the user expects us to kill, this 47 * algorithm has been meticulously tuned to meet the principle 48 * of least surprise ... (be careful when you change it) 49 */ 50 51 unsigned long badness(struct task_struct *p, unsigned long uptime) 52 { 53 unsigned long points, cpu_time, run_time, s; 54 struct mm_struct *mm; 55 struct task_struct *child; 56 57 task_lock(p); 58 mm = p->mm; 59 if (!mm) { 60 task_unlock(p); 61 return 0; 62 } 63 64 /* 65 * The memory size of the process is the basis for the badness. 66 */ 67 points = mm->total_vm; 68 69 /* 70 * After this unlock we can no longer dereference local variable `mm' 71 */ 72 task_unlock(p); 73 74 /* 75 * swapoff can easily use up all memory, so kill those first. 76 */ 77 if (p->flags & PF_SWAPOFF) 78 return ULONG_MAX; 79 80 /* 81 * Processes which fork a lot of child processes are likely 82 * a good choice. We add half the vmsize of the children if they 83 * have an own mm. This prevents forking servers to flood the 84 * machine with an endless amount of children. In case a single 85 * child is eating the vast majority of memory, adding only half 86 * to the parents will make the child our kill candidate of choice. 87 */ 88 list_for_each_entry(child, &p->children, sibling) { 89 task_lock(child); 90 if (child->mm != mm && child->mm) 91 points += child->mm->total_vm/2 + 1; 92 task_unlock(child); 93 } 94 95 /* 96 * CPU time is in tens of seconds and run time is in thousands 97 * of seconds. There is no particular reason for this other than 98 * that it turned out to work very well in practice. 99 */ 100 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 101 >> (SHIFT_HZ + 3); 102 103 if (uptime >= p->start_time.tv_sec) 104 run_time = (uptime - p->start_time.tv_sec) >> 10; 105 else 106 run_time = 0; 107 108 s = int_sqrt(cpu_time); 109 if (s) 110 points /= s; 111 s = int_sqrt(int_sqrt(run_time)); 112 if (s) 113 points /= s; 114 115 /* 116 * Niced processes are most likely less important, so double 117 * their badness points. 118 */ 119 if (task_nice(p) > 0) 120 points *= 2; 121 122 /* 123 * Superuser processes are usually more important, so we make it 124 * less likely that we kill those. 125 */ 126 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) || 127 p->uid == 0 || p->euid == 0) 128 points /= 4; 129 130 /* 131 * We don't want to kill a process with direct hardware access. 132 * Not only could that mess up the hardware, but usually users 133 * tend to only have this flag set on applications they think 134 * of as important. 135 */ 136 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) 137 points /= 4; 138 139 /* 140 * If p's nodes don't overlap ours, it may still help to kill p 141 * because p may have allocated or otherwise mapped memory on 142 * this node before. However it will be less likely. 143 */ 144 if (!cpuset_excl_nodes_overlap(p)) 145 points /= 8; 146 147 /* 148 * Adjust the score by oomkilladj. 149 */ 150 if (p->oomkilladj) { 151 if (p->oomkilladj > 0) { 152 if (!points) 153 points = 1; 154 points <<= p->oomkilladj; 155 } else 156 points >>= -(p->oomkilladj); 157 } 158 159 #ifdef DEBUG 160 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 161 p->pid, p->comm, points); 162 #endif 163 return points; 164 } 165 166 /* 167 * Types of limitations to the nodes from which allocations may occur 168 */ 169 #define CONSTRAINT_NONE 1 170 #define CONSTRAINT_MEMORY_POLICY 2 171 #define CONSTRAINT_CPUSET 3 172 173 /* 174 * Determine the type of allocation constraint. 175 */ 176 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask) 177 { 178 #ifdef CONFIG_NUMA 179 struct zone **z; 180 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 181 182 for (z = zonelist->zones; *z; z++) 183 if (cpuset_zone_allowed_softwall(*z, gfp_mask)) 184 node_clear(zone_to_nid(*z), nodes); 185 else 186 return CONSTRAINT_CPUSET; 187 188 if (!nodes_empty(nodes)) 189 return CONSTRAINT_MEMORY_POLICY; 190 #endif 191 192 return CONSTRAINT_NONE; 193 } 194 195 /* 196 * Simple selection loop. We chose the process with the highest 197 * number of 'points'. We expect the caller will lock the tasklist. 198 * 199 * (not docbooked, we don't want this one cluttering up the manual) 200 */ 201 static struct task_struct *select_bad_process(unsigned long *ppoints) 202 { 203 struct task_struct *g, *p; 204 struct task_struct *chosen = NULL; 205 struct timespec uptime; 206 *ppoints = 0; 207 208 do_posix_clock_monotonic_gettime(&uptime); 209 do_each_thread(g, p) { 210 unsigned long points; 211 212 /* 213 * skip kernel threads and tasks which have already released 214 * their mm. 215 */ 216 if (!p->mm) 217 continue; 218 /* skip the init task */ 219 if (is_init(p)) 220 continue; 221 222 /* 223 * This task already has access to memory reserves and is 224 * being killed. Don't allow any other task access to the 225 * memory reserve. 226 * 227 * Note: this may have a chance of deadlock if it gets 228 * blocked waiting for another task which itself is waiting 229 * for memory. Is there a better alternative? 230 */ 231 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 232 return ERR_PTR(-1UL); 233 234 /* 235 * This is in the process of releasing memory so wait for it 236 * to finish before killing some other task by mistake. 237 * 238 * However, if p is the current task, we allow the 'kill' to 239 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 240 * which will allow it to gain access to memory reserves in 241 * the process of exiting and releasing its resources. 242 * Otherwise we could get an easy OOM deadlock. 243 */ 244 if (p->flags & PF_EXITING) { 245 if (p != current) 246 return ERR_PTR(-1UL); 247 248 chosen = p; 249 *ppoints = ULONG_MAX; 250 } 251 252 if (p->oomkilladj == OOM_DISABLE) 253 continue; 254 255 points = badness(p, uptime.tv_sec); 256 if (points > *ppoints || !chosen) { 257 chosen = p; 258 *ppoints = points; 259 } 260 } while_each_thread(g, p); 261 262 return chosen; 263 } 264 265 /** 266 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 267 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 268 * set. 269 */ 270 static void __oom_kill_task(struct task_struct *p, int verbose) 271 { 272 if (is_init(p)) { 273 WARN_ON(1); 274 printk(KERN_WARNING "tried to kill init!\n"); 275 return; 276 } 277 278 if (!p->mm) { 279 WARN_ON(1); 280 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 281 return; 282 } 283 284 if (verbose) 285 printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm); 286 287 /* 288 * We give our sacrificial lamb high priority and access to 289 * all the memory it needs. That way it should be able to 290 * exit() and clear out its resources quickly... 291 */ 292 p->time_slice = HZ; 293 set_tsk_thread_flag(p, TIF_MEMDIE); 294 295 force_sig(SIGKILL, p); 296 } 297 298 static int oom_kill_task(struct task_struct *p) 299 { 300 struct mm_struct *mm; 301 struct task_struct *g, *q; 302 303 mm = p->mm; 304 305 /* WARNING: mm may not be dereferenced since we did not obtain its 306 * value from get_task_mm(p). This is OK since all we need to do is 307 * compare mm to q->mm below. 308 * 309 * Furthermore, even if mm contains a non-NULL value, p->mm may 310 * change to NULL at any time since we do not hold task_lock(p). 311 * However, this is of no concern to us. 312 */ 313 314 if (mm == NULL) 315 return 1; 316 317 /* 318 * Don't kill the process if any threads are set to OOM_DISABLE 319 */ 320 do_each_thread(g, q) { 321 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 322 return 1; 323 } while_each_thread(g, q); 324 325 __oom_kill_task(p, 1); 326 327 /* 328 * kill all processes that share the ->mm (i.e. all threads), 329 * but are in a different thread group. Don't let them have access 330 * to memory reserves though, otherwise we might deplete all memory. 331 */ 332 do_each_thread(g, q) { 333 if (q->mm == mm && q->tgid != p->tgid) 334 force_sig(SIGKILL, q); 335 } while_each_thread(g, q); 336 337 return 0; 338 } 339 340 static int oom_kill_process(struct task_struct *p, unsigned long points, 341 const char *message) 342 { 343 struct task_struct *c; 344 struct list_head *tsk; 345 346 /* 347 * If the task is already exiting, don't alarm the sysadmin or kill 348 * its children or threads, just set TIF_MEMDIE so it can die quickly 349 */ 350 if (p->flags & PF_EXITING) { 351 __oom_kill_task(p, 0); 352 return 0; 353 } 354 355 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 356 message, p->pid, p->comm, points); 357 358 /* Try to kill a child first */ 359 list_for_each(tsk, &p->children) { 360 c = list_entry(tsk, struct task_struct, sibling); 361 if (c->mm == p->mm) 362 continue; 363 if (!oom_kill_task(c)) 364 return 0; 365 } 366 return oom_kill_task(p); 367 } 368 369 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 370 371 int register_oom_notifier(struct notifier_block *nb) 372 { 373 return blocking_notifier_chain_register(&oom_notify_list, nb); 374 } 375 EXPORT_SYMBOL_GPL(register_oom_notifier); 376 377 int unregister_oom_notifier(struct notifier_block *nb) 378 { 379 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 380 } 381 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 382 383 /** 384 * out_of_memory - kill the "best" process when we run out of memory 385 * 386 * If we run out of memory, we have the choice between either 387 * killing a random task (bad), letting the system crash (worse) 388 * OR try to be smart about which process to kill. Note that we 389 * don't have to be perfect here, we just have to be good. 390 */ 391 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 392 { 393 struct task_struct *p; 394 unsigned long points = 0; 395 unsigned long freed = 0; 396 int constraint; 397 398 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 399 if (freed > 0) 400 /* Got some memory back in the last second. */ 401 return; 402 403 if (printk_ratelimit()) { 404 printk(KERN_WARNING "%s invoked oom-killer: " 405 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 406 current->comm, gfp_mask, order, current->oomkilladj); 407 dump_stack(); 408 show_mem(); 409 } 410 411 if (sysctl_panic_on_oom == 2) 412 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 413 414 /* 415 * Check if there were limitations on the allocation (only relevant for 416 * NUMA) that may require different handling. 417 */ 418 constraint = constrained_alloc(zonelist, gfp_mask); 419 cpuset_lock(); 420 read_lock(&tasklist_lock); 421 422 switch (constraint) { 423 case CONSTRAINT_MEMORY_POLICY: 424 oom_kill_process(current, points, 425 "No available memory (MPOL_BIND)"); 426 break; 427 428 case CONSTRAINT_CPUSET: 429 oom_kill_process(current, points, 430 "No available memory in cpuset"); 431 break; 432 433 case CONSTRAINT_NONE: 434 if (sysctl_panic_on_oom) 435 panic("out of memory. panic_on_oom is selected\n"); 436 retry: 437 /* 438 * Rambo mode: Shoot down a process and hope it solves whatever 439 * issues we may have. 440 */ 441 p = select_bad_process(&points); 442 443 if (PTR_ERR(p) == -1UL) 444 goto out; 445 446 /* Found nothing?!?! Either we hang forever, or we panic. */ 447 if (!p) { 448 read_unlock(&tasklist_lock); 449 cpuset_unlock(); 450 panic("Out of memory and no killable processes...\n"); 451 } 452 453 if (oom_kill_process(p, points, "Out of memory")) 454 goto retry; 455 456 break; 457 } 458 459 out: 460 read_unlock(&tasklist_lock); 461 cpuset_unlock(); 462 463 /* 464 * Give "p" a good chance of killing itself before we 465 * retry to allocate memory unless "p" is current 466 */ 467 if (!test_thread_flag(TIF_MEMDIE)) 468 schedule_timeout_uninterruptible(1); 469 } 470