xref: /linux/mm/oom_kill.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 
29 int sysctl_panic_on_oom;
30 /* #define DEBUG */
31 
32 /**
33  * badness - calculate a numeric value for how bad this task has been
34  * @p: task struct of which task we should calculate
35  * @uptime: current uptime in seconds
36  *
37  * The formula used is relatively simple and documented inline in the
38  * function. The main rationale is that we want to select a good task
39  * to kill when we run out of memory.
40  *
41  * Good in this context means that:
42  * 1) we lose the minimum amount of work done
43  * 2) we recover a large amount of memory
44  * 3) we don't kill anything innocent of eating tons of memory
45  * 4) we want to kill the minimum amount of processes (one)
46  * 5) we try to kill the process the user expects us to kill, this
47  *    algorithm has been meticulously tuned to meet the principle
48  *    of least surprise ... (be careful when you change it)
49  */
50 
51 unsigned long badness(struct task_struct *p, unsigned long uptime)
52 {
53 	unsigned long points, cpu_time, run_time, s;
54 	struct mm_struct *mm;
55 	struct task_struct *child;
56 
57 	task_lock(p);
58 	mm = p->mm;
59 	if (!mm) {
60 		task_unlock(p);
61 		return 0;
62 	}
63 
64 	/*
65 	 * The memory size of the process is the basis for the badness.
66 	 */
67 	points = mm->total_vm;
68 
69 	/*
70 	 * After this unlock we can no longer dereference local variable `mm'
71 	 */
72 	task_unlock(p);
73 
74 	/*
75 	 * swapoff can easily use up all memory, so kill those first.
76 	 */
77 	if (p->flags & PF_SWAPOFF)
78 		return ULONG_MAX;
79 
80 	/*
81 	 * Processes which fork a lot of child processes are likely
82 	 * a good choice. We add half the vmsize of the children if they
83 	 * have an own mm. This prevents forking servers to flood the
84 	 * machine with an endless amount of children. In case a single
85 	 * child is eating the vast majority of memory, adding only half
86 	 * to the parents will make the child our kill candidate of choice.
87 	 */
88 	list_for_each_entry(child, &p->children, sibling) {
89 		task_lock(child);
90 		if (child->mm != mm && child->mm)
91 			points += child->mm->total_vm/2 + 1;
92 		task_unlock(child);
93 	}
94 
95 	/*
96 	 * CPU time is in tens of seconds and run time is in thousands
97          * of seconds. There is no particular reason for this other than
98          * that it turned out to work very well in practice.
99 	 */
100 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
101 		>> (SHIFT_HZ + 3);
102 
103 	if (uptime >= p->start_time.tv_sec)
104 		run_time = (uptime - p->start_time.tv_sec) >> 10;
105 	else
106 		run_time = 0;
107 
108 	s = int_sqrt(cpu_time);
109 	if (s)
110 		points /= s;
111 	s = int_sqrt(int_sqrt(run_time));
112 	if (s)
113 		points /= s;
114 
115 	/*
116 	 * Niced processes are most likely less important, so double
117 	 * their badness points.
118 	 */
119 	if (task_nice(p) > 0)
120 		points *= 2;
121 
122 	/*
123 	 * Superuser processes are usually more important, so we make it
124 	 * less likely that we kill those.
125 	 */
126 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
127 				p->uid == 0 || p->euid == 0)
128 		points /= 4;
129 
130 	/*
131 	 * We don't want to kill a process with direct hardware access.
132 	 * Not only could that mess up the hardware, but usually users
133 	 * tend to only have this flag set on applications they think
134 	 * of as important.
135 	 */
136 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
137 		points /= 4;
138 
139 	/*
140 	 * If p's nodes don't overlap ours, it may still help to kill p
141 	 * because p may have allocated or otherwise mapped memory on
142 	 * this node before. However it will be less likely.
143 	 */
144 	if (!cpuset_excl_nodes_overlap(p))
145 		points /= 8;
146 
147 	/*
148 	 * Adjust the score by oomkilladj.
149 	 */
150 	if (p->oomkilladj) {
151 		if (p->oomkilladj > 0) {
152 			if (!points)
153 				points = 1;
154 			points <<= p->oomkilladj;
155 		} else
156 			points >>= -(p->oomkilladj);
157 	}
158 
159 #ifdef DEBUG
160 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
161 	p->pid, p->comm, points);
162 #endif
163 	return points;
164 }
165 
166 /*
167  * Types of limitations to the nodes from which allocations may occur
168  */
169 #define CONSTRAINT_NONE 1
170 #define CONSTRAINT_MEMORY_POLICY 2
171 #define CONSTRAINT_CPUSET 3
172 
173 /*
174  * Determine the type of allocation constraint.
175  */
176 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
177 {
178 #ifdef CONFIG_NUMA
179 	struct zone **z;
180 	nodemask_t nodes;
181 	int node;
182 
183 	nodes_clear(nodes);
184 	/* node has memory ? */
185 	for_each_online_node(node)
186 		if (NODE_DATA(node)->node_present_pages)
187 			node_set(node, nodes);
188 
189 	for (z = zonelist->zones; *z; z++)
190 		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
191 			node_clear(zone_to_nid(*z), nodes);
192 		else
193 			return CONSTRAINT_CPUSET;
194 
195 	if (!nodes_empty(nodes))
196 		return CONSTRAINT_MEMORY_POLICY;
197 #endif
198 
199 	return CONSTRAINT_NONE;
200 }
201 
202 /*
203  * Simple selection loop. We chose the process with the highest
204  * number of 'points'. We expect the caller will lock the tasklist.
205  *
206  * (not docbooked, we don't want this one cluttering up the manual)
207  */
208 static struct task_struct *select_bad_process(unsigned long *ppoints)
209 {
210 	struct task_struct *g, *p;
211 	struct task_struct *chosen = NULL;
212 	struct timespec uptime;
213 	*ppoints = 0;
214 
215 	do_posix_clock_monotonic_gettime(&uptime);
216 	do_each_thread(g, p) {
217 		unsigned long points;
218 
219 		/*
220 		 * skip kernel threads and tasks which have already released
221 		 * their mm.
222 		 */
223 		if (!p->mm)
224 			continue;
225 		/* skip the init task */
226 		if (is_init(p))
227 			continue;
228 
229 		/*
230 		 * This task already has access to memory reserves and is
231 		 * being killed. Don't allow any other task access to the
232 		 * memory reserve.
233 		 *
234 		 * Note: this may have a chance of deadlock if it gets
235 		 * blocked waiting for another task which itself is waiting
236 		 * for memory. Is there a better alternative?
237 		 */
238 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
239 			return ERR_PTR(-1UL);
240 
241 		/*
242 		 * This is in the process of releasing memory so wait for it
243 		 * to finish before killing some other task by mistake.
244 		 *
245 		 * However, if p is the current task, we allow the 'kill' to
246 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
247 		 * which will allow it to gain access to memory reserves in
248 		 * the process of exiting and releasing its resources.
249 		 * Otherwise we could get an easy OOM deadlock.
250 		 */
251 		if (p->flags & PF_EXITING) {
252 			if (p != current)
253 				return ERR_PTR(-1UL);
254 
255 			chosen = p;
256 			*ppoints = ULONG_MAX;
257 		}
258 
259 		if (p->oomkilladj == OOM_DISABLE)
260 			continue;
261 
262 		points = badness(p, uptime.tv_sec);
263 		if (points > *ppoints || !chosen) {
264 			chosen = p;
265 			*ppoints = points;
266 		}
267 	} while_each_thread(g, p);
268 
269 	return chosen;
270 }
271 
272 /**
273  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
274  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
275  * set.
276  */
277 static void __oom_kill_task(struct task_struct *p, int verbose)
278 {
279 	if (is_init(p)) {
280 		WARN_ON(1);
281 		printk(KERN_WARNING "tried to kill init!\n");
282 		return;
283 	}
284 
285 	if (!p->mm) {
286 		WARN_ON(1);
287 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
288 		return;
289 	}
290 
291 	if (verbose)
292 		printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
293 
294 	/*
295 	 * We give our sacrificial lamb high priority and access to
296 	 * all the memory it needs. That way it should be able to
297 	 * exit() and clear out its resources quickly...
298 	 */
299 	p->time_slice = HZ;
300 	set_tsk_thread_flag(p, TIF_MEMDIE);
301 
302 	force_sig(SIGKILL, p);
303 }
304 
305 static int oom_kill_task(struct task_struct *p)
306 {
307 	struct mm_struct *mm;
308 	struct task_struct *g, *q;
309 
310 	mm = p->mm;
311 
312 	/* WARNING: mm may not be dereferenced since we did not obtain its
313 	 * value from get_task_mm(p).  This is OK since all we need to do is
314 	 * compare mm to q->mm below.
315 	 *
316 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
317 	 * change to NULL at any time since we do not hold task_lock(p).
318 	 * However, this is of no concern to us.
319 	 */
320 
321 	if (mm == NULL)
322 		return 1;
323 
324 	/*
325 	 * Don't kill the process if any threads are set to OOM_DISABLE
326 	 */
327 	do_each_thread(g, q) {
328 		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
329 			return 1;
330 	} while_each_thread(g, q);
331 
332 	__oom_kill_task(p, 1);
333 
334 	/*
335 	 * kill all processes that share the ->mm (i.e. all threads),
336 	 * but are in a different thread group. Don't let them have access
337 	 * to memory reserves though, otherwise we might deplete all memory.
338 	 */
339 	do_each_thread(g, q) {
340 		if (q->mm == mm && q->tgid != p->tgid)
341 			force_sig(SIGKILL, q);
342 	} while_each_thread(g, q);
343 
344 	return 0;
345 }
346 
347 static int oom_kill_process(struct task_struct *p, unsigned long points,
348 		const char *message)
349 {
350 	struct task_struct *c;
351 	struct list_head *tsk;
352 
353 	/*
354 	 * If the task is already exiting, don't alarm the sysadmin or kill
355 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
356 	 */
357 	if (p->flags & PF_EXITING) {
358 		__oom_kill_task(p, 0);
359 		return 0;
360 	}
361 
362 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
363 					message, p->pid, p->comm, points);
364 
365 	/* Try to kill a child first */
366 	list_for_each(tsk, &p->children) {
367 		c = list_entry(tsk, struct task_struct, sibling);
368 		if (c->mm == p->mm)
369 			continue;
370 		if (!oom_kill_task(c))
371 			return 0;
372 	}
373 	return oom_kill_task(p);
374 }
375 
376 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
377 
378 int register_oom_notifier(struct notifier_block *nb)
379 {
380 	return blocking_notifier_chain_register(&oom_notify_list, nb);
381 }
382 EXPORT_SYMBOL_GPL(register_oom_notifier);
383 
384 int unregister_oom_notifier(struct notifier_block *nb)
385 {
386 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
387 }
388 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
389 
390 /**
391  * out_of_memory - kill the "best" process when we run out of memory
392  *
393  * If we run out of memory, we have the choice between either
394  * killing a random task (bad), letting the system crash (worse)
395  * OR try to be smart about which process to kill. Note that we
396  * don't have to be perfect here, we just have to be good.
397  */
398 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
399 {
400 	struct task_struct *p;
401 	unsigned long points = 0;
402 	unsigned long freed = 0;
403 	int constraint;
404 
405 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
406 	if (freed > 0)
407 		/* Got some memory back in the last second. */
408 		return;
409 
410 	if (printk_ratelimit()) {
411 		printk(KERN_WARNING "%s invoked oom-killer: "
412 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
413 			current->comm, gfp_mask, order, current->oomkilladj);
414 		dump_stack();
415 		show_mem();
416 	}
417 
418 	if (sysctl_panic_on_oom == 2)
419 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
420 
421 	/*
422 	 * Check if there were limitations on the allocation (only relevant for
423 	 * NUMA) that may require different handling.
424 	 */
425 	constraint = constrained_alloc(zonelist, gfp_mask);
426 	cpuset_lock();
427 	read_lock(&tasklist_lock);
428 
429 	switch (constraint) {
430 	case CONSTRAINT_MEMORY_POLICY:
431 		oom_kill_process(current, points,
432 				"No available memory (MPOL_BIND)");
433 		break;
434 
435 	case CONSTRAINT_CPUSET:
436 		oom_kill_process(current, points,
437 				"No available memory in cpuset");
438 		break;
439 
440 	case CONSTRAINT_NONE:
441 		if (sysctl_panic_on_oom)
442 			panic("out of memory. panic_on_oom is selected\n");
443 retry:
444 		/*
445 		 * Rambo mode: Shoot down a process and hope it solves whatever
446 		 * issues we may have.
447 		 */
448 		p = select_bad_process(&points);
449 
450 		if (PTR_ERR(p) == -1UL)
451 			goto out;
452 
453 		/* Found nothing?!?! Either we hang forever, or we panic. */
454 		if (!p) {
455 			read_unlock(&tasklist_lock);
456 			cpuset_unlock();
457 			panic("Out of memory and no killable processes...\n");
458 		}
459 
460 		if (oom_kill_process(p, points, "Out of memory"))
461 			goto retry;
462 
463 		break;
464 	}
465 
466 out:
467 	read_unlock(&tasklist_lock);
468 	cpuset_unlock();
469 
470 	/*
471 	 * Give "p" a good chance of killing itself before we
472 	 * retry to allocate memory unless "p" is current
473 	 */
474 	if (!test_thread_flag(TIF_MEMDIE))
475 		schedule_timeout_uninterruptible(1);
476 }
477