1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/export.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 #include <linux/ptrace.h> 35 #include <linux/freezer.h> 36 37 int sysctl_panic_on_oom; 38 int sysctl_oom_kill_allocating_task; 39 int sysctl_oom_dump_tasks = 1; 40 static DEFINE_SPINLOCK(zone_scan_lock); 41 42 /* 43 * compare_swap_oom_score_adj() - compare and swap current's oom_score_adj 44 * @old_val: old oom_score_adj for compare 45 * @new_val: new oom_score_adj for swap 46 * 47 * Sets the oom_score_adj value for current to @new_val iff its present value is 48 * @old_val. Usually used to reinstate a previous value to prevent racing with 49 * userspacing tuning the value in the interim. 50 */ 51 void compare_swap_oom_score_adj(int old_val, int new_val) 52 { 53 struct sighand_struct *sighand = current->sighand; 54 55 spin_lock_irq(&sighand->siglock); 56 if (current->signal->oom_score_adj == old_val) 57 current->signal->oom_score_adj = new_val; 58 spin_unlock_irq(&sighand->siglock); 59 } 60 61 /** 62 * test_set_oom_score_adj() - set current's oom_score_adj and return old value 63 * @new_val: new oom_score_adj value 64 * 65 * Sets the oom_score_adj value for current to @new_val with proper 66 * synchronization and returns the old value. Usually used to temporarily 67 * set a value, save the old value in the caller, and then reinstate it later. 68 */ 69 int test_set_oom_score_adj(int new_val) 70 { 71 struct sighand_struct *sighand = current->sighand; 72 int old_val; 73 74 spin_lock_irq(&sighand->siglock); 75 old_val = current->signal->oom_score_adj; 76 current->signal->oom_score_adj = new_val; 77 spin_unlock_irq(&sighand->siglock); 78 79 return old_val; 80 } 81 82 #ifdef CONFIG_NUMA 83 /** 84 * has_intersects_mems_allowed() - check task eligiblity for kill 85 * @tsk: task struct of which task to consider 86 * @mask: nodemask passed to page allocator for mempolicy ooms 87 * 88 * Task eligibility is determined by whether or not a candidate task, @tsk, 89 * shares the same mempolicy nodes as current if it is bound by such a policy 90 * and whether or not it has the same set of allowed cpuset nodes. 91 */ 92 static bool has_intersects_mems_allowed(struct task_struct *tsk, 93 const nodemask_t *mask) 94 { 95 struct task_struct *start = tsk; 96 97 do { 98 if (mask) { 99 /* 100 * If this is a mempolicy constrained oom, tsk's 101 * cpuset is irrelevant. Only return true if its 102 * mempolicy intersects current, otherwise it may be 103 * needlessly killed. 104 */ 105 if (mempolicy_nodemask_intersects(tsk, mask)) 106 return true; 107 } else { 108 /* 109 * This is not a mempolicy constrained oom, so only 110 * check the mems of tsk's cpuset. 111 */ 112 if (cpuset_mems_allowed_intersects(current, tsk)) 113 return true; 114 } 115 } while_each_thread(start, tsk); 116 117 return false; 118 } 119 #else 120 static bool has_intersects_mems_allowed(struct task_struct *tsk, 121 const nodemask_t *mask) 122 { 123 return true; 124 } 125 #endif /* CONFIG_NUMA */ 126 127 /* 128 * The process p may have detached its own ->mm while exiting or through 129 * use_mm(), but one or more of its subthreads may still have a valid 130 * pointer. Return p, or any of its subthreads with a valid ->mm, with 131 * task_lock() held. 132 */ 133 struct task_struct *find_lock_task_mm(struct task_struct *p) 134 { 135 struct task_struct *t = p; 136 137 do { 138 task_lock(t); 139 if (likely(t->mm)) 140 return t; 141 task_unlock(t); 142 } while_each_thread(p, t); 143 144 return NULL; 145 } 146 147 /* return true if the task is not adequate as candidate victim task. */ 148 static bool oom_unkillable_task(struct task_struct *p, 149 const struct mem_cgroup *mem, const nodemask_t *nodemask) 150 { 151 if (is_global_init(p)) 152 return true; 153 if (p->flags & PF_KTHREAD) 154 return true; 155 156 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 157 if (mem && !task_in_mem_cgroup(p, mem)) 158 return true; 159 160 /* p may not have freeable memory in nodemask */ 161 if (!has_intersects_mems_allowed(p, nodemask)) 162 return true; 163 164 return false; 165 } 166 167 /** 168 * oom_badness - heuristic function to determine which candidate task to kill 169 * @p: task struct of which task we should calculate 170 * @totalpages: total present RAM allowed for page allocation 171 * 172 * The heuristic for determining which task to kill is made to be as simple and 173 * predictable as possible. The goal is to return the highest value for the 174 * task consuming the most memory to avoid subsequent oom failures. 175 */ 176 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, 177 const nodemask_t *nodemask, unsigned long totalpages) 178 { 179 int points; 180 181 if (oom_unkillable_task(p, mem, nodemask)) 182 return 0; 183 184 p = find_lock_task_mm(p); 185 if (!p) 186 return 0; 187 188 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 189 task_unlock(p); 190 return 0; 191 } 192 193 /* 194 * The memory controller may have a limit of 0 bytes, so avoid a divide 195 * by zero, if necessary. 196 */ 197 if (!totalpages) 198 totalpages = 1; 199 200 /* 201 * The baseline for the badness score is the proportion of RAM that each 202 * task's rss, pagetable and swap space use. 203 */ 204 points = get_mm_rss(p->mm) + p->mm->nr_ptes; 205 points += get_mm_counter(p->mm, MM_SWAPENTS); 206 207 points *= 1000; 208 points /= totalpages; 209 task_unlock(p); 210 211 /* 212 * Root processes get 3% bonus, just like the __vm_enough_memory() 213 * implementation used by LSMs. 214 */ 215 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 216 points -= 30; 217 218 /* 219 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 220 * either completely disable oom killing or always prefer a certain 221 * task. 222 */ 223 points += p->signal->oom_score_adj; 224 225 /* 226 * Never return 0 for an eligible task that may be killed since it's 227 * possible that no single user task uses more than 0.1% of memory and 228 * no single admin tasks uses more than 3.0%. 229 */ 230 if (points <= 0) 231 return 1; 232 return (points < 1000) ? points : 1000; 233 } 234 235 /* 236 * Determine the type of allocation constraint. 237 */ 238 #ifdef CONFIG_NUMA 239 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 240 gfp_t gfp_mask, nodemask_t *nodemask, 241 unsigned long *totalpages) 242 { 243 struct zone *zone; 244 struct zoneref *z; 245 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 246 bool cpuset_limited = false; 247 int nid; 248 249 /* Default to all available memory */ 250 *totalpages = totalram_pages + total_swap_pages; 251 252 if (!zonelist) 253 return CONSTRAINT_NONE; 254 /* 255 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 256 * to kill current.We have to random task kill in this case. 257 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 258 */ 259 if (gfp_mask & __GFP_THISNODE) 260 return CONSTRAINT_NONE; 261 262 /* 263 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 264 * the page allocator means a mempolicy is in effect. Cpuset policy 265 * is enforced in get_page_from_freelist(). 266 */ 267 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 268 *totalpages = total_swap_pages; 269 for_each_node_mask(nid, *nodemask) 270 *totalpages += node_spanned_pages(nid); 271 return CONSTRAINT_MEMORY_POLICY; 272 } 273 274 /* Check this allocation failure is caused by cpuset's wall function */ 275 for_each_zone_zonelist_nodemask(zone, z, zonelist, 276 high_zoneidx, nodemask) 277 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 278 cpuset_limited = true; 279 280 if (cpuset_limited) { 281 *totalpages = total_swap_pages; 282 for_each_node_mask(nid, cpuset_current_mems_allowed) 283 *totalpages += node_spanned_pages(nid); 284 return CONSTRAINT_CPUSET; 285 } 286 return CONSTRAINT_NONE; 287 } 288 #else 289 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 290 gfp_t gfp_mask, nodemask_t *nodemask, 291 unsigned long *totalpages) 292 { 293 *totalpages = totalram_pages + total_swap_pages; 294 return CONSTRAINT_NONE; 295 } 296 #endif 297 298 /* 299 * Simple selection loop. We chose the process with the highest 300 * number of 'points'. We expect the caller will lock the tasklist. 301 * 302 * (not docbooked, we don't want this one cluttering up the manual) 303 */ 304 static struct task_struct *select_bad_process(unsigned int *ppoints, 305 unsigned long totalpages, struct mem_cgroup *mem, 306 const nodemask_t *nodemask) 307 { 308 struct task_struct *g, *p; 309 struct task_struct *chosen = NULL; 310 *ppoints = 0; 311 312 do_each_thread(g, p) { 313 unsigned int points; 314 315 if (p->exit_state) 316 continue; 317 if (oom_unkillable_task(p, mem, nodemask)) 318 continue; 319 320 /* 321 * This task already has access to memory reserves and is 322 * being killed. Don't allow any other task access to the 323 * memory reserve. 324 * 325 * Note: this may have a chance of deadlock if it gets 326 * blocked waiting for another task which itself is waiting 327 * for memory. Is there a better alternative? 328 */ 329 if (test_tsk_thread_flag(p, TIF_MEMDIE)) { 330 if (unlikely(frozen(p))) 331 thaw_process(p); 332 return ERR_PTR(-1UL); 333 } 334 if (!p->mm) 335 continue; 336 337 if (p->flags & PF_EXITING) { 338 /* 339 * If p is the current task and is in the process of 340 * releasing memory, we allow the "kill" to set 341 * TIF_MEMDIE, which will allow it to gain access to 342 * memory reserves. Otherwise, it may stall forever. 343 * 344 * The loop isn't broken here, however, in case other 345 * threads are found to have already been oom killed. 346 */ 347 if (p == current) { 348 chosen = p; 349 *ppoints = 1000; 350 } else { 351 /* 352 * If this task is not being ptraced on exit, 353 * then wait for it to finish before killing 354 * some other task unnecessarily. 355 */ 356 if (!(p->group_leader->ptrace & PT_TRACE_EXIT)) 357 return ERR_PTR(-1UL); 358 } 359 } 360 361 points = oom_badness(p, mem, nodemask, totalpages); 362 if (points > *ppoints) { 363 chosen = p; 364 *ppoints = points; 365 } 366 } while_each_thread(g, p); 367 368 return chosen; 369 } 370 371 /** 372 * dump_tasks - dump current memory state of all system tasks 373 * @mem: current's memory controller, if constrained 374 * @nodemask: nodemask passed to page allocator for mempolicy ooms 375 * 376 * Dumps the current memory state of all eligible tasks. Tasks not in the same 377 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 378 * are not shown. 379 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 380 * value, oom_score_adj value, and name. 381 * 382 * Call with tasklist_lock read-locked. 383 */ 384 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask) 385 { 386 struct task_struct *p; 387 struct task_struct *task; 388 389 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 390 for_each_process(p) { 391 if (oom_unkillable_task(p, mem, nodemask)) 392 continue; 393 394 task = find_lock_task_mm(p); 395 if (!task) { 396 /* 397 * This is a kthread or all of p's threads have already 398 * detached their mm's. There's no need to report 399 * them; they can't be oom killed anyway. 400 */ 401 continue; 402 } 403 404 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 405 task->pid, task_uid(task), task->tgid, 406 task->mm->total_vm, get_mm_rss(task->mm), 407 task_cpu(task), task->signal->oom_adj, 408 task->signal->oom_score_adj, task->comm); 409 task_unlock(task); 410 } 411 } 412 413 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 414 struct mem_cgroup *mem, const nodemask_t *nodemask) 415 { 416 task_lock(current); 417 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 418 "oom_adj=%d, oom_score_adj=%d\n", 419 current->comm, gfp_mask, order, current->signal->oom_adj, 420 current->signal->oom_score_adj); 421 cpuset_print_task_mems_allowed(current); 422 task_unlock(current); 423 dump_stack(); 424 mem_cgroup_print_oom_info(mem, p); 425 show_mem(SHOW_MEM_FILTER_NODES); 426 if (sysctl_oom_dump_tasks) 427 dump_tasks(mem, nodemask); 428 } 429 430 #define K(x) ((x) << (PAGE_SHIFT-10)) 431 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) 432 { 433 struct task_struct *q; 434 struct mm_struct *mm; 435 436 p = find_lock_task_mm(p); 437 if (!p) 438 return 1; 439 440 /* mm cannot be safely dereferenced after task_unlock(p) */ 441 mm = p->mm; 442 443 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 444 task_pid_nr(p), p->comm, K(p->mm->total_vm), 445 K(get_mm_counter(p->mm, MM_ANONPAGES)), 446 K(get_mm_counter(p->mm, MM_FILEPAGES))); 447 task_unlock(p); 448 449 /* 450 * Kill all user processes sharing p->mm in other thread groups, if any. 451 * They don't get access to memory reserves or a higher scheduler 452 * priority, though, to avoid depletion of all memory or task 453 * starvation. This prevents mm->mmap_sem livelock when an oom killed 454 * task cannot exit because it requires the semaphore and its contended 455 * by another thread trying to allocate memory itself. That thread will 456 * now get access to memory reserves since it has a pending fatal 457 * signal. 458 */ 459 for_each_process(q) 460 if (q->mm == mm && !same_thread_group(q, p) && 461 !(q->flags & PF_KTHREAD)) { 462 if (q->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 463 continue; 464 465 task_lock(q); /* Protect ->comm from prctl() */ 466 pr_err("Kill process %d (%s) sharing same memory\n", 467 task_pid_nr(q), q->comm); 468 task_unlock(q); 469 force_sig(SIGKILL, q); 470 } 471 472 set_tsk_thread_flag(p, TIF_MEMDIE); 473 force_sig(SIGKILL, p); 474 475 return 0; 476 } 477 #undef K 478 479 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 480 unsigned int points, unsigned long totalpages, 481 struct mem_cgroup *mem, nodemask_t *nodemask, 482 const char *message) 483 { 484 struct task_struct *victim = p; 485 struct task_struct *child; 486 struct task_struct *t = p; 487 unsigned int victim_points = 0; 488 489 if (printk_ratelimit()) 490 dump_header(p, gfp_mask, order, mem, nodemask); 491 492 /* 493 * If the task is already exiting, don't alarm the sysadmin or kill 494 * its children or threads, just set TIF_MEMDIE so it can die quickly 495 */ 496 if (p->flags & PF_EXITING) { 497 set_tsk_thread_flag(p, TIF_MEMDIE); 498 return 0; 499 } 500 501 task_lock(p); 502 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 503 message, task_pid_nr(p), p->comm, points); 504 task_unlock(p); 505 506 /* 507 * If any of p's children has a different mm and is eligible for kill, 508 * the one with the highest oom_badness() score is sacrificed for its 509 * parent. This attempts to lose the minimal amount of work done while 510 * still freeing memory. 511 */ 512 do { 513 list_for_each_entry(child, &t->children, sibling) { 514 unsigned int child_points; 515 516 if (child->mm == p->mm) 517 continue; 518 /* 519 * oom_badness() returns 0 if the thread is unkillable 520 */ 521 child_points = oom_badness(child, mem, nodemask, 522 totalpages); 523 if (child_points > victim_points) { 524 victim = child; 525 victim_points = child_points; 526 } 527 } 528 } while_each_thread(p, t); 529 530 return oom_kill_task(victim, mem); 531 } 532 533 /* 534 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 535 */ 536 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 537 int order, const nodemask_t *nodemask) 538 { 539 if (likely(!sysctl_panic_on_oom)) 540 return; 541 if (sysctl_panic_on_oom != 2) { 542 /* 543 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 544 * does not panic for cpuset, mempolicy, or memcg allocation 545 * failures. 546 */ 547 if (constraint != CONSTRAINT_NONE) 548 return; 549 } 550 read_lock(&tasklist_lock); 551 dump_header(NULL, gfp_mask, order, NULL, nodemask); 552 read_unlock(&tasklist_lock); 553 panic("Out of memory: %s panic_on_oom is enabled\n", 554 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 555 } 556 557 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 558 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 559 { 560 unsigned long limit; 561 unsigned int points = 0; 562 struct task_struct *p; 563 564 /* 565 * If current has a pending SIGKILL, then automatically select it. The 566 * goal is to allow it to allocate so that it may quickly exit and free 567 * its memory. 568 */ 569 if (fatal_signal_pending(current)) { 570 set_thread_flag(TIF_MEMDIE); 571 return; 572 } 573 574 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); 575 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; 576 read_lock(&tasklist_lock); 577 retry: 578 p = select_bad_process(&points, limit, mem, NULL); 579 if (!p || PTR_ERR(p) == -1UL) 580 goto out; 581 582 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, 583 "Memory cgroup out of memory")) 584 goto retry; 585 out: 586 read_unlock(&tasklist_lock); 587 } 588 #endif 589 590 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 591 592 int register_oom_notifier(struct notifier_block *nb) 593 { 594 return blocking_notifier_chain_register(&oom_notify_list, nb); 595 } 596 EXPORT_SYMBOL_GPL(register_oom_notifier); 597 598 int unregister_oom_notifier(struct notifier_block *nb) 599 { 600 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 601 } 602 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 603 604 /* 605 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 606 * if a parallel OOM killing is already taking place that includes a zone in 607 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 608 */ 609 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 610 { 611 struct zoneref *z; 612 struct zone *zone; 613 int ret = 1; 614 615 spin_lock(&zone_scan_lock); 616 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 617 if (zone_is_oom_locked(zone)) { 618 ret = 0; 619 goto out; 620 } 621 } 622 623 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 624 /* 625 * Lock each zone in the zonelist under zone_scan_lock so a 626 * parallel invocation of try_set_zonelist_oom() doesn't succeed 627 * when it shouldn't. 628 */ 629 zone_set_flag(zone, ZONE_OOM_LOCKED); 630 } 631 632 out: 633 spin_unlock(&zone_scan_lock); 634 return ret; 635 } 636 637 /* 638 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 639 * allocation attempts with zonelists containing them may now recall the OOM 640 * killer, if necessary. 641 */ 642 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 643 { 644 struct zoneref *z; 645 struct zone *zone; 646 647 spin_lock(&zone_scan_lock); 648 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 649 zone_clear_flag(zone, ZONE_OOM_LOCKED); 650 } 651 spin_unlock(&zone_scan_lock); 652 } 653 654 /* 655 * Try to acquire the oom killer lock for all system zones. Returns zero if a 656 * parallel oom killing is taking place, otherwise locks all zones and returns 657 * non-zero. 658 */ 659 static int try_set_system_oom(void) 660 { 661 struct zone *zone; 662 int ret = 1; 663 664 spin_lock(&zone_scan_lock); 665 for_each_populated_zone(zone) 666 if (zone_is_oom_locked(zone)) { 667 ret = 0; 668 goto out; 669 } 670 for_each_populated_zone(zone) 671 zone_set_flag(zone, ZONE_OOM_LOCKED); 672 out: 673 spin_unlock(&zone_scan_lock); 674 return ret; 675 } 676 677 /* 678 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 679 * attempts or page faults may now recall the oom killer, if necessary. 680 */ 681 static void clear_system_oom(void) 682 { 683 struct zone *zone; 684 685 spin_lock(&zone_scan_lock); 686 for_each_populated_zone(zone) 687 zone_clear_flag(zone, ZONE_OOM_LOCKED); 688 spin_unlock(&zone_scan_lock); 689 } 690 691 /** 692 * out_of_memory - kill the "best" process when we run out of memory 693 * @zonelist: zonelist pointer 694 * @gfp_mask: memory allocation flags 695 * @order: amount of memory being requested as a power of 2 696 * @nodemask: nodemask passed to page allocator 697 * 698 * If we run out of memory, we have the choice between either 699 * killing a random task (bad), letting the system crash (worse) 700 * OR try to be smart about which process to kill. Note that we 701 * don't have to be perfect here, we just have to be good. 702 */ 703 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 704 int order, nodemask_t *nodemask) 705 { 706 const nodemask_t *mpol_mask; 707 struct task_struct *p; 708 unsigned long totalpages; 709 unsigned long freed = 0; 710 unsigned int points; 711 enum oom_constraint constraint = CONSTRAINT_NONE; 712 int killed = 0; 713 714 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 715 if (freed > 0) 716 /* Got some memory back in the last second. */ 717 return; 718 719 /* 720 * If current has a pending SIGKILL, then automatically select it. The 721 * goal is to allow it to allocate so that it may quickly exit and free 722 * its memory. 723 */ 724 if (fatal_signal_pending(current)) { 725 set_thread_flag(TIF_MEMDIE); 726 return; 727 } 728 729 /* 730 * Check if there were limitations on the allocation (only relevant for 731 * NUMA) that may require different handling. 732 */ 733 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 734 &totalpages); 735 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 736 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 737 738 read_lock(&tasklist_lock); 739 if (sysctl_oom_kill_allocating_task && 740 !oom_unkillable_task(current, NULL, nodemask) && 741 current->mm) { 742 /* 743 * oom_kill_process() needs tasklist_lock held. If it returns 744 * non-zero, current could not be killed so we must fallback to 745 * the tasklist scan. 746 */ 747 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, 748 NULL, nodemask, 749 "Out of memory (oom_kill_allocating_task)")) 750 goto out; 751 } 752 753 retry: 754 p = select_bad_process(&points, totalpages, NULL, mpol_mask); 755 if (PTR_ERR(p) == -1UL) 756 goto out; 757 758 /* Found nothing?!?! Either we hang forever, or we panic. */ 759 if (!p) { 760 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 761 read_unlock(&tasklist_lock); 762 panic("Out of memory and no killable processes...\n"); 763 } 764 765 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 766 nodemask, "Out of memory")) 767 goto retry; 768 killed = 1; 769 out: 770 read_unlock(&tasklist_lock); 771 772 /* 773 * Give "p" a good chance of killing itself before we 774 * retry to allocate memory unless "p" is current 775 */ 776 if (killed && !test_thread_flag(TIF_MEMDIE)) 777 schedule_timeout_uninterruptible(1); 778 } 779 780 /* 781 * The pagefault handler calls here because it is out of memory, so kill a 782 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 783 * oom killing is already in progress so do nothing. If a task is found with 784 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 785 */ 786 void pagefault_out_of_memory(void) 787 { 788 if (try_set_system_oom()) { 789 out_of_memory(NULL, 0, 0, NULL); 790 clear_system_oom(); 791 } 792 if (!test_thread_flag(TIF_MEMDIE)) 793 schedule_timeout_uninterruptible(1); 794 } 795