xref: /linux/mm/nommu.c (revision eab60bbc05a9375145e7b793ca37a1b6ec262887)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/nommu.c
4   *
5   *  Replacement code for mm functions to support CPU's that don't
6   *  have any form of memory management unit (thus no virtual memory).
7   *
8   *  See Documentation/admin-guide/mm/nommu-mmap.rst
9   *
10   *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11   *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12   *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13   *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14   *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15   */
16  
17  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18  
19  #include <linux/export.h>
20  #include <linux/mm.h>
21  #include <linux/sched/mm.h>
22  #include <linux/vmacache.h>
23  #include <linux/mman.h>
24  #include <linux/swap.h>
25  #include <linux/file.h>
26  #include <linux/highmem.h>
27  #include <linux/pagemap.h>
28  #include <linux/slab.h>
29  #include <linux/vmalloc.h>
30  #include <linux/backing-dev.h>
31  #include <linux/compiler.h>
32  #include <linux/mount.h>
33  #include <linux/personality.h>
34  #include <linux/security.h>
35  #include <linux/syscalls.h>
36  #include <linux/audit.h>
37  #include <linux/printk.h>
38  
39  #include <linux/uaccess.h>
40  #include <asm/tlb.h>
41  #include <asm/tlbflush.h>
42  #include <asm/mmu_context.h>
43  #include "internal.h"
44  
45  void *high_memory;
46  EXPORT_SYMBOL(high_memory);
47  struct page *mem_map;
48  unsigned long max_mapnr;
49  EXPORT_SYMBOL(max_mapnr);
50  unsigned long highest_memmap_pfn;
51  int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52  int heap_stack_gap = 0;
53  
54  atomic_long_t mmap_pages_allocated;
55  
56  EXPORT_SYMBOL(mem_map);
57  
58  /* list of mapped, potentially shareable regions */
59  static struct kmem_cache *vm_region_jar;
60  struct rb_root nommu_region_tree = RB_ROOT;
61  DECLARE_RWSEM(nommu_region_sem);
62  
63  const struct vm_operations_struct generic_file_vm_ops = {
64  };
65  
66  /*
67   * Return the total memory allocated for this pointer, not
68   * just what the caller asked for.
69   *
70   * Doesn't have to be accurate, i.e. may have races.
71   */
72  unsigned int kobjsize(const void *objp)
73  {
74  	struct page *page;
75  
76  	/*
77  	 * If the object we have should not have ksize performed on it,
78  	 * return size of 0
79  	 */
80  	if (!objp || !virt_addr_valid(objp))
81  		return 0;
82  
83  	page = virt_to_head_page(objp);
84  
85  	/*
86  	 * If the allocator sets PageSlab, we know the pointer came from
87  	 * kmalloc().
88  	 */
89  	if (PageSlab(page))
90  		return ksize(objp);
91  
92  	/*
93  	 * If it's not a compound page, see if we have a matching VMA
94  	 * region. This test is intentionally done in reverse order,
95  	 * so if there's no VMA, we still fall through and hand back
96  	 * PAGE_SIZE for 0-order pages.
97  	 */
98  	if (!PageCompound(page)) {
99  		struct vm_area_struct *vma;
100  
101  		vma = find_vma(current->mm, (unsigned long)objp);
102  		if (vma)
103  			return vma->vm_end - vma->vm_start;
104  	}
105  
106  	/*
107  	 * The ksize() function is only guaranteed to work for pointers
108  	 * returned by kmalloc(). So handle arbitrary pointers here.
109  	 */
110  	return page_size(page);
111  }
112  
113  /**
114   * follow_pfn - look up PFN at a user virtual address
115   * @vma: memory mapping
116   * @address: user virtual address
117   * @pfn: location to store found PFN
118   *
119   * Only IO mappings and raw PFN mappings are allowed.
120   *
121   * Returns zero and the pfn at @pfn on success, -ve otherwise.
122   */
123  int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124  	unsigned long *pfn)
125  {
126  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127  		return -EINVAL;
128  
129  	*pfn = address >> PAGE_SHIFT;
130  	return 0;
131  }
132  EXPORT_SYMBOL(follow_pfn);
133  
134  LIST_HEAD(vmap_area_list);
135  
136  void vfree(const void *addr)
137  {
138  	kfree(addr);
139  }
140  EXPORT_SYMBOL(vfree);
141  
142  void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143  {
144  	/*
145  	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146  	 * returns only a logical address.
147  	 */
148  	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149  }
150  EXPORT_SYMBOL(__vmalloc);
151  
152  void *__vmalloc_node_range(unsigned long size, unsigned long align,
153  		unsigned long start, unsigned long end, gfp_t gfp_mask,
154  		pgprot_t prot, unsigned long vm_flags, int node,
155  		const void *caller)
156  {
157  	return __vmalloc(size, gfp_mask);
158  }
159  
160  void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161  		int node, const void *caller)
162  {
163  	return __vmalloc(size, gfp_mask);
164  }
165  
166  static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167  {
168  	void *ret;
169  
170  	ret = __vmalloc(size, flags);
171  	if (ret) {
172  		struct vm_area_struct *vma;
173  
174  		mmap_write_lock(current->mm);
175  		vma = find_vma(current->mm, (unsigned long)ret);
176  		if (vma)
177  			vma->vm_flags |= VM_USERMAP;
178  		mmap_write_unlock(current->mm);
179  	}
180  
181  	return ret;
182  }
183  
184  void *vmalloc_user(unsigned long size)
185  {
186  	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187  }
188  EXPORT_SYMBOL(vmalloc_user);
189  
190  struct page *vmalloc_to_page(const void *addr)
191  {
192  	return virt_to_page(addr);
193  }
194  EXPORT_SYMBOL(vmalloc_to_page);
195  
196  unsigned long vmalloc_to_pfn(const void *addr)
197  {
198  	return page_to_pfn(virt_to_page(addr));
199  }
200  EXPORT_SYMBOL(vmalloc_to_pfn);
201  
202  long vread(char *buf, char *addr, unsigned long count)
203  {
204  	/* Don't allow overflow */
205  	if ((unsigned long) buf + count < count)
206  		count = -(unsigned long) buf;
207  
208  	memcpy(buf, addr, count);
209  	return count;
210  }
211  
212  /*
213   *	vmalloc  -  allocate virtually contiguous memory
214   *
215   *	@size:		allocation size
216   *
217   *	Allocate enough pages to cover @size from the page level
218   *	allocator and map them into contiguous kernel virtual space.
219   *
220   *	For tight control over page level allocator and protection flags
221   *	use __vmalloc() instead.
222   */
223  void *vmalloc(unsigned long size)
224  {
225  	return __vmalloc(size, GFP_KERNEL);
226  }
227  EXPORT_SYMBOL(vmalloc);
228  
229  void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
230  
231  /*
232   *	vzalloc - allocate virtually contiguous memory with zero fill
233   *
234   *	@size:		allocation size
235   *
236   *	Allocate enough pages to cover @size from the page level
237   *	allocator and map them into contiguous kernel virtual space.
238   *	The memory allocated is set to zero.
239   *
240   *	For tight control over page level allocator and protection flags
241   *	use __vmalloc() instead.
242   */
243  void *vzalloc(unsigned long size)
244  {
245  	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
246  }
247  EXPORT_SYMBOL(vzalloc);
248  
249  /**
250   * vmalloc_node - allocate memory on a specific node
251   * @size:	allocation size
252   * @node:	numa node
253   *
254   * Allocate enough pages to cover @size from the page level
255   * allocator and map them into contiguous kernel virtual space.
256   *
257   * For tight control over page level allocator and protection flags
258   * use __vmalloc() instead.
259   */
260  void *vmalloc_node(unsigned long size, int node)
261  {
262  	return vmalloc(size);
263  }
264  EXPORT_SYMBOL(vmalloc_node);
265  
266  /**
267   * vzalloc_node - allocate memory on a specific node with zero fill
268   * @size:	allocation size
269   * @node:	numa node
270   *
271   * Allocate enough pages to cover @size from the page level
272   * allocator and map them into contiguous kernel virtual space.
273   * The memory allocated is set to zero.
274   *
275   * For tight control over page level allocator and protection flags
276   * use __vmalloc() instead.
277   */
278  void *vzalloc_node(unsigned long size, int node)
279  {
280  	return vzalloc(size);
281  }
282  EXPORT_SYMBOL(vzalloc_node);
283  
284  /**
285   * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
286   *	@size:		allocation size
287   *
288   *	Allocate enough 32bit PA addressable pages to cover @size from the
289   *	page level allocator and map them into contiguous kernel virtual space.
290   */
291  void *vmalloc_32(unsigned long size)
292  {
293  	return __vmalloc(size, GFP_KERNEL);
294  }
295  EXPORT_SYMBOL(vmalloc_32);
296  
297  /**
298   * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
299   *	@size:		allocation size
300   *
301   * The resulting memory area is 32bit addressable and zeroed so it can be
302   * mapped to userspace without leaking data.
303   *
304   * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
305   * remap_vmalloc_range() are permissible.
306   */
307  void *vmalloc_32_user(unsigned long size)
308  {
309  	/*
310  	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
311  	 * but for now this can simply use vmalloc_user() directly.
312  	 */
313  	return vmalloc_user(size);
314  }
315  EXPORT_SYMBOL(vmalloc_32_user);
316  
317  void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
318  {
319  	BUG();
320  	return NULL;
321  }
322  EXPORT_SYMBOL(vmap);
323  
324  void vunmap(const void *addr)
325  {
326  	BUG();
327  }
328  EXPORT_SYMBOL(vunmap);
329  
330  void *vm_map_ram(struct page **pages, unsigned int count, int node)
331  {
332  	BUG();
333  	return NULL;
334  }
335  EXPORT_SYMBOL(vm_map_ram);
336  
337  void vm_unmap_ram(const void *mem, unsigned int count)
338  {
339  	BUG();
340  }
341  EXPORT_SYMBOL(vm_unmap_ram);
342  
343  void vm_unmap_aliases(void)
344  {
345  }
346  EXPORT_SYMBOL_GPL(vm_unmap_aliases);
347  
348  void free_vm_area(struct vm_struct *area)
349  {
350  	BUG();
351  }
352  EXPORT_SYMBOL_GPL(free_vm_area);
353  
354  int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
355  		   struct page *page)
356  {
357  	return -EINVAL;
358  }
359  EXPORT_SYMBOL(vm_insert_page);
360  
361  int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
362  			unsigned long num)
363  {
364  	return -EINVAL;
365  }
366  EXPORT_SYMBOL(vm_map_pages);
367  
368  int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
369  				unsigned long num)
370  {
371  	return -EINVAL;
372  }
373  EXPORT_SYMBOL(vm_map_pages_zero);
374  
375  /*
376   *  sys_brk() for the most part doesn't need the global kernel
377   *  lock, except when an application is doing something nasty
378   *  like trying to un-brk an area that has already been mapped
379   *  to a regular file.  in this case, the unmapping will need
380   *  to invoke file system routines that need the global lock.
381   */
382  SYSCALL_DEFINE1(brk, unsigned long, brk)
383  {
384  	struct mm_struct *mm = current->mm;
385  
386  	if (brk < mm->start_brk || brk > mm->context.end_brk)
387  		return mm->brk;
388  
389  	if (mm->brk == brk)
390  		return mm->brk;
391  
392  	/*
393  	 * Always allow shrinking brk
394  	 */
395  	if (brk <= mm->brk) {
396  		mm->brk = brk;
397  		return brk;
398  	}
399  
400  	/*
401  	 * Ok, looks good - let it rip.
402  	 */
403  	flush_icache_user_range(mm->brk, brk);
404  	return mm->brk = brk;
405  }
406  
407  /*
408   * initialise the percpu counter for VM and region record slabs
409   */
410  void __init mmap_init(void)
411  {
412  	int ret;
413  
414  	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
415  	VM_BUG_ON(ret);
416  	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
417  }
418  
419  /*
420   * validate the region tree
421   * - the caller must hold the region lock
422   */
423  #ifdef CONFIG_DEBUG_NOMMU_REGIONS
424  static noinline void validate_nommu_regions(void)
425  {
426  	struct vm_region *region, *last;
427  	struct rb_node *p, *lastp;
428  
429  	lastp = rb_first(&nommu_region_tree);
430  	if (!lastp)
431  		return;
432  
433  	last = rb_entry(lastp, struct vm_region, vm_rb);
434  	BUG_ON(last->vm_end <= last->vm_start);
435  	BUG_ON(last->vm_top < last->vm_end);
436  
437  	while ((p = rb_next(lastp))) {
438  		region = rb_entry(p, struct vm_region, vm_rb);
439  		last = rb_entry(lastp, struct vm_region, vm_rb);
440  
441  		BUG_ON(region->vm_end <= region->vm_start);
442  		BUG_ON(region->vm_top < region->vm_end);
443  		BUG_ON(region->vm_start < last->vm_top);
444  
445  		lastp = p;
446  	}
447  }
448  #else
449  static void validate_nommu_regions(void)
450  {
451  }
452  #endif
453  
454  /*
455   * add a region into the global tree
456   */
457  static void add_nommu_region(struct vm_region *region)
458  {
459  	struct vm_region *pregion;
460  	struct rb_node **p, *parent;
461  
462  	validate_nommu_regions();
463  
464  	parent = NULL;
465  	p = &nommu_region_tree.rb_node;
466  	while (*p) {
467  		parent = *p;
468  		pregion = rb_entry(parent, struct vm_region, vm_rb);
469  		if (region->vm_start < pregion->vm_start)
470  			p = &(*p)->rb_left;
471  		else if (region->vm_start > pregion->vm_start)
472  			p = &(*p)->rb_right;
473  		else if (pregion == region)
474  			return;
475  		else
476  			BUG();
477  	}
478  
479  	rb_link_node(&region->vm_rb, parent, p);
480  	rb_insert_color(&region->vm_rb, &nommu_region_tree);
481  
482  	validate_nommu_regions();
483  }
484  
485  /*
486   * delete a region from the global tree
487   */
488  static void delete_nommu_region(struct vm_region *region)
489  {
490  	BUG_ON(!nommu_region_tree.rb_node);
491  
492  	validate_nommu_regions();
493  	rb_erase(&region->vm_rb, &nommu_region_tree);
494  	validate_nommu_regions();
495  }
496  
497  /*
498   * free a contiguous series of pages
499   */
500  static void free_page_series(unsigned long from, unsigned long to)
501  {
502  	for (; from < to; from += PAGE_SIZE) {
503  		struct page *page = virt_to_page((void *)from);
504  
505  		atomic_long_dec(&mmap_pages_allocated);
506  		put_page(page);
507  	}
508  }
509  
510  /*
511   * release a reference to a region
512   * - the caller must hold the region semaphore for writing, which this releases
513   * - the region may not have been added to the tree yet, in which case vm_top
514   *   will equal vm_start
515   */
516  static void __put_nommu_region(struct vm_region *region)
517  	__releases(nommu_region_sem)
518  {
519  	BUG_ON(!nommu_region_tree.rb_node);
520  
521  	if (--region->vm_usage == 0) {
522  		if (region->vm_top > region->vm_start)
523  			delete_nommu_region(region);
524  		up_write(&nommu_region_sem);
525  
526  		if (region->vm_file)
527  			fput(region->vm_file);
528  
529  		/* IO memory and memory shared directly out of the pagecache
530  		 * from ramfs/tmpfs mustn't be released here */
531  		if (region->vm_flags & VM_MAPPED_COPY)
532  			free_page_series(region->vm_start, region->vm_top);
533  		kmem_cache_free(vm_region_jar, region);
534  	} else {
535  		up_write(&nommu_region_sem);
536  	}
537  }
538  
539  /*
540   * release a reference to a region
541   */
542  static void put_nommu_region(struct vm_region *region)
543  {
544  	down_write(&nommu_region_sem);
545  	__put_nommu_region(region);
546  }
547  
548  /*
549   * add a VMA into a process's mm_struct in the appropriate place in the list
550   * and tree and add to the address space's page tree also if not an anonymous
551   * page
552   * - should be called with mm->mmap_lock held writelocked
553   */
554  static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
555  {
556  	struct vm_area_struct *pvma, *prev;
557  	struct address_space *mapping;
558  	struct rb_node **p, *parent, *rb_prev;
559  
560  	BUG_ON(!vma->vm_region);
561  
562  	mm->map_count++;
563  	vma->vm_mm = mm;
564  
565  	/* add the VMA to the mapping */
566  	if (vma->vm_file) {
567  		mapping = vma->vm_file->f_mapping;
568  
569  		i_mmap_lock_write(mapping);
570  		flush_dcache_mmap_lock(mapping);
571  		vma_interval_tree_insert(vma, &mapping->i_mmap);
572  		flush_dcache_mmap_unlock(mapping);
573  		i_mmap_unlock_write(mapping);
574  	}
575  
576  	/* add the VMA to the tree */
577  	parent = rb_prev = NULL;
578  	p = &mm->mm_rb.rb_node;
579  	while (*p) {
580  		parent = *p;
581  		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
582  
583  		/* sort by: start addr, end addr, VMA struct addr in that order
584  		 * (the latter is necessary as we may get identical VMAs) */
585  		if (vma->vm_start < pvma->vm_start)
586  			p = &(*p)->rb_left;
587  		else if (vma->vm_start > pvma->vm_start) {
588  			rb_prev = parent;
589  			p = &(*p)->rb_right;
590  		} else if (vma->vm_end < pvma->vm_end)
591  			p = &(*p)->rb_left;
592  		else if (vma->vm_end > pvma->vm_end) {
593  			rb_prev = parent;
594  			p = &(*p)->rb_right;
595  		} else if (vma < pvma)
596  			p = &(*p)->rb_left;
597  		else if (vma > pvma) {
598  			rb_prev = parent;
599  			p = &(*p)->rb_right;
600  		} else
601  			BUG();
602  	}
603  
604  	rb_link_node(&vma->vm_rb, parent, p);
605  	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
606  
607  	/* add VMA to the VMA list also */
608  	prev = NULL;
609  	if (rb_prev)
610  		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
611  
612  	__vma_link_list(mm, vma, prev);
613  }
614  
615  /*
616   * delete a VMA from its owning mm_struct and address space
617   */
618  static void delete_vma_from_mm(struct vm_area_struct *vma)
619  {
620  	int i;
621  	struct address_space *mapping;
622  	struct mm_struct *mm = vma->vm_mm;
623  	struct task_struct *curr = current;
624  
625  	mm->map_count--;
626  	for (i = 0; i < VMACACHE_SIZE; i++) {
627  		/* if the vma is cached, invalidate the entire cache */
628  		if (curr->vmacache.vmas[i] == vma) {
629  			vmacache_invalidate(mm);
630  			break;
631  		}
632  	}
633  
634  	/* remove the VMA from the mapping */
635  	if (vma->vm_file) {
636  		mapping = vma->vm_file->f_mapping;
637  
638  		i_mmap_lock_write(mapping);
639  		flush_dcache_mmap_lock(mapping);
640  		vma_interval_tree_remove(vma, &mapping->i_mmap);
641  		flush_dcache_mmap_unlock(mapping);
642  		i_mmap_unlock_write(mapping);
643  	}
644  
645  	/* remove from the MM's tree and list */
646  	rb_erase(&vma->vm_rb, &mm->mm_rb);
647  
648  	__vma_unlink_list(mm, vma);
649  }
650  
651  /*
652   * destroy a VMA record
653   */
654  static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
655  {
656  	if (vma->vm_ops && vma->vm_ops->close)
657  		vma->vm_ops->close(vma);
658  	if (vma->vm_file)
659  		fput(vma->vm_file);
660  	put_nommu_region(vma->vm_region);
661  	vm_area_free(vma);
662  }
663  
664  /*
665   * look up the first VMA in which addr resides, NULL if none
666   * - should be called with mm->mmap_lock at least held readlocked
667   */
668  struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
669  {
670  	struct vm_area_struct *vma;
671  
672  	/* check the cache first */
673  	vma = vmacache_find(mm, addr);
674  	if (likely(vma))
675  		return vma;
676  
677  	/* trawl the list (there may be multiple mappings in which addr
678  	 * resides) */
679  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
680  		if (vma->vm_start > addr)
681  			return NULL;
682  		if (vma->vm_end > addr) {
683  			vmacache_update(addr, vma);
684  			return vma;
685  		}
686  	}
687  
688  	return NULL;
689  }
690  EXPORT_SYMBOL(find_vma);
691  
692  /*
693   * find a VMA
694   * - we don't extend stack VMAs under NOMMU conditions
695   */
696  struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
697  {
698  	return find_vma(mm, addr);
699  }
700  
701  /*
702   * expand a stack to a given address
703   * - not supported under NOMMU conditions
704   */
705  int expand_stack(struct vm_area_struct *vma, unsigned long address)
706  {
707  	return -ENOMEM;
708  }
709  
710  /*
711   * look up the first VMA exactly that exactly matches addr
712   * - should be called with mm->mmap_lock at least held readlocked
713   */
714  static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
715  					     unsigned long addr,
716  					     unsigned long len)
717  {
718  	struct vm_area_struct *vma;
719  	unsigned long end = addr + len;
720  
721  	/* check the cache first */
722  	vma = vmacache_find_exact(mm, addr, end);
723  	if (vma)
724  		return vma;
725  
726  	/* trawl the list (there may be multiple mappings in which addr
727  	 * resides) */
728  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
729  		if (vma->vm_start < addr)
730  			continue;
731  		if (vma->vm_start > addr)
732  			return NULL;
733  		if (vma->vm_end == end) {
734  			vmacache_update(addr, vma);
735  			return vma;
736  		}
737  	}
738  
739  	return NULL;
740  }
741  
742  /*
743   * determine whether a mapping should be permitted and, if so, what sort of
744   * mapping we're capable of supporting
745   */
746  static int validate_mmap_request(struct file *file,
747  				 unsigned long addr,
748  				 unsigned long len,
749  				 unsigned long prot,
750  				 unsigned long flags,
751  				 unsigned long pgoff,
752  				 unsigned long *_capabilities)
753  {
754  	unsigned long capabilities, rlen;
755  	int ret;
756  
757  	/* do the simple checks first */
758  	if (flags & MAP_FIXED)
759  		return -EINVAL;
760  
761  	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
762  	    (flags & MAP_TYPE) != MAP_SHARED)
763  		return -EINVAL;
764  
765  	if (!len)
766  		return -EINVAL;
767  
768  	/* Careful about overflows.. */
769  	rlen = PAGE_ALIGN(len);
770  	if (!rlen || rlen > TASK_SIZE)
771  		return -ENOMEM;
772  
773  	/* offset overflow? */
774  	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
775  		return -EOVERFLOW;
776  
777  	if (file) {
778  		/* files must support mmap */
779  		if (!file->f_op->mmap)
780  			return -ENODEV;
781  
782  		/* work out if what we've got could possibly be shared
783  		 * - we support chardevs that provide their own "memory"
784  		 * - we support files/blockdevs that are memory backed
785  		 */
786  		if (file->f_op->mmap_capabilities) {
787  			capabilities = file->f_op->mmap_capabilities(file);
788  		} else {
789  			/* no explicit capabilities set, so assume some
790  			 * defaults */
791  			switch (file_inode(file)->i_mode & S_IFMT) {
792  			case S_IFREG:
793  			case S_IFBLK:
794  				capabilities = NOMMU_MAP_COPY;
795  				break;
796  
797  			case S_IFCHR:
798  				capabilities =
799  					NOMMU_MAP_DIRECT |
800  					NOMMU_MAP_READ |
801  					NOMMU_MAP_WRITE;
802  				break;
803  
804  			default:
805  				return -EINVAL;
806  			}
807  		}
808  
809  		/* eliminate any capabilities that we can't support on this
810  		 * device */
811  		if (!file->f_op->get_unmapped_area)
812  			capabilities &= ~NOMMU_MAP_DIRECT;
813  		if (!(file->f_mode & FMODE_CAN_READ))
814  			capabilities &= ~NOMMU_MAP_COPY;
815  
816  		/* The file shall have been opened with read permission. */
817  		if (!(file->f_mode & FMODE_READ))
818  			return -EACCES;
819  
820  		if (flags & MAP_SHARED) {
821  			/* do checks for writing, appending and locking */
822  			if ((prot & PROT_WRITE) &&
823  			    !(file->f_mode & FMODE_WRITE))
824  				return -EACCES;
825  
826  			if (IS_APPEND(file_inode(file)) &&
827  			    (file->f_mode & FMODE_WRITE))
828  				return -EACCES;
829  
830  			if (!(capabilities & NOMMU_MAP_DIRECT))
831  				return -ENODEV;
832  
833  			/* we mustn't privatise shared mappings */
834  			capabilities &= ~NOMMU_MAP_COPY;
835  		} else {
836  			/* we're going to read the file into private memory we
837  			 * allocate */
838  			if (!(capabilities & NOMMU_MAP_COPY))
839  				return -ENODEV;
840  
841  			/* we don't permit a private writable mapping to be
842  			 * shared with the backing device */
843  			if (prot & PROT_WRITE)
844  				capabilities &= ~NOMMU_MAP_DIRECT;
845  		}
846  
847  		if (capabilities & NOMMU_MAP_DIRECT) {
848  			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
849  			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
850  			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
851  			    ) {
852  				capabilities &= ~NOMMU_MAP_DIRECT;
853  				if (flags & MAP_SHARED) {
854  					pr_warn("MAP_SHARED not completely supported on !MMU\n");
855  					return -EINVAL;
856  				}
857  			}
858  		}
859  
860  		/* handle executable mappings and implied executable
861  		 * mappings */
862  		if (path_noexec(&file->f_path)) {
863  			if (prot & PROT_EXEC)
864  				return -EPERM;
865  		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
866  			/* handle implication of PROT_EXEC by PROT_READ */
867  			if (current->personality & READ_IMPLIES_EXEC) {
868  				if (capabilities & NOMMU_MAP_EXEC)
869  					prot |= PROT_EXEC;
870  			}
871  		} else if ((prot & PROT_READ) &&
872  			 (prot & PROT_EXEC) &&
873  			 !(capabilities & NOMMU_MAP_EXEC)
874  			 ) {
875  			/* backing file is not executable, try to copy */
876  			capabilities &= ~NOMMU_MAP_DIRECT;
877  		}
878  	} else {
879  		/* anonymous mappings are always memory backed and can be
880  		 * privately mapped
881  		 */
882  		capabilities = NOMMU_MAP_COPY;
883  
884  		/* handle PROT_EXEC implication by PROT_READ */
885  		if ((prot & PROT_READ) &&
886  		    (current->personality & READ_IMPLIES_EXEC))
887  			prot |= PROT_EXEC;
888  	}
889  
890  	/* allow the security API to have its say */
891  	ret = security_mmap_addr(addr);
892  	if (ret < 0)
893  		return ret;
894  
895  	/* looks okay */
896  	*_capabilities = capabilities;
897  	return 0;
898  }
899  
900  /*
901   * we've determined that we can make the mapping, now translate what we
902   * now know into VMA flags
903   */
904  static unsigned long determine_vm_flags(struct file *file,
905  					unsigned long prot,
906  					unsigned long flags,
907  					unsigned long capabilities)
908  {
909  	unsigned long vm_flags;
910  
911  	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
912  	/* vm_flags |= mm->def_flags; */
913  
914  	if (!(capabilities & NOMMU_MAP_DIRECT)) {
915  		/* attempt to share read-only copies of mapped file chunks */
916  		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
917  		if (file && !(prot & PROT_WRITE))
918  			vm_flags |= VM_MAYSHARE;
919  	} else {
920  		/* overlay a shareable mapping on the backing device or inode
921  		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
922  		 * romfs/cramfs */
923  		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
924  		if (flags & MAP_SHARED)
925  			vm_flags |= VM_SHARED;
926  	}
927  
928  	/* refuse to let anyone share private mappings with this process if
929  	 * it's being traced - otherwise breakpoints set in it may interfere
930  	 * with another untraced process
931  	 */
932  	if ((flags & MAP_PRIVATE) && current->ptrace)
933  		vm_flags &= ~VM_MAYSHARE;
934  
935  	return vm_flags;
936  }
937  
938  /*
939   * set up a shared mapping on a file (the driver or filesystem provides and
940   * pins the storage)
941   */
942  static int do_mmap_shared_file(struct vm_area_struct *vma)
943  {
944  	int ret;
945  
946  	ret = call_mmap(vma->vm_file, vma);
947  	if (ret == 0) {
948  		vma->vm_region->vm_top = vma->vm_region->vm_end;
949  		return 0;
950  	}
951  	if (ret != -ENOSYS)
952  		return ret;
953  
954  	/* getting -ENOSYS indicates that direct mmap isn't possible (as
955  	 * opposed to tried but failed) so we can only give a suitable error as
956  	 * it's not possible to make a private copy if MAP_SHARED was given */
957  	return -ENODEV;
958  }
959  
960  /*
961   * set up a private mapping or an anonymous shared mapping
962   */
963  static int do_mmap_private(struct vm_area_struct *vma,
964  			   struct vm_region *region,
965  			   unsigned long len,
966  			   unsigned long capabilities)
967  {
968  	unsigned long total, point;
969  	void *base;
970  	int ret, order;
971  
972  	/* invoke the file's mapping function so that it can keep track of
973  	 * shared mappings on devices or memory
974  	 * - VM_MAYSHARE will be set if it may attempt to share
975  	 */
976  	if (capabilities & NOMMU_MAP_DIRECT) {
977  		ret = call_mmap(vma->vm_file, vma);
978  		if (ret == 0) {
979  			/* shouldn't return success if we're not sharing */
980  			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
981  			vma->vm_region->vm_top = vma->vm_region->vm_end;
982  			return 0;
983  		}
984  		if (ret != -ENOSYS)
985  			return ret;
986  
987  		/* getting an ENOSYS error indicates that direct mmap isn't
988  		 * possible (as opposed to tried but failed) so we'll try to
989  		 * make a private copy of the data and map that instead */
990  	}
991  
992  
993  	/* allocate some memory to hold the mapping
994  	 * - note that this may not return a page-aligned address if the object
995  	 *   we're allocating is smaller than a page
996  	 */
997  	order = get_order(len);
998  	total = 1 << order;
999  	point = len >> PAGE_SHIFT;
1000  
1001  	/* we don't want to allocate a power-of-2 sized page set */
1002  	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1003  		total = point;
1004  
1005  	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1006  	if (!base)
1007  		goto enomem;
1008  
1009  	atomic_long_add(total, &mmap_pages_allocated);
1010  
1011  	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1012  	region->vm_start = (unsigned long) base;
1013  	region->vm_end   = region->vm_start + len;
1014  	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1015  
1016  	vma->vm_start = region->vm_start;
1017  	vma->vm_end   = region->vm_start + len;
1018  
1019  	if (vma->vm_file) {
1020  		/* read the contents of a file into the copy */
1021  		loff_t fpos;
1022  
1023  		fpos = vma->vm_pgoff;
1024  		fpos <<= PAGE_SHIFT;
1025  
1026  		ret = kernel_read(vma->vm_file, base, len, &fpos);
1027  		if (ret < 0)
1028  			goto error_free;
1029  
1030  		/* clear the last little bit */
1031  		if (ret < len)
1032  			memset(base + ret, 0, len - ret);
1033  
1034  	} else {
1035  		vma_set_anonymous(vma);
1036  	}
1037  
1038  	return 0;
1039  
1040  error_free:
1041  	free_page_series(region->vm_start, region->vm_top);
1042  	region->vm_start = vma->vm_start = 0;
1043  	region->vm_end   = vma->vm_end = 0;
1044  	region->vm_top   = 0;
1045  	return ret;
1046  
1047  enomem:
1048  	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1049  	       len, current->pid, current->comm);
1050  	show_free_areas(0, NULL);
1051  	return -ENOMEM;
1052  }
1053  
1054  /*
1055   * handle mapping creation for uClinux
1056   */
1057  unsigned long do_mmap(struct file *file,
1058  			unsigned long addr,
1059  			unsigned long len,
1060  			unsigned long prot,
1061  			unsigned long flags,
1062  			unsigned long pgoff,
1063  			unsigned long *populate,
1064  			struct list_head *uf)
1065  {
1066  	struct vm_area_struct *vma;
1067  	struct vm_region *region;
1068  	struct rb_node *rb;
1069  	vm_flags_t vm_flags;
1070  	unsigned long capabilities, result;
1071  	int ret;
1072  
1073  	*populate = 0;
1074  
1075  	/* decide whether we should attempt the mapping, and if so what sort of
1076  	 * mapping */
1077  	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1078  				    &capabilities);
1079  	if (ret < 0)
1080  		return ret;
1081  
1082  	/* we ignore the address hint */
1083  	addr = 0;
1084  	len = PAGE_ALIGN(len);
1085  
1086  	/* we've determined that we can make the mapping, now translate what we
1087  	 * now know into VMA flags */
1088  	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1089  
1090  	/* we're going to need to record the mapping */
1091  	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1092  	if (!region)
1093  		goto error_getting_region;
1094  
1095  	vma = vm_area_alloc(current->mm);
1096  	if (!vma)
1097  		goto error_getting_vma;
1098  
1099  	region->vm_usage = 1;
1100  	region->vm_flags = vm_flags;
1101  	region->vm_pgoff = pgoff;
1102  
1103  	vma->vm_flags = vm_flags;
1104  	vma->vm_pgoff = pgoff;
1105  
1106  	if (file) {
1107  		region->vm_file = get_file(file);
1108  		vma->vm_file = get_file(file);
1109  	}
1110  
1111  	down_write(&nommu_region_sem);
1112  
1113  	/* if we want to share, we need to check for regions created by other
1114  	 * mmap() calls that overlap with our proposed mapping
1115  	 * - we can only share with a superset match on most regular files
1116  	 * - shared mappings on character devices and memory backed files are
1117  	 *   permitted to overlap inexactly as far as we are concerned for in
1118  	 *   these cases, sharing is handled in the driver or filesystem rather
1119  	 *   than here
1120  	 */
1121  	if (vm_flags & VM_MAYSHARE) {
1122  		struct vm_region *pregion;
1123  		unsigned long pglen, rpglen, pgend, rpgend, start;
1124  
1125  		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1126  		pgend = pgoff + pglen;
1127  
1128  		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1129  			pregion = rb_entry(rb, struct vm_region, vm_rb);
1130  
1131  			if (!(pregion->vm_flags & VM_MAYSHARE))
1132  				continue;
1133  
1134  			/* search for overlapping mappings on the same file */
1135  			if (file_inode(pregion->vm_file) !=
1136  			    file_inode(file))
1137  				continue;
1138  
1139  			if (pregion->vm_pgoff >= pgend)
1140  				continue;
1141  
1142  			rpglen = pregion->vm_end - pregion->vm_start;
1143  			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1144  			rpgend = pregion->vm_pgoff + rpglen;
1145  			if (pgoff >= rpgend)
1146  				continue;
1147  
1148  			/* handle inexactly overlapping matches between
1149  			 * mappings */
1150  			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1151  			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1152  				/* new mapping is not a subset of the region */
1153  				if (!(capabilities & NOMMU_MAP_DIRECT))
1154  					goto sharing_violation;
1155  				continue;
1156  			}
1157  
1158  			/* we've found a region we can share */
1159  			pregion->vm_usage++;
1160  			vma->vm_region = pregion;
1161  			start = pregion->vm_start;
1162  			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1163  			vma->vm_start = start;
1164  			vma->vm_end = start + len;
1165  
1166  			if (pregion->vm_flags & VM_MAPPED_COPY)
1167  				vma->vm_flags |= VM_MAPPED_COPY;
1168  			else {
1169  				ret = do_mmap_shared_file(vma);
1170  				if (ret < 0) {
1171  					vma->vm_region = NULL;
1172  					vma->vm_start = 0;
1173  					vma->vm_end = 0;
1174  					pregion->vm_usage--;
1175  					pregion = NULL;
1176  					goto error_just_free;
1177  				}
1178  			}
1179  			fput(region->vm_file);
1180  			kmem_cache_free(vm_region_jar, region);
1181  			region = pregion;
1182  			result = start;
1183  			goto share;
1184  		}
1185  
1186  		/* obtain the address at which to make a shared mapping
1187  		 * - this is the hook for quasi-memory character devices to
1188  		 *   tell us the location of a shared mapping
1189  		 */
1190  		if (capabilities & NOMMU_MAP_DIRECT) {
1191  			addr = file->f_op->get_unmapped_area(file, addr, len,
1192  							     pgoff, flags);
1193  			if (IS_ERR_VALUE(addr)) {
1194  				ret = addr;
1195  				if (ret != -ENOSYS)
1196  					goto error_just_free;
1197  
1198  				/* the driver refused to tell us where to site
1199  				 * the mapping so we'll have to attempt to copy
1200  				 * it */
1201  				ret = -ENODEV;
1202  				if (!(capabilities & NOMMU_MAP_COPY))
1203  					goto error_just_free;
1204  
1205  				capabilities &= ~NOMMU_MAP_DIRECT;
1206  			} else {
1207  				vma->vm_start = region->vm_start = addr;
1208  				vma->vm_end = region->vm_end = addr + len;
1209  			}
1210  		}
1211  	}
1212  
1213  	vma->vm_region = region;
1214  
1215  	/* set up the mapping
1216  	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1217  	 */
1218  	if (file && vma->vm_flags & VM_SHARED)
1219  		ret = do_mmap_shared_file(vma);
1220  	else
1221  		ret = do_mmap_private(vma, region, len, capabilities);
1222  	if (ret < 0)
1223  		goto error_just_free;
1224  	add_nommu_region(region);
1225  
1226  	/* clear anonymous mappings that don't ask for uninitialized data */
1227  	if (!vma->vm_file &&
1228  	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1229  	     !(flags & MAP_UNINITIALIZED)))
1230  		memset((void *)region->vm_start, 0,
1231  		       region->vm_end - region->vm_start);
1232  
1233  	/* okay... we have a mapping; now we have to register it */
1234  	result = vma->vm_start;
1235  
1236  	current->mm->total_vm += len >> PAGE_SHIFT;
1237  
1238  share:
1239  	add_vma_to_mm(current->mm, vma);
1240  
1241  	/* we flush the region from the icache only when the first executable
1242  	 * mapping of it is made  */
1243  	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1244  		flush_icache_user_range(region->vm_start, region->vm_end);
1245  		region->vm_icache_flushed = true;
1246  	}
1247  
1248  	up_write(&nommu_region_sem);
1249  
1250  	return result;
1251  
1252  error_just_free:
1253  	up_write(&nommu_region_sem);
1254  error:
1255  	if (region->vm_file)
1256  		fput(region->vm_file);
1257  	kmem_cache_free(vm_region_jar, region);
1258  	if (vma->vm_file)
1259  		fput(vma->vm_file);
1260  	vm_area_free(vma);
1261  	return ret;
1262  
1263  sharing_violation:
1264  	up_write(&nommu_region_sem);
1265  	pr_warn("Attempt to share mismatched mappings\n");
1266  	ret = -EINVAL;
1267  	goto error;
1268  
1269  error_getting_vma:
1270  	kmem_cache_free(vm_region_jar, region);
1271  	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1272  			len, current->pid);
1273  	show_free_areas(0, NULL);
1274  	return -ENOMEM;
1275  
1276  error_getting_region:
1277  	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1278  			len, current->pid);
1279  	show_free_areas(0, NULL);
1280  	return -ENOMEM;
1281  }
1282  
1283  unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1284  			      unsigned long prot, unsigned long flags,
1285  			      unsigned long fd, unsigned long pgoff)
1286  {
1287  	struct file *file = NULL;
1288  	unsigned long retval = -EBADF;
1289  
1290  	audit_mmap_fd(fd, flags);
1291  	if (!(flags & MAP_ANONYMOUS)) {
1292  		file = fget(fd);
1293  		if (!file)
1294  			goto out;
1295  	}
1296  
1297  	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1298  
1299  	if (file)
1300  		fput(file);
1301  out:
1302  	return retval;
1303  }
1304  
1305  SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1306  		unsigned long, prot, unsigned long, flags,
1307  		unsigned long, fd, unsigned long, pgoff)
1308  {
1309  	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1310  }
1311  
1312  #ifdef __ARCH_WANT_SYS_OLD_MMAP
1313  struct mmap_arg_struct {
1314  	unsigned long addr;
1315  	unsigned long len;
1316  	unsigned long prot;
1317  	unsigned long flags;
1318  	unsigned long fd;
1319  	unsigned long offset;
1320  };
1321  
1322  SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1323  {
1324  	struct mmap_arg_struct a;
1325  
1326  	if (copy_from_user(&a, arg, sizeof(a)))
1327  		return -EFAULT;
1328  	if (offset_in_page(a.offset))
1329  		return -EINVAL;
1330  
1331  	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1332  			       a.offset >> PAGE_SHIFT);
1333  }
1334  #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1335  
1336  /*
1337   * split a vma into two pieces at address 'addr', a new vma is allocated either
1338   * for the first part or the tail.
1339   */
1340  int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1341  	      unsigned long addr, int new_below)
1342  {
1343  	struct vm_area_struct *new;
1344  	struct vm_region *region;
1345  	unsigned long npages;
1346  
1347  	/* we're only permitted to split anonymous regions (these should have
1348  	 * only a single usage on the region) */
1349  	if (vma->vm_file)
1350  		return -ENOMEM;
1351  
1352  	if (mm->map_count >= sysctl_max_map_count)
1353  		return -ENOMEM;
1354  
1355  	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1356  	if (!region)
1357  		return -ENOMEM;
1358  
1359  	new = vm_area_dup(vma);
1360  	if (!new) {
1361  		kmem_cache_free(vm_region_jar, region);
1362  		return -ENOMEM;
1363  	}
1364  
1365  	/* most fields are the same, copy all, and then fixup */
1366  	*region = *vma->vm_region;
1367  	new->vm_region = region;
1368  
1369  	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1370  
1371  	if (new_below) {
1372  		region->vm_top = region->vm_end = new->vm_end = addr;
1373  	} else {
1374  		region->vm_start = new->vm_start = addr;
1375  		region->vm_pgoff = new->vm_pgoff += npages;
1376  	}
1377  
1378  	if (new->vm_ops && new->vm_ops->open)
1379  		new->vm_ops->open(new);
1380  
1381  	delete_vma_from_mm(vma);
1382  	down_write(&nommu_region_sem);
1383  	delete_nommu_region(vma->vm_region);
1384  	if (new_below) {
1385  		vma->vm_region->vm_start = vma->vm_start = addr;
1386  		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1387  	} else {
1388  		vma->vm_region->vm_end = vma->vm_end = addr;
1389  		vma->vm_region->vm_top = addr;
1390  	}
1391  	add_nommu_region(vma->vm_region);
1392  	add_nommu_region(new->vm_region);
1393  	up_write(&nommu_region_sem);
1394  	add_vma_to_mm(mm, vma);
1395  	add_vma_to_mm(mm, new);
1396  	return 0;
1397  }
1398  
1399  /*
1400   * shrink a VMA by removing the specified chunk from either the beginning or
1401   * the end
1402   */
1403  static int shrink_vma(struct mm_struct *mm,
1404  		      struct vm_area_struct *vma,
1405  		      unsigned long from, unsigned long to)
1406  {
1407  	struct vm_region *region;
1408  
1409  	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1410  	 * and list */
1411  	delete_vma_from_mm(vma);
1412  	if (from > vma->vm_start)
1413  		vma->vm_end = from;
1414  	else
1415  		vma->vm_start = to;
1416  	add_vma_to_mm(mm, vma);
1417  
1418  	/* cut the backing region down to size */
1419  	region = vma->vm_region;
1420  	BUG_ON(region->vm_usage != 1);
1421  
1422  	down_write(&nommu_region_sem);
1423  	delete_nommu_region(region);
1424  	if (from > region->vm_start) {
1425  		to = region->vm_top;
1426  		region->vm_top = region->vm_end = from;
1427  	} else {
1428  		region->vm_start = to;
1429  	}
1430  	add_nommu_region(region);
1431  	up_write(&nommu_region_sem);
1432  
1433  	free_page_series(from, to);
1434  	return 0;
1435  }
1436  
1437  /*
1438   * release a mapping
1439   * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1440   *   VMA, though it need not cover the whole VMA
1441   */
1442  int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1443  {
1444  	struct vm_area_struct *vma;
1445  	unsigned long end;
1446  	int ret;
1447  
1448  	len = PAGE_ALIGN(len);
1449  	if (len == 0)
1450  		return -EINVAL;
1451  
1452  	end = start + len;
1453  
1454  	/* find the first potentially overlapping VMA */
1455  	vma = find_vma(mm, start);
1456  	if (!vma) {
1457  		static int limit;
1458  		if (limit < 5) {
1459  			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1460  					current->pid, current->comm,
1461  					start, start + len - 1);
1462  			limit++;
1463  		}
1464  		return -EINVAL;
1465  	}
1466  
1467  	/* we're allowed to split an anonymous VMA but not a file-backed one */
1468  	if (vma->vm_file) {
1469  		do {
1470  			if (start > vma->vm_start)
1471  				return -EINVAL;
1472  			if (end == vma->vm_end)
1473  				goto erase_whole_vma;
1474  			vma = vma->vm_next;
1475  		} while (vma);
1476  		return -EINVAL;
1477  	} else {
1478  		/* the chunk must be a subset of the VMA found */
1479  		if (start == vma->vm_start && end == vma->vm_end)
1480  			goto erase_whole_vma;
1481  		if (start < vma->vm_start || end > vma->vm_end)
1482  			return -EINVAL;
1483  		if (offset_in_page(start))
1484  			return -EINVAL;
1485  		if (end != vma->vm_end && offset_in_page(end))
1486  			return -EINVAL;
1487  		if (start != vma->vm_start && end != vma->vm_end) {
1488  			ret = split_vma(mm, vma, start, 1);
1489  			if (ret < 0)
1490  				return ret;
1491  		}
1492  		return shrink_vma(mm, vma, start, end);
1493  	}
1494  
1495  erase_whole_vma:
1496  	delete_vma_from_mm(vma);
1497  	delete_vma(mm, vma);
1498  	return 0;
1499  }
1500  
1501  int vm_munmap(unsigned long addr, size_t len)
1502  {
1503  	struct mm_struct *mm = current->mm;
1504  	int ret;
1505  
1506  	mmap_write_lock(mm);
1507  	ret = do_munmap(mm, addr, len, NULL);
1508  	mmap_write_unlock(mm);
1509  	return ret;
1510  }
1511  EXPORT_SYMBOL(vm_munmap);
1512  
1513  SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1514  {
1515  	return vm_munmap(addr, len);
1516  }
1517  
1518  /*
1519   * release all the mappings made in a process's VM space
1520   */
1521  void exit_mmap(struct mm_struct *mm)
1522  {
1523  	struct vm_area_struct *vma;
1524  
1525  	if (!mm)
1526  		return;
1527  
1528  	mm->total_vm = 0;
1529  
1530  	while ((vma = mm->mmap)) {
1531  		mm->mmap = vma->vm_next;
1532  		delete_vma_from_mm(vma);
1533  		delete_vma(mm, vma);
1534  		cond_resched();
1535  	}
1536  }
1537  
1538  int vm_brk(unsigned long addr, unsigned long len)
1539  {
1540  	return -ENOMEM;
1541  }
1542  
1543  /*
1544   * expand (or shrink) an existing mapping, potentially moving it at the same
1545   * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1546   *
1547   * under NOMMU conditions, we only permit changing a mapping's size, and only
1548   * as long as it stays within the region allocated by do_mmap_private() and the
1549   * block is not shareable
1550   *
1551   * MREMAP_FIXED is not supported under NOMMU conditions
1552   */
1553  static unsigned long do_mremap(unsigned long addr,
1554  			unsigned long old_len, unsigned long new_len,
1555  			unsigned long flags, unsigned long new_addr)
1556  {
1557  	struct vm_area_struct *vma;
1558  
1559  	/* insanity checks first */
1560  	old_len = PAGE_ALIGN(old_len);
1561  	new_len = PAGE_ALIGN(new_len);
1562  	if (old_len == 0 || new_len == 0)
1563  		return (unsigned long) -EINVAL;
1564  
1565  	if (offset_in_page(addr))
1566  		return -EINVAL;
1567  
1568  	if (flags & MREMAP_FIXED && new_addr != addr)
1569  		return (unsigned long) -EINVAL;
1570  
1571  	vma = find_vma_exact(current->mm, addr, old_len);
1572  	if (!vma)
1573  		return (unsigned long) -EINVAL;
1574  
1575  	if (vma->vm_end != vma->vm_start + old_len)
1576  		return (unsigned long) -EFAULT;
1577  
1578  	if (vma->vm_flags & VM_MAYSHARE)
1579  		return (unsigned long) -EPERM;
1580  
1581  	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1582  		return (unsigned long) -ENOMEM;
1583  
1584  	/* all checks complete - do it */
1585  	vma->vm_end = vma->vm_start + new_len;
1586  	return vma->vm_start;
1587  }
1588  
1589  SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1590  		unsigned long, new_len, unsigned long, flags,
1591  		unsigned long, new_addr)
1592  {
1593  	unsigned long ret;
1594  
1595  	mmap_write_lock(current->mm);
1596  	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1597  	mmap_write_unlock(current->mm);
1598  	return ret;
1599  }
1600  
1601  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1602  			 unsigned int foll_flags)
1603  {
1604  	return NULL;
1605  }
1606  
1607  int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1608  		unsigned long pfn, unsigned long size, pgprot_t prot)
1609  {
1610  	if (addr != (pfn << PAGE_SHIFT))
1611  		return -EINVAL;
1612  
1613  	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1614  	return 0;
1615  }
1616  EXPORT_SYMBOL(remap_pfn_range);
1617  
1618  int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1619  {
1620  	unsigned long pfn = start >> PAGE_SHIFT;
1621  	unsigned long vm_len = vma->vm_end - vma->vm_start;
1622  
1623  	pfn += vma->vm_pgoff;
1624  	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1625  }
1626  EXPORT_SYMBOL(vm_iomap_memory);
1627  
1628  int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1629  			unsigned long pgoff)
1630  {
1631  	unsigned int size = vma->vm_end - vma->vm_start;
1632  
1633  	if (!(vma->vm_flags & VM_USERMAP))
1634  		return -EINVAL;
1635  
1636  	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1637  	vma->vm_end = vma->vm_start + size;
1638  
1639  	return 0;
1640  }
1641  EXPORT_SYMBOL(remap_vmalloc_range);
1642  
1643  vm_fault_t filemap_fault(struct vm_fault *vmf)
1644  {
1645  	BUG();
1646  	return 0;
1647  }
1648  EXPORT_SYMBOL(filemap_fault);
1649  
1650  vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1651  		pgoff_t start_pgoff, pgoff_t end_pgoff)
1652  {
1653  	BUG();
1654  	return 0;
1655  }
1656  EXPORT_SYMBOL(filemap_map_pages);
1657  
1658  int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1659  		       int len, unsigned int gup_flags)
1660  {
1661  	struct vm_area_struct *vma;
1662  	int write = gup_flags & FOLL_WRITE;
1663  
1664  	if (mmap_read_lock_killable(mm))
1665  		return 0;
1666  
1667  	/* the access must start within one of the target process's mappings */
1668  	vma = find_vma(mm, addr);
1669  	if (vma) {
1670  		/* don't overrun this mapping */
1671  		if (addr + len >= vma->vm_end)
1672  			len = vma->vm_end - addr;
1673  
1674  		/* only read or write mappings where it is permitted */
1675  		if (write && vma->vm_flags & VM_MAYWRITE)
1676  			copy_to_user_page(vma, NULL, addr,
1677  					 (void *) addr, buf, len);
1678  		else if (!write && vma->vm_flags & VM_MAYREAD)
1679  			copy_from_user_page(vma, NULL, addr,
1680  					    buf, (void *) addr, len);
1681  		else
1682  			len = 0;
1683  	} else {
1684  		len = 0;
1685  	}
1686  
1687  	mmap_read_unlock(mm);
1688  
1689  	return len;
1690  }
1691  
1692  /**
1693   * access_remote_vm - access another process' address space
1694   * @mm:		the mm_struct of the target address space
1695   * @addr:	start address to access
1696   * @buf:	source or destination buffer
1697   * @len:	number of bytes to transfer
1698   * @gup_flags:	flags modifying lookup behaviour
1699   *
1700   * The caller must hold a reference on @mm.
1701   */
1702  int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1703  		void *buf, int len, unsigned int gup_flags)
1704  {
1705  	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1706  }
1707  
1708  /*
1709   * Access another process' address space.
1710   * - source/target buffer must be kernel space
1711   */
1712  int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1713  		unsigned int gup_flags)
1714  {
1715  	struct mm_struct *mm;
1716  
1717  	if (addr + len < addr)
1718  		return 0;
1719  
1720  	mm = get_task_mm(tsk);
1721  	if (!mm)
1722  		return 0;
1723  
1724  	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1725  
1726  	mmput(mm);
1727  	return len;
1728  }
1729  EXPORT_SYMBOL_GPL(access_process_vm);
1730  
1731  /**
1732   * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1733   * @inode: The inode to check
1734   * @size: The current filesize of the inode
1735   * @newsize: The proposed filesize of the inode
1736   *
1737   * Check the shared mappings on an inode on behalf of a shrinking truncate to
1738   * make sure that any outstanding VMAs aren't broken and then shrink the
1739   * vm_regions that extend beyond so that do_mmap() doesn't
1740   * automatically grant mappings that are too large.
1741   */
1742  int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1743  				size_t newsize)
1744  {
1745  	struct vm_area_struct *vma;
1746  	struct vm_region *region;
1747  	pgoff_t low, high;
1748  	size_t r_size, r_top;
1749  
1750  	low = newsize >> PAGE_SHIFT;
1751  	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1752  
1753  	down_write(&nommu_region_sem);
1754  	i_mmap_lock_read(inode->i_mapping);
1755  
1756  	/* search for VMAs that fall within the dead zone */
1757  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1758  		/* found one - only interested if it's shared out of the page
1759  		 * cache */
1760  		if (vma->vm_flags & VM_SHARED) {
1761  			i_mmap_unlock_read(inode->i_mapping);
1762  			up_write(&nommu_region_sem);
1763  			return -ETXTBSY; /* not quite true, but near enough */
1764  		}
1765  	}
1766  
1767  	/* reduce any regions that overlap the dead zone - if in existence,
1768  	 * these will be pointed to by VMAs that don't overlap the dead zone
1769  	 *
1770  	 * we don't check for any regions that start beyond the EOF as there
1771  	 * shouldn't be any
1772  	 */
1773  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1774  		if (!(vma->vm_flags & VM_SHARED))
1775  			continue;
1776  
1777  		region = vma->vm_region;
1778  		r_size = region->vm_top - region->vm_start;
1779  		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1780  
1781  		if (r_top > newsize) {
1782  			region->vm_top -= r_top - newsize;
1783  			if (region->vm_end > region->vm_top)
1784  				region->vm_end = region->vm_top;
1785  		}
1786  	}
1787  
1788  	i_mmap_unlock_read(inode->i_mapping);
1789  	up_write(&nommu_region_sem);
1790  	return 0;
1791  }
1792  
1793  /*
1794   * Initialise sysctl_user_reserve_kbytes.
1795   *
1796   * This is intended to prevent a user from starting a single memory hogging
1797   * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1798   * mode.
1799   *
1800   * The default value is min(3% of free memory, 128MB)
1801   * 128MB is enough to recover with sshd/login, bash, and top/kill.
1802   */
1803  static int __meminit init_user_reserve(void)
1804  {
1805  	unsigned long free_kbytes;
1806  
1807  	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1808  
1809  	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1810  	return 0;
1811  }
1812  subsys_initcall(init_user_reserve);
1813  
1814  /*
1815   * Initialise sysctl_admin_reserve_kbytes.
1816   *
1817   * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1818   * to log in and kill a memory hogging process.
1819   *
1820   * Systems with more than 256MB will reserve 8MB, enough to recover
1821   * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1822   * only reserve 3% of free pages by default.
1823   */
1824  static int __meminit init_admin_reserve(void)
1825  {
1826  	unsigned long free_kbytes;
1827  
1828  	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1829  
1830  	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1831  	return 0;
1832  }
1833  subsys_initcall(init_admin_reserve);
1834