1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include "internal.h" 37 38 static inline __attribute__((format(printf, 1, 2))) 39 void no_printk(const char *fmt, ...) 40 { 41 } 42 43 #if 0 44 #define kenter(FMT, ...) \ 45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 46 #define kleave(FMT, ...) \ 47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 48 #define kdebug(FMT, ...) \ 49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 50 #else 51 #define kenter(FMT, ...) \ 52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 53 #define kleave(FMT, ...) \ 54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 55 #define kdebug(FMT, ...) \ 56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 57 #endif 58 59 #include "internal.h" 60 61 void *high_memory; 62 struct page *mem_map; 63 unsigned long max_mapnr; 64 unsigned long num_physpages; 65 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0); 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 69 int sysctl_nr_trim_pages = 1; /* page trimming behaviour */ 70 int heap_stack_gap = 0; 71 72 atomic_long_t mmap_pages_allocated; 73 74 EXPORT_SYMBOL(mem_map); 75 EXPORT_SYMBOL(num_physpages); 76 77 /* list of mapped, potentially shareable regions */ 78 static struct kmem_cache *vm_region_jar; 79 struct rb_root nommu_region_tree = RB_ROOT; 80 DECLARE_RWSEM(nommu_region_sem); 81 82 struct vm_operations_struct generic_file_vm_ops = { 83 }; 84 85 /* 86 * Handle all mappings that got truncated by a "truncate()" 87 * system call. 88 * 89 * NOTE! We have to be ready to update the memory sharing 90 * between the file and the memory map for a potential last 91 * incomplete page. Ugly, but necessary. 92 */ 93 int vmtruncate(struct inode *inode, loff_t offset) 94 { 95 struct address_space *mapping = inode->i_mapping; 96 unsigned long limit; 97 98 if (inode->i_size < offset) 99 goto do_expand; 100 i_size_write(inode, offset); 101 102 truncate_inode_pages(mapping, offset); 103 goto out_truncate; 104 105 do_expand: 106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 107 if (limit != RLIM_INFINITY && offset > limit) 108 goto out_sig; 109 if (offset > inode->i_sb->s_maxbytes) 110 goto out; 111 i_size_write(inode, offset); 112 113 out_truncate: 114 if (inode->i_op->truncate) 115 inode->i_op->truncate(inode); 116 return 0; 117 out_sig: 118 send_sig(SIGXFSZ, current, 0); 119 out: 120 return -EFBIG; 121 } 122 123 EXPORT_SYMBOL(vmtruncate); 124 125 /* 126 * Return the total memory allocated for this pointer, not 127 * just what the caller asked for. 128 * 129 * Doesn't have to be accurate, i.e. may have races. 130 */ 131 unsigned int kobjsize(const void *objp) 132 { 133 struct page *page; 134 135 /* 136 * If the object we have should not have ksize performed on it, 137 * return size of 0 138 */ 139 if (!objp || !virt_addr_valid(objp)) 140 return 0; 141 142 page = virt_to_head_page(objp); 143 144 /* 145 * If the allocator sets PageSlab, we know the pointer came from 146 * kmalloc(). 147 */ 148 if (PageSlab(page)) 149 return ksize(objp); 150 151 /* 152 * If it's not a compound page, see if we have a matching VMA 153 * region. This test is intentionally done in reverse order, 154 * so if there's no VMA, we still fall through and hand back 155 * PAGE_SIZE for 0-order pages. 156 */ 157 if (!PageCompound(page)) { 158 struct vm_area_struct *vma; 159 160 vma = find_vma(current->mm, (unsigned long)objp); 161 if (vma) 162 return vma->vm_end - vma->vm_start; 163 } 164 165 /* 166 * The ksize() function is only guaranteed to work for pointers 167 * returned by kmalloc(). So handle arbitrary pointers here. 168 */ 169 return PAGE_SIZE << compound_order(page); 170 } 171 172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 173 unsigned long start, int len, int flags, 174 struct page **pages, struct vm_area_struct **vmas) 175 { 176 struct vm_area_struct *vma; 177 unsigned long vm_flags; 178 int i; 179 int write = !!(flags & GUP_FLAGS_WRITE); 180 int force = !!(flags & GUP_FLAGS_FORCE); 181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 182 183 /* calculate required read or write permissions. 184 * - if 'force' is set, we only require the "MAY" flags. 185 */ 186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 188 189 for (i = 0; i < len; i++) { 190 vma = find_vma(mm, start); 191 if (!vma) 192 goto finish_or_fault; 193 194 /* protect what we can, including chardevs */ 195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) || 196 (!ignore && !(vm_flags & vma->vm_flags))) 197 goto finish_or_fault; 198 199 if (pages) { 200 pages[i] = virt_to_page(start); 201 if (pages[i]) 202 page_cache_get(pages[i]); 203 } 204 if (vmas) 205 vmas[i] = vma; 206 start += PAGE_SIZE; 207 } 208 209 return i; 210 211 finish_or_fault: 212 return i ? : -EFAULT; 213 } 214 215 216 /* 217 * get a list of pages in an address range belonging to the specified process 218 * and indicate the VMA that covers each page 219 * - this is potentially dodgy as we may end incrementing the page count of a 220 * slab page or a secondary page from a compound page 221 * - don't permit access to VMAs that don't support it, such as I/O mappings 222 */ 223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 224 unsigned long start, int len, int write, int force, 225 struct page **pages, struct vm_area_struct **vmas) 226 { 227 int flags = 0; 228 229 if (write) 230 flags |= GUP_FLAGS_WRITE; 231 if (force) 232 flags |= GUP_FLAGS_FORCE; 233 234 return __get_user_pages(tsk, mm, 235 start, len, flags, 236 pages, vmas); 237 } 238 EXPORT_SYMBOL(get_user_pages); 239 240 DEFINE_RWLOCK(vmlist_lock); 241 struct vm_struct *vmlist; 242 243 void vfree(const void *addr) 244 { 245 kfree(addr); 246 } 247 EXPORT_SYMBOL(vfree); 248 249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 250 { 251 /* 252 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 253 * returns only a logical address. 254 */ 255 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 256 } 257 EXPORT_SYMBOL(__vmalloc); 258 259 void *vmalloc_user(unsigned long size) 260 { 261 void *ret; 262 263 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 264 PAGE_KERNEL); 265 if (ret) { 266 struct vm_area_struct *vma; 267 268 down_write(¤t->mm->mmap_sem); 269 vma = find_vma(current->mm, (unsigned long)ret); 270 if (vma) 271 vma->vm_flags |= VM_USERMAP; 272 up_write(¤t->mm->mmap_sem); 273 } 274 275 return ret; 276 } 277 EXPORT_SYMBOL(vmalloc_user); 278 279 struct page *vmalloc_to_page(const void *addr) 280 { 281 return virt_to_page(addr); 282 } 283 EXPORT_SYMBOL(vmalloc_to_page); 284 285 unsigned long vmalloc_to_pfn(const void *addr) 286 { 287 return page_to_pfn(virt_to_page(addr)); 288 } 289 EXPORT_SYMBOL(vmalloc_to_pfn); 290 291 long vread(char *buf, char *addr, unsigned long count) 292 { 293 memcpy(buf, addr, count); 294 return count; 295 } 296 297 long vwrite(char *buf, char *addr, unsigned long count) 298 { 299 /* Don't allow overflow */ 300 if ((unsigned long) addr + count < count) 301 count = -(unsigned long) addr; 302 303 memcpy(addr, buf, count); 304 return(count); 305 } 306 307 /* 308 * vmalloc - allocate virtually continguos memory 309 * 310 * @size: allocation size 311 * 312 * Allocate enough pages to cover @size from the page level 313 * allocator and map them into continguos kernel virtual space. 314 * 315 * For tight control over page level allocator and protection flags 316 * use __vmalloc() instead. 317 */ 318 void *vmalloc(unsigned long size) 319 { 320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 321 } 322 EXPORT_SYMBOL(vmalloc); 323 324 void *vmalloc_node(unsigned long size, int node) 325 { 326 return vmalloc(size); 327 } 328 EXPORT_SYMBOL(vmalloc_node); 329 330 #ifndef PAGE_KERNEL_EXEC 331 # define PAGE_KERNEL_EXEC PAGE_KERNEL 332 #endif 333 334 /** 335 * vmalloc_exec - allocate virtually contiguous, executable memory 336 * @size: allocation size 337 * 338 * Kernel-internal function to allocate enough pages to cover @size 339 * the page level allocator and map them into contiguous and 340 * executable kernel virtual space. 341 * 342 * For tight control over page level allocator and protection flags 343 * use __vmalloc() instead. 344 */ 345 346 void *vmalloc_exec(unsigned long size) 347 { 348 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 349 } 350 351 /** 352 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 353 * @size: allocation size 354 * 355 * Allocate enough 32bit PA addressable pages to cover @size from the 356 * page level allocator and map them into continguos kernel virtual space. 357 */ 358 void *vmalloc_32(unsigned long size) 359 { 360 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 361 } 362 EXPORT_SYMBOL(vmalloc_32); 363 364 /** 365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 366 * @size: allocation size 367 * 368 * The resulting memory area is 32bit addressable and zeroed so it can be 369 * mapped to userspace without leaking data. 370 * 371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 372 * remap_vmalloc_range() are permissible. 373 */ 374 void *vmalloc_32_user(unsigned long size) 375 { 376 /* 377 * We'll have to sort out the ZONE_DMA bits for 64-bit, 378 * but for now this can simply use vmalloc_user() directly. 379 */ 380 return vmalloc_user(size); 381 } 382 EXPORT_SYMBOL(vmalloc_32_user); 383 384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 385 { 386 BUG(); 387 return NULL; 388 } 389 EXPORT_SYMBOL(vmap); 390 391 void vunmap(const void *addr) 392 { 393 BUG(); 394 } 395 EXPORT_SYMBOL(vunmap); 396 397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 398 { 399 BUG(); 400 return NULL; 401 } 402 EXPORT_SYMBOL(vm_map_ram); 403 404 void vm_unmap_ram(const void *mem, unsigned int count) 405 { 406 BUG(); 407 } 408 EXPORT_SYMBOL(vm_unmap_ram); 409 410 void vm_unmap_aliases(void) 411 { 412 } 413 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 414 415 /* 416 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 417 * have one. 418 */ 419 void __attribute__((weak)) vmalloc_sync_all(void) 420 { 421 } 422 423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 424 struct page *page) 425 { 426 return -EINVAL; 427 } 428 EXPORT_SYMBOL(vm_insert_page); 429 430 /* 431 * sys_brk() for the most part doesn't need the global kernel 432 * lock, except when an application is doing something nasty 433 * like trying to un-brk an area that has already been mapped 434 * to a regular file. in this case, the unmapping will need 435 * to invoke file system routines that need the global lock. 436 */ 437 SYSCALL_DEFINE1(brk, unsigned long, brk) 438 { 439 struct mm_struct *mm = current->mm; 440 441 if (brk < mm->start_brk || brk > mm->context.end_brk) 442 return mm->brk; 443 444 if (mm->brk == brk) 445 return mm->brk; 446 447 /* 448 * Always allow shrinking brk 449 */ 450 if (brk <= mm->brk) { 451 mm->brk = brk; 452 return brk; 453 } 454 455 /* 456 * Ok, looks good - let it rip. 457 */ 458 return mm->brk = brk; 459 } 460 461 /* 462 * initialise the VMA and region record slabs 463 */ 464 void __init mmap_init(void) 465 { 466 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 467 } 468 469 /* 470 * validate the region tree 471 * - the caller must hold the region lock 472 */ 473 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 474 static noinline void validate_nommu_regions(void) 475 { 476 struct vm_region *region, *last; 477 struct rb_node *p, *lastp; 478 479 lastp = rb_first(&nommu_region_tree); 480 if (!lastp) 481 return; 482 483 last = rb_entry(lastp, struct vm_region, vm_rb); 484 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 485 BUG_ON(unlikely(last->vm_top < last->vm_end)); 486 487 while ((p = rb_next(lastp))) { 488 region = rb_entry(p, struct vm_region, vm_rb); 489 last = rb_entry(lastp, struct vm_region, vm_rb); 490 491 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 492 BUG_ON(unlikely(region->vm_top < region->vm_end)); 493 BUG_ON(unlikely(region->vm_start < last->vm_top)); 494 495 lastp = p; 496 } 497 } 498 #else 499 static void validate_nommu_regions(void) 500 { 501 } 502 #endif 503 504 /* 505 * add a region into the global tree 506 */ 507 static void add_nommu_region(struct vm_region *region) 508 { 509 struct vm_region *pregion; 510 struct rb_node **p, *parent; 511 512 validate_nommu_regions(); 513 514 BUG_ON(region->vm_start & ~PAGE_MASK); 515 516 parent = NULL; 517 p = &nommu_region_tree.rb_node; 518 while (*p) { 519 parent = *p; 520 pregion = rb_entry(parent, struct vm_region, vm_rb); 521 if (region->vm_start < pregion->vm_start) 522 p = &(*p)->rb_left; 523 else if (region->vm_start > pregion->vm_start) 524 p = &(*p)->rb_right; 525 else if (pregion == region) 526 return; 527 else 528 BUG(); 529 } 530 531 rb_link_node(®ion->vm_rb, parent, p); 532 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 533 534 validate_nommu_regions(); 535 } 536 537 /* 538 * delete a region from the global tree 539 */ 540 static void delete_nommu_region(struct vm_region *region) 541 { 542 BUG_ON(!nommu_region_tree.rb_node); 543 544 validate_nommu_regions(); 545 rb_erase(®ion->vm_rb, &nommu_region_tree); 546 validate_nommu_regions(); 547 } 548 549 /* 550 * free a contiguous series of pages 551 */ 552 static void free_page_series(unsigned long from, unsigned long to) 553 { 554 for (; from < to; from += PAGE_SIZE) { 555 struct page *page = virt_to_page(from); 556 557 kdebug("- free %lx", from); 558 atomic_long_dec(&mmap_pages_allocated); 559 if (page_count(page) != 1) 560 kdebug("free page %p: refcount not one: %d", 561 page, page_count(page)); 562 put_page(page); 563 } 564 } 565 566 /* 567 * release a reference to a region 568 * - the caller must hold the region semaphore for writing, which this releases 569 * - the region may not have been added to the tree yet, in which case vm_top 570 * will equal vm_start 571 */ 572 static void __put_nommu_region(struct vm_region *region) 573 __releases(nommu_region_sem) 574 { 575 kenter("%p{%d}", region, atomic_read(®ion->vm_usage)); 576 577 BUG_ON(!nommu_region_tree.rb_node); 578 579 if (atomic_dec_and_test(®ion->vm_usage)) { 580 if (region->vm_top > region->vm_start) 581 delete_nommu_region(region); 582 up_write(&nommu_region_sem); 583 584 if (region->vm_file) 585 fput(region->vm_file); 586 587 /* IO memory and memory shared directly out of the pagecache 588 * from ramfs/tmpfs mustn't be released here */ 589 if (region->vm_flags & VM_MAPPED_COPY) { 590 kdebug("free series"); 591 free_page_series(region->vm_start, region->vm_top); 592 } 593 kmem_cache_free(vm_region_jar, region); 594 } else { 595 up_write(&nommu_region_sem); 596 } 597 } 598 599 /* 600 * release a reference to a region 601 */ 602 static void put_nommu_region(struct vm_region *region) 603 { 604 down_write(&nommu_region_sem); 605 __put_nommu_region(region); 606 } 607 608 /* 609 * add a VMA into a process's mm_struct in the appropriate place in the list 610 * and tree and add to the address space's page tree also if not an anonymous 611 * page 612 * - should be called with mm->mmap_sem held writelocked 613 */ 614 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 615 { 616 struct vm_area_struct *pvma, **pp; 617 struct address_space *mapping; 618 struct rb_node **p, *parent; 619 620 kenter(",%p", vma); 621 622 BUG_ON(!vma->vm_region); 623 624 mm->map_count++; 625 vma->vm_mm = mm; 626 627 /* add the VMA to the mapping */ 628 if (vma->vm_file) { 629 mapping = vma->vm_file->f_mapping; 630 631 flush_dcache_mmap_lock(mapping); 632 vma_prio_tree_insert(vma, &mapping->i_mmap); 633 flush_dcache_mmap_unlock(mapping); 634 } 635 636 /* add the VMA to the tree */ 637 parent = NULL; 638 p = &mm->mm_rb.rb_node; 639 while (*p) { 640 parent = *p; 641 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 642 643 /* sort by: start addr, end addr, VMA struct addr in that order 644 * (the latter is necessary as we may get identical VMAs) */ 645 if (vma->vm_start < pvma->vm_start) 646 p = &(*p)->rb_left; 647 else if (vma->vm_start > pvma->vm_start) 648 p = &(*p)->rb_right; 649 else if (vma->vm_end < pvma->vm_end) 650 p = &(*p)->rb_left; 651 else if (vma->vm_end > pvma->vm_end) 652 p = &(*p)->rb_right; 653 else if (vma < pvma) 654 p = &(*p)->rb_left; 655 else if (vma > pvma) 656 p = &(*p)->rb_right; 657 else 658 BUG(); 659 } 660 661 rb_link_node(&vma->vm_rb, parent, p); 662 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 663 664 /* add VMA to the VMA list also */ 665 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 666 if (pvma->vm_start > vma->vm_start) 667 break; 668 if (pvma->vm_start < vma->vm_start) 669 continue; 670 if (pvma->vm_end < vma->vm_end) 671 break; 672 } 673 674 vma->vm_next = *pp; 675 *pp = vma; 676 } 677 678 /* 679 * delete a VMA from its owning mm_struct and address space 680 */ 681 static void delete_vma_from_mm(struct vm_area_struct *vma) 682 { 683 struct vm_area_struct **pp; 684 struct address_space *mapping; 685 struct mm_struct *mm = vma->vm_mm; 686 687 kenter("%p", vma); 688 689 mm->map_count--; 690 if (mm->mmap_cache == vma) 691 mm->mmap_cache = NULL; 692 693 /* remove the VMA from the mapping */ 694 if (vma->vm_file) { 695 mapping = vma->vm_file->f_mapping; 696 697 flush_dcache_mmap_lock(mapping); 698 vma_prio_tree_remove(vma, &mapping->i_mmap); 699 flush_dcache_mmap_unlock(mapping); 700 } 701 702 /* remove from the MM's tree and list */ 703 rb_erase(&vma->vm_rb, &mm->mm_rb); 704 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 705 if (*pp == vma) { 706 *pp = vma->vm_next; 707 break; 708 } 709 } 710 711 vma->vm_mm = NULL; 712 } 713 714 /* 715 * destroy a VMA record 716 */ 717 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 718 { 719 kenter("%p", vma); 720 if (vma->vm_ops && vma->vm_ops->close) 721 vma->vm_ops->close(vma); 722 if (vma->vm_file) { 723 fput(vma->vm_file); 724 if (vma->vm_flags & VM_EXECUTABLE) 725 removed_exe_file_vma(mm); 726 } 727 put_nommu_region(vma->vm_region); 728 kmem_cache_free(vm_area_cachep, vma); 729 } 730 731 /* 732 * look up the first VMA in which addr resides, NULL if none 733 * - should be called with mm->mmap_sem at least held readlocked 734 */ 735 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 736 { 737 struct vm_area_struct *vma; 738 struct rb_node *n = mm->mm_rb.rb_node; 739 740 /* check the cache first */ 741 vma = mm->mmap_cache; 742 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 743 return vma; 744 745 /* trawl the tree (there may be multiple mappings in which addr 746 * resides) */ 747 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 748 vma = rb_entry(n, struct vm_area_struct, vm_rb); 749 if (vma->vm_start > addr) 750 return NULL; 751 if (vma->vm_end > addr) { 752 mm->mmap_cache = vma; 753 return vma; 754 } 755 } 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(find_vma); 760 761 /* 762 * find a VMA 763 * - we don't extend stack VMAs under NOMMU conditions 764 */ 765 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 766 { 767 return find_vma(mm, addr); 768 } 769 770 /* 771 * expand a stack to a given address 772 * - not supported under NOMMU conditions 773 */ 774 int expand_stack(struct vm_area_struct *vma, unsigned long address) 775 { 776 return -ENOMEM; 777 } 778 779 /* 780 * look up the first VMA exactly that exactly matches addr 781 * - should be called with mm->mmap_sem at least held readlocked 782 */ 783 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 784 unsigned long addr, 785 unsigned long len) 786 { 787 struct vm_area_struct *vma; 788 struct rb_node *n = mm->mm_rb.rb_node; 789 unsigned long end = addr + len; 790 791 /* check the cache first */ 792 vma = mm->mmap_cache; 793 if (vma && vma->vm_start == addr && vma->vm_end == end) 794 return vma; 795 796 /* trawl the tree (there may be multiple mappings in which addr 797 * resides) */ 798 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 799 vma = rb_entry(n, struct vm_area_struct, vm_rb); 800 if (vma->vm_start < addr) 801 continue; 802 if (vma->vm_start > addr) 803 return NULL; 804 if (vma->vm_end == end) { 805 mm->mmap_cache = vma; 806 return vma; 807 } 808 } 809 810 return NULL; 811 } 812 813 /* 814 * determine whether a mapping should be permitted and, if so, what sort of 815 * mapping we're capable of supporting 816 */ 817 static int validate_mmap_request(struct file *file, 818 unsigned long addr, 819 unsigned long len, 820 unsigned long prot, 821 unsigned long flags, 822 unsigned long pgoff, 823 unsigned long *_capabilities) 824 { 825 unsigned long capabilities, rlen; 826 unsigned long reqprot = prot; 827 int ret; 828 829 /* do the simple checks first */ 830 if (flags & MAP_FIXED || addr) { 831 printk(KERN_DEBUG 832 "%d: Can't do fixed-address/overlay mmap of RAM\n", 833 current->pid); 834 return -EINVAL; 835 } 836 837 if ((flags & MAP_TYPE) != MAP_PRIVATE && 838 (flags & MAP_TYPE) != MAP_SHARED) 839 return -EINVAL; 840 841 if (!len) 842 return -EINVAL; 843 844 /* Careful about overflows.. */ 845 rlen = PAGE_ALIGN(len); 846 if (!rlen || rlen > TASK_SIZE) 847 return -ENOMEM; 848 849 /* offset overflow? */ 850 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 851 return -EOVERFLOW; 852 853 if (file) { 854 /* validate file mapping requests */ 855 struct address_space *mapping; 856 857 /* files must support mmap */ 858 if (!file->f_op || !file->f_op->mmap) 859 return -ENODEV; 860 861 /* work out if what we've got could possibly be shared 862 * - we support chardevs that provide their own "memory" 863 * - we support files/blockdevs that are memory backed 864 */ 865 mapping = file->f_mapping; 866 if (!mapping) 867 mapping = file->f_path.dentry->d_inode->i_mapping; 868 869 capabilities = 0; 870 if (mapping && mapping->backing_dev_info) 871 capabilities = mapping->backing_dev_info->capabilities; 872 873 if (!capabilities) { 874 /* no explicit capabilities set, so assume some 875 * defaults */ 876 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 877 case S_IFREG: 878 case S_IFBLK: 879 capabilities = BDI_CAP_MAP_COPY; 880 break; 881 882 case S_IFCHR: 883 capabilities = 884 BDI_CAP_MAP_DIRECT | 885 BDI_CAP_READ_MAP | 886 BDI_CAP_WRITE_MAP; 887 break; 888 889 default: 890 return -EINVAL; 891 } 892 } 893 894 /* eliminate any capabilities that we can't support on this 895 * device */ 896 if (!file->f_op->get_unmapped_area) 897 capabilities &= ~BDI_CAP_MAP_DIRECT; 898 if (!file->f_op->read) 899 capabilities &= ~BDI_CAP_MAP_COPY; 900 901 if (flags & MAP_SHARED) { 902 /* do checks for writing, appending and locking */ 903 if ((prot & PROT_WRITE) && 904 !(file->f_mode & FMODE_WRITE)) 905 return -EACCES; 906 907 if (IS_APPEND(file->f_path.dentry->d_inode) && 908 (file->f_mode & FMODE_WRITE)) 909 return -EACCES; 910 911 if (locks_verify_locked(file->f_path.dentry->d_inode)) 912 return -EAGAIN; 913 914 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 915 return -ENODEV; 916 917 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 918 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 919 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 920 ) { 921 printk("MAP_SHARED not completely supported on !MMU\n"); 922 return -EINVAL; 923 } 924 925 /* we mustn't privatise shared mappings */ 926 capabilities &= ~BDI_CAP_MAP_COPY; 927 } 928 else { 929 /* we're going to read the file into private memory we 930 * allocate */ 931 if (!(capabilities & BDI_CAP_MAP_COPY)) 932 return -ENODEV; 933 934 /* we don't permit a private writable mapping to be 935 * shared with the backing device */ 936 if (prot & PROT_WRITE) 937 capabilities &= ~BDI_CAP_MAP_DIRECT; 938 } 939 940 /* handle executable mappings and implied executable 941 * mappings */ 942 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 943 if (prot & PROT_EXEC) 944 return -EPERM; 945 } 946 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 947 /* handle implication of PROT_EXEC by PROT_READ */ 948 if (current->personality & READ_IMPLIES_EXEC) { 949 if (capabilities & BDI_CAP_EXEC_MAP) 950 prot |= PROT_EXEC; 951 } 952 } 953 else if ((prot & PROT_READ) && 954 (prot & PROT_EXEC) && 955 !(capabilities & BDI_CAP_EXEC_MAP) 956 ) { 957 /* backing file is not executable, try to copy */ 958 capabilities &= ~BDI_CAP_MAP_DIRECT; 959 } 960 } 961 else { 962 /* anonymous mappings are always memory backed and can be 963 * privately mapped 964 */ 965 capabilities = BDI_CAP_MAP_COPY; 966 967 /* handle PROT_EXEC implication by PROT_READ */ 968 if ((prot & PROT_READ) && 969 (current->personality & READ_IMPLIES_EXEC)) 970 prot |= PROT_EXEC; 971 } 972 973 /* allow the security API to have its say */ 974 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 975 if (ret < 0) 976 return ret; 977 978 /* looks okay */ 979 *_capabilities = capabilities; 980 return 0; 981 } 982 983 /* 984 * we've determined that we can make the mapping, now translate what we 985 * now know into VMA flags 986 */ 987 static unsigned long determine_vm_flags(struct file *file, 988 unsigned long prot, 989 unsigned long flags, 990 unsigned long capabilities) 991 { 992 unsigned long vm_flags; 993 994 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 995 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 996 /* vm_flags |= mm->def_flags; */ 997 998 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 999 /* attempt to share read-only copies of mapped file chunks */ 1000 if (file && !(prot & PROT_WRITE)) 1001 vm_flags |= VM_MAYSHARE; 1002 } 1003 else { 1004 /* overlay a shareable mapping on the backing device or inode 1005 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1006 * romfs/cramfs */ 1007 if (flags & MAP_SHARED) 1008 vm_flags |= VM_MAYSHARE | VM_SHARED; 1009 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0) 1010 vm_flags |= VM_MAYSHARE; 1011 } 1012 1013 /* refuse to let anyone share private mappings with this process if 1014 * it's being traced - otherwise breakpoints set in it may interfere 1015 * with another untraced process 1016 */ 1017 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1018 vm_flags &= ~VM_MAYSHARE; 1019 1020 return vm_flags; 1021 } 1022 1023 /* 1024 * set up a shared mapping on a file (the driver or filesystem provides and 1025 * pins the storage) 1026 */ 1027 static int do_mmap_shared_file(struct vm_area_struct *vma) 1028 { 1029 int ret; 1030 1031 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1032 if (ret == 0) { 1033 vma->vm_region->vm_top = vma->vm_region->vm_end; 1034 return ret; 1035 } 1036 if (ret != -ENOSYS) 1037 return ret; 1038 1039 /* getting an ENOSYS error indicates that direct mmap isn't 1040 * possible (as opposed to tried but failed) so we'll fall 1041 * through to making a private copy of the data and mapping 1042 * that if we can */ 1043 return -ENODEV; 1044 } 1045 1046 /* 1047 * set up a private mapping or an anonymous shared mapping 1048 */ 1049 static int do_mmap_private(struct vm_area_struct *vma, 1050 struct vm_region *region, 1051 unsigned long len) 1052 { 1053 struct page *pages; 1054 unsigned long total, point, n, rlen; 1055 void *base; 1056 int ret, order; 1057 1058 /* invoke the file's mapping function so that it can keep track of 1059 * shared mappings on devices or memory 1060 * - VM_MAYSHARE will be set if it may attempt to share 1061 */ 1062 if (vma->vm_file) { 1063 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1064 if (ret == 0) { 1065 /* shouldn't return success if we're not sharing */ 1066 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1067 vma->vm_region->vm_top = vma->vm_region->vm_end; 1068 return ret; 1069 } 1070 if (ret != -ENOSYS) 1071 return ret; 1072 1073 /* getting an ENOSYS error indicates that direct mmap isn't 1074 * possible (as opposed to tried but failed) so we'll try to 1075 * make a private copy of the data and map that instead */ 1076 } 1077 1078 rlen = PAGE_ALIGN(len); 1079 1080 /* allocate some memory to hold the mapping 1081 * - note that this may not return a page-aligned address if the object 1082 * we're allocating is smaller than a page 1083 */ 1084 order = get_order(rlen); 1085 kdebug("alloc order %d for %lx", order, len); 1086 1087 pages = alloc_pages(GFP_KERNEL, order); 1088 if (!pages) 1089 goto enomem; 1090 1091 total = 1 << order; 1092 atomic_long_add(total, &mmap_pages_allocated); 1093 1094 point = rlen >> PAGE_SHIFT; 1095 1096 /* we allocated a power-of-2 sized page set, so we may want to trim off 1097 * the excess */ 1098 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1099 while (total > point) { 1100 order = ilog2(total - point); 1101 n = 1 << order; 1102 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1103 atomic_long_sub(n, &mmap_pages_allocated); 1104 total -= n; 1105 set_page_refcounted(pages + total); 1106 __free_pages(pages + total, order); 1107 } 1108 } 1109 1110 for (point = 1; point < total; point++) 1111 set_page_refcounted(&pages[point]); 1112 1113 base = page_address(pages); 1114 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1115 region->vm_start = (unsigned long) base; 1116 region->vm_end = region->vm_start + rlen; 1117 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1118 1119 vma->vm_start = region->vm_start; 1120 vma->vm_end = region->vm_start + len; 1121 1122 if (vma->vm_file) { 1123 /* read the contents of a file into the copy */ 1124 mm_segment_t old_fs; 1125 loff_t fpos; 1126 1127 fpos = vma->vm_pgoff; 1128 fpos <<= PAGE_SHIFT; 1129 1130 old_fs = get_fs(); 1131 set_fs(KERNEL_DS); 1132 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1133 set_fs(old_fs); 1134 1135 if (ret < 0) 1136 goto error_free; 1137 1138 /* clear the last little bit */ 1139 if (ret < rlen) 1140 memset(base + ret, 0, rlen - ret); 1141 1142 } else { 1143 /* if it's an anonymous mapping, then just clear it */ 1144 memset(base, 0, rlen); 1145 } 1146 1147 return 0; 1148 1149 error_free: 1150 free_page_series(region->vm_start, region->vm_end); 1151 region->vm_start = vma->vm_start = 0; 1152 region->vm_end = vma->vm_end = 0; 1153 region->vm_top = 0; 1154 return ret; 1155 1156 enomem: 1157 printk("Allocation of length %lu from process %d (%s) failed\n", 1158 len, current->pid, current->comm); 1159 show_free_areas(); 1160 return -ENOMEM; 1161 } 1162 1163 /* 1164 * handle mapping creation for uClinux 1165 */ 1166 unsigned long do_mmap_pgoff(struct file *file, 1167 unsigned long addr, 1168 unsigned long len, 1169 unsigned long prot, 1170 unsigned long flags, 1171 unsigned long pgoff) 1172 { 1173 struct vm_area_struct *vma; 1174 struct vm_region *region; 1175 struct rb_node *rb; 1176 unsigned long capabilities, vm_flags, result; 1177 int ret; 1178 1179 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1180 1181 if (!(flags & MAP_FIXED)) 1182 addr = round_hint_to_min(addr); 1183 1184 /* decide whether we should attempt the mapping, and if so what sort of 1185 * mapping */ 1186 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1187 &capabilities); 1188 if (ret < 0) { 1189 kleave(" = %d [val]", ret); 1190 return ret; 1191 } 1192 1193 /* we've determined that we can make the mapping, now translate what we 1194 * now know into VMA flags */ 1195 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1196 1197 /* we're going to need to record the mapping */ 1198 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1199 if (!region) 1200 goto error_getting_region; 1201 1202 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1203 if (!vma) 1204 goto error_getting_vma; 1205 1206 atomic_set(®ion->vm_usage, 1); 1207 region->vm_flags = vm_flags; 1208 region->vm_pgoff = pgoff; 1209 1210 INIT_LIST_HEAD(&vma->anon_vma_node); 1211 vma->vm_flags = vm_flags; 1212 vma->vm_pgoff = pgoff; 1213 1214 if (file) { 1215 region->vm_file = file; 1216 get_file(file); 1217 vma->vm_file = file; 1218 get_file(file); 1219 if (vm_flags & VM_EXECUTABLE) { 1220 added_exe_file_vma(current->mm); 1221 vma->vm_mm = current->mm; 1222 } 1223 } 1224 1225 down_write(&nommu_region_sem); 1226 1227 /* if we want to share, we need to check for regions created by other 1228 * mmap() calls that overlap with our proposed mapping 1229 * - we can only share with a superset match on most regular files 1230 * - shared mappings on character devices and memory backed files are 1231 * permitted to overlap inexactly as far as we are concerned for in 1232 * these cases, sharing is handled in the driver or filesystem rather 1233 * than here 1234 */ 1235 if (vm_flags & VM_MAYSHARE) { 1236 struct vm_region *pregion; 1237 unsigned long pglen, rpglen, pgend, rpgend, start; 1238 1239 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1240 pgend = pgoff + pglen; 1241 1242 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1243 pregion = rb_entry(rb, struct vm_region, vm_rb); 1244 1245 if (!(pregion->vm_flags & VM_MAYSHARE)) 1246 continue; 1247 1248 /* search for overlapping mappings on the same file */ 1249 if (pregion->vm_file->f_path.dentry->d_inode != 1250 file->f_path.dentry->d_inode) 1251 continue; 1252 1253 if (pregion->vm_pgoff >= pgend) 1254 continue; 1255 1256 rpglen = pregion->vm_end - pregion->vm_start; 1257 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1258 rpgend = pregion->vm_pgoff + rpglen; 1259 if (pgoff >= rpgend) 1260 continue; 1261 1262 /* handle inexactly overlapping matches between 1263 * mappings */ 1264 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1265 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1266 /* new mapping is not a subset of the region */ 1267 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1268 goto sharing_violation; 1269 continue; 1270 } 1271 1272 /* we've found a region we can share */ 1273 atomic_inc(&pregion->vm_usage); 1274 vma->vm_region = pregion; 1275 start = pregion->vm_start; 1276 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1277 vma->vm_start = start; 1278 vma->vm_end = start + len; 1279 1280 if (pregion->vm_flags & VM_MAPPED_COPY) { 1281 kdebug("share copy"); 1282 vma->vm_flags |= VM_MAPPED_COPY; 1283 } else { 1284 kdebug("share mmap"); 1285 ret = do_mmap_shared_file(vma); 1286 if (ret < 0) { 1287 vma->vm_region = NULL; 1288 vma->vm_start = 0; 1289 vma->vm_end = 0; 1290 atomic_dec(&pregion->vm_usage); 1291 pregion = NULL; 1292 goto error_just_free; 1293 } 1294 } 1295 fput(region->vm_file); 1296 kmem_cache_free(vm_region_jar, region); 1297 region = pregion; 1298 result = start; 1299 goto share; 1300 } 1301 1302 /* obtain the address at which to make a shared mapping 1303 * - this is the hook for quasi-memory character devices to 1304 * tell us the location of a shared mapping 1305 */ 1306 if (file && file->f_op->get_unmapped_area) { 1307 addr = file->f_op->get_unmapped_area(file, addr, len, 1308 pgoff, flags); 1309 if (IS_ERR((void *) addr)) { 1310 ret = addr; 1311 if (ret != (unsigned long) -ENOSYS) 1312 goto error_just_free; 1313 1314 /* the driver refused to tell us where to site 1315 * the mapping so we'll have to attempt to copy 1316 * it */ 1317 ret = (unsigned long) -ENODEV; 1318 if (!(capabilities & BDI_CAP_MAP_COPY)) 1319 goto error_just_free; 1320 1321 capabilities &= ~BDI_CAP_MAP_DIRECT; 1322 } else { 1323 vma->vm_start = region->vm_start = addr; 1324 vma->vm_end = region->vm_end = addr + len; 1325 } 1326 } 1327 } 1328 1329 vma->vm_region = region; 1330 1331 /* set up the mapping */ 1332 if (file && vma->vm_flags & VM_SHARED) 1333 ret = do_mmap_shared_file(vma); 1334 else 1335 ret = do_mmap_private(vma, region, len); 1336 if (ret < 0) 1337 goto error_put_region; 1338 1339 add_nommu_region(region); 1340 1341 /* okay... we have a mapping; now we have to register it */ 1342 result = vma->vm_start; 1343 1344 current->mm->total_vm += len >> PAGE_SHIFT; 1345 1346 share: 1347 add_vma_to_mm(current->mm, vma); 1348 1349 up_write(&nommu_region_sem); 1350 1351 if (prot & PROT_EXEC) 1352 flush_icache_range(result, result + len); 1353 1354 kleave(" = %lx", result); 1355 return result; 1356 1357 error_put_region: 1358 __put_nommu_region(region); 1359 if (vma) { 1360 if (vma->vm_file) { 1361 fput(vma->vm_file); 1362 if (vma->vm_flags & VM_EXECUTABLE) 1363 removed_exe_file_vma(vma->vm_mm); 1364 } 1365 kmem_cache_free(vm_area_cachep, vma); 1366 } 1367 kleave(" = %d [pr]", ret); 1368 return ret; 1369 1370 error_just_free: 1371 up_write(&nommu_region_sem); 1372 error: 1373 fput(region->vm_file); 1374 kmem_cache_free(vm_region_jar, region); 1375 fput(vma->vm_file); 1376 if (vma->vm_flags & VM_EXECUTABLE) 1377 removed_exe_file_vma(vma->vm_mm); 1378 kmem_cache_free(vm_area_cachep, vma); 1379 kleave(" = %d", ret); 1380 return ret; 1381 1382 sharing_violation: 1383 up_write(&nommu_region_sem); 1384 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1385 ret = -EINVAL; 1386 goto error; 1387 1388 error_getting_vma: 1389 kmem_cache_free(vm_region_jar, region); 1390 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1391 " from process %d failed\n", 1392 len, current->pid); 1393 show_free_areas(); 1394 return -ENOMEM; 1395 1396 error_getting_region: 1397 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1398 " from process %d failed\n", 1399 len, current->pid); 1400 show_free_areas(); 1401 return -ENOMEM; 1402 } 1403 EXPORT_SYMBOL(do_mmap_pgoff); 1404 1405 /* 1406 * split a vma into two pieces at address 'addr', a new vma is allocated either 1407 * for the first part or the tail. 1408 */ 1409 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1410 unsigned long addr, int new_below) 1411 { 1412 struct vm_area_struct *new; 1413 struct vm_region *region; 1414 unsigned long npages; 1415 1416 kenter(""); 1417 1418 /* we're only permitted to split anonymous regions that have a single 1419 * owner */ 1420 if (vma->vm_file || 1421 atomic_read(&vma->vm_region->vm_usage) != 1) 1422 return -ENOMEM; 1423 1424 if (mm->map_count >= sysctl_max_map_count) 1425 return -ENOMEM; 1426 1427 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1428 if (!region) 1429 return -ENOMEM; 1430 1431 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1432 if (!new) { 1433 kmem_cache_free(vm_region_jar, region); 1434 return -ENOMEM; 1435 } 1436 1437 /* most fields are the same, copy all, and then fixup */ 1438 *new = *vma; 1439 *region = *vma->vm_region; 1440 new->vm_region = region; 1441 1442 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1443 1444 if (new_below) { 1445 region->vm_top = region->vm_end = new->vm_end = addr; 1446 } else { 1447 region->vm_start = new->vm_start = addr; 1448 region->vm_pgoff = new->vm_pgoff += npages; 1449 } 1450 1451 if (new->vm_ops && new->vm_ops->open) 1452 new->vm_ops->open(new); 1453 1454 delete_vma_from_mm(vma); 1455 down_write(&nommu_region_sem); 1456 delete_nommu_region(vma->vm_region); 1457 if (new_below) { 1458 vma->vm_region->vm_start = vma->vm_start = addr; 1459 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1460 } else { 1461 vma->vm_region->vm_end = vma->vm_end = addr; 1462 vma->vm_region->vm_top = addr; 1463 } 1464 add_nommu_region(vma->vm_region); 1465 add_nommu_region(new->vm_region); 1466 up_write(&nommu_region_sem); 1467 add_vma_to_mm(mm, vma); 1468 add_vma_to_mm(mm, new); 1469 return 0; 1470 } 1471 1472 /* 1473 * shrink a VMA by removing the specified chunk from either the beginning or 1474 * the end 1475 */ 1476 static int shrink_vma(struct mm_struct *mm, 1477 struct vm_area_struct *vma, 1478 unsigned long from, unsigned long to) 1479 { 1480 struct vm_region *region; 1481 1482 kenter(""); 1483 1484 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1485 * and list */ 1486 delete_vma_from_mm(vma); 1487 if (from > vma->vm_start) 1488 vma->vm_end = from; 1489 else 1490 vma->vm_start = to; 1491 add_vma_to_mm(mm, vma); 1492 1493 /* cut the backing region down to size */ 1494 region = vma->vm_region; 1495 BUG_ON(atomic_read(®ion->vm_usage) != 1); 1496 1497 down_write(&nommu_region_sem); 1498 delete_nommu_region(region); 1499 if (from > region->vm_start) { 1500 to = region->vm_top; 1501 region->vm_top = region->vm_end = from; 1502 } else { 1503 region->vm_start = to; 1504 } 1505 add_nommu_region(region); 1506 up_write(&nommu_region_sem); 1507 1508 free_page_series(from, to); 1509 return 0; 1510 } 1511 1512 /* 1513 * release a mapping 1514 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1515 * VMA, though it need not cover the whole VMA 1516 */ 1517 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1518 { 1519 struct vm_area_struct *vma; 1520 struct rb_node *rb; 1521 unsigned long end = start + len; 1522 int ret; 1523 1524 kenter(",%lx,%zx", start, len); 1525 1526 if (len == 0) 1527 return -EINVAL; 1528 1529 /* find the first potentially overlapping VMA */ 1530 vma = find_vma(mm, start); 1531 if (!vma) { 1532 static int limit = 0; 1533 if (limit < 5) { 1534 printk(KERN_WARNING 1535 "munmap of memory not mmapped by process %d" 1536 " (%s): 0x%lx-0x%lx\n", 1537 current->pid, current->comm, 1538 start, start + len - 1); 1539 limit++; 1540 } 1541 return -EINVAL; 1542 } 1543 1544 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1545 if (vma->vm_file) { 1546 do { 1547 if (start > vma->vm_start) { 1548 kleave(" = -EINVAL [miss]"); 1549 return -EINVAL; 1550 } 1551 if (end == vma->vm_end) 1552 goto erase_whole_vma; 1553 rb = rb_next(&vma->vm_rb); 1554 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1555 } while (rb); 1556 kleave(" = -EINVAL [split file]"); 1557 return -EINVAL; 1558 } else { 1559 /* the chunk must be a subset of the VMA found */ 1560 if (start == vma->vm_start && end == vma->vm_end) 1561 goto erase_whole_vma; 1562 if (start < vma->vm_start || end > vma->vm_end) { 1563 kleave(" = -EINVAL [superset]"); 1564 return -EINVAL; 1565 } 1566 if (start & ~PAGE_MASK) { 1567 kleave(" = -EINVAL [unaligned start]"); 1568 return -EINVAL; 1569 } 1570 if (end != vma->vm_end && end & ~PAGE_MASK) { 1571 kleave(" = -EINVAL [unaligned split]"); 1572 return -EINVAL; 1573 } 1574 if (start != vma->vm_start && end != vma->vm_end) { 1575 ret = split_vma(mm, vma, start, 1); 1576 if (ret < 0) { 1577 kleave(" = %d [split]", ret); 1578 return ret; 1579 } 1580 } 1581 return shrink_vma(mm, vma, start, end); 1582 } 1583 1584 erase_whole_vma: 1585 delete_vma_from_mm(vma); 1586 delete_vma(mm, vma); 1587 kleave(" = 0"); 1588 return 0; 1589 } 1590 EXPORT_SYMBOL(do_munmap); 1591 1592 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1593 { 1594 int ret; 1595 struct mm_struct *mm = current->mm; 1596 1597 down_write(&mm->mmap_sem); 1598 ret = do_munmap(mm, addr, len); 1599 up_write(&mm->mmap_sem); 1600 return ret; 1601 } 1602 1603 /* 1604 * release all the mappings made in a process's VM space 1605 */ 1606 void exit_mmap(struct mm_struct *mm) 1607 { 1608 struct vm_area_struct *vma; 1609 1610 if (!mm) 1611 return; 1612 1613 kenter(""); 1614 1615 mm->total_vm = 0; 1616 1617 while ((vma = mm->mmap)) { 1618 mm->mmap = vma->vm_next; 1619 delete_vma_from_mm(vma); 1620 delete_vma(mm, vma); 1621 } 1622 1623 kleave(""); 1624 } 1625 1626 unsigned long do_brk(unsigned long addr, unsigned long len) 1627 { 1628 return -ENOMEM; 1629 } 1630 1631 /* 1632 * expand (or shrink) an existing mapping, potentially moving it at the same 1633 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1634 * 1635 * under NOMMU conditions, we only permit changing a mapping's size, and only 1636 * as long as it stays within the region allocated by do_mmap_private() and the 1637 * block is not shareable 1638 * 1639 * MREMAP_FIXED is not supported under NOMMU conditions 1640 */ 1641 unsigned long do_mremap(unsigned long addr, 1642 unsigned long old_len, unsigned long new_len, 1643 unsigned long flags, unsigned long new_addr) 1644 { 1645 struct vm_area_struct *vma; 1646 1647 /* insanity checks first */ 1648 if (old_len == 0 || new_len == 0) 1649 return (unsigned long) -EINVAL; 1650 1651 if (addr & ~PAGE_MASK) 1652 return -EINVAL; 1653 1654 if (flags & MREMAP_FIXED && new_addr != addr) 1655 return (unsigned long) -EINVAL; 1656 1657 vma = find_vma_exact(current->mm, addr, old_len); 1658 if (!vma) 1659 return (unsigned long) -EINVAL; 1660 1661 if (vma->vm_end != vma->vm_start + old_len) 1662 return (unsigned long) -EFAULT; 1663 1664 if (vma->vm_flags & VM_MAYSHARE) 1665 return (unsigned long) -EPERM; 1666 1667 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1668 return (unsigned long) -ENOMEM; 1669 1670 /* all checks complete - do it */ 1671 vma->vm_end = vma->vm_start + new_len; 1672 return vma->vm_start; 1673 } 1674 EXPORT_SYMBOL(do_mremap); 1675 1676 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1677 unsigned long, new_len, unsigned long, flags, 1678 unsigned long, new_addr) 1679 { 1680 unsigned long ret; 1681 1682 down_write(¤t->mm->mmap_sem); 1683 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1684 up_write(¤t->mm->mmap_sem); 1685 return ret; 1686 } 1687 1688 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1689 unsigned int foll_flags) 1690 { 1691 return NULL; 1692 } 1693 1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1695 unsigned long to, unsigned long size, pgprot_t prot) 1696 { 1697 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1698 return 0; 1699 } 1700 EXPORT_SYMBOL(remap_pfn_range); 1701 1702 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1703 unsigned long pgoff) 1704 { 1705 unsigned int size = vma->vm_end - vma->vm_start; 1706 1707 if (!(vma->vm_flags & VM_USERMAP)) 1708 return -EINVAL; 1709 1710 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1711 vma->vm_end = vma->vm_start + size; 1712 1713 return 0; 1714 } 1715 EXPORT_SYMBOL(remap_vmalloc_range); 1716 1717 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1718 { 1719 } 1720 1721 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1722 unsigned long len, unsigned long pgoff, unsigned long flags) 1723 { 1724 return -ENOMEM; 1725 } 1726 1727 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1728 { 1729 } 1730 1731 void unmap_mapping_range(struct address_space *mapping, 1732 loff_t const holebegin, loff_t const holelen, 1733 int even_cows) 1734 { 1735 } 1736 EXPORT_SYMBOL(unmap_mapping_range); 1737 1738 /* 1739 * ask for an unmapped area at which to create a mapping on a file 1740 */ 1741 unsigned long get_unmapped_area(struct file *file, unsigned long addr, 1742 unsigned long len, unsigned long pgoff, 1743 unsigned long flags) 1744 { 1745 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, 1746 unsigned long, unsigned long); 1747 1748 get_area = current->mm->get_unmapped_area; 1749 if (file && file->f_op && file->f_op->get_unmapped_area) 1750 get_area = file->f_op->get_unmapped_area; 1751 1752 if (!get_area) 1753 return -ENOSYS; 1754 1755 return get_area(file, addr, len, pgoff, flags); 1756 } 1757 EXPORT_SYMBOL(get_unmapped_area); 1758 1759 /* 1760 * Check that a process has enough memory to allocate a new virtual 1761 * mapping. 0 means there is enough memory for the allocation to 1762 * succeed and -ENOMEM implies there is not. 1763 * 1764 * We currently support three overcommit policies, which are set via the 1765 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1766 * 1767 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1768 * Additional code 2002 Jul 20 by Robert Love. 1769 * 1770 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1771 * 1772 * Note this is a helper function intended to be used by LSMs which 1773 * wish to use this logic. 1774 */ 1775 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1776 { 1777 unsigned long free, allowed; 1778 1779 vm_acct_memory(pages); 1780 1781 /* 1782 * Sometimes we want to use more memory than we have 1783 */ 1784 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1785 return 0; 1786 1787 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1788 unsigned long n; 1789 1790 free = global_page_state(NR_FILE_PAGES); 1791 free += nr_swap_pages; 1792 1793 /* 1794 * Any slabs which are created with the 1795 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1796 * which are reclaimable, under pressure. The dentry 1797 * cache and most inode caches should fall into this 1798 */ 1799 free += global_page_state(NR_SLAB_RECLAIMABLE); 1800 1801 /* 1802 * Leave the last 3% for root 1803 */ 1804 if (!cap_sys_admin) 1805 free -= free / 32; 1806 1807 if (free > pages) 1808 return 0; 1809 1810 /* 1811 * nr_free_pages() is very expensive on large systems, 1812 * only call if we're about to fail. 1813 */ 1814 n = nr_free_pages(); 1815 1816 /* 1817 * Leave reserved pages. The pages are not for anonymous pages. 1818 */ 1819 if (n <= totalreserve_pages) 1820 goto error; 1821 else 1822 n -= totalreserve_pages; 1823 1824 /* 1825 * Leave the last 3% for root 1826 */ 1827 if (!cap_sys_admin) 1828 n -= n / 32; 1829 free += n; 1830 1831 if (free > pages) 1832 return 0; 1833 1834 goto error; 1835 } 1836 1837 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1838 /* 1839 * Leave the last 3% for root 1840 */ 1841 if (!cap_sys_admin) 1842 allowed -= allowed / 32; 1843 allowed += total_swap_pages; 1844 1845 /* Don't let a single process grow too big: 1846 leave 3% of the size of this process for other processes */ 1847 if (mm) 1848 allowed -= mm->total_vm / 32; 1849 1850 /* 1851 * cast `allowed' as a signed long because vm_committed_space 1852 * sometimes has a negative value 1853 */ 1854 if (atomic_long_read(&vm_committed_space) < (long)allowed) 1855 return 0; 1856 error: 1857 vm_unacct_memory(pages); 1858 1859 return -ENOMEM; 1860 } 1861 1862 int in_gate_area_no_task(unsigned long addr) 1863 { 1864 return 0; 1865 } 1866 1867 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1868 { 1869 BUG(); 1870 return 0; 1871 } 1872 EXPORT_SYMBOL(filemap_fault); 1873 1874 /* 1875 * Access another process' address space. 1876 * - source/target buffer must be kernel space 1877 */ 1878 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1879 { 1880 struct vm_area_struct *vma; 1881 struct mm_struct *mm; 1882 1883 if (addr + len < addr) 1884 return 0; 1885 1886 mm = get_task_mm(tsk); 1887 if (!mm) 1888 return 0; 1889 1890 down_read(&mm->mmap_sem); 1891 1892 /* the access must start within one of the target process's mappings */ 1893 vma = find_vma(mm, addr); 1894 if (vma) { 1895 /* don't overrun this mapping */ 1896 if (addr + len >= vma->vm_end) 1897 len = vma->vm_end - addr; 1898 1899 /* only read or write mappings where it is permitted */ 1900 if (write && vma->vm_flags & VM_MAYWRITE) 1901 len -= copy_to_user((void *) addr, buf, len); 1902 else if (!write && vma->vm_flags & VM_MAYREAD) 1903 len -= copy_from_user(buf, (void *) addr, len); 1904 else 1905 len = 0; 1906 } else { 1907 len = 0; 1908 } 1909 1910 up_read(&mm->mmap_sem); 1911 mmput(mm); 1912 return len; 1913 } 1914