xref: /linux/mm/nommu.c (revision e73173dbe55e5b4c2306728aad50c8e42194f6d5)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37 
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
40 {
41 }
42 
43 #if 0
44 #define kenter(FMT, ...) \
45 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58 
59 #include "internal.h"
60 
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = 1; /* page trimming behaviour */
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76 
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81 
82 struct vm_operations_struct generic_file_vm_ops = {
83 };
84 
85 /*
86  * Handle all mappings that got truncated by a "truncate()"
87  * system call.
88  *
89  * NOTE! We have to be ready to update the memory sharing
90  * between the file and the memory map for a potential last
91  * incomplete page.  Ugly, but necessary.
92  */
93 int vmtruncate(struct inode *inode, loff_t offset)
94 {
95 	struct address_space *mapping = inode->i_mapping;
96 	unsigned long limit;
97 
98 	if (inode->i_size < offset)
99 		goto do_expand;
100 	i_size_write(inode, offset);
101 
102 	truncate_inode_pages(mapping, offset);
103 	goto out_truncate;
104 
105 do_expand:
106 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 	if (limit != RLIM_INFINITY && offset > limit)
108 		goto out_sig;
109 	if (offset > inode->i_sb->s_maxbytes)
110 		goto out;
111 	i_size_write(inode, offset);
112 
113 out_truncate:
114 	if (inode->i_op->truncate)
115 		inode->i_op->truncate(inode);
116 	return 0;
117 out_sig:
118 	send_sig(SIGXFSZ, current, 0);
119 out:
120 	return -EFBIG;
121 }
122 
123 EXPORT_SYMBOL(vmtruncate);
124 
125 /*
126  * Return the total memory allocated for this pointer, not
127  * just what the caller asked for.
128  *
129  * Doesn't have to be accurate, i.e. may have races.
130  */
131 unsigned int kobjsize(const void *objp)
132 {
133 	struct page *page;
134 
135 	/*
136 	 * If the object we have should not have ksize performed on it,
137 	 * return size of 0
138 	 */
139 	if (!objp || !virt_addr_valid(objp))
140 		return 0;
141 
142 	page = virt_to_head_page(objp);
143 
144 	/*
145 	 * If the allocator sets PageSlab, we know the pointer came from
146 	 * kmalloc().
147 	 */
148 	if (PageSlab(page))
149 		return ksize(objp);
150 
151 	/*
152 	 * If it's not a compound page, see if we have a matching VMA
153 	 * region. This test is intentionally done in reverse order,
154 	 * so if there's no VMA, we still fall through and hand back
155 	 * PAGE_SIZE for 0-order pages.
156 	 */
157 	if (!PageCompound(page)) {
158 		struct vm_area_struct *vma;
159 
160 		vma = find_vma(current->mm, (unsigned long)objp);
161 		if (vma)
162 			return vma->vm_end - vma->vm_start;
163 	}
164 
165 	/*
166 	 * The ksize() function is only guaranteed to work for pointers
167 	 * returned by kmalloc(). So handle arbitrary pointers here.
168 	 */
169 	return PAGE_SIZE << compound_order(page);
170 }
171 
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 		     unsigned long start, int len, int flags,
174 		struct page **pages, struct vm_area_struct **vmas)
175 {
176 	struct vm_area_struct *vma;
177 	unsigned long vm_flags;
178 	int i;
179 	int write = !!(flags & GUP_FLAGS_WRITE);
180 	int force = !!(flags & GUP_FLAGS_FORCE);
181 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
182 
183 	/* calculate required read or write permissions.
184 	 * - if 'force' is set, we only require the "MAY" flags.
185 	 */
186 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
188 
189 	for (i = 0; i < len; i++) {
190 		vma = find_vma(mm, start);
191 		if (!vma)
192 			goto finish_or_fault;
193 
194 		/* protect what we can, including chardevs */
195 		if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196 		    (!ignore && !(vm_flags & vma->vm_flags)))
197 			goto finish_or_fault;
198 
199 		if (pages) {
200 			pages[i] = virt_to_page(start);
201 			if (pages[i])
202 				page_cache_get(pages[i]);
203 		}
204 		if (vmas)
205 			vmas[i] = vma;
206 		start += PAGE_SIZE;
207 	}
208 
209 	return i;
210 
211 finish_or_fault:
212 	return i ? : -EFAULT;
213 }
214 
215 
216 /*
217  * get a list of pages in an address range belonging to the specified process
218  * and indicate the VMA that covers each page
219  * - this is potentially dodgy as we may end incrementing the page count of a
220  *   slab page or a secondary page from a compound page
221  * - don't permit access to VMAs that don't support it, such as I/O mappings
222  */
223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224 	unsigned long start, int len, int write, int force,
225 	struct page **pages, struct vm_area_struct **vmas)
226 {
227 	int flags = 0;
228 
229 	if (write)
230 		flags |= GUP_FLAGS_WRITE;
231 	if (force)
232 		flags |= GUP_FLAGS_FORCE;
233 
234 	return __get_user_pages(tsk, mm,
235 				start, len, flags,
236 				pages, vmas);
237 }
238 EXPORT_SYMBOL(get_user_pages);
239 
240 DEFINE_RWLOCK(vmlist_lock);
241 struct vm_struct *vmlist;
242 
243 void vfree(const void *addr)
244 {
245 	kfree(addr);
246 }
247 EXPORT_SYMBOL(vfree);
248 
249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
250 {
251 	/*
252 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253 	 * returns only a logical address.
254 	 */
255 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
256 }
257 EXPORT_SYMBOL(__vmalloc);
258 
259 void *vmalloc_user(unsigned long size)
260 {
261 	void *ret;
262 
263 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
264 			PAGE_KERNEL);
265 	if (ret) {
266 		struct vm_area_struct *vma;
267 
268 		down_write(&current->mm->mmap_sem);
269 		vma = find_vma(current->mm, (unsigned long)ret);
270 		if (vma)
271 			vma->vm_flags |= VM_USERMAP;
272 		up_write(&current->mm->mmap_sem);
273 	}
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL(vmalloc_user);
278 
279 struct page *vmalloc_to_page(const void *addr)
280 {
281 	return virt_to_page(addr);
282 }
283 EXPORT_SYMBOL(vmalloc_to_page);
284 
285 unsigned long vmalloc_to_pfn(const void *addr)
286 {
287 	return page_to_pfn(virt_to_page(addr));
288 }
289 EXPORT_SYMBOL(vmalloc_to_pfn);
290 
291 long vread(char *buf, char *addr, unsigned long count)
292 {
293 	memcpy(buf, addr, count);
294 	return count;
295 }
296 
297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299 	/* Don't allow overflow */
300 	if ((unsigned long) addr + count < count)
301 		count = -(unsigned long) addr;
302 
303 	memcpy(addr, buf, count);
304 	return(count);
305 }
306 
307 /*
308  *	vmalloc  -  allocate virtually continguos memory
309  *
310  *	@size:		allocation size
311  *
312  *	Allocate enough pages to cover @size from the page level
313  *	allocator and map them into continguos kernel virtual space.
314  *
315  *	For tight control over page level allocator and protection flags
316  *	use __vmalloc() instead.
317  */
318 void *vmalloc(unsigned long size)
319 {
320        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323 
324 void *vmalloc_node(unsigned long size, int node)
325 {
326 	return vmalloc(size);
327 }
328 EXPORT_SYMBOL(vmalloc_node);
329 
330 #ifndef PAGE_KERNEL_EXEC
331 # define PAGE_KERNEL_EXEC PAGE_KERNEL
332 #endif
333 
334 /**
335  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
336  *	@size:		allocation size
337  *
338  *	Kernel-internal function to allocate enough pages to cover @size
339  *	the page level allocator and map them into contiguous and
340  *	executable kernel virtual space.
341  *
342  *	For tight control over page level allocator and protection flags
343  *	use __vmalloc() instead.
344  */
345 
346 void *vmalloc_exec(unsigned long size)
347 {
348 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
349 }
350 
351 /**
352  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
353  *	@size:		allocation size
354  *
355  *	Allocate enough 32bit PA addressable pages to cover @size from the
356  *	page level allocator and map them into continguos kernel virtual space.
357  */
358 void *vmalloc_32(unsigned long size)
359 {
360 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
361 }
362 EXPORT_SYMBOL(vmalloc_32);
363 
364 /**
365  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366  *	@size:		allocation size
367  *
368  * The resulting memory area is 32bit addressable and zeroed so it can be
369  * mapped to userspace without leaking data.
370  *
371  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372  * remap_vmalloc_range() are permissible.
373  */
374 void *vmalloc_32_user(unsigned long size)
375 {
376 	/*
377 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
378 	 * but for now this can simply use vmalloc_user() directly.
379 	 */
380 	return vmalloc_user(size);
381 }
382 EXPORT_SYMBOL(vmalloc_32_user);
383 
384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
385 {
386 	BUG();
387 	return NULL;
388 }
389 EXPORT_SYMBOL(vmap);
390 
391 void vunmap(const void *addr)
392 {
393 	BUG();
394 }
395 EXPORT_SYMBOL(vunmap);
396 
397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
398 {
399 	BUG();
400 	return NULL;
401 }
402 EXPORT_SYMBOL(vm_map_ram);
403 
404 void vm_unmap_ram(const void *mem, unsigned int count)
405 {
406 	BUG();
407 }
408 EXPORT_SYMBOL(vm_unmap_ram);
409 
410 void vm_unmap_aliases(void)
411 {
412 }
413 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
414 
415 /*
416  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
417  * have one.
418  */
419 void  __attribute__((weak)) vmalloc_sync_all(void)
420 {
421 }
422 
423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
424 		   struct page *page)
425 {
426 	return -EINVAL;
427 }
428 EXPORT_SYMBOL(vm_insert_page);
429 
430 /*
431  *  sys_brk() for the most part doesn't need the global kernel
432  *  lock, except when an application is doing something nasty
433  *  like trying to un-brk an area that has already been mapped
434  *  to a regular file.  in this case, the unmapping will need
435  *  to invoke file system routines that need the global lock.
436  */
437 SYSCALL_DEFINE1(brk, unsigned long, brk)
438 {
439 	struct mm_struct *mm = current->mm;
440 
441 	if (brk < mm->start_brk || brk > mm->context.end_brk)
442 		return mm->brk;
443 
444 	if (mm->brk == brk)
445 		return mm->brk;
446 
447 	/*
448 	 * Always allow shrinking brk
449 	 */
450 	if (brk <= mm->brk) {
451 		mm->brk = brk;
452 		return brk;
453 	}
454 
455 	/*
456 	 * Ok, looks good - let it rip.
457 	 */
458 	return mm->brk = brk;
459 }
460 
461 /*
462  * initialise the VMA and region record slabs
463  */
464 void __init mmap_init(void)
465 {
466 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
467 }
468 
469 /*
470  * validate the region tree
471  * - the caller must hold the region lock
472  */
473 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
474 static noinline void validate_nommu_regions(void)
475 {
476 	struct vm_region *region, *last;
477 	struct rb_node *p, *lastp;
478 
479 	lastp = rb_first(&nommu_region_tree);
480 	if (!lastp)
481 		return;
482 
483 	last = rb_entry(lastp, struct vm_region, vm_rb);
484 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
485 	BUG_ON(unlikely(last->vm_top < last->vm_end));
486 
487 	while ((p = rb_next(lastp))) {
488 		region = rb_entry(p, struct vm_region, vm_rb);
489 		last = rb_entry(lastp, struct vm_region, vm_rb);
490 
491 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
492 		BUG_ON(unlikely(region->vm_top < region->vm_end));
493 		BUG_ON(unlikely(region->vm_start < last->vm_top));
494 
495 		lastp = p;
496 	}
497 }
498 #else
499 static void validate_nommu_regions(void)
500 {
501 }
502 #endif
503 
504 /*
505  * add a region into the global tree
506  */
507 static void add_nommu_region(struct vm_region *region)
508 {
509 	struct vm_region *pregion;
510 	struct rb_node **p, *parent;
511 
512 	validate_nommu_regions();
513 
514 	BUG_ON(region->vm_start & ~PAGE_MASK);
515 
516 	parent = NULL;
517 	p = &nommu_region_tree.rb_node;
518 	while (*p) {
519 		parent = *p;
520 		pregion = rb_entry(parent, struct vm_region, vm_rb);
521 		if (region->vm_start < pregion->vm_start)
522 			p = &(*p)->rb_left;
523 		else if (region->vm_start > pregion->vm_start)
524 			p = &(*p)->rb_right;
525 		else if (pregion == region)
526 			return;
527 		else
528 			BUG();
529 	}
530 
531 	rb_link_node(&region->vm_rb, parent, p);
532 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
533 
534 	validate_nommu_regions();
535 }
536 
537 /*
538  * delete a region from the global tree
539  */
540 static void delete_nommu_region(struct vm_region *region)
541 {
542 	BUG_ON(!nommu_region_tree.rb_node);
543 
544 	validate_nommu_regions();
545 	rb_erase(&region->vm_rb, &nommu_region_tree);
546 	validate_nommu_regions();
547 }
548 
549 /*
550  * free a contiguous series of pages
551  */
552 static void free_page_series(unsigned long from, unsigned long to)
553 {
554 	for (; from < to; from += PAGE_SIZE) {
555 		struct page *page = virt_to_page(from);
556 
557 		kdebug("- free %lx", from);
558 		atomic_long_dec(&mmap_pages_allocated);
559 		if (page_count(page) != 1)
560 			kdebug("free page %p: refcount not one: %d",
561 			       page, page_count(page));
562 		put_page(page);
563 	}
564 }
565 
566 /*
567  * release a reference to a region
568  * - the caller must hold the region semaphore for writing, which this releases
569  * - the region may not have been added to the tree yet, in which case vm_top
570  *   will equal vm_start
571  */
572 static void __put_nommu_region(struct vm_region *region)
573 	__releases(nommu_region_sem)
574 {
575 	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
576 
577 	BUG_ON(!nommu_region_tree.rb_node);
578 
579 	if (atomic_dec_and_test(&region->vm_usage)) {
580 		if (region->vm_top > region->vm_start)
581 			delete_nommu_region(region);
582 		up_write(&nommu_region_sem);
583 
584 		if (region->vm_file)
585 			fput(region->vm_file);
586 
587 		/* IO memory and memory shared directly out of the pagecache
588 		 * from ramfs/tmpfs mustn't be released here */
589 		if (region->vm_flags & VM_MAPPED_COPY) {
590 			kdebug("free series");
591 			free_page_series(region->vm_start, region->vm_top);
592 		}
593 		kmem_cache_free(vm_region_jar, region);
594 	} else {
595 		up_write(&nommu_region_sem);
596 	}
597 }
598 
599 /*
600  * release a reference to a region
601  */
602 static void put_nommu_region(struct vm_region *region)
603 {
604 	down_write(&nommu_region_sem);
605 	__put_nommu_region(region);
606 }
607 
608 /*
609  * add a VMA into a process's mm_struct in the appropriate place in the list
610  * and tree and add to the address space's page tree also if not an anonymous
611  * page
612  * - should be called with mm->mmap_sem held writelocked
613  */
614 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
615 {
616 	struct vm_area_struct *pvma, **pp;
617 	struct address_space *mapping;
618 	struct rb_node **p, *parent;
619 
620 	kenter(",%p", vma);
621 
622 	BUG_ON(!vma->vm_region);
623 
624 	mm->map_count++;
625 	vma->vm_mm = mm;
626 
627 	/* add the VMA to the mapping */
628 	if (vma->vm_file) {
629 		mapping = vma->vm_file->f_mapping;
630 
631 		flush_dcache_mmap_lock(mapping);
632 		vma_prio_tree_insert(vma, &mapping->i_mmap);
633 		flush_dcache_mmap_unlock(mapping);
634 	}
635 
636 	/* add the VMA to the tree */
637 	parent = NULL;
638 	p = &mm->mm_rb.rb_node;
639 	while (*p) {
640 		parent = *p;
641 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
642 
643 		/* sort by: start addr, end addr, VMA struct addr in that order
644 		 * (the latter is necessary as we may get identical VMAs) */
645 		if (vma->vm_start < pvma->vm_start)
646 			p = &(*p)->rb_left;
647 		else if (vma->vm_start > pvma->vm_start)
648 			p = &(*p)->rb_right;
649 		else if (vma->vm_end < pvma->vm_end)
650 			p = &(*p)->rb_left;
651 		else if (vma->vm_end > pvma->vm_end)
652 			p = &(*p)->rb_right;
653 		else if (vma < pvma)
654 			p = &(*p)->rb_left;
655 		else if (vma > pvma)
656 			p = &(*p)->rb_right;
657 		else
658 			BUG();
659 	}
660 
661 	rb_link_node(&vma->vm_rb, parent, p);
662 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
663 
664 	/* add VMA to the VMA list also */
665 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
666 		if (pvma->vm_start > vma->vm_start)
667 			break;
668 		if (pvma->vm_start < vma->vm_start)
669 			continue;
670 		if (pvma->vm_end < vma->vm_end)
671 			break;
672 	}
673 
674 	vma->vm_next = *pp;
675 	*pp = vma;
676 }
677 
678 /*
679  * delete a VMA from its owning mm_struct and address space
680  */
681 static void delete_vma_from_mm(struct vm_area_struct *vma)
682 {
683 	struct vm_area_struct **pp;
684 	struct address_space *mapping;
685 	struct mm_struct *mm = vma->vm_mm;
686 
687 	kenter("%p", vma);
688 
689 	mm->map_count--;
690 	if (mm->mmap_cache == vma)
691 		mm->mmap_cache = NULL;
692 
693 	/* remove the VMA from the mapping */
694 	if (vma->vm_file) {
695 		mapping = vma->vm_file->f_mapping;
696 
697 		flush_dcache_mmap_lock(mapping);
698 		vma_prio_tree_remove(vma, &mapping->i_mmap);
699 		flush_dcache_mmap_unlock(mapping);
700 	}
701 
702 	/* remove from the MM's tree and list */
703 	rb_erase(&vma->vm_rb, &mm->mm_rb);
704 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
705 		if (*pp == vma) {
706 			*pp = vma->vm_next;
707 			break;
708 		}
709 	}
710 
711 	vma->vm_mm = NULL;
712 }
713 
714 /*
715  * destroy a VMA record
716  */
717 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 	kenter("%p", vma);
720 	if (vma->vm_ops && vma->vm_ops->close)
721 		vma->vm_ops->close(vma);
722 	if (vma->vm_file) {
723 		fput(vma->vm_file);
724 		if (vma->vm_flags & VM_EXECUTABLE)
725 			removed_exe_file_vma(mm);
726 	}
727 	put_nommu_region(vma->vm_region);
728 	kmem_cache_free(vm_area_cachep, vma);
729 }
730 
731 /*
732  * look up the first VMA in which addr resides, NULL if none
733  * - should be called with mm->mmap_sem at least held readlocked
734  */
735 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
736 {
737 	struct vm_area_struct *vma;
738 	struct rb_node *n = mm->mm_rb.rb_node;
739 
740 	/* check the cache first */
741 	vma = mm->mmap_cache;
742 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
743 		return vma;
744 
745 	/* trawl the tree (there may be multiple mappings in which addr
746 	 * resides) */
747 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
748 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
749 		if (vma->vm_start > addr)
750 			return NULL;
751 		if (vma->vm_end > addr) {
752 			mm->mmap_cache = vma;
753 			return vma;
754 		}
755 	}
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(find_vma);
760 
761 /*
762  * find a VMA
763  * - we don't extend stack VMAs under NOMMU conditions
764  */
765 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
766 {
767 	return find_vma(mm, addr);
768 }
769 
770 /*
771  * expand a stack to a given address
772  * - not supported under NOMMU conditions
773  */
774 int expand_stack(struct vm_area_struct *vma, unsigned long address)
775 {
776 	return -ENOMEM;
777 }
778 
779 /*
780  * look up the first VMA exactly that exactly matches addr
781  * - should be called with mm->mmap_sem at least held readlocked
782  */
783 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
784 					     unsigned long addr,
785 					     unsigned long len)
786 {
787 	struct vm_area_struct *vma;
788 	struct rb_node *n = mm->mm_rb.rb_node;
789 	unsigned long end = addr + len;
790 
791 	/* check the cache first */
792 	vma = mm->mmap_cache;
793 	if (vma && vma->vm_start == addr && vma->vm_end == end)
794 		return vma;
795 
796 	/* trawl the tree (there may be multiple mappings in which addr
797 	 * resides) */
798 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
799 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
800 		if (vma->vm_start < addr)
801 			continue;
802 		if (vma->vm_start > addr)
803 			return NULL;
804 		if (vma->vm_end == end) {
805 			mm->mmap_cache = vma;
806 			return vma;
807 		}
808 	}
809 
810 	return NULL;
811 }
812 
813 /*
814  * determine whether a mapping should be permitted and, if so, what sort of
815  * mapping we're capable of supporting
816  */
817 static int validate_mmap_request(struct file *file,
818 				 unsigned long addr,
819 				 unsigned long len,
820 				 unsigned long prot,
821 				 unsigned long flags,
822 				 unsigned long pgoff,
823 				 unsigned long *_capabilities)
824 {
825 	unsigned long capabilities, rlen;
826 	unsigned long reqprot = prot;
827 	int ret;
828 
829 	/* do the simple checks first */
830 	if (flags & MAP_FIXED || addr) {
831 		printk(KERN_DEBUG
832 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
833 		       current->pid);
834 		return -EINVAL;
835 	}
836 
837 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
838 	    (flags & MAP_TYPE) != MAP_SHARED)
839 		return -EINVAL;
840 
841 	if (!len)
842 		return -EINVAL;
843 
844 	/* Careful about overflows.. */
845 	rlen = PAGE_ALIGN(len);
846 	if (!rlen || rlen > TASK_SIZE)
847 		return -ENOMEM;
848 
849 	/* offset overflow? */
850 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
851 		return -EOVERFLOW;
852 
853 	if (file) {
854 		/* validate file mapping requests */
855 		struct address_space *mapping;
856 
857 		/* files must support mmap */
858 		if (!file->f_op || !file->f_op->mmap)
859 			return -ENODEV;
860 
861 		/* work out if what we've got could possibly be shared
862 		 * - we support chardevs that provide their own "memory"
863 		 * - we support files/blockdevs that are memory backed
864 		 */
865 		mapping = file->f_mapping;
866 		if (!mapping)
867 			mapping = file->f_path.dentry->d_inode->i_mapping;
868 
869 		capabilities = 0;
870 		if (mapping && mapping->backing_dev_info)
871 			capabilities = mapping->backing_dev_info->capabilities;
872 
873 		if (!capabilities) {
874 			/* no explicit capabilities set, so assume some
875 			 * defaults */
876 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
877 			case S_IFREG:
878 			case S_IFBLK:
879 				capabilities = BDI_CAP_MAP_COPY;
880 				break;
881 
882 			case S_IFCHR:
883 				capabilities =
884 					BDI_CAP_MAP_DIRECT |
885 					BDI_CAP_READ_MAP |
886 					BDI_CAP_WRITE_MAP;
887 				break;
888 
889 			default:
890 				return -EINVAL;
891 			}
892 		}
893 
894 		/* eliminate any capabilities that we can't support on this
895 		 * device */
896 		if (!file->f_op->get_unmapped_area)
897 			capabilities &= ~BDI_CAP_MAP_DIRECT;
898 		if (!file->f_op->read)
899 			capabilities &= ~BDI_CAP_MAP_COPY;
900 
901 		if (flags & MAP_SHARED) {
902 			/* do checks for writing, appending and locking */
903 			if ((prot & PROT_WRITE) &&
904 			    !(file->f_mode & FMODE_WRITE))
905 				return -EACCES;
906 
907 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
908 			    (file->f_mode & FMODE_WRITE))
909 				return -EACCES;
910 
911 			if (locks_verify_locked(file->f_path.dentry->d_inode))
912 				return -EAGAIN;
913 
914 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
915 				return -ENODEV;
916 
917 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
918 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
919 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
920 			    ) {
921 				printk("MAP_SHARED not completely supported on !MMU\n");
922 				return -EINVAL;
923 			}
924 
925 			/* we mustn't privatise shared mappings */
926 			capabilities &= ~BDI_CAP_MAP_COPY;
927 		}
928 		else {
929 			/* we're going to read the file into private memory we
930 			 * allocate */
931 			if (!(capabilities & BDI_CAP_MAP_COPY))
932 				return -ENODEV;
933 
934 			/* we don't permit a private writable mapping to be
935 			 * shared with the backing device */
936 			if (prot & PROT_WRITE)
937 				capabilities &= ~BDI_CAP_MAP_DIRECT;
938 		}
939 
940 		/* handle executable mappings and implied executable
941 		 * mappings */
942 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
943 			if (prot & PROT_EXEC)
944 				return -EPERM;
945 		}
946 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
947 			/* handle implication of PROT_EXEC by PROT_READ */
948 			if (current->personality & READ_IMPLIES_EXEC) {
949 				if (capabilities & BDI_CAP_EXEC_MAP)
950 					prot |= PROT_EXEC;
951 			}
952 		}
953 		else if ((prot & PROT_READ) &&
954 			 (prot & PROT_EXEC) &&
955 			 !(capabilities & BDI_CAP_EXEC_MAP)
956 			 ) {
957 			/* backing file is not executable, try to copy */
958 			capabilities &= ~BDI_CAP_MAP_DIRECT;
959 		}
960 	}
961 	else {
962 		/* anonymous mappings are always memory backed and can be
963 		 * privately mapped
964 		 */
965 		capabilities = BDI_CAP_MAP_COPY;
966 
967 		/* handle PROT_EXEC implication by PROT_READ */
968 		if ((prot & PROT_READ) &&
969 		    (current->personality & READ_IMPLIES_EXEC))
970 			prot |= PROT_EXEC;
971 	}
972 
973 	/* allow the security API to have its say */
974 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
975 	if (ret < 0)
976 		return ret;
977 
978 	/* looks okay */
979 	*_capabilities = capabilities;
980 	return 0;
981 }
982 
983 /*
984  * we've determined that we can make the mapping, now translate what we
985  * now know into VMA flags
986  */
987 static unsigned long determine_vm_flags(struct file *file,
988 					unsigned long prot,
989 					unsigned long flags,
990 					unsigned long capabilities)
991 {
992 	unsigned long vm_flags;
993 
994 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
995 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
996 	/* vm_flags |= mm->def_flags; */
997 
998 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
999 		/* attempt to share read-only copies of mapped file chunks */
1000 		if (file && !(prot & PROT_WRITE))
1001 			vm_flags |= VM_MAYSHARE;
1002 	}
1003 	else {
1004 		/* overlay a shareable mapping on the backing device or inode
1005 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1006 		 * romfs/cramfs */
1007 		if (flags & MAP_SHARED)
1008 			vm_flags |= VM_MAYSHARE | VM_SHARED;
1009 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1010 			vm_flags |= VM_MAYSHARE;
1011 	}
1012 
1013 	/* refuse to let anyone share private mappings with this process if
1014 	 * it's being traced - otherwise breakpoints set in it may interfere
1015 	 * with another untraced process
1016 	 */
1017 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1018 		vm_flags &= ~VM_MAYSHARE;
1019 
1020 	return vm_flags;
1021 }
1022 
1023 /*
1024  * set up a shared mapping on a file (the driver or filesystem provides and
1025  * pins the storage)
1026  */
1027 static int do_mmap_shared_file(struct vm_area_struct *vma)
1028 {
1029 	int ret;
1030 
1031 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1032 	if (ret == 0) {
1033 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1034 		return ret;
1035 	}
1036 	if (ret != -ENOSYS)
1037 		return ret;
1038 
1039 	/* getting an ENOSYS error indicates that direct mmap isn't
1040 	 * possible (as opposed to tried but failed) so we'll fall
1041 	 * through to making a private copy of the data and mapping
1042 	 * that if we can */
1043 	return -ENODEV;
1044 }
1045 
1046 /*
1047  * set up a private mapping or an anonymous shared mapping
1048  */
1049 static int do_mmap_private(struct vm_area_struct *vma,
1050 			   struct vm_region *region,
1051 			   unsigned long len)
1052 {
1053 	struct page *pages;
1054 	unsigned long total, point, n, rlen;
1055 	void *base;
1056 	int ret, order;
1057 
1058 	/* invoke the file's mapping function so that it can keep track of
1059 	 * shared mappings on devices or memory
1060 	 * - VM_MAYSHARE will be set if it may attempt to share
1061 	 */
1062 	if (vma->vm_file) {
1063 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1064 		if (ret == 0) {
1065 			/* shouldn't return success if we're not sharing */
1066 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1067 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1068 			return ret;
1069 		}
1070 		if (ret != -ENOSYS)
1071 			return ret;
1072 
1073 		/* getting an ENOSYS error indicates that direct mmap isn't
1074 		 * possible (as opposed to tried but failed) so we'll try to
1075 		 * make a private copy of the data and map that instead */
1076 	}
1077 
1078 	rlen = PAGE_ALIGN(len);
1079 
1080 	/* allocate some memory to hold the mapping
1081 	 * - note that this may not return a page-aligned address if the object
1082 	 *   we're allocating is smaller than a page
1083 	 */
1084 	order = get_order(rlen);
1085 	kdebug("alloc order %d for %lx", order, len);
1086 
1087 	pages = alloc_pages(GFP_KERNEL, order);
1088 	if (!pages)
1089 		goto enomem;
1090 
1091 	total = 1 << order;
1092 	atomic_long_add(total, &mmap_pages_allocated);
1093 
1094 	point = rlen >> PAGE_SHIFT;
1095 
1096 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1097 	 * the excess */
1098 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1099 		while (total > point) {
1100 			order = ilog2(total - point);
1101 			n = 1 << order;
1102 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1103 			atomic_long_sub(n, &mmap_pages_allocated);
1104 			total -= n;
1105 			set_page_refcounted(pages + total);
1106 			__free_pages(pages + total, order);
1107 		}
1108 	}
1109 
1110 	for (point = 1; point < total; point++)
1111 		set_page_refcounted(&pages[point]);
1112 
1113 	base = page_address(pages);
1114 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1115 	region->vm_start = (unsigned long) base;
1116 	region->vm_end   = region->vm_start + rlen;
1117 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1118 
1119 	vma->vm_start = region->vm_start;
1120 	vma->vm_end   = region->vm_start + len;
1121 
1122 	if (vma->vm_file) {
1123 		/* read the contents of a file into the copy */
1124 		mm_segment_t old_fs;
1125 		loff_t fpos;
1126 
1127 		fpos = vma->vm_pgoff;
1128 		fpos <<= PAGE_SHIFT;
1129 
1130 		old_fs = get_fs();
1131 		set_fs(KERNEL_DS);
1132 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1133 		set_fs(old_fs);
1134 
1135 		if (ret < 0)
1136 			goto error_free;
1137 
1138 		/* clear the last little bit */
1139 		if (ret < rlen)
1140 			memset(base + ret, 0, rlen - ret);
1141 
1142 	} else {
1143 		/* if it's an anonymous mapping, then just clear it */
1144 		memset(base, 0, rlen);
1145 	}
1146 
1147 	return 0;
1148 
1149 error_free:
1150 	free_page_series(region->vm_start, region->vm_end);
1151 	region->vm_start = vma->vm_start = 0;
1152 	region->vm_end   = vma->vm_end = 0;
1153 	region->vm_top   = 0;
1154 	return ret;
1155 
1156 enomem:
1157 	printk("Allocation of length %lu from process %d (%s) failed\n",
1158 	       len, current->pid, current->comm);
1159 	show_free_areas();
1160 	return -ENOMEM;
1161 }
1162 
1163 /*
1164  * handle mapping creation for uClinux
1165  */
1166 unsigned long do_mmap_pgoff(struct file *file,
1167 			    unsigned long addr,
1168 			    unsigned long len,
1169 			    unsigned long prot,
1170 			    unsigned long flags,
1171 			    unsigned long pgoff)
1172 {
1173 	struct vm_area_struct *vma;
1174 	struct vm_region *region;
1175 	struct rb_node *rb;
1176 	unsigned long capabilities, vm_flags, result;
1177 	int ret;
1178 
1179 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1180 
1181 	if (!(flags & MAP_FIXED))
1182 		addr = round_hint_to_min(addr);
1183 
1184 	/* decide whether we should attempt the mapping, and if so what sort of
1185 	 * mapping */
1186 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1187 				    &capabilities);
1188 	if (ret < 0) {
1189 		kleave(" = %d [val]", ret);
1190 		return ret;
1191 	}
1192 
1193 	/* we've determined that we can make the mapping, now translate what we
1194 	 * now know into VMA flags */
1195 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1196 
1197 	/* we're going to need to record the mapping */
1198 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1199 	if (!region)
1200 		goto error_getting_region;
1201 
1202 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1203 	if (!vma)
1204 		goto error_getting_vma;
1205 
1206 	atomic_set(&region->vm_usage, 1);
1207 	region->vm_flags = vm_flags;
1208 	region->vm_pgoff = pgoff;
1209 
1210 	INIT_LIST_HEAD(&vma->anon_vma_node);
1211 	vma->vm_flags = vm_flags;
1212 	vma->vm_pgoff = pgoff;
1213 
1214 	if (file) {
1215 		region->vm_file = file;
1216 		get_file(file);
1217 		vma->vm_file = file;
1218 		get_file(file);
1219 		if (vm_flags & VM_EXECUTABLE) {
1220 			added_exe_file_vma(current->mm);
1221 			vma->vm_mm = current->mm;
1222 		}
1223 	}
1224 
1225 	down_write(&nommu_region_sem);
1226 
1227 	/* if we want to share, we need to check for regions created by other
1228 	 * mmap() calls that overlap with our proposed mapping
1229 	 * - we can only share with a superset match on most regular files
1230 	 * - shared mappings on character devices and memory backed files are
1231 	 *   permitted to overlap inexactly as far as we are concerned for in
1232 	 *   these cases, sharing is handled in the driver or filesystem rather
1233 	 *   than here
1234 	 */
1235 	if (vm_flags & VM_MAYSHARE) {
1236 		struct vm_region *pregion;
1237 		unsigned long pglen, rpglen, pgend, rpgend, start;
1238 
1239 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1240 		pgend = pgoff + pglen;
1241 
1242 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1243 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1244 
1245 			if (!(pregion->vm_flags & VM_MAYSHARE))
1246 				continue;
1247 
1248 			/* search for overlapping mappings on the same file */
1249 			if (pregion->vm_file->f_path.dentry->d_inode !=
1250 			    file->f_path.dentry->d_inode)
1251 				continue;
1252 
1253 			if (pregion->vm_pgoff >= pgend)
1254 				continue;
1255 
1256 			rpglen = pregion->vm_end - pregion->vm_start;
1257 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1258 			rpgend = pregion->vm_pgoff + rpglen;
1259 			if (pgoff >= rpgend)
1260 				continue;
1261 
1262 			/* handle inexactly overlapping matches between
1263 			 * mappings */
1264 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1265 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1266 				/* new mapping is not a subset of the region */
1267 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1268 					goto sharing_violation;
1269 				continue;
1270 			}
1271 
1272 			/* we've found a region we can share */
1273 			atomic_inc(&pregion->vm_usage);
1274 			vma->vm_region = pregion;
1275 			start = pregion->vm_start;
1276 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1277 			vma->vm_start = start;
1278 			vma->vm_end = start + len;
1279 
1280 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1281 				kdebug("share copy");
1282 				vma->vm_flags |= VM_MAPPED_COPY;
1283 			} else {
1284 				kdebug("share mmap");
1285 				ret = do_mmap_shared_file(vma);
1286 				if (ret < 0) {
1287 					vma->vm_region = NULL;
1288 					vma->vm_start = 0;
1289 					vma->vm_end = 0;
1290 					atomic_dec(&pregion->vm_usage);
1291 					pregion = NULL;
1292 					goto error_just_free;
1293 				}
1294 			}
1295 			fput(region->vm_file);
1296 			kmem_cache_free(vm_region_jar, region);
1297 			region = pregion;
1298 			result = start;
1299 			goto share;
1300 		}
1301 
1302 		/* obtain the address at which to make a shared mapping
1303 		 * - this is the hook for quasi-memory character devices to
1304 		 *   tell us the location of a shared mapping
1305 		 */
1306 		if (file && file->f_op->get_unmapped_area) {
1307 			addr = file->f_op->get_unmapped_area(file, addr, len,
1308 							     pgoff, flags);
1309 			if (IS_ERR((void *) addr)) {
1310 				ret = addr;
1311 				if (ret != (unsigned long) -ENOSYS)
1312 					goto error_just_free;
1313 
1314 				/* the driver refused to tell us where to site
1315 				 * the mapping so we'll have to attempt to copy
1316 				 * it */
1317 				ret = (unsigned long) -ENODEV;
1318 				if (!(capabilities & BDI_CAP_MAP_COPY))
1319 					goto error_just_free;
1320 
1321 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1322 			} else {
1323 				vma->vm_start = region->vm_start = addr;
1324 				vma->vm_end = region->vm_end = addr + len;
1325 			}
1326 		}
1327 	}
1328 
1329 	vma->vm_region = region;
1330 
1331 	/* set up the mapping */
1332 	if (file && vma->vm_flags & VM_SHARED)
1333 		ret = do_mmap_shared_file(vma);
1334 	else
1335 		ret = do_mmap_private(vma, region, len);
1336 	if (ret < 0)
1337 		goto error_put_region;
1338 
1339 	add_nommu_region(region);
1340 
1341 	/* okay... we have a mapping; now we have to register it */
1342 	result = vma->vm_start;
1343 
1344 	current->mm->total_vm += len >> PAGE_SHIFT;
1345 
1346 share:
1347 	add_vma_to_mm(current->mm, vma);
1348 
1349 	up_write(&nommu_region_sem);
1350 
1351 	if (prot & PROT_EXEC)
1352 		flush_icache_range(result, result + len);
1353 
1354 	kleave(" = %lx", result);
1355 	return result;
1356 
1357 error_put_region:
1358 	__put_nommu_region(region);
1359 	if (vma) {
1360 		if (vma->vm_file) {
1361 			fput(vma->vm_file);
1362 			if (vma->vm_flags & VM_EXECUTABLE)
1363 				removed_exe_file_vma(vma->vm_mm);
1364 		}
1365 		kmem_cache_free(vm_area_cachep, vma);
1366 	}
1367 	kleave(" = %d [pr]", ret);
1368 	return ret;
1369 
1370 error_just_free:
1371 	up_write(&nommu_region_sem);
1372 error:
1373 	fput(region->vm_file);
1374 	kmem_cache_free(vm_region_jar, region);
1375 	fput(vma->vm_file);
1376 	if (vma->vm_flags & VM_EXECUTABLE)
1377 		removed_exe_file_vma(vma->vm_mm);
1378 	kmem_cache_free(vm_area_cachep, vma);
1379 	kleave(" = %d", ret);
1380 	return ret;
1381 
1382 sharing_violation:
1383 	up_write(&nommu_region_sem);
1384 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1385 	ret = -EINVAL;
1386 	goto error;
1387 
1388 error_getting_vma:
1389 	kmem_cache_free(vm_region_jar, region);
1390 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1391 	       " from process %d failed\n",
1392 	       len, current->pid);
1393 	show_free_areas();
1394 	return -ENOMEM;
1395 
1396 error_getting_region:
1397 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1398 	       " from process %d failed\n",
1399 	       len, current->pid);
1400 	show_free_areas();
1401 	return -ENOMEM;
1402 }
1403 EXPORT_SYMBOL(do_mmap_pgoff);
1404 
1405 /*
1406  * split a vma into two pieces at address 'addr', a new vma is allocated either
1407  * for the first part or the tail.
1408  */
1409 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1410 	      unsigned long addr, int new_below)
1411 {
1412 	struct vm_area_struct *new;
1413 	struct vm_region *region;
1414 	unsigned long npages;
1415 
1416 	kenter("");
1417 
1418 	/* we're only permitted to split anonymous regions that have a single
1419 	 * owner */
1420 	if (vma->vm_file ||
1421 	    atomic_read(&vma->vm_region->vm_usage) != 1)
1422 		return -ENOMEM;
1423 
1424 	if (mm->map_count >= sysctl_max_map_count)
1425 		return -ENOMEM;
1426 
1427 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1428 	if (!region)
1429 		return -ENOMEM;
1430 
1431 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1432 	if (!new) {
1433 		kmem_cache_free(vm_region_jar, region);
1434 		return -ENOMEM;
1435 	}
1436 
1437 	/* most fields are the same, copy all, and then fixup */
1438 	*new = *vma;
1439 	*region = *vma->vm_region;
1440 	new->vm_region = region;
1441 
1442 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1443 
1444 	if (new_below) {
1445 		region->vm_top = region->vm_end = new->vm_end = addr;
1446 	} else {
1447 		region->vm_start = new->vm_start = addr;
1448 		region->vm_pgoff = new->vm_pgoff += npages;
1449 	}
1450 
1451 	if (new->vm_ops && new->vm_ops->open)
1452 		new->vm_ops->open(new);
1453 
1454 	delete_vma_from_mm(vma);
1455 	down_write(&nommu_region_sem);
1456 	delete_nommu_region(vma->vm_region);
1457 	if (new_below) {
1458 		vma->vm_region->vm_start = vma->vm_start = addr;
1459 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1460 	} else {
1461 		vma->vm_region->vm_end = vma->vm_end = addr;
1462 		vma->vm_region->vm_top = addr;
1463 	}
1464 	add_nommu_region(vma->vm_region);
1465 	add_nommu_region(new->vm_region);
1466 	up_write(&nommu_region_sem);
1467 	add_vma_to_mm(mm, vma);
1468 	add_vma_to_mm(mm, new);
1469 	return 0;
1470 }
1471 
1472 /*
1473  * shrink a VMA by removing the specified chunk from either the beginning or
1474  * the end
1475  */
1476 static int shrink_vma(struct mm_struct *mm,
1477 		      struct vm_area_struct *vma,
1478 		      unsigned long from, unsigned long to)
1479 {
1480 	struct vm_region *region;
1481 
1482 	kenter("");
1483 
1484 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1485 	 * and list */
1486 	delete_vma_from_mm(vma);
1487 	if (from > vma->vm_start)
1488 		vma->vm_end = from;
1489 	else
1490 		vma->vm_start = to;
1491 	add_vma_to_mm(mm, vma);
1492 
1493 	/* cut the backing region down to size */
1494 	region = vma->vm_region;
1495 	BUG_ON(atomic_read(&region->vm_usage) != 1);
1496 
1497 	down_write(&nommu_region_sem);
1498 	delete_nommu_region(region);
1499 	if (from > region->vm_start) {
1500 		to = region->vm_top;
1501 		region->vm_top = region->vm_end = from;
1502 	} else {
1503 		region->vm_start = to;
1504 	}
1505 	add_nommu_region(region);
1506 	up_write(&nommu_region_sem);
1507 
1508 	free_page_series(from, to);
1509 	return 0;
1510 }
1511 
1512 /*
1513  * release a mapping
1514  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1515  *   VMA, though it need not cover the whole VMA
1516  */
1517 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1518 {
1519 	struct vm_area_struct *vma;
1520 	struct rb_node *rb;
1521 	unsigned long end = start + len;
1522 	int ret;
1523 
1524 	kenter(",%lx,%zx", start, len);
1525 
1526 	if (len == 0)
1527 		return -EINVAL;
1528 
1529 	/* find the first potentially overlapping VMA */
1530 	vma = find_vma(mm, start);
1531 	if (!vma) {
1532 		static int limit = 0;
1533 		if (limit < 5) {
1534 			printk(KERN_WARNING
1535 			       "munmap of memory not mmapped by process %d"
1536 			       " (%s): 0x%lx-0x%lx\n",
1537 			       current->pid, current->comm,
1538 			       start, start + len - 1);
1539 			limit++;
1540 		}
1541 		return -EINVAL;
1542 	}
1543 
1544 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1545 	if (vma->vm_file) {
1546 		do {
1547 			if (start > vma->vm_start) {
1548 				kleave(" = -EINVAL [miss]");
1549 				return -EINVAL;
1550 			}
1551 			if (end == vma->vm_end)
1552 				goto erase_whole_vma;
1553 			rb = rb_next(&vma->vm_rb);
1554 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1555 		} while (rb);
1556 		kleave(" = -EINVAL [split file]");
1557 		return -EINVAL;
1558 	} else {
1559 		/* the chunk must be a subset of the VMA found */
1560 		if (start == vma->vm_start && end == vma->vm_end)
1561 			goto erase_whole_vma;
1562 		if (start < vma->vm_start || end > vma->vm_end) {
1563 			kleave(" = -EINVAL [superset]");
1564 			return -EINVAL;
1565 		}
1566 		if (start & ~PAGE_MASK) {
1567 			kleave(" = -EINVAL [unaligned start]");
1568 			return -EINVAL;
1569 		}
1570 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1571 			kleave(" = -EINVAL [unaligned split]");
1572 			return -EINVAL;
1573 		}
1574 		if (start != vma->vm_start && end != vma->vm_end) {
1575 			ret = split_vma(mm, vma, start, 1);
1576 			if (ret < 0) {
1577 				kleave(" = %d [split]", ret);
1578 				return ret;
1579 			}
1580 		}
1581 		return shrink_vma(mm, vma, start, end);
1582 	}
1583 
1584 erase_whole_vma:
1585 	delete_vma_from_mm(vma);
1586 	delete_vma(mm, vma);
1587 	kleave(" = 0");
1588 	return 0;
1589 }
1590 EXPORT_SYMBOL(do_munmap);
1591 
1592 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1593 {
1594 	int ret;
1595 	struct mm_struct *mm = current->mm;
1596 
1597 	down_write(&mm->mmap_sem);
1598 	ret = do_munmap(mm, addr, len);
1599 	up_write(&mm->mmap_sem);
1600 	return ret;
1601 }
1602 
1603 /*
1604  * release all the mappings made in a process's VM space
1605  */
1606 void exit_mmap(struct mm_struct *mm)
1607 {
1608 	struct vm_area_struct *vma;
1609 
1610 	if (!mm)
1611 		return;
1612 
1613 	kenter("");
1614 
1615 	mm->total_vm = 0;
1616 
1617 	while ((vma = mm->mmap)) {
1618 		mm->mmap = vma->vm_next;
1619 		delete_vma_from_mm(vma);
1620 		delete_vma(mm, vma);
1621 	}
1622 
1623 	kleave("");
1624 }
1625 
1626 unsigned long do_brk(unsigned long addr, unsigned long len)
1627 {
1628 	return -ENOMEM;
1629 }
1630 
1631 /*
1632  * expand (or shrink) an existing mapping, potentially moving it at the same
1633  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1634  *
1635  * under NOMMU conditions, we only permit changing a mapping's size, and only
1636  * as long as it stays within the region allocated by do_mmap_private() and the
1637  * block is not shareable
1638  *
1639  * MREMAP_FIXED is not supported under NOMMU conditions
1640  */
1641 unsigned long do_mremap(unsigned long addr,
1642 			unsigned long old_len, unsigned long new_len,
1643 			unsigned long flags, unsigned long new_addr)
1644 {
1645 	struct vm_area_struct *vma;
1646 
1647 	/* insanity checks first */
1648 	if (old_len == 0 || new_len == 0)
1649 		return (unsigned long) -EINVAL;
1650 
1651 	if (addr & ~PAGE_MASK)
1652 		return -EINVAL;
1653 
1654 	if (flags & MREMAP_FIXED && new_addr != addr)
1655 		return (unsigned long) -EINVAL;
1656 
1657 	vma = find_vma_exact(current->mm, addr, old_len);
1658 	if (!vma)
1659 		return (unsigned long) -EINVAL;
1660 
1661 	if (vma->vm_end != vma->vm_start + old_len)
1662 		return (unsigned long) -EFAULT;
1663 
1664 	if (vma->vm_flags & VM_MAYSHARE)
1665 		return (unsigned long) -EPERM;
1666 
1667 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1668 		return (unsigned long) -ENOMEM;
1669 
1670 	/* all checks complete - do it */
1671 	vma->vm_end = vma->vm_start + new_len;
1672 	return vma->vm_start;
1673 }
1674 EXPORT_SYMBOL(do_mremap);
1675 
1676 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1677 		unsigned long, new_len, unsigned long, flags,
1678 		unsigned long, new_addr)
1679 {
1680 	unsigned long ret;
1681 
1682 	down_write(&current->mm->mmap_sem);
1683 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1684 	up_write(&current->mm->mmap_sem);
1685 	return ret;
1686 }
1687 
1688 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1689 			unsigned int foll_flags)
1690 {
1691 	return NULL;
1692 }
1693 
1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1695 		unsigned long to, unsigned long size, pgprot_t prot)
1696 {
1697 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL(remap_pfn_range);
1701 
1702 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1703 			unsigned long pgoff)
1704 {
1705 	unsigned int size = vma->vm_end - vma->vm_start;
1706 
1707 	if (!(vma->vm_flags & VM_USERMAP))
1708 		return -EINVAL;
1709 
1710 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1711 	vma->vm_end = vma->vm_start + size;
1712 
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL(remap_vmalloc_range);
1716 
1717 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1718 {
1719 }
1720 
1721 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1722 	unsigned long len, unsigned long pgoff, unsigned long flags)
1723 {
1724 	return -ENOMEM;
1725 }
1726 
1727 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1728 {
1729 }
1730 
1731 void unmap_mapping_range(struct address_space *mapping,
1732 			 loff_t const holebegin, loff_t const holelen,
1733 			 int even_cows)
1734 {
1735 }
1736 EXPORT_SYMBOL(unmap_mapping_range);
1737 
1738 /*
1739  * ask for an unmapped area at which to create a mapping on a file
1740  */
1741 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1742 				unsigned long len, unsigned long pgoff,
1743 				unsigned long flags)
1744 {
1745 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1746 				  unsigned long, unsigned long);
1747 
1748 	get_area = current->mm->get_unmapped_area;
1749 	if (file && file->f_op && file->f_op->get_unmapped_area)
1750 		get_area = file->f_op->get_unmapped_area;
1751 
1752 	if (!get_area)
1753 		return -ENOSYS;
1754 
1755 	return get_area(file, addr, len, pgoff, flags);
1756 }
1757 EXPORT_SYMBOL(get_unmapped_area);
1758 
1759 /*
1760  * Check that a process has enough memory to allocate a new virtual
1761  * mapping. 0 means there is enough memory for the allocation to
1762  * succeed and -ENOMEM implies there is not.
1763  *
1764  * We currently support three overcommit policies, which are set via the
1765  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1766  *
1767  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1768  * Additional code 2002 Jul 20 by Robert Love.
1769  *
1770  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1771  *
1772  * Note this is a helper function intended to be used by LSMs which
1773  * wish to use this logic.
1774  */
1775 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1776 {
1777 	unsigned long free, allowed;
1778 
1779 	vm_acct_memory(pages);
1780 
1781 	/*
1782 	 * Sometimes we want to use more memory than we have
1783 	 */
1784 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1785 		return 0;
1786 
1787 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1788 		unsigned long n;
1789 
1790 		free = global_page_state(NR_FILE_PAGES);
1791 		free += nr_swap_pages;
1792 
1793 		/*
1794 		 * Any slabs which are created with the
1795 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1796 		 * which are reclaimable, under pressure.  The dentry
1797 		 * cache and most inode caches should fall into this
1798 		 */
1799 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1800 
1801 		/*
1802 		 * Leave the last 3% for root
1803 		 */
1804 		if (!cap_sys_admin)
1805 			free -= free / 32;
1806 
1807 		if (free > pages)
1808 			return 0;
1809 
1810 		/*
1811 		 * nr_free_pages() is very expensive on large systems,
1812 		 * only call if we're about to fail.
1813 		 */
1814 		n = nr_free_pages();
1815 
1816 		/*
1817 		 * Leave reserved pages. The pages are not for anonymous pages.
1818 		 */
1819 		if (n <= totalreserve_pages)
1820 			goto error;
1821 		else
1822 			n -= totalreserve_pages;
1823 
1824 		/*
1825 		 * Leave the last 3% for root
1826 		 */
1827 		if (!cap_sys_admin)
1828 			n -= n / 32;
1829 		free += n;
1830 
1831 		if (free > pages)
1832 			return 0;
1833 
1834 		goto error;
1835 	}
1836 
1837 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1838 	/*
1839 	 * Leave the last 3% for root
1840 	 */
1841 	if (!cap_sys_admin)
1842 		allowed -= allowed / 32;
1843 	allowed += total_swap_pages;
1844 
1845 	/* Don't let a single process grow too big:
1846 	   leave 3% of the size of this process for other processes */
1847 	if (mm)
1848 		allowed -= mm->total_vm / 32;
1849 
1850 	/*
1851 	 * cast `allowed' as a signed long because vm_committed_space
1852 	 * sometimes has a negative value
1853 	 */
1854 	if (atomic_long_read(&vm_committed_space) < (long)allowed)
1855 		return 0;
1856 error:
1857 	vm_unacct_memory(pages);
1858 
1859 	return -ENOMEM;
1860 }
1861 
1862 int in_gate_area_no_task(unsigned long addr)
1863 {
1864 	return 0;
1865 }
1866 
1867 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1868 {
1869 	BUG();
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL(filemap_fault);
1873 
1874 /*
1875  * Access another process' address space.
1876  * - source/target buffer must be kernel space
1877  */
1878 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1879 {
1880 	struct vm_area_struct *vma;
1881 	struct mm_struct *mm;
1882 
1883 	if (addr + len < addr)
1884 		return 0;
1885 
1886 	mm = get_task_mm(tsk);
1887 	if (!mm)
1888 		return 0;
1889 
1890 	down_read(&mm->mmap_sem);
1891 
1892 	/* the access must start within one of the target process's mappings */
1893 	vma = find_vma(mm, addr);
1894 	if (vma) {
1895 		/* don't overrun this mapping */
1896 		if (addr + len >= vma->vm_end)
1897 			len = vma->vm_end - addr;
1898 
1899 		/* only read or write mappings where it is permitted */
1900 		if (write && vma->vm_flags & VM_MAYWRITE)
1901 			len -= copy_to_user((void *) addr, buf, len);
1902 		else if (!write && vma->vm_flags & VM_MAYREAD)
1903 			len -= copy_from_user(buf, (void *) addr, len);
1904 		else
1905 			len = 0;
1906 	} else {
1907 		len = 0;
1908 	}
1909 
1910 	up_read(&mm->mmap_sem);
1911 	mmput(mm);
1912 	return len;
1913 }
1914