xref: /linux/mm/nommu.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return PAGE_SIZE << compound_order(page);
111 }
112 
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 		      unsigned long start, unsigned long nr_pages,
115 		      unsigned int foll_flags, struct page **pages,
116 		      struct vm_area_struct **vmas, int *nonblocking)
117 {
118 	struct vm_area_struct *vma;
119 	unsigned long vm_flags;
120 	int i;
121 
122 	/* calculate required read or write permissions.
123 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 	 */
125 	vm_flags  = (foll_flags & FOLL_WRITE) ?
126 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 	vm_flags &= (foll_flags & FOLL_FORCE) ?
128 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129 
130 	for (i = 0; i < nr_pages; i++) {
131 		vma = find_vma(mm, start);
132 		if (!vma)
133 			goto finish_or_fault;
134 
135 		/* protect what we can, including chardevs */
136 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 		    !(vm_flags & vma->vm_flags))
138 			goto finish_or_fault;
139 
140 		if (pages) {
141 			pages[i] = virt_to_page(start);
142 			if (pages[i])
143 				get_page(pages[i]);
144 		}
145 		if (vmas)
146 			vmas[i] = vma;
147 		start = (start + PAGE_SIZE) & PAGE_MASK;
148 	}
149 
150 	return i;
151 
152 finish_or_fault:
153 	return i ? : -EFAULT;
154 }
155 
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 		    unsigned int gup_flags, struct page **pages,
165 		    struct vm_area_struct **vmas)
166 {
167 	return __get_user_pages(current, current->mm, start, nr_pages,
168 				gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171 
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 			    unsigned int gup_flags, struct page **pages,
174 			    int *locked)
175 {
176 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179 
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 			struct mm_struct *mm, unsigned long start,
182 			unsigned long nr_pages, struct page **pages,
183 			unsigned int gup_flags)
184 {
185 	long ret;
186 	down_read(&mm->mmap_sem);
187 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 				NULL, NULL);
189 	up_read(&mm->mmap_sem);
190 	return ret;
191 }
192 
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 			     struct page **pages, unsigned int gup_flags)
195 {
196 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 					 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200 
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 	unsigned long *pfn)
213 {
214 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 		return -EINVAL;
216 
217 	*pfn = address >> PAGE_SHIFT;
218 	return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221 
222 LIST_HEAD(vmap_area_list);
223 
224 void vfree(const void *addr)
225 {
226 	kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229 
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 	/*
233 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 	 * returns only a logical address.
235 	 */
236 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239 
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 	return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244 
245 void *vmalloc_user(unsigned long size)
246 {
247 	void *ret;
248 
249 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 	if (ret) {
251 		struct vm_area_struct *vma;
252 
253 		down_write(&current->mm->mmap_sem);
254 		vma = find_vma(current->mm, (unsigned long)ret);
255 		if (vma)
256 			vma->vm_flags |= VM_USERMAP;
257 		up_write(&current->mm->mmap_sem);
258 	}
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263 
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 	return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269 
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 	return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275 
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 	/* Don't allow overflow */
279 	if ((unsigned long) buf + count < count)
280 		count = -(unsigned long) buf;
281 
282 	memcpy(buf, addr, count);
283 	return count;
284 }
285 
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 	/* Don't allow overflow */
289 	if ((unsigned long) addr + count < count)
290 		count = -(unsigned long) addr;
291 
292 	memcpy(addr, buf, count);
293 	return count;
294 }
295 
296 /*
297  *	vmalloc  -  allocate virtually contiguous memory
298  *
299  *	@size:		allocation size
300  *
301  *	Allocate enough pages to cover @size from the page level
302  *	allocator and map them into contiguous kernel virtual space.
303  *
304  *	For tight control over page level allocator and protection flags
305  *	use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312 
313 /*
314  *	vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *	@size:		allocation size
317  *
318  *	Allocate enough pages to cover @size from the page level
319  *	allocator and map them into contiguous kernel virtual space.
320  *	The memory allocated is set to zero.
321  *
322  *	For tight control over page level allocator and protection flags
323  *	use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 			PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331 
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:	allocation size
352  * @node:	numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 	return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366 
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370 
371 /**
372  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *	@size:		allocation size
374  *
375  *	Kernel-internal function to allocate enough pages to cover @size
376  *	the page level allocator and map them into contiguous and
377  *	executable kernel virtual space.
378  *
379  *	For tight control over page level allocator and protection flags
380  *	use __vmalloc() instead.
381  */
382 
383 void *vmalloc_exec(unsigned long size)
384 {
385 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387 
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *	@size:		allocation size
391  *
392  *	Allocate enough 32bit PA addressable pages to cover @size from the
393  *	page level allocator and map them into contiguous kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400 
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *	@size:		allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413 	/*
414 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 	 * but for now this can simply use vmalloc_user() directly.
416 	 */
417 	return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420 
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423 	BUG();
424 	return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427 
428 void vunmap(const void *addr)
429 {
430 	BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433 
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436 	BUG();
437 	return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440 
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443 	BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446 
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451 
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void __weak vmalloc_sync_all(void)
457 {
458 }
459 
460 /**
461  *	alloc_vm_area - allocate a range of kernel address space
462  *	@size:		size of the area
463  *
464  *	Returns:	NULL on failure, vm_struct on success
465  *
466  *	This function reserves a range of kernel address space, and
467  *	allocates pagetables to map that range.  No actual mappings
468  *	are created.  If the kernel address space is not shared
469  *	between processes, it syncs the pagetable across all
470  *	processes.
471  */
472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
473 {
474 	BUG();
475 	return NULL;
476 }
477 EXPORT_SYMBOL_GPL(alloc_vm_area);
478 
479 void free_vm_area(struct vm_struct *area)
480 {
481 	BUG();
482 }
483 EXPORT_SYMBOL_GPL(free_vm_area);
484 
485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
486 		   struct page *page)
487 {
488 	return -EINVAL;
489 }
490 EXPORT_SYMBOL(vm_insert_page);
491 
492 /*
493  *  sys_brk() for the most part doesn't need the global kernel
494  *  lock, except when an application is doing something nasty
495  *  like trying to un-brk an area that has already been mapped
496  *  to a regular file.  in this case, the unmapping will need
497  *  to invoke file system routines that need the global lock.
498  */
499 SYSCALL_DEFINE1(brk, unsigned long, brk)
500 {
501 	struct mm_struct *mm = current->mm;
502 
503 	if (brk < mm->start_brk || brk > mm->context.end_brk)
504 		return mm->brk;
505 
506 	if (mm->brk == brk)
507 		return mm->brk;
508 
509 	/*
510 	 * Always allow shrinking brk
511 	 */
512 	if (brk <= mm->brk) {
513 		mm->brk = brk;
514 		return brk;
515 	}
516 
517 	/*
518 	 * Ok, looks good - let it rip.
519 	 */
520 	flush_icache_range(mm->brk, brk);
521 	return mm->brk = brk;
522 }
523 
524 /*
525  * initialise the percpu counter for VM and region record slabs
526  */
527 void __init mmap_init(void)
528 {
529 	int ret;
530 
531 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
532 	VM_BUG_ON(ret);
533 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
534 }
535 
536 /*
537  * validate the region tree
538  * - the caller must hold the region lock
539  */
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline void validate_nommu_regions(void)
542 {
543 	struct vm_region *region, *last;
544 	struct rb_node *p, *lastp;
545 
546 	lastp = rb_first(&nommu_region_tree);
547 	if (!lastp)
548 		return;
549 
550 	last = rb_entry(lastp, struct vm_region, vm_rb);
551 	BUG_ON(last->vm_end <= last->vm_start);
552 	BUG_ON(last->vm_top < last->vm_end);
553 
554 	while ((p = rb_next(lastp))) {
555 		region = rb_entry(p, struct vm_region, vm_rb);
556 		last = rb_entry(lastp, struct vm_region, vm_rb);
557 
558 		BUG_ON(region->vm_end <= region->vm_start);
559 		BUG_ON(region->vm_top < region->vm_end);
560 		BUG_ON(region->vm_start < last->vm_top);
561 
562 		lastp = p;
563 	}
564 }
565 #else
566 static void validate_nommu_regions(void)
567 {
568 }
569 #endif
570 
571 /*
572  * add a region into the global tree
573  */
574 static void add_nommu_region(struct vm_region *region)
575 {
576 	struct vm_region *pregion;
577 	struct rb_node **p, *parent;
578 
579 	validate_nommu_regions();
580 
581 	parent = NULL;
582 	p = &nommu_region_tree.rb_node;
583 	while (*p) {
584 		parent = *p;
585 		pregion = rb_entry(parent, struct vm_region, vm_rb);
586 		if (region->vm_start < pregion->vm_start)
587 			p = &(*p)->rb_left;
588 		else if (region->vm_start > pregion->vm_start)
589 			p = &(*p)->rb_right;
590 		else if (pregion == region)
591 			return;
592 		else
593 			BUG();
594 	}
595 
596 	rb_link_node(&region->vm_rb, parent, p);
597 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
598 
599 	validate_nommu_regions();
600 }
601 
602 /*
603  * delete a region from the global tree
604  */
605 static void delete_nommu_region(struct vm_region *region)
606 {
607 	BUG_ON(!nommu_region_tree.rb_node);
608 
609 	validate_nommu_regions();
610 	rb_erase(&region->vm_rb, &nommu_region_tree);
611 	validate_nommu_regions();
612 }
613 
614 /*
615  * free a contiguous series of pages
616  */
617 static void free_page_series(unsigned long from, unsigned long to)
618 {
619 	for (; from < to; from += PAGE_SIZE) {
620 		struct page *page = virt_to_page(from);
621 
622 		atomic_long_dec(&mmap_pages_allocated);
623 		put_page(page);
624 	}
625 }
626 
627 /*
628  * release a reference to a region
629  * - the caller must hold the region semaphore for writing, which this releases
630  * - the region may not have been added to the tree yet, in which case vm_top
631  *   will equal vm_start
632  */
633 static void __put_nommu_region(struct vm_region *region)
634 	__releases(nommu_region_sem)
635 {
636 	BUG_ON(!nommu_region_tree.rb_node);
637 
638 	if (--region->vm_usage == 0) {
639 		if (region->vm_top > region->vm_start)
640 			delete_nommu_region(region);
641 		up_write(&nommu_region_sem);
642 
643 		if (region->vm_file)
644 			fput(region->vm_file);
645 
646 		/* IO memory and memory shared directly out of the pagecache
647 		 * from ramfs/tmpfs mustn't be released here */
648 		if (region->vm_flags & VM_MAPPED_COPY)
649 			free_page_series(region->vm_start, region->vm_top);
650 		kmem_cache_free(vm_region_jar, region);
651 	} else {
652 		up_write(&nommu_region_sem);
653 	}
654 }
655 
656 /*
657  * release a reference to a region
658  */
659 static void put_nommu_region(struct vm_region *region)
660 {
661 	down_write(&nommu_region_sem);
662 	__put_nommu_region(region);
663 }
664 
665 /*
666  * update protection on a vma
667  */
668 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
669 {
670 #ifdef CONFIG_MPU
671 	struct mm_struct *mm = vma->vm_mm;
672 	long start = vma->vm_start & PAGE_MASK;
673 	while (start < vma->vm_end) {
674 		protect_page(mm, start, flags);
675 		start += PAGE_SIZE;
676 	}
677 	update_protections(mm);
678 #endif
679 }
680 
681 /*
682  * add a VMA into a process's mm_struct in the appropriate place in the list
683  * and tree and add to the address space's page tree also if not an anonymous
684  * page
685  * - should be called with mm->mmap_sem held writelocked
686  */
687 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
688 {
689 	struct vm_area_struct *pvma, *prev;
690 	struct address_space *mapping;
691 	struct rb_node **p, *parent, *rb_prev;
692 
693 	BUG_ON(!vma->vm_region);
694 
695 	mm->map_count++;
696 	vma->vm_mm = mm;
697 
698 	protect_vma(vma, vma->vm_flags);
699 
700 	/* add the VMA to the mapping */
701 	if (vma->vm_file) {
702 		mapping = vma->vm_file->f_mapping;
703 
704 		i_mmap_lock_write(mapping);
705 		flush_dcache_mmap_lock(mapping);
706 		vma_interval_tree_insert(vma, &mapping->i_mmap);
707 		flush_dcache_mmap_unlock(mapping);
708 		i_mmap_unlock_write(mapping);
709 	}
710 
711 	/* add the VMA to the tree */
712 	parent = rb_prev = NULL;
713 	p = &mm->mm_rb.rb_node;
714 	while (*p) {
715 		parent = *p;
716 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
717 
718 		/* sort by: start addr, end addr, VMA struct addr in that order
719 		 * (the latter is necessary as we may get identical VMAs) */
720 		if (vma->vm_start < pvma->vm_start)
721 			p = &(*p)->rb_left;
722 		else if (vma->vm_start > pvma->vm_start) {
723 			rb_prev = parent;
724 			p = &(*p)->rb_right;
725 		} else if (vma->vm_end < pvma->vm_end)
726 			p = &(*p)->rb_left;
727 		else if (vma->vm_end > pvma->vm_end) {
728 			rb_prev = parent;
729 			p = &(*p)->rb_right;
730 		} else if (vma < pvma)
731 			p = &(*p)->rb_left;
732 		else if (vma > pvma) {
733 			rb_prev = parent;
734 			p = &(*p)->rb_right;
735 		} else
736 			BUG();
737 	}
738 
739 	rb_link_node(&vma->vm_rb, parent, p);
740 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
741 
742 	/* add VMA to the VMA list also */
743 	prev = NULL;
744 	if (rb_prev)
745 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
746 
747 	__vma_link_list(mm, vma, prev, parent);
748 }
749 
750 /*
751  * delete a VMA from its owning mm_struct and address space
752  */
753 static void delete_vma_from_mm(struct vm_area_struct *vma)
754 {
755 	int i;
756 	struct address_space *mapping;
757 	struct mm_struct *mm = vma->vm_mm;
758 	struct task_struct *curr = current;
759 
760 	protect_vma(vma, 0);
761 
762 	mm->map_count--;
763 	for (i = 0; i < VMACACHE_SIZE; i++) {
764 		/* if the vma is cached, invalidate the entire cache */
765 		if (curr->vmacache.vmas[i] == vma) {
766 			vmacache_invalidate(mm);
767 			break;
768 		}
769 	}
770 
771 	/* remove the VMA from the mapping */
772 	if (vma->vm_file) {
773 		mapping = vma->vm_file->f_mapping;
774 
775 		i_mmap_lock_write(mapping);
776 		flush_dcache_mmap_lock(mapping);
777 		vma_interval_tree_remove(vma, &mapping->i_mmap);
778 		flush_dcache_mmap_unlock(mapping);
779 		i_mmap_unlock_write(mapping);
780 	}
781 
782 	/* remove from the MM's tree and list */
783 	rb_erase(&vma->vm_rb, &mm->mm_rb);
784 
785 	if (vma->vm_prev)
786 		vma->vm_prev->vm_next = vma->vm_next;
787 	else
788 		mm->mmap = vma->vm_next;
789 
790 	if (vma->vm_next)
791 		vma->vm_next->vm_prev = vma->vm_prev;
792 }
793 
794 /*
795  * destroy a VMA record
796  */
797 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
798 {
799 	if (vma->vm_ops && vma->vm_ops->close)
800 		vma->vm_ops->close(vma);
801 	if (vma->vm_file)
802 		fput(vma->vm_file);
803 	put_nommu_region(vma->vm_region);
804 	kmem_cache_free(vm_area_cachep, vma);
805 }
806 
807 /*
808  * look up the first VMA in which addr resides, NULL if none
809  * - should be called with mm->mmap_sem at least held readlocked
810  */
811 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
812 {
813 	struct vm_area_struct *vma;
814 
815 	/* check the cache first */
816 	vma = vmacache_find(mm, addr);
817 	if (likely(vma))
818 		return vma;
819 
820 	/* trawl the list (there may be multiple mappings in which addr
821 	 * resides) */
822 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
823 		if (vma->vm_start > addr)
824 			return NULL;
825 		if (vma->vm_end > addr) {
826 			vmacache_update(addr, vma);
827 			return vma;
828 		}
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(find_vma);
834 
835 /*
836  * find a VMA
837  * - we don't extend stack VMAs under NOMMU conditions
838  */
839 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
840 {
841 	return find_vma(mm, addr);
842 }
843 
844 /*
845  * expand a stack to a given address
846  * - not supported under NOMMU conditions
847  */
848 int expand_stack(struct vm_area_struct *vma, unsigned long address)
849 {
850 	return -ENOMEM;
851 }
852 
853 /*
854  * look up the first VMA exactly that exactly matches addr
855  * - should be called with mm->mmap_sem at least held readlocked
856  */
857 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
858 					     unsigned long addr,
859 					     unsigned long len)
860 {
861 	struct vm_area_struct *vma;
862 	unsigned long end = addr + len;
863 
864 	/* check the cache first */
865 	vma = vmacache_find_exact(mm, addr, end);
866 	if (vma)
867 		return vma;
868 
869 	/* trawl the list (there may be multiple mappings in which addr
870 	 * resides) */
871 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
872 		if (vma->vm_start < addr)
873 			continue;
874 		if (vma->vm_start > addr)
875 			return NULL;
876 		if (vma->vm_end == end) {
877 			vmacache_update(addr, vma);
878 			return vma;
879 		}
880 	}
881 
882 	return NULL;
883 }
884 
885 /*
886  * determine whether a mapping should be permitted and, if so, what sort of
887  * mapping we're capable of supporting
888  */
889 static int validate_mmap_request(struct file *file,
890 				 unsigned long addr,
891 				 unsigned long len,
892 				 unsigned long prot,
893 				 unsigned long flags,
894 				 unsigned long pgoff,
895 				 unsigned long *_capabilities)
896 {
897 	unsigned long capabilities, rlen;
898 	int ret;
899 
900 	/* do the simple checks first */
901 	if (flags & MAP_FIXED)
902 		return -EINVAL;
903 
904 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
905 	    (flags & MAP_TYPE) != MAP_SHARED)
906 		return -EINVAL;
907 
908 	if (!len)
909 		return -EINVAL;
910 
911 	/* Careful about overflows.. */
912 	rlen = PAGE_ALIGN(len);
913 	if (!rlen || rlen > TASK_SIZE)
914 		return -ENOMEM;
915 
916 	/* offset overflow? */
917 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
918 		return -EOVERFLOW;
919 
920 	if (file) {
921 		/* files must support mmap */
922 		if (!file->f_op->mmap)
923 			return -ENODEV;
924 
925 		/* work out if what we've got could possibly be shared
926 		 * - we support chardevs that provide their own "memory"
927 		 * - we support files/blockdevs that are memory backed
928 		 */
929 		if (file->f_op->mmap_capabilities) {
930 			capabilities = file->f_op->mmap_capabilities(file);
931 		} else {
932 			/* no explicit capabilities set, so assume some
933 			 * defaults */
934 			switch (file_inode(file)->i_mode & S_IFMT) {
935 			case S_IFREG:
936 			case S_IFBLK:
937 				capabilities = NOMMU_MAP_COPY;
938 				break;
939 
940 			case S_IFCHR:
941 				capabilities =
942 					NOMMU_MAP_DIRECT |
943 					NOMMU_MAP_READ |
944 					NOMMU_MAP_WRITE;
945 				break;
946 
947 			default:
948 				return -EINVAL;
949 			}
950 		}
951 
952 		/* eliminate any capabilities that we can't support on this
953 		 * device */
954 		if (!file->f_op->get_unmapped_area)
955 			capabilities &= ~NOMMU_MAP_DIRECT;
956 		if (!(file->f_mode & FMODE_CAN_READ))
957 			capabilities &= ~NOMMU_MAP_COPY;
958 
959 		/* The file shall have been opened with read permission. */
960 		if (!(file->f_mode & FMODE_READ))
961 			return -EACCES;
962 
963 		if (flags & MAP_SHARED) {
964 			/* do checks for writing, appending and locking */
965 			if ((prot & PROT_WRITE) &&
966 			    !(file->f_mode & FMODE_WRITE))
967 				return -EACCES;
968 
969 			if (IS_APPEND(file_inode(file)) &&
970 			    (file->f_mode & FMODE_WRITE))
971 				return -EACCES;
972 
973 			if (locks_verify_locked(file))
974 				return -EAGAIN;
975 
976 			if (!(capabilities & NOMMU_MAP_DIRECT))
977 				return -ENODEV;
978 
979 			/* we mustn't privatise shared mappings */
980 			capabilities &= ~NOMMU_MAP_COPY;
981 		} else {
982 			/* we're going to read the file into private memory we
983 			 * allocate */
984 			if (!(capabilities & NOMMU_MAP_COPY))
985 				return -ENODEV;
986 
987 			/* we don't permit a private writable mapping to be
988 			 * shared with the backing device */
989 			if (prot & PROT_WRITE)
990 				capabilities &= ~NOMMU_MAP_DIRECT;
991 		}
992 
993 		if (capabilities & NOMMU_MAP_DIRECT) {
994 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
995 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
996 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
997 			    ) {
998 				capabilities &= ~NOMMU_MAP_DIRECT;
999 				if (flags & MAP_SHARED) {
1000 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
1001 					return -EINVAL;
1002 				}
1003 			}
1004 		}
1005 
1006 		/* handle executable mappings and implied executable
1007 		 * mappings */
1008 		if (path_noexec(&file->f_path)) {
1009 			if (prot & PROT_EXEC)
1010 				return -EPERM;
1011 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1012 			/* handle implication of PROT_EXEC by PROT_READ */
1013 			if (current->personality & READ_IMPLIES_EXEC) {
1014 				if (capabilities & NOMMU_MAP_EXEC)
1015 					prot |= PROT_EXEC;
1016 			}
1017 		} else if ((prot & PROT_READ) &&
1018 			 (prot & PROT_EXEC) &&
1019 			 !(capabilities & NOMMU_MAP_EXEC)
1020 			 ) {
1021 			/* backing file is not executable, try to copy */
1022 			capabilities &= ~NOMMU_MAP_DIRECT;
1023 		}
1024 	} else {
1025 		/* anonymous mappings are always memory backed and can be
1026 		 * privately mapped
1027 		 */
1028 		capabilities = NOMMU_MAP_COPY;
1029 
1030 		/* handle PROT_EXEC implication by PROT_READ */
1031 		if ((prot & PROT_READ) &&
1032 		    (current->personality & READ_IMPLIES_EXEC))
1033 			prot |= PROT_EXEC;
1034 	}
1035 
1036 	/* allow the security API to have its say */
1037 	ret = security_mmap_addr(addr);
1038 	if (ret < 0)
1039 		return ret;
1040 
1041 	/* looks okay */
1042 	*_capabilities = capabilities;
1043 	return 0;
1044 }
1045 
1046 /*
1047  * we've determined that we can make the mapping, now translate what we
1048  * now know into VMA flags
1049  */
1050 static unsigned long determine_vm_flags(struct file *file,
1051 					unsigned long prot,
1052 					unsigned long flags,
1053 					unsigned long capabilities)
1054 {
1055 	unsigned long vm_flags;
1056 
1057 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1058 	/* vm_flags |= mm->def_flags; */
1059 
1060 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1061 		/* attempt to share read-only copies of mapped file chunks */
1062 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1063 		if (file && !(prot & PROT_WRITE))
1064 			vm_flags |= VM_MAYSHARE;
1065 	} else {
1066 		/* overlay a shareable mapping on the backing device or inode
1067 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1068 		 * romfs/cramfs */
1069 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1070 		if (flags & MAP_SHARED)
1071 			vm_flags |= VM_SHARED;
1072 	}
1073 
1074 	/* refuse to let anyone share private mappings with this process if
1075 	 * it's being traced - otherwise breakpoints set in it may interfere
1076 	 * with another untraced process
1077 	 */
1078 	if ((flags & MAP_PRIVATE) && current->ptrace)
1079 		vm_flags &= ~VM_MAYSHARE;
1080 
1081 	return vm_flags;
1082 }
1083 
1084 /*
1085  * set up a shared mapping on a file (the driver or filesystem provides and
1086  * pins the storage)
1087  */
1088 static int do_mmap_shared_file(struct vm_area_struct *vma)
1089 {
1090 	int ret;
1091 
1092 	ret = call_mmap(vma->vm_file, vma);
1093 	if (ret == 0) {
1094 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1095 		return 0;
1096 	}
1097 	if (ret != -ENOSYS)
1098 		return ret;
1099 
1100 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1101 	 * opposed to tried but failed) so we can only give a suitable error as
1102 	 * it's not possible to make a private copy if MAP_SHARED was given */
1103 	return -ENODEV;
1104 }
1105 
1106 /*
1107  * set up a private mapping or an anonymous shared mapping
1108  */
1109 static int do_mmap_private(struct vm_area_struct *vma,
1110 			   struct vm_region *region,
1111 			   unsigned long len,
1112 			   unsigned long capabilities)
1113 {
1114 	unsigned long total, point;
1115 	void *base;
1116 	int ret, order;
1117 
1118 	/* invoke the file's mapping function so that it can keep track of
1119 	 * shared mappings on devices or memory
1120 	 * - VM_MAYSHARE will be set if it may attempt to share
1121 	 */
1122 	if (capabilities & NOMMU_MAP_DIRECT) {
1123 		ret = call_mmap(vma->vm_file, vma);
1124 		if (ret == 0) {
1125 			/* shouldn't return success if we're not sharing */
1126 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1127 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1128 			return 0;
1129 		}
1130 		if (ret != -ENOSYS)
1131 			return ret;
1132 
1133 		/* getting an ENOSYS error indicates that direct mmap isn't
1134 		 * possible (as opposed to tried but failed) so we'll try to
1135 		 * make a private copy of the data and map that instead */
1136 	}
1137 
1138 
1139 	/* allocate some memory to hold the mapping
1140 	 * - note that this may not return a page-aligned address if the object
1141 	 *   we're allocating is smaller than a page
1142 	 */
1143 	order = get_order(len);
1144 	total = 1 << order;
1145 	point = len >> PAGE_SHIFT;
1146 
1147 	/* we don't want to allocate a power-of-2 sized page set */
1148 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1149 		total = point;
1150 
1151 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1152 	if (!base)
1153 		goto enomem;
1154 
1155 	atomic_long_add(total, &mmap_pages_allocated);
1156 
1157 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1158 	region->vm_start = (unsigned long) base;
1159 	region->vm_end   = region->vm_start + len;
1160 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1161 
1162 	vma->vm_start = region->vm_start;
1163 	vma->vm_end   = region->vm_start + len;
1164 
1165 	if (vma->vm_file) {
1166 		/* read the contents of a file into the copy */
1167 		loff_t fpos;
1168 
1169 		fpos = vma->vm_pgoff;
1170 		fpos <<= PAGE_SHIFT;
1171 
1172 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1173 		if (ret < 0)
1174 			goto error_free;
1175 
1176 		/* clear the last little bit */
1177 		if (ret < len)
1178 			memset(base + ret, 0, len - ret);
1179 
1180 	}
1181 
1182 	return 0;
1183 
1184 error_free:
1185 	free_page_series(region->vm_start, region->vm_top);
1186 	region->vm_start = vma->vm_start = 0;
1187 	region->vm_end   = vma->vm_end = 0;
1188 	region->vm_top   = 0;
1189 	return ret;
1190 
1191 enomem:
1192 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1193 	       len, current->pid, current->comm);
1194 	show_free_areas(0, NULL);
1195 	return -ENOMEM;
1196 }
1197 
1198 /*
1199  * handle mapping creation for uClinux
1200  */
1201 unsigned long do_mmap(struct file *file,
1202 			unsigned long addr,
1203 			unsigned long len,
1204 			unsigned long prot,
1205 			unsigned long flags,
1206 			vm_flags_t vm_flags,
1207 			unsigned long pgoff,
1208 			unsigned long *populate,
1209 			struct list_head *uf)
1210 {
1211 	struct vm_area_struct *vma;
1212 	struct vm_region *region;
1213 	struct rb_node *rb;
1214 	unsigned long capabilities, result;
1215 	int ret;
1216 
1217 	*populate = 0;
1218 
1219 	/* decide whether we should attempt the mapping, and if so what sort of
1220 	 * mapping */
1221 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1222 				    &capabilities);
1223 	if (ret < 0)
1224 		return ret;
1225 
1226 	/* we ignore the address hint */
1227 	addr = 0;
1228 	len = PAGE_ALIGN(len);
1229 
1230 	/* we've determined that we can make the mapping, now translate what we
1231 	 * now know into VMA flags */
1232 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1233 
1234 	/* we're going to need to record the mapping */
1235 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1236 	if (!region)
1237 		goto error_getting_region;
1238 
1239 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1240 	if (!vma)
1241 		goto error_getting_vma;
1242 
1243 	region->vm_usage = 1;
1244 	region->vm_flags = vm_flags;
1245 	region->vm_pgoff = pgoff;
1246 
1247 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1248 	vma->vm_flags = vm_flags;
1249 	vma->vm_pgoff = pgoff;
1250 
1251 	if (file) {
1252 		region->vm_file = get_file(file);
1253 		vma->vm_file = get_file(file);
1254 	}
1255 
1256 	down_write(&nommu_region_sem);
1257 
1258 	/* if we want to share, we need to check for regions created by other
1259 	 * mmap() calls that overlap with our proposed mapping
1260 	 * - we can only share with a superset match on most regular files
1261 	 * - shared mappings on character devices and memory backed files are
1262 	 *   permitted to overlap inexactly as far as we are concerned for in
1263 	 *   these cases, sharing is handled in the driver or filesystem rather
1264 	 *   than here
1265 	 */
1266 	if (vm_flags & VM_MAYSHARE) {
1267 		struct vm_region *pregion;
1268 		unsigned long pglen, rpglen, pgend, rpgend, start;
1269 
1270 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1271 		pgend = pgoff + pglen;
1272 
1273 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1274 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1275 
1276 			if (!(pregion->vm_flags & VM_MAYSHARE))
1277 				continue;
1278 
1279 			/* search for overlapping mappings on the same file */
1280 			if (file_inode(pregion->vm_file) !=
1281 			    file_inode(file))
1282 				continue;
1283 
1284 			if (pregion->vm_pgoff >= pgend)
1285 				continue;
1286 
1287 			rpglen = pregion->vm_end - pregion->vm_start;
1288 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1289 			rpgend = pregion->vm_pgoff + rpglen;
1290 			if (pgoff >= rpgend)
1291 				continue;
1292 
1293 			/* handle inexactly overlapping matches between
1294 			 * mappings */
1295 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1296 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1297 				/* new mapping is not a subset of the region */
1298 				if (!(capabilities & NOMMU_MAP_DIRECT))
1299 					goto sharing_violation;
1300 				continue;
1301 			}
1302 
1303 			/* we've found a region we can share */
1304 			pregion->vm_usage++;
1305 			vma->vm_region = pregion;
1306 			start = pregion->vm_start;
1307 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1308 			vma->vm_start = start;
1309 			vma->vm_end = start + len;
1310 
1311 			if (pregion->vm_flags & VM_MAPPED_COPY)
1312 				vma->vm_flags |= VM_MAPPED_COPY;
1313 			else {
1314 				ret = do_mmap_shared_file(vma);
1315 				if (ret < 0) {
1316 					vma->vm_region = NULL;
1317 					vma->vm_start = 0;
1318 					vma->vm_end = 0;
1319 					pregion->vm_usage--;
1320 					pregion = NULL;
1321 					goto error_just_free;
1322 				}
1323 			}
1324 			fput(region->vm_file);
1325 			kmem_cache_free(vm_region_jar, region);
1326 			region = pregion;
1327 			result = start;
1328 			goto share;
1329 		}
1330 
1331 		/* obtain the address at which to make a shared mapping
1332 		 * - this is the hook for quasi-memory character devices to
1333 		 *   tell us the location of a shared mapping
1334 		 */
1335 		if (capabilities & NOMMU_MAP_DIRECT) {
1336 			addr = file->f_op->get_unmapped_area(file, addr, len,
1337 							     pgoff, flags);
1338 			if (IS_ERR_VALUE(addr)) {
1339 				ret = addr;
1340 				if (ret != -ENOSYS)
1341 					goto error_just_free;
1342 
1343 				/* the driver refused to tell us where to site
1344 				 * the mapping so we'll have to attempt to copy
1345 				 * it */
1346 				ret = -ENODEV;
1347 				if (!(capabilities & NOMMU_MAP_COPY))
1348 					goto error_just_free;
1349 
1350 				capabilities &= ~NOMMU_MAP_DIRECT;
1351 			} else {
1352 				vma->vm_start = region->vm_start = addr;
1353 				vma->vm_end = region->vm_end = addr + len;
1354 			}
1355 		}
1356 	}
1357 
1358 	vma->vm_region = region;
1359 
1360 	/* set up the mapping
1361 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1362 	 */
1363 	if (file && vma->vm_flags & VM_SHARED)
1364 		ret = do_mmap_shared_file(vma);
1365 	else
1366 		ret = do_mmap_private(vma, region, len, capabilities);
1367 	if (ret < 0)
1368 		goto error_just_free;
1369 	add_nommu_region(region);
1370 
1371 	/* clear anonymous mappings that don't ask for uninitialized data */
1372 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1373 		memset((void *)region->vm_start, 0,
1374 		       region->vm_end - region->vm_start);
1375 
1376 	/* okay... we have a mapping; now we have to register it */
1377 	result = vma->vm_start;
1378 
1379 	current->mm->total_vm += len >> PAGE_SHIFT;
1380 
1381 share:
1382 	add_vma_to_mm(current->mm, vma);
1383 
1384 	/* we flush the region from the icache only when the first executable
1385 	 * mapping of it is made  */
1386 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1387 		flush_icache_range(region->vm_start, region->vm_end);
1388 		region->vm_icache_flushed = true;
1389 	}
1390 
1391 	up_write(&nommu_region_sem);
1392 
1393 	return result;
1394 
1395 error_just_free:
1396 	up_write(&nommu_region_sem);
1397 error:
1398 	if (region->vm_file)
1399 		fput(region->vm_file);
1400 	kmem_cache_free(vm_region_jar, region);
1401 	if (vma->vm_file)
1402 		fput(vma->vm_file);
1403 	kmem_cache_free(vm_area_cachep, vma);
1404 	return ret;
1405 
1406 sharing_violation:
1407 	up_write(&nommu_region_sem);
1408 	pr_warn("Attempt to share mismatched mappings\n");
1409 	ret = -EINVAL;
1410 	goto error;
1411 
1412 error_getting_vma:
1413 	kmem_cache_free(vm_region_jar, region);
1414 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1415 			len, current->pid);
1416 	show_free_areas(0, NULL);
1417 	return -ENOMEM;
1418 
1419 error_getting_region:
1420 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1421 			len, current->pid);
1422 	show_free_areas(0, NULL);
1423 	return -ENOMEM;
1424 }
1425 
1426 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1427 		unsigned long, prot, unsigned long, flags,
1428 		unsigned long, fd, unsigned long, pgoff)
1429 {
1430 	struct file *file = NULL;
1431 	unsigned long retval = -EBADF;
1432 
1433 	audit_mmap_fd(fd, flags);
1434 	if (!(flags & MAP_ANONYMOUS)) {
1435 		file = fget(fd);
1436 		if (!file)
1437 			goto out;
1438 	}
1439 
1440 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1441 
1442 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1443 
1444 	if (file)
1445 		fput(file);
1446 out:
1447 	return retval;
1448 }
1449 
1450 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1451 struct mmap_arg_struct {
1452 	unsigned long addr;
1453 	unsigned long len;
1454 	unsigned long prot;
1455 	unsigned long flags;
1456 	unsigned long fd;
1457 	unsigned long offset;
1458 };
1459 
1460 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1461 {
1462 	struct mmap_arg_struct a;
1463 
1464 	if (copy_from_user(&a, arg, sizeof(a)))
1465 		return -EFAULT;
1466 	if (offset_in_page(a.offset))
1467 		return -EINVAL;
1468 
1469 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1470 			      a.offset >> PAGE_SHIFT);
1471 }
1472 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1473 
1474 /*
1475  * split a vma into two pieces at address 'addr', a new vma is allocated either
1476  * for the first part or the tail.
1477  */
1478 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1479 	      unsigned long addr, int new_below)
1480 {
1481 	struct vm_area_struct *new;
1482 	struct vm_region *region;
1483 	unsigned long npages;
1484 
1485 	/* we're only permitted to split anonymous regions (these should have
1486 	 * only a single usage on the region) */
1487 	if (vma->vm_file)
1488 		return -ENOMEM;
1489 
1490 	if (mm->map_count >= sysctl_max_map_count)
1491 		return -ENOMEM;
1492 
1493 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1494 	if (!region)
1495 		return -ENOMEM;
1496 
1497 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1498 	if (!new) {
1499 		kmem_cache_free(vm_region_jar, region);
1500 		return -ENOMEM;
1501 	}
1502 
1503 	/* most fields are the same, copy all, and then fixup */
1504 	*new = *vma;
1505 	*region = *vma->vm_region;
1506 	new->vm_region = region;
1507 
1508 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1509 
1510 	if (new_below) {
1511 		region->vm_top = region->vm_end = new->vm_end = addr;
1512 	} else {
1513 		region->vm_start = new->vm_start = addr;
1514 		region->vm_pgoff = new->vm_pgoff += npages;
1515 	}
1516 
1517 	if (new->vm_ops && new->vm_ops->open)
1518 		new->vm_ops->open(new);
1519 
1520 	delete_vma_from_mm(vma);
1521 	down_write(&nommu_region_sem);
1522 	delete_nommu_region(vma->vm_region);
1523 	if (new_below) {
1524 		vma->vm_region->vm_start = vma->vm_start = addr;
1525 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1526 	} else {
1527 		vma->vm_region->vm_end = vma->vm_end = addr;
1528 		vma->vm_region->vm_top = addr;
1529 	}
1530 	add_nommu_region(vma->vm_region);
1531 	add_nommu_region(new->vm_region);
1532 	up_write(&nommu_region_sem);
1533 	add_vma_to_mm(mm, vma);
1534 	add_vma_to_mm(mm, new);
1535 	return 0;
1536 }
1537 
1538 /*
1539  * shrink a VMA by removing the specified chunk from either the beginning or
1540  * the end
1541  */
1542 static int shrink_vma(struct mm_struct *mm,
1543 		      struct vm_area_struct *vma,
1544 		      unsigned long from, unsigned long to)
1545 {
1546 	struct vm_region *region;
1547 
1548 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1549 	 * and list */
1550 	delete_vma_from_mm(vma);
1551 	if (from > vma->vm_start)
1552 		vma->vm_end = from;
1553 	else
1554 		vma->vm_start = to;
1555 	add_vma_to_mm(mm, vma);
1556 
1557 	/* cut the backing region down to size */
1558 	region = vma->vm_region;
1559 	BUG_ON(region->vm_usage != 1);
1560 
1561 	down_write(&nommu_region_sem);
1562 	delete_nommu_region(region);
1563 	if (from > region->vm_start) {
1564 		to = region->vm_top;
1565 		region->vm_top = region->vm_end = from;
1566 	} else {
1567 		region->vm_start = to;
1568 	}
1569 	add_nommu_region(region);
1570 	up_write(&nommu_region_sem);
1571 
1572 	free_page_series(from, to);
1573 	return 0;
1574 }
1575 
1576 /*
1577  * release a mapping
1578  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1579  *   VMA, though it need not cover the whole VMA
1580  */
1581 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1582 {
1583 	struct vm_area_struct *vma;
1584 	unsigned long end;
1585 	int ret;
1586 
1587 	len = PAGE_ALIGN(len);
1588 	if (len == 0)
1589 		return -EINVAL;
1590 
1591 	end = start + len;
1592 
1593 	/* find the first potentially overlapping VMA */
1594 	vma = find_vma(mm, start);
1595 	if (!vma) {
1596 		static int limit;
1597 		if (limit < 5) {
1598 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1599 					current->pid, current->comm,
1600 					start, start + len - 1);
1601 			limit++;
1602 		}
1603 		return -EINVAL;
1604 	}
1605 
1606 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1607 	if (vma->vm_file) {
1608 		do {
1609 			if (start > vma->vm_start)
1610 				return -EINVAL;
1611 			if (end == vma->vm_end)
1612 				goto erase_whole_vma;
1613 			vma = vma->vm_next;
1614 		} while (vma);
1615 		return -EINVAL;
1616 	} else {
1617 		/* the chunk must be a subset of the VMA found */
1618 		if (start == vma->vm_start && end == vma->vm_end)
1619 			goto erase_whole_vma;
1620 		if (start < vma->vm_start || end > vma->vm_end)
1621 			return -EINVAL;
1622 		if (offset_in_page(start))
1623 			return -EINVAL;
1624 		if (end != vma->vm_end && offset_in_page(end))
1625 			return -EINVAL;
1626 		if (start != vma->vm_start && end != vma->vm_end) {
1627 			ret = split_vma(mm, vma, start, 1);
1628 			if (ret < 0)
1629 				return ret;
1630 		}
1631 		return shrink_vma(mm, vma, start, end);
1632 	}
1633 
1634 erase_whole_vma:
1635 	delete_vma_from_mm(vma);
1636 	delete_vma(mm, vma);
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(do_munmap);
1640 
1641 int vm_munmap(unsigned long addr, size_t len)
1642 {
1643 	struct mm_struct *mm = current->mm;
1644 	int ret;
1645 
1646 	down_write(&mm->mmap_sem);
1647 	ret = do_munmap(mm, addr, len, NULL);
1648 	up_write(&mm->mmap_sem);
1649 	return ret;
1650 }
1651 EXPORT_SYMBOL(vm_munmap);
1652 
1653 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1654 {
1655 	return vm_munmap(addr, len);
1656 }
1657 
1658 /*
1659  * release all the mappings made in a process's VM space
1660  */
1661 void exit_mmap(struct mm_struct *mm)
1662 {
1663 	struct vm_area_struct *vma;
1664 
1665 	if (!mm)
1666 		return;
1667 
1668 	mm->total_vm = 0;
1669 
1670 	while ((vma = mm->mmap)) {
1671 		mm->mmap = vma->vm_next;
1672 		delete_vma_from_mm(vma);
1673 		delete_vma(mm, vma);
1674 		cond_resched();
1675 	}
1676 }
1677 
1678 int vm_brk(unsigned long addr, unsigned long len)
1679 {
1680 	return -ENOMEM;
1681 }
1682 
1683 /*
1684  * expand (or shrink) an existing mapping, potentially moving it at the same
1685  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1686  *
1687  * under NOMMU conditions, we only permit changing a mapping's size, and only
1688  * as long as it stays within the region allocated by do_mmap_private() and the
1689  * block is not shareable
1690  *
1691  * MREMAP_FIXED is not supported under NOMMU conditions
1692  */
1693 static unsigned long do_mremap(unsigned long addr,
1694 			unsigned long old_len, unsigned long new_len,
1695 			unsigned long flags, unsigned long new_addr)
1696 {
1697 	struct vm_area_struct *vma;
1698 
1699 	/* insanity checks first */
1700 	old_len = PAGE_ALIGN(old_len);
1701 	new_len = PAGE_ALIGN(new_len);
1702 	if (old_len == 0 || new_len == 0)
1703 		return (unsigned long) -EINVAL;
1704 
1705 	if (offset_in_page(addr))
1706 		return -EINVAL;
1707 
1708 	if (flags & MREMAP_FIXED && new_addr != addr)
1709 		return (unsigned long) -EINVAL;
1710 
1711 	vma = find_vma_exact(current->mm, addr, old_len);
1712 	if (!vma)
1713 		return (unsigned long) -EINVAL;
1714 
1715 	if (vma->vm_end != vma->vm_start + old_len)
1716 		return (unsigned long) -EFAULT;
1717 
1718 	if (vma->vm_flags & VM_MAYSHARE)
1719 		return (unsigned long) -EPERM;
1720 
1721 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1722 		return (unsigned long) -ENOMEM;
1723 
1724 	/* all checks complete - do it */
1725 	vma->vm_end = vma->vm_start + new_len;
1726 	return vma->vm_start;
1727 }
1728 
1729 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1730 		unsigned long, new_len, unsigned long, flags,
1731 		unsigned long, new_addr)
1732 {
1733 	unsigned long ret;
1734 
1735 	down_write(&current->mm->mmap_sem);
1736 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1737 	up_write(&current->mm->mmap_sem);
1738 	return ret;
1739 }
1740 
1741 struct page *follow_page_mask(struct vm_area_struct *vma,
1742 			      unsigned long address, unsigned int flags,
1743 			      unsigned int *page_mask)
1744 {
1745 	*page_mask = 0;
1746 	return NULL;
1747 }
1748 
1749 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1750 		unsigned long pfn, unsigned long size, pgprot_t prot)
1751 {
1752 	if (addr != (pfn << PAGE_SHIFT))
1753 		return -EINVAL;
1754 
1755 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL(remap_pfn_range);
1759 
1760 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1761 {
1762 	unsigned long pfn = start >> PAGE_SHIFT;
1763 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1764 
1765 	pfn += vma->vm_pgoff;
1766 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1767 }
1768 EXPORT_SYMBOL(vm_iomap_memory);
1769 
1770 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1771 			unsigned long pgoff)
1772 {
1773 	unsigned int size = vma->vm_end - vma->vm_start;
1774 
1775 	if (!(vma->vm_flags & VM_USERMAP))
1776 		return -EINVAL;
1777 
1778 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1779 	vma->vm_end = vma->vm_start + size;
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL(remap_vmalloc_range);
1784 
1785 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1786 	unsigned long len, unsigned long pgoff, unsigned long flags)
1787 {
1788 	return -ENOMEM;
1789 }
1790 
1791 int filemap_fault(struct vm_fault *vmf)
1792 {
1793 	BUG();
1794 	return 0;
1795 }
1796 EXPORT_SYMBOL(filemap_fault);
1797 
1798 void filemap_map_pages(struct vm_fault *vmf,
1799 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1800 {
1801 	BUG();
1802 }
1803 EXPORT_SYMBOL(filemap_map_pages);
1804 
1805 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1806 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1807 {
1808 	struct vm_area_struct *vma;
1809 	int write = gup_flags & FOLL_WRITE;
1810 
1811 	down_read(&mm->mmap_sem);
1812 
1813 	/* the access must start within one of the target process's mappings */
1814 	vma = find_vma(mm, addr);
1815 	if (vma) {
1816 		/* don't overrun this mapping */
1817 		if (addr + len >= vma->vm_end)
1818 			len = vma->vm_end - addr;
1819 
1820 		/* only read or write mappings where it is permitted */
1821 		if (write && vma->vm_flags & VM_MAYWRITE)
1822 			copy_to_user_page(vma, NULL, addr,
1823 					 (void *) addr, buf, len);
1824 		else if (!write && vma->vm_flags & VM_MAYREAD)
1825 			copy_from_user_page(vma, NULL, addr,
1826 					    buf, (void *) addr, len);
1827 		else
1828 			len = 0;
1829 	} else {
1830 		len = 0;
1831 	}
1832 
1833 	up_read(&mm->mmap_sem);
1834 
1835 	return len;
1836 }
1837 
1838 /**
1839  * access_remote_vm - access another process' address space
1840  * @mm:		the mm_struct of the target address space
1841  * @addr:	start address to access
1842  * @buf:	source or destination buffer
1843  * @len:	number of bytes to transfer
1844  * @gup_flags:	flags modifying lookup behaviour
1845  *
1846  * The caller must hold a reference on @mm.
1847  */
1848 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1849 		void *buf, int len, unsigned int gup_flags)
1850 {
1851 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1852 }
1853 
1854 /*
1855  * Access another process' address space.
1856  * - source/target buffer must be kernel space
1857  */
1858 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1859 		unsigned int gup_flags)
1860 {
1861 	struct mm_struct *mm;
1862 
1863 	if (addr + len < addr)
1864 		return 0;
1865 
1866 	mm = get_task_mm(tsk);
1867 	if (!mm)
1868 		return 0;
1869 
1870 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1871 
1872 	mmput(mm);
1873 	return len;
1874 }
1875 EXPORT_SYMBOL_GPL(access_process_vm);
1876 
1877 /**
1878  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1879  * @inode: The inode to check
1880  * @size: The current filesize of the inode
1881  * @newsize: The proposed filesize of the inode
1882  *
1883  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1884  * make sure that that any outstanding VMAs aren't broken and then shrink the
1885  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1886  * automatically grant mappings that are too large.
1887  */
1888 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1889 				size_t newsize)
1890 {
1891 	struct vm_area_struct *vma;
1892 	struct vm_region *region;
1893 	pgoff_t low, high;
1894 	size_t r_size, r_top;
1895 
1896 	low = newsize >> PAGE_SHIFT;
1897 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1898 
1899 	down_write(&nommu_region_sem);
1900 	i_mmap_lock_read(inode->i_mapping);
1901 
1902 	/* search for VMAs that fall within the dead zone */
1903 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1904 		/* found one - only interested if it's shared out of the page
1905 		 * cache */
1906 		if (vma->vm_flags & VM_SHARED) {
1907 			i_mmap_unlock_read(inode->i_mapping);
1908 			up_write(&nommu_region_sem);
1909 			return -ETXTBSY; /* not quite true, but near enough */
1910 		}
1911 	}
1912 
1913 	/* reduce any regions that overlap the dead zone - if in existence,
1914 	 * these will be pointed to by VMAs that don't overlap the dead zone
1915 	 *
1916 	 * we don't check for any regions that start beyond the EOF as there
1917 	 * shouldn't be any
1918 	 */
1919 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1920 		if (!(vma->vm_flags & VM_SHARED))
1921 			continue;
1922 
1923 		region = vma->vm_region;
1924 		r_size = region->vm_top - region->vm_start;
1925 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1926 
1927 		if (r_top > newsize) {
1928 			region->vm_top -= r_top - newsize;
1929 			if (region->vm_end > region->vm_top)
1930 				region->vm_end = region->vm_top;
1931 		}
1932 	}
1933 
1934 	i_mmap_unlock_read(inode->i_mapping);
1935 	up_write(&nommu_region_sem);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * Initialise sysctl_user_reserve_kbytes.
1941  *
1942  * This is intended to prevent a user from starting a single memory hogging
1943  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1944  * mode.
1945  *
1946  * The default value is min(3% of free memory, 128MB)
1947  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1948  */
1949 static int __meminit init_user_reserve(void)
1950 {
1951 	unsigned long free_kbytes;
1952 
1953 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1954 
1955 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1956 	return 0;
1957 }
1958 subsys_initcall(init_user_reserve);
1959 
1960 /*
1961  * Initialise sysctl_admin_reserve_kbytes.
1962  *
1963  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1964  * to log in and kill a memory hogging process.
1965  *
1966  * Systems with more than 256MB will reserve 8MB, enough to recover
1967  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1968  * only reserve 3% of free pages by default.
1969  */
1970 static int __meminit init_admin_reserve(void)
1971 {
1972 	unsigned long free_kbytes;
1973 
1974 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1975 
1976 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1977 	return 0;
1978 }
1979 subsys_initcall(init_admin_reserve);
1980