1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mmu_context.h> 37 #include "internal.h" 38 39 static inline __attribute__((format(printf, 1, 2))) 40 void no_printk(const char *fmt, ...) 41 { 42 } 43 44 #if 0 45 #define kenter(FMT, ...) \ 46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 47 #define kleave(FMT, ...) \ 48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 49 #define kdebug(FMT, ...) \ 50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 51 #else 52 #define kenter(FMT, ...) \ 53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 54 #define kleave(FMT, ...) \ 55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 56 #define kdebug(FMT, ...) \ 57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 58 #endif 59 60 void *high_memory; 61 struct page *mem_map; 62 unsigned long max_mapnr; 63 unsigned long num_physpages; 64 unsigned long highest_memmap_pfn; 65 struct percpu_counter vm_committed_as; 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 70 int heap_stack_gap = 0; 71 72 atomic_long_t mmap_pages_allocated; 73 74 EXPORT_SYMBOL(mem_map); 75 EXPORT_SYMBOL(num_physpages); 76 77 /* list of mapped, potentially shareable regions */ 78 static struct kmem_cache *vm_region_jar; 79 struct rb_root nommu_region_tree = RB_ROOT; 80 DECLARE_RWSEM(nommu_region_sem); 81 82 const struct vm_operations_struct generic_file_vm_ops = { 83 }; 84 85 /* 86 * Return the total memory allocated for this pointer, not 87 * just what the caller asked for. 88 * 89 * Doesn't have to be accurate, i.e. may have races. 90 */ 91 unsigned int kobjsize(const void *objp) 92 { 93 struct page *page; 94 95 /* 96 * If the object we have should not have ksize performed on it, 97 * return size of 0 98 */ 99 if (!objp || !virt_addr_valid(objp)) 100 return 0; 101 102 page = virt_to_head_page(objp); 103 104 /* 105 * If the allocator sets PageSlab, we know the pointer came from 106 * kmalloc(). 107 */ 108 if (PageSlab(page)) 109 return ksize(objp); 110 111 /* 112 * If it's not a compound page, see if we have a matching VMA 113 * region. This test is intentionally done in reverse order, 114 * so if there's no VMA, we still fall through and hand back 115 * PAGE_SIZE for 0-order pages. 116 */ 117 if (!PageCompound(page)) { 118 struct vm_area_struct *vma; 119 120 vma = find_vma(current->mm, (unsigned long)objp); 121 if (vma) 122 return vma->vm_end - vma->vm_start; 123 } 124 125 /* 126 * The ksize() function is only guaranteed to work for pointers 127 * returned by kmalloc(). So handle arbitrary pointers here. 128 */ 129 return PAGE_SIZE << compound_order(page); 130 } 131 132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 133 unsigned long start, int nr_pages, unsigned int foll_flags, 134 struct page **pages, struct vm_area_struct **vmas) 135 { 136 struct vm_area_struct *vma; 137 unsigned long vm_flags; 138 int i; 139 140 /* calculate required read or write permissions. 141 * If FOLL_FORCE is set, we only require the "MAY" flags. 142 */ 143 vm_flags = (foll_flags & FOLL_WRITE) ? 144 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 145 vm_flags &= (foll_flags & FOLL_FORCE) ? 146 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 147 148 for (i = 0; i < nr_pages; i++) { 149 vma = find_vma(mm, start); 150 if (!vma) 151 goto finish_or_fault; 152 153 /* protect what we can, including chardevs */ 154 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 155 !(vm_flags & vma->vm_flags)) 156 goto finish_or_fault; 157 158 if (pages) { 159 pages[i] = virt_to_page(start); 160 if (pages[i]) 161 page_cache_get(pages[i]); 162 } 163 if (vmas) 164 vmas[i] = vma; 165 start += PAGE_SIZE; 166 } 167 168 return i; 169 170 finish_or_fault: 171 return i ? : -EFAULT; 172 } 173 174 /* 175 * get a list of pages in an address range belonging to the specified process 176 * and indicate the VMA that covers each page 177 * - this is potentially dodgy as we may end incrementing the page count of a 178 * slab page or a secondary page from a compound page 179 * - don't permit access to VMAs that don't support it, such as I/O mappings 180 */ 181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 182 unsigned long start, int nr_pages, int write, int force, 183 struct page **pages, struct vm_area_struct **vmas) 184 { 185 int flags = 0; 186 187 if (write) 188 flags |= FOLL_WRITE; 189 if (force) 190 flags |= FOLL_FORCE; 191 192 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 193 } 194 EXPORT_SYMBOL(get_user_pages); 195 196 /** 197 * follow_pfn - look up PFN at a user virtual address 198 * @vma: memory mapping 199 * @address: user virtual address 200 * @pfn: location to store found PFN 201 * 202 * Only IO mappings and raw PFN mappings are allowed. 203 * 204 * Returns zero and the pfn at @pfn on success, -ve otherwise. 205 */ 206 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 207 unsigned long *pfn) 208 { 209 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 210 return -EINVAL; 211 212 *pfn = address >> PAGE_SHIFT; 213 return 0; 214 } 215 EXPORT_SYMBOL(follow_pfn); 216 217 DEFINE_RWLOCK(vmlist_lock); 218 struct vm_struct *vmlist; 219 220 void vfree(const void *addr) 221 { 222 kfree(addr); 223 } 224 EXPORT_SYMBOL(vfree); 225 226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 227 { 228 /* 229 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 230 * returns only a logical address. 231 */ 232 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 233 } 234 EXPORT_SYMBOL(__vmalloc); 235 236 void *vmalloc_user(unsigned long size) 237 { 238 void *ret; 239 240 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 241 PAGE_KERNEL); 242 if (ret) { 243 struct vm_area_struct *vma; 244 245 down_write(¤t->mm->mmap_sem); 246 vma = find_vma(current->mm, (unsigned long)ret); 247 if (vma) 248 vma->vm_flags |= VM_USERMAP; 249 up_write(¤t->mm->mmap_sem); 250 } 251 252 return ret; 253 } 254 EXPORT_SYMBOL(vmalloc_user); 255 256 struct page *vmalloc_to_page(const void *addr) 257 { 258 return virt_to_page(addr); 259 } 260 EXPORT_SYMBOL(vmalloc_to_page); 261 262 unsigned long vmalloc_to_pfn(const void *addr) 263 { 264 return page_to_pfn(virt_to_page(addr)); 265 } 266 EXPORT_SYMBOL(vmalloc_to_pfn); 267 268 long vread(char *buf, char *addr, unsigned long count) 269 { 270 memcpy(buf, addr, count); 271 return count; 272 } 273 274 long vwrite(char *buf, char *addr, unsigned long count) 275 { 276 /* Don't allow overflow */ 277 if ((unsigned long) addr + count < count) 278 count = -(unsigned long) addr; 279 280 memcpy(addr, buf, count); 281 return(count); 282 } 283 284 /* 285 * vmalloc - allocate virtually continguos memory 286 * 287 * @size: allocation size 288 * 289 * Allocate enough pages to cover @size from the page level 290 * allocator and map them into continguos kernel virtual space. 291 * 292 * For tight control over page level allocator and protection flags 293 * use __vmalloc() instead. 294 */ 295 void *vmalloc(unsigned long size) 296 { 297 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 298 } 299 EXPORT_SYMBOL(vmalloc); 300 301 void *vmalloc_node(unsigned long size, int node) 302 { 303 return vmalloc(size); 304 } 305 EXPORT_SYMBOL(vmalloc_node); 306 307 #ifndef PAGE_KERNEL_EXEC 308 # define PAGE_KERNEL_EXEC PAGE_KERNEL 309 #endif 310 311 /** 312 * vmalloc_exec - allocate virtually contiguous, executable memory 313 * @size: allocation size 314 * 315 * Kernel-internal function to allocate enough pages to cover @size 316 * the page level allocator and map them into contiguous and 317 * executable kernel virtual space. 318 * 319 * For tight control over page level allocator and protection flags 320 * use __vmalloc() instead. 321 */ 322 323 void *vmalloc_exec(unsigned long size) 324 { 325 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 326 } 327 328 /** 329 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 330 * @size: allocation size 331 * 332 * Allocate enough 32bit PA addressable pages to cover @size from the 333 * page level allocator and map them into continguos kernel virtual space. 334 */ 335 void *vmalloc_32(unsigned long size) 336 { 337 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 338 } 339 EXPORT_SYMBOL(vmalloc_32); 340 341 /** 342 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 343 * @size: allocation size 344 * 345 * The resulting memory area is 32bit addressable and zeroed so it can be 346 * mapped to userspace without leaking data. 347 * 348 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 349 * remap_vmalloc_range() are permissible. 350 */ 351 void *vmalloc_32_user(unsigned long size) 352 { 353 /* 354 * We'll have to sort out the ZONE_DMA bits for 64-bit, 355 * but for now this can simply use vmalloc_user() directly. 356 */ 357 return vmalloc_user(size); 358 } 359 EXPORT_SYMBOL(vmalloc_32_user); 360 361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 362 { 363 BUG(); 364 return NULL; 365 } 366 EXPORT_SYMBOL(vmap); 367 368 void vunmap(const void *addr) 369 { 370 BUG(); 371 } 372 EXPORT_SYMBOL(vunmap); 373 374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 375 { 376 BUG(); 377 return NULL; 378 } 379 EXPORT_SYMBOL(vm_map_ram); 380 381 void vm_unmap_ram(const void *mem, unsigned int count) 382 { 383 BUG(); 384 } 385 EXPORT_SYMBOL(vm_unmap_ram); 386 387 void vm_unmap_aliases(void) 388 { 389 } 390 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 391 392 /* 393 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 394 * have one. 395 */ 396 void __attribute__((weak)) vmalloc_sync_all(void) 397 { 398 } 399 400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 401 struct page *page) 402 { 403 return -EINVAL; 404 } 405 EXPORT_SYMBOL(vm_insert_page); 406 407 /* 408 * sys_brk() for the most part doesn't need the global kernel 409 * lock, except when an application is doing something nasty 410 * like trying to un-brk an area that has already been mapped 411 * to a regular file. in this case, the unmapping will need 412 * to invoke file system routines that need the global lock. 413 */ 414 SYSCALL_DEFINE1(brk, unsigned long, brk) 415 { 416 struct mm_struct *mm = current->mm; 417 418 if (brk < mm->start_brk || brk > mm->context.end_brk) 419 return mm->brk; 420 421 if (mm->brk == brk) 422 return mm->brk; 423 424 /* 425 * Always allow shrinking brk 426 */ 427 if (brk <= mm->brk) { 428 mm->brk = brk; 429 return brk; 430 } 431 432 /* 433 * Ok, looks good - let it rip. 434 */ 435 return mm->brk = brk; 436 } 437 438 /* 439 * initialise the VMA and region record slabs 440 */ 441 void __init mmap_init(void) 442 { 443 int ret; 444 445 ret = percpu_counter_init(&vm_committed_as, 0); 446 VM_BUG_ON(ret); 447 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 448 } 449 450 /* 451 * validate the region tree 452 * - the caller must hold the region lock 453 */ 454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 455 static noinline void validate_nommu_regions(void) 456 { 457 struct vm_region *region, *last; 458 struct rb_node *p, *lastp; 459 460 lastp = rb_first(&nommu_region_tree); 461 if (!lastp) 462 return; 463 464 last = rb_entry(lastp, struct vm_region, vm_rb); 465 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 466 BUG_ON(unlikely(last->vm_top < last->vm_end)); 467 468 while ((p = rb_next(lastp))) { 469 region = rb_entry(p, struct vm_region, vm_rb); 470 last = rb_entry(lastp, struct vm_region, vm_rb); 471 472 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 473 BUG_ON(unlikely(region->vm_top < region->vm_end)); 474 BUG_ON(unlikely(region->vm_start < last->vm_top)); 475 476 lastp = p; 477 } 478 } 479 #else 480 static void validate_nommu_regions(void) 481 { 482 } 483 #endif 484 485 /* 486 * add a region into the global tree 487 */ 488 static void add_nommu_region(struct vm_region *region) 489 { 490 struct vm_region *pregion; 491 struct rb_node **p, *parent; 492 493 validate_nommu_regions(); 494 495 parent = NULL; 496 p = &nommu_region_tree.rb_node; 497 while (*p) { 498 parent = *p; 499 pregion = rb_entry(parent, struct vm_region, vm_rb); 500 if (region->vm_start < pregion->vm_start) 501 p = &(*p)->rb_left; 502 else if (region->vm_start > pregion->vm_start) 503 p = &(*p)->rb_right; 504 else if (pregion == region) 505 return; 506 else 507 BUG(); 508 } 509 510 rb_link_node(®ion->vm_rb, parent, p); 511 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 512 513 validate_nommu_regions(); 514 } 515 516 /* 517 * delete a region from the global tree 518 */ 519 static void delete_nommu_region(struct vm_region *region) 520 { 521 BUG_ON(!nommu_region_tree.rb_node); 522 523 validate_nommu_regions(); 524 rb_erase(®ion->vm_rb, &nommu_region_tree); 525 validate_nommu_regions(); 526 } 527 528 /* 529 * free a contiguous series of pages 530 */ 531 static void free_page_series(unsigned long from, unsigned long to) 532 { 533 for (; from < to; from += PAGE_SIZE) { 534 struct page *page = virt_to_page(from); 535 536 kdebug("- free %lx", from); 537 atomic_long_dec(&mmap_pages_allocated); 538 if (page_count(page) != 1) 539 kdebug("free page %p: refcount not one: %d", 540 page, page_count(page)); 541 put_page(page); 542 } 543 } 544 545 /* 546 * release a reference to a region 547 * - the caller must hold the region semaphore for writing, which this releases 548 * - the region may not have been added to the tree yet, in which case vm_top 549 * will equal vm_start 550 */ 551 static void __put_nommu_region(struct vm_region *region) 552 __releases(nommu_region_sem) 553 { 554 kenter("%p{%d}", region, atomic_read(®ion->vm_usage)); 555 556 BUG_ON(!nommu_region_tree.rb_node); 557 558 if (atomic_dec_and_test(®ion->vm_usage)) { 559 if (region->vm_top > region->vm_start) 560 delete_nommu_region(region); 561 up_write(&nommu_region_sem); 562 563 if (region->vm_file) 564 fput(region->vm_file); 565 566 /* IO memory and memory shared directly out of the pagecache 567 * from ramfs/tmpfs mustn't be released here */ 568 if (region->vm_flags & VM_MAPPED_COPY) { 569 kdebug("free series"); 570 free_page_series(region->vm_start, region->vm_top); 571 } 572 kmem_cache_free(vm_region_jar, region); 573 } else { 574 up_write(&nommu_region_sem); 575 } 576 } 577 578 /* 579 * release a reference to a region 580 */ 581 static void put_nommu_region(struct vm_region *region) 582 { 583 down_write(&nommu_region_sem); 584 __put_nommu_region(region); 585 } 586 587 /* 588 * update protection on a vma 589 */ 590 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 591 { 592 #ifdef CONFIG_MPU 593 struct mm_struct *mm = vma->vm_mm; 594 long start = vma->vm_start & PAGE_MASK; 595 while (start < vma->vm_end) { 596 protect_page(mm, start, flags); 597 start += PAGE_SIZE; 598 } 599 update_protections(mm); 600 #endif 601 } 602 603 /* 604 * add a VMA into a process's mm_struct in the appropriate place in the list 605 * and tree and add to the address space's page tree also if not an anonymous 606 * page 607 * - should be called with mm->mmap_sem held writelocked 608 */ 609 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 610 { 611 struct vm_area_struct *pvma, **pp; 612 struct address_space *mapping; 613 struct rb_node **p, *parent; 614 615 kenter(",%p", vma); 616 617 BUG_ON(!vma->vm_region); 618 619 mm->map_count++; 620 vma->vm_mm = mm; 621 622 protect_vma(vma, vma->vm_flags); 623 624 /* add the VMA to the mapping */ 625 if (vma->vm_file) { 626 mapping = vma->vm_file->f_mapping; 627 628 flush_dcache_mmap_lock(mapping); 629 vma_prio_tree_insert(vma, &mapping->i_mmap); 630 flush_dcache_mmap_unlock(mapping); 631 } 632 633 /* add the VMA to the tree */ 634 parent = NULL; 635 p = &mm->mm_rb.rb_node; 636 while (*p) { 637 parent = *p; 638 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 639 640 /* sort by: start addr, end addr, VMA struct addr in that order 641 * (the latter is necessary as we may get identical VMAs) */ 642 if (vma->vm_start < pvma->vm_start) 643 p = &(*p)->rb_left; 644 else if (vma->vm_start > pvma->vm_start) 645 p = &(*p)->rb_right; 646 else if (vma->vm_end < pvma->vm_end) 647 p = &(*p)->rb_left; 648 else if (vma->vm_end > pvma->vm_end) 649 p = &(*p)->rb_right; 650 else if (vma < pvma) 651 p = &(*p)->rb_left; 652 else if (vma > pvma) 653 p = &(*p)->rb_right; 654 else 655 BUG(); 656 } 657 658 rb_link_node(&vma->vm_rb, parent, p); 659 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 660 661 /* add VMA to the VMA list also */ 662 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 663 if (pvma->vm_start > vma->vm_start) 664 break; 665 if (pvma->vm_start < vma->vm_start) 666 continue; 667 if (pvma->vm_end < vma->vm_end) 668 break; 669 } 670 671 vma->vm_next = *pp; 672 *pp = vma; 673 } 674 675 /* 676 * delete a VMA from its owning mm_struct and address space 677 */ 678 static void delete_vma_from_mm(struct vm_area_struct *vma) 679 { 680 struct vm_area_struct **pp; 681 struct address_space *mapping; 682 struct mm_struct *mm = vma->vm_mm; 683 684 kenter("%p", vma); 685 686 protect_vma(vma, 0); 687 688 mm->map_count--; 689 if (mm->mmap_cache == vma) 690 mm->mmap_cache = NULL; 691 692 /* remove the VMA from the mapping */ 693 if (vma->vm_file) { 694 mapping = vma->vm_file->f_mapping; 695 696 flush_dcache_mmap_lock(mapping); 697 vma_prio_tree_remove(vma, &mapping->i_mmap); 698 flush_dcache_mmap_unlock(mapping); 699 } 700 701 /* remove from the MM's tree and list */ 702 rb_erase(&vma->vm_rb, &mm->mm_rb); 703 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 704 if (*pp == vma) { 705 *pp = vma->vm_next; 706 break; 707 } 708 } 709 710 vma->vm_mm = NULL; 711 } 712 713 /* 714 * destroy a VMA record 715 */ 716 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 717 { 718 kenter("%p", vma); 719 if (vma->vm_ops && vma->vm_ops->close) 720 vma->vm_ops->close(vma); 721 if (vma->vm_file) { 722 fput(vma->vm_file); 723 if (vma->vm_flags & VM_EXECUTABLE) 724 removed_exe_file_vma(mm); 725 } 726 put_nommu_region(vma->vm_region); 727 kmem_cache_free(vm_area_cachep, vma); 728 } 729 730 /* 731 * look up the first VMA in which addr resides, NULL if none 732 * - should be called with mm->mmap_sem at least held readlocked 733 */ 734 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 735 { 736 struct vm_area_struct *vma; 737 struct rb_node *n = mm->mm_rb.rb_node; 738 739 /* check the cache first */ 740 vma = mm->mmap_cache; 741 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 742 return vma; 743 744 /* trawl the tree (there may be multiple mappings in which addr 745 * resides) */ 746 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 747 vma = rb_entry(n, struct vm_area_struct, vm_rb); 748 if (vma->vm_start > addr) 749 return NULL; 750 if (vma->vm_end > addr) { 751 mm->mmap_cache = vma; 752 return vma; 753 } 754 } 755 756 return NULL; 757 } 758 EXPORT_SYMBOL(find_vma); 759 760 /* 761 * find a VMA 762 * - we don't extend stack VMAs under NOMMU conditions 763 */ 764 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 765 { 766 return find_vma(mm, addr); 767 } 768 769 /* 770 * expand a stack to a given address 771 * - not supported under NOMMU conditions 772 */ 773 int expand_stack(struct vm_area_struct *vma, unsigned long address) 774 { 775 return -ENOMEM; 776 } 777 778 /* 779 * look up the first VMA exactly that exactly matches addr 780 * - should be called with mm->mmap_sem at least held readlocked 781 */ 782 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 783 unsigned long addr, 784 unsigned long len) 785 { 786 struct vm_area_struct *vma; 787 struct rb_node *n = mm->mm_rb.rb_node; 788 unsigned long end = addr + len; 789 790 /* check the cache first */ 791 vma = mm->mmap_cache; 792 if (vma && vma->vm_start == addr && vma->vm_end == end) 793 return vma; 794 795 /* trawl the tree (there may be multiple mappings in which addr 796 * resides) */ 797 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 798 vma = rb_entry(n, struct vm_area_struct, vm_rb); 799 if (vma->vm_start < addr) 800 continue; 801 if (vma->vm_start > addr) 802 return NULL; 803 if (vma->vm_end == end) { 804 mm->mmap_cache = vma; 805 return vma; 806 } 807 } 808 809 return NULL; 810 } 811 812 /* 813 * determine whether a mapping should be permitted and, if so, what sort of 814 * mapping we're capable of supporting 815 */ 816 static int validate_mmap_request(struct file *file, 817 unsigned long addr, 818 unsigned long len, 819 unsigned long prot, 820 unsigned long flags, 821 unsigned long pgoff, 822 unsigned long *_capabilities) 823 { 824 unsigned long capabilities, rlen; 825 unsigned long reqprot = prot; 826 int ret; 827 828 /* do the simple checks first */ 829 if (flags & MAP_FIXED) { 830 printk(KERN_DEBUG 831 "%d: Can't do fixed-address/overlay mmap of RAM\n", 832 current->pid); 833 return -EINVAL; 834 } 835 836 if ((flags & MAP_TYPE) != MAP_PRIVATE && 837 (flags & MAP_TYPE) != MAP_SHARED) 838 return -EINVAL; 839 840 if (!len) 841 return -EINVAL; 842 843 /* Careful about overflows.. */ 844 rlen = PAGE_ALIGN(len); 845 if (!rlen || rlen > TASK_SIZE) 846 return -ENOMEM; 847 848 /* offset overflow? */ 849 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 850 return -EOVERFLOW; 851 852 if (file) { 853 /* validate file mapping requests */ 854 struct address_space *mapping; 855 856 /* files must support mmap */ 857 if (!file->f_op || !file->f_op->mmap) 858 return -ENODEV; 859 860 /* work out if what we've got could possibly be shared 861 * - we support chardevs that provide their own "memory" 862 * - we support files/blockdevs that are memory backed 863 */ 864 mapping = file->f_mapping; 865 if (!mapping) 866 mapping = file->f_path.dentry->d_inode->i_mapping; 867 868 capabilities = 0; 869 if (mapping && mapping->backing_dev_info) 870 capabilities = mapping->backing_dev_info->capabilities; 871 872 if (!capabilities) { 873 /* no explicit capabilities set, so assume some 874 * defaults */ 875 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 876 case S_IFREG: 877 case S_IFBLK: 878 capabilities = BDI_CAP_MAP_COPY; 879 break; 880 881 case S_IFCHR: 882 capabilities = 883 BDI_CAP_MAP_DIRECT | 884 BDI_CAP_READ_MAP | 885 BDI_CAP_WRITE_MAP; 886 break; 887 888 default: 889 return -EINVAL; 890 } 891 } 892 893 /* eliminate any capabilities that we can't support on this 894 * device */ 895 if (!file->f_op->get_unmapped_area) 896 capabilities &= ~BDI_CAP_MAP_DIRECT; 897 if (!file->f_op->read) 898 capabilities &= ~BDI_CAP_MAP_COPY; 899 900 /* The file shall have been opened with read permission. */ 901 if (!(file->f_mode & FMODE_READ)) 902 return -EACCES; 903 904 if (flags & MAP_SHARED) { 905 /* do checks for writing, appending and locking */ 906 if ((prot & PROT_WRITE) && 907 !(file->f_mode & FMODE_WRITE)) 908 return -EACCES; 909 910 if (IS_APPEND(file->f_path.dentry->d_inode) && 911 (file->f_mode & FMODE_WRITE)) 912 return -EACCES; 913 914 if (locks_verify_locked(file->f_path.dentry->d_inode)) 915 return -EAGAIN; 916 917 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 918 return -ENODEV; 919 920 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 921 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 922 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 923 ) { 924 printk("MAP_SHARED not completely supported on !MMU\n"); 925 return -EINVAL; 926 } 927 928 /* we mustn't privatise shared mappings */ 929 capabilities &= ~BDI_CAP_MAP_COPY; 930 } 931 else { 932 /* we're going to read the file into private memory we 933 * allocate */ 934 if (!(capabilities & BDI_CAP_MAP_COPY)) 935 return -ENODEV; 936 937 /* we don't permit a private writable mapping to be 938 * shared with the backing device */ 939 if (prot & PROT_WRITE) 940 capabilities &= ~BDI_CAP_MAP_DIRECT; 941 } 942 943 /* handle executable mappings and implied executable 944 * mappings */ 945 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 946 if (prot & PROT_EXEC) 947 return -EPERM; 948 } 949 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 950 /* handle implication of PROT_EXEC by PROT_READ */ 951 if (current->personality & READ_IMPLIES_EXEC) { 952 if (capabilities & BDI_CAP_EXEC_MAP) 953 prot |= PROT_EXEC; 954 } 955 } 956 else if ((prot & PROT_READ) && 957 (prot & PROT_EXEC) && 958 !(capabilities & BDI_CAP_EXEC_MAP) 959 ) { 960 /* backing file is not executable, try to copy */ 961 capabilities &= ~BDI_CAP_MAP_DIRECT; 962 } 963 } 964 else { 965 /* anonymous mappings are always memory backed and can be 966 * privately mapped 967 */ 968 capabilities = BDI_CAP_MAP_COPY; 969 970 /* handle PROT_EXEC implication by PROT_READ */ 971 if ((prot & PROT_READ) && 972 (current->personality & READ_IMPLIES_EXEC)) 973 prot |= PROT_EXEC; 974 } 975 976 /* allow the security API to have its say */ 977 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 978 if (ret < 0) 979 return ret; 980 981 /* looks okay */ 982 *_capabilities = capabilities; 983 return 0; 984 } 985 986 /* 987 * we've determined that we can make the mapping, now translate what we 988 * now know into VMA flags 989 */ 990 static unsigned long determine_vm_flags(struct file *file, 991 unsigned long prot, 992 unsigned long flags, 993 unsigned long capabilities) 994 { 995 unsigned long vm_flags; 996 997 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 998 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 999 /* vm_flags |= mm->def_flags; */ 1000 1001 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1002 /* attempt to share read-only copies of mapped file chunks */ 1003 if (file && !(prot & PROT_WRITE)) 1004 vm_flags |= VM_MAYSHARE; 1005 } 1006 else { 1007 /* overlay a shareable mapping on the backing device or inode 1008 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1009 * romfs/cramfs */ 1010 if (flags & MAP_SHARED) 1011 vm_flags |= VM_MAYSHARE | VM_SHARED; 1012 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0) 1013 vm_flags |= VM_MAYSHARE; 1014 } 1015 1016 /* refuse to let anyone share private mappings with this process if 1017 * it's being traced - otherwise breakpoints set in it may interfere 1018 * with another untraced process 1019 */ 1020 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1021 vm_flags &= ~VM_MAYSHARE; 1022 1023 return vm_flags; 1024 } 1025 1026 /* 1027 * set up a shared mapping on a file (the driver or filesystem provides and 1028 * pins the storage) 1029 */ 1030 static int do_mmap_shared_file(struct vm_area_struct *vma) 1031 { 1032 int ret; 1033 1034 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1035 if (ret == 0) { 1036 vma->vm_region->vm_top = vma->vm_region->vm_end; 1037 return 0; 1038 } 1039 if (ret != -ENOSYS) 1040 return ret; 1041 1042 /* getting an ENOSYS error indicates that direct mmap isn't 1043 * possible (as opposed to tried but failed) so we'll fall 1044 * through to making a private copy of the data and mapping 1045 * that if we can */ 1046 return -ENODEV; 1047 } 1048 1049 /* 1050 * set up a private mapping or an anonymous shared mapping 1051 */ 1052 static int do_mmap_private(struct vm_area_struct *vma, 1053 struct vm_region *region, 1054 unsigned long len, 1055 unsigned long capabilities) 1056 { 1057 struct page *pages; 1058 unsigned long total, point, n, rlen; 1059 void *base; 1060 int ret, order; 1061 1062 /* invoke the file's mapping function so that it can keep track of 1063 * shared mappings on devices or memory 1064 * - VM_MAYSHARE will be set if it may attempt to share 1065 */ 1066 if (capabilities & BDI_CAP_MAP_DIRECT) { 1067 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1068 if (ret == 0) { 1069 /* shouldn't return success if we're not sharing */ 1070 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1071 vma->vm_region->vm_top = vma->vm_region->vm_end; 1072 return 0; 1073 } 1074 if (ret != -ENOSYS) 1075 return ret; 1076 1077 /* getting an ENOSYS error indicates that direct mmap isn't 1078 * possible (as opposed to tried but failed) so we'll try to 1079 * make a private copy of the data and map that instead */ 1080 } 1081 1082 rlen = PAGE_ALIGN(len); 1083 1084 /* allocate some memory to hold the mapping 1085 * - note that this may not return a page-aligned address if the object 1086 * we're allocating is smaller than a page 1087 */ 1088 order = get_order(rlen); 1089 kdebug("alloc order %d for %lx", order, len); 1090 1091 pages = alloc_pages(GFP_KERNEL, order); 1092 if (!pages) 1093 goto enomem; 1094 1095 total = 1 << order; 1096 atomic_long_add(total, &mmap_pages_allocated); 1097 1098 point = rlen >> PAGE_SHIFT; 1099 1100 /* we allocated a power-of-2 sized page set, so we may want to trim off 1101 * the excess */ 1102 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1103 while (total > point) { 1104 order = ilog2(total - point); 1105 n = 1 << order; 1106 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1107 atomic_long_sub(n, &mmap_pages_allocated); 1108 total -= n; 1109 set_page_refcounted(pages + total); 1110 __free_pages(pages + total, order); 1111 } 1112 } 1113 1114 for (point = 1; point < total; point++) 1115 set_page_refcounted(&pages[point]); 1116 1117 base = page_address(pages); 1118 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1119 region->vm_start = (unsigned long) base; 1120 region->vm_end = region->vm_start + rlen; 1121 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1122 1123 vma->vm_start = region->vm_start; 1124 vma->vm_end = region->vm_start + len; 1125 1126 if (vma->vm_file) { 1127 /* read the contents of a file into the copy */ 1128 mm_segment_t old_fs; 1129 loff_t fpos; 1130 1131 fpos = vma->vm_pgoff; 1132 fpos <<= PAGE_SHIFT; 1133 1134 old_fs = get_fs(); 1135 set_fs(KERNEL_DS); 1136 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1137 set_fs(old_fs); 1138 1139 if (ret < 0) 1140 goto error_free; 1141 1142 /* clear the last little bit */ 1143 if (ret < rlen) 1144 memset(base + ret, 0, rlen - ret); 1145 1146 } else { 1147 /* if it's an anonymous mapping, then just clear it */ 1148 memset(base, 0, rlen); 1149 } 1150 1151 return 0; 1152 1153 error_free: 1154 free_page_series(region->vm_start, region->vm_end); 1155 region->vm_start = vma->vm_start = 0; 1156 region->vm_end = vma->vm_end = 0; 1157 region->vm_top = 0; 1158 return ret; 1159 1160 enomem: 1161 printk("Allocation of length %lu from process %d (%s) failed\n", 1162 len, current->pid, current->comm); 1163 show_free_areas(); 1164 return -ENOMEM; 1165 } 1166 1167 /* 1168 * handle mapping creation for uClinux 1169 */ 1170 unsigned long do_mmap_pgoff(struct file *file, 1171 unsigned long addr, 1172 unsigned long len, 1173 unsigned long prot, 1174 unsigned long flags, 1175 unsigned long pgoff) 1176 { 1177 struct vm_area_struct *vma; 1178 struct vm_region *region; 1179 struct rb_node *rb; 1180 unsigned long capabilities, vm_flags, result; 1181 int ret; 1182 1183 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1184 1185 /* decide whether we should attempt the mapping, and if so what sort of 1186 * mapping */ 1187 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1188 &capabilities); 1189 if (ret < 0) { 1190 kleave(" = %d [val]", ret); 1191 return ret; 1192 } 1193 1194 /* we ignore the address hint */ 1195 addr = 0; 1196 1197 /* we've determined that we can make the mapping, now translate what we 1198 * now know into VMA flags */ 1199 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1200 1201 /* we're going to need to record the mapping */ 1202 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1203 if (!region) 1204 goto error_getting_region; 1205 1206 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1207 if (!vma) 1208 goto error_getting_vma; 1209 1210 atomic_set(®ion->vm_usage, 1); 1211 region->vm_flags = vm_flags; 1212 region->vm_pgoff = pgoff; 1213 1214 INIT_LIST_HEAD(&vma->anon_vma_node); 1215 vma->vm_flags = vm_flags; 1216 vma->vm_pgoff = pgoff; 1217 1218 if (file) { 1219 region->vm_file = file; 1220 get_file(file); 1221 vma->vm_file = file; 1222 get_file(file); 1223 if (vm_flags & VM_EXECUTABLE) { 1224 added_exe_file_vma(current->mm); 1225 vma->vm_mm = current->mm; 1226 } 1227 } 1228 1229 down_write(&nommu_region_sem); 1230 1231 /* if we want to share, we need to check for regions created by other 1232 * mmap() calls that overlap with our proposed mapping 1233 * - we can only share with a superset match on most regular files 1234 * - shared mappings on character devices and memory backed files are 1235 * permitted to overlap inexactly as far as we are concerned for in 1236 * these cases, sharing is handled in the driver or filesystem rather 1237 * than here 1238 */ 1239 if (vm_flags & VM_MAYSHARE) { 1240 struct vm_region *pregion; 1241 unsigned long pglen, rpglen, pgend, rpgend, start; 1242 1243 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1244 pgend = pgoff + pglen; 1245 1246 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1247 pregion = rb_entry(rb, struct vm_region, vm_rb); 1248 1249 if (!(pregion->vm_flags & VM_MAYSHARE)) 1250 continue; 1251 1252 /* search for overlapping mappings on the same file */ 1253 if (pregion->vm_file->f_path.dentry->d_inode != 1254 file->f_path.dentry->d_inode) 1255 continue; 1256 1257 if (pregion->vm_pgoff >= pgend) 1258 continue; 1259 1260 rpglen = pregion->vm_end - pregion->vm_start; 1261 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1262 rpgend = pregion->vm_pgoff + rpglen; 1263 if (pgoff >= rpgend) 1264 continue; 1265 1266 /* handle inexactly overlapping matches between 1267 * mappings */ 1268 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1269 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1270 /* new mapping is not a subset of the region */ 1271 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1272 goto sharing_violation; 1273 continue; 1274 } 1275 1276 /* we've found a region we can share */ 1277 atomic_inc(&pregion->vm_usage); 1278 vma->vm_region = pregion; 1279 start = pregion->vm_start; 1280 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1281 vma->vm_start = start; 1282 vma->vm_end = start + len; 1283 1284 if (pregion->vm_flags & VM_MAPPED_COPY) { 1285 kdebug("share copy"); 1286 vma->vm_flags |= VM_MAPPED_COPY; 1287 } else { 1288 kdebug("share mmap"); 1289 ret = do_mmap_shared_file(vma); 1290 if (ret < 0) { 1291 vma->vm_region = NULL; 1292 vma->vm_start = 0; 1293 vma->vm_end = 0; 1294 atomic_dec(&pregion->vm_usage); 1295 pregion = NULL; 1296 goto error_just_free; 1297 } 1298 } 1299 fput(region->vm_file); 1300 kmem_cache_free(vm_region_jar, region); 1301 region = pregion; 1302 result = start; 1303 goto share; 1304 } 1305 1306 /* obtain the address at which to make a shared mapping 1307 * - this is the hook for quasi-memory character devices to 1308 * tell us the location of a shared mapping 1309 */ 1310 if (capabilities & BDI_CAP_MAP_DIRECT) { 1311 addr = file->f_op->get_unmapped_area(file, addr, len, 1312 pgoff, flags); 1313 if (IS_ERR((void *) addr)) { 1314 ret = addr; 1315 if (ret != (unsigned long) -ENOSYS) 1316 goto error_just_free; 1317 1318 /* the driver refused to tell us where to site 1319 * the mapping so we'll have to attempt to copy 1320 * it */ 1321 ret = (unsigned long) -ENODEV; 1322 if (!(capabilities & BDI_CAP_MAP_COPY)) 1323 goto error_just_free; 1324 1325 capabilities &= ~BDI_CAP_MAP_DIRECT; 1326 } else { 1327 vma->vm_start = region->vm_start = addr; 1328 vma->vm_end = region->vm_end = addr + len; 1329 } 1330 } 1331 } 1332 1333 vma->vm_region = region; 1334 1335 /* set up the mapping 1336 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1337 */ 1338 if (file && vma->vm_flags & VM_SHARED) 1339 ret = do_mmap_shared_file(vma); 1340 else 1341 ret = do_mmap_private(vma, region, len, capabilities); 1342 if (ret < 0) 1343 goto error_just_free; 1344 add_nommu_region(region); 1345 1346 /* okay... we have a mapping; now we have to register it */ 1347 result = vma->vm_start; 1348 1349 current->mm->total_vm += len >> PAGE_SHIFT; 1350 1351 share: 1352 add_vma_to_mm(current->mm, vma); 1353 1354 up_write(&nommu_region_sem); 1355 1356 if (prot & PROT_EXEC) 1357 flush_icache_range(result, result + len); 1358 1359 kleave(" = %lx", result); 1360 return result; 1361 1362 error_just_free: 1363 up_write(&nommu_region_sem); 1364 error: 1365 if (region->vm_file) 1366 fput(region->vm_file); 1367 kmem_cache_free(vm_region_jar, region); 1368 if (vma->vm_file) 1369 fput(vma->vm_file); 1370 if (vma->vm_flags & VM_EXECUTABLE) 1371 removed_exe_file_vma(vma->vm_mm); 1372 kmem_cache_free(vm_area_cachep, vma); 1373 kleave(" = %d", ret); 1374 return ret; 1375 1376 sharing_violation: 1377 up_write(&nommu_region_sem); 1378 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1379 ret = -EINVAL; 1380 goto error; 1381 1382 error_getting_vma: 1383 kmem_cache_free(vm_region_jar, region); 1384 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1385 " from process %d failed\n", 1386 len, current->pid); 1387 show_free_areas(); 1388 return -ENOMEM; 1389 1390 error_getting_region: 1391 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1392 " from process %d failed\n", 1393 len, current->pid); 1394 show_free_areas(); 1395 return -ENOMEM; 1396 } 1397 EXPORT_SYMBOL(do_mmap_pgoff); 1398 1399 /* 1400 * split a vma into two pieces at address 'addr', a new vma is allocated either 1401 * for the first part or the tail. 1402 */ 1403 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1404 unsigned long addr, int new_below) 1405 { 1406 struct vm_area_struct *new; 1407 struct vm_region *region; 1408 unsigned long npages; 1409 1410 kenter(""); 1411 1412 /* we're only permitted to split anonymous regions that have a single 1413 * owner */ 1414 if (vma->vm_file || 1415 atomic_read(&vma->vm_region->vm_usage) != 1) 1416 return -ENOMEM; 1417 1418 if (mm->map_count >= sysctl_max_map_count) 1419 return -ENOMEM; 1420 1421 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1422 if (!region) 1423 return -ENOMEM; 1424 1425 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1426 if (!new) { 1427 kmem_cache_free(vm_region_jar, region); 1428 return -ENOMEM; 1429 } 1430 1431 /* most fields are the same, copy all, and then fixup */ 1432 *new = *vma; 1433 *region = *vma->vm_region; 1434 new->vm_region = region; 1435 1436 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1437 1438 if (new_below) { 1439 region->vm_top = region->vm_end = new->vm_end = addr; 1440 } else { 1441 region->vm_start = new->vm_start = addr; 1442 region->vm_pgoff = new->vm_pgoff += npages; 1443 } 1444 1445 if (new->vm_ops && new->vm_ops->open) 1446 new->vm_ops->open(new); 1447 1448 delete_vma_from_mm(vma); 1449 down_write(&nommu_region_sem); 1450 delete_nommu_region(vma->vm_region); 1451 if (new_below) { 1452 vma->vm_region->vm_start = vma->vm_start = addr; 1453 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1454 } else { 1455 vma->vm_region->vm_end = vma->vm_end = addr; 1456 vma->vm_region->vm_top = addr; 1457 } 1458 add_nommu_region(vma->vm_region); 1459 add_nommu_region(new->vm_region); 1460 up_write(&nommu_region_sem); 1461 add_vma_to_mm(mm, vma); 1462 add_vma_to_mm(mm, new); 1463 return 0; 1464 } 1465 1466 /* 1467 * shrink a VMA by removing the specified chunk from either the beginning or 1468 * the end 1469 */ 1470 static int shrink_vma(struct mm_struct *mm, 1471 struct vm_area_struct *vma, 1472 unsigned long from, unsigned long to) 1473 { 1474 struct vm_region *region; 1475 1476 kenter(""); 1477 1478 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1479 * and list */ 1480 delete_vma_from_mm(vma); 1481 if (from > vma->vm_start) 1482 vma->vm_end = from; 1483 else 1484 vma->vm_start = to; 1485 add_vma_to_mm(mm, vma); 1486 1487 /* cut the backing region down to size */ 1488 region = vma->vm_region; 1489 BUG_ON(atomic_read(®ion->vm_usage) != 1); 1490 1491 down_write(&nommu_region_sem); 1492 delete_nommu_region(region); 1493 if (from > region->vm_start) { 1494 to = region->vm_top; 1495 region->vm_top = region->vm_end = from; 1496 } else { 1497 region->vm_start = to; 1498 } 1499 add_nommu_region(region); 1500 up_write(&nommu_region_sem); 1501 1502 free_page_series(from, to); 1503 return 0; 1504 } 1505 1506 /* 1507 * release a mapping 1508 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1509 * VMA, though it need not cover the whole VMA 1510 */ 1511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1512 { 1513 struct vm_area_struct *vma; 1514 struct rb_node *rb; 1515 unsigned long end = start + len; 1516 int ret; 1517 1518 kenter(",%lx,%zx", start, len); 1519 1520 if (len == 0) 1521 return -EINVAL; 1522 1523 /* find the first potentially overlapping VMA */ 1524 vma = find_vma(mm, start); 1525 if (!vma) { 1526 static int limit = 0; 1527 if (limit < 5) { 1528 printk(KERN_WARNING 1529 "munmap of memory not mmapped by process %d" 1530 " (%s): 0x%lx-0x%lx\n", 1531 current->pid, current->comm, 1532 start, start + len - 1); 1533 limit++; 1534 } 1535 return -EINVAL; 1536 } 1537 1538 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1539 if (vma->vm_file) { 1540 do { 1541 if (start > vma->vm_start) { 1542 kleave(" = -EINVAL [miss]"); 1543 return -EINVAL; 1544 } 1545 if (end == vma->vm_end) 1546 goto erase_whole_vma; 1547 rb = rb_next(&vma->vm_rb); 1548 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1549 } while (rb); 1550 kleave(" = -EINVAL [split file]"); 1551 return -EINVAL; 1552 } else { 1553 /* the chunk must be a subset of the VMA found */ 1554 if (start == vma->vm_start && end == vma->vm_end) 1555 goto erase_whole_vma; 1556 if (start < vma->vm_start || end > vma->vm_end) { 1557 kleave(" = -EINVAL [superset]"); 1558 return -EINVAL; 1559 } 1560 if (start & ~PAGE_MASK) { 1561 kleave(" = -EINVAL [unaligned start]"); 1562 return -EINVAL; 1563 } 1564 if (end != vma->vm_end && end & ~PAGE_MASK) { 1565 kleave(" = -EINVAL [unaligned split]"); 1566 return -EINVAL; 1567 } 1568 if (start != vma->vm_start && end != vma->vm_end) { 1569 ret = split_vma(mm, vma, start, 1); 1570 if (ret < 0) { 1571 kleave(" = %d [split]", ret); 1572 return ret; 1573 } 1574 } 1575 return shrink_vma(mm, vma, start, end); 1576 } 1577 1578 erase_whole_vma: 1579 delete_vma_from_mm(vma); 1580 delete_vma(mm, vma); 1581 kleave(" = 0"); 1582 return 0; 1583 } 1584 EXPORT_SYMBOL(do_munmap); 1585 1586 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1587 { 1588 int ret; 1589 struct mm_struct *mm = current->mm; 1590 1591 down_write(&mm->mmap_sem); 1592 ret = do_munmap(mm, addr, len); 1593 up_write(&mm->mmap_sem); 1594 return ret; 1595 } 1596 1597 /* 1598 * release all the mappings made in a process's VM space 1599 */ 1600 void exit_mmap(struct mm_struct *mm) 1601 { 1602 struct vm_area_struct *vma; 1603 1604 if (!mm) 1605 return; 1606 1607 kenter(""); 1608 1609 mm->total_vm = 0; 1610 1611 while ((vma = mm->mmap)) { 1612 mm->mmap = vma->vm_next; 1613 delete_vma_from_mm(vma); 1614 delete_vma(mm, vma); 1615 } 1616 1617 kleave(""); 1618 } 1619 1620 unsigned long do_brk(unsigned long addr, unsigned long len) 1621 { 1622 return -ENOMEM; 1623 } 1624 1625 /* 1626 * expand (or shrink) an existing mapping, potentially moving it at the same 1627 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1628 * 1629 * under NOMMU conditions, we only permit changing a mapping's size, and only 1630 * as long as it stays within the region allocated by do_mmap_private() and the 1631 * block is not shareable 1632 * 1633 * MREMAP_FIXED is not supported under NOMMU conditions 1634 */ 1635 unsigned long do_mremap(unsigned long addr, 1636 unsigned long old_len, unsigned long new_len, 1637 unsigned long flags, unsigned long new_addr) 1638 { 1639 struct vm_area_struct *vma; 1640 1641 /* insanity checks first */ 1642 if (old_len == 0 || new_len == 0) 1643 return (unsigned long) -EINVAL; 1644 1645 if (addr & ~PAGE_MASK) 1646 return -EINVAL; 1647 1648 if (flags & MREMAP_FIXED && new_addr != addr) 1649 return (unsigned long) -EINVAL; 1650 1651 vma = find_vma_exact(current->mm, addr, old_len); 1652 if (!vma) 1653 return (unsigned long) -EINVAL; 1654 1655 if (vma->vm_end != vma->vm_start + old_len) 1656 return (unsigned long) -EFAULT; 1657 1658 if (vma->vm_flags & VM_MAYSHARE) 1659 return (unsigned long) -EPERM; 1660 1661 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1662 return (unsigned long) -ENOMEM; 1663 1664 /* all checks complete - do it */ 1665 vma->vm_end = vma->vm_start + new_len; 1666 return vma->vm_start; 1667 } 1668 EXPORT_SYMBOL(do_mremap); 1669 1670 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1671 unsigned long, new_len, unsigned long, flags, 1672 unsigned long, new_addr) 1673 { 1674 unsigned long ret; 1675 1676 down_write(¤t->mm->mmap_sem); 1677 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1678 up_write(¤t->mm->mmap_sem); 1679 return ret; 1680 } 1681 1682 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1683 unsigned int foll_flags) 1684 { 1685 return NULL; 1686 } 1687 1688 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1689 unsigned long to, unsigned long size, pgprot_t prot) 1690 { 1691 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(remap_pfn_range); 1695 1696 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1697 unsigned long pgoff) 1698 { 1699 unsigned int size = vma->vm_end - vma->vm_start; 1700 1701 if (!(vma->vm_flags & VM_USERMAP)) 1702 return -EINVAL; 1703 1704 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1705 vma->vm_end = vma->vm_start + size; 1706 1707 return 0; 1708 } 1709 EXPORT_SYMBOL(remap_vmalloc_range); 1710 1711 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1712 { 1713 } 1714 1715 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1716 unsigned long len, unsigned long pgoff, unsigned long flags) 1717 { 1718 return -ENOMEM; 1719 } 1720 1721 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1722 { 1723 } 1724 1725 void unmap_mapping_range(struct address_space *mapping, 1726 loff_t const holebegin, loff_t const holelen, 1727 int even_cows) 1728 { 1729 } 1730 EXPORT_SYMBOL(unmap_mapping_range); 1731 1732 /* 1733 * ask for an unmapped area at which to create a mapping on a file 1734 */ 1735 unsigned long get_unmapped_area(struct file *file, unsigned long addr, 1736 unsigned long len, unsigned long pgoff, 1737 unsigned long flags) 1738 { 1739 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, 1740 unsigned long, unsigned long); 1741 1742 get_area = current->mm->get_unmapped_area; 1743 if (file && file->f_op && file->f_op->get_unmapped_area) 1744 get_area = file->f_op->get_unmapped_area; 1745 1746 if (!get_area) 1747 return -ENOSYS; 1748 1749 return get_area(file, addr, len, pgoff, flags); 1750 } 1751 EXPORT_SYMBOL(get_unmapped_area); 1752 1753 /* 1754 * Check that a process has enough memory to allocate a new virtual 1755 * mapping. 0 means there is enough memory for the allocation to 1756 * succeed and -ENOMEM implies there is not. 1757 * 1758 * We currently support three overcommit policies, which are set via the 1759 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1760 * 1761 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1762 * Additional code 2002 Jul 20 by Robert Love. 1763 * 1764 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1765 * 1766 * Note this is a helper function intended to be used by LSMs which 1767 * wish to use this logic. 1768 */ 1769 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1770 { 1771 unsigned long free, allowed; 1772 1773 vm_acct_memory(pages); 1774 1775 /* 1776 * Sometimes we want to use more memory than we have 1777 */ 1778 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1779 return 0; 1780 1781 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1782 unsigned long n; 1783 1784 free = global_page_state(NR_FILE_PAGES); 1785 free += nr_swap_pages; 1786 1787 /* 1788 * Any slabs which are created with the 1789 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1790 * which are reclaimable, under pressure. The dentry 1791 * cache and most inode caches should fall into this 1792 */ 1793 free += global_page_state(NR_SLAB_RECLAIMABLE); 1794 1795 /* 1796 * Leave the last 3% for root 1797 */ 1798 if (!cap_sys_admin) 1799 free -= free / 32; 1800 1801 if (free > pages) 1802 return 0; 1803 1804 /* 1805 * nr_free_pages() is very expensive on large systems, 1806 * only call if we're about to fail. 1807 */ 1808 n = nr_free_pages(); 1809 1810 /* 1811 * Leave reserved pages. The pages are not for anonymous pages. 1812 */ 1813 if (n <= totalreserve_pages) 1814 goto error; 1815 else 1816 n -= totalreserve_pages; 1817 1818 /* 1819 * Leave the last 3% for root 1820 */ 1821 if (!cap_sys_admin) 1822 n -= n / 32; 1823 free += n; 1824 1825 if (free > pages) 1826 return 0; 1827 1828 goto error; 1829 } 1830 1831 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1832 /* 1833 * Leave the last 3% for root 1834 */ 1835 if (!cap_sys_admin) 1836 allowed -= allowed / 32; 1837 allowed += total_swap_pages; 1838 1839 /* Don't let a single process grow too big: 1840 leave 3% of the size of this process for other processes */ 1841 if (mm) 1842 allowed -= mm->total_vm / 32; 1843 1844 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1845 return 0; 1846 1847 error: 1848 vm_unacct_memory(pages); 1849 1850 return -ENOMEM; 1851 } 1852 1853 int in_gate_area_no_task(unsigned long addr) 1854 { 1855 return 0; 1856 } 1857 1858 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1859 { 1860 BUG(); 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(filemap_fault); 1864 1865 /* 1866 * Access another process' address space. 1867 * - source/target buffer must be kernel space 1868 */ 1869 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1870 { 1871 struct vm_area_struct *vma; 1872 struct mm_struct *mm; 1873 1874 if (addr + len < addr) 1875 return 0; 1876 1877 mm = get_task_mm(tsk); 1878 if (!mm) 1879 return 0; 1880 1881 down_read(&mm->mmap_sem); 1882 1883 /* the access must start within one of the target process's mappings */ 1884 vma = find_vma(mm, addr); 1885 if (vma) { 1886 /* don't overrun this mapping */ 1887 if (addr + len >= vma->vm_end) 1888 len = vma->vm_end - addr; 1889 1890 /* only read or write mappings where it is permitted */ 1891 if (write && vma->vm_flags & VM_MAYWRITE) 1892 len -= copy_to_user((void *) addr, buf, len); 1893 else if (!write && vma->vm_flags & VM_MAYREAD) 1894 len -= copy_from_user(buf, (void *) addr, len); 1895 else 1896 len = 0; 1897 } else { 1898 len = 0; 1899 } 1900 1901 up_read(&mm->mmap_sem); 1902 mmput(mm); 1903 return len; 1904 } 1905