xref: /linux/mm/nommu.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43 
44 #if 0
45 #define kenter(FMT, ...) \
46 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59 
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76 
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81 
82 const struct vm_operations_struct generic_file_vm_ops = {
83 };
84 
85 /*
86  * Return the total memory allocated for this pointer, not
87  * just what the caller asked for.
88  *
89  * Doesn't have to be accurate, i.e. may have races.
90  */
91 unsigned int kobjsize(const void *objp)
92 {
93 	struct page *page;
94 
95 	/*
96 	 * If the object we have should not have ksize performed on it,
97 	 * return size of 0
98 	 */
99 	if (!objp || !virt_addr_valid(objp))
100 		return 0;
101 
102 	page = virt_to_head_page(objp);
103 
104 	/*
105 	 * If the allocator sets PageSlab, we know the pointer came from
106 	 * kmalloc().
107 	 */
108 	if (PageSlab(page))
109 		return ksize(objp);
110 
111 	/*
112 	 * If it's not a compound page, see if we have a matching VMA
113 	 * region. This test is intentionally done in reverse order,
114 	 * so if there's no VMA, we still fall through and hand back
115 	 * PAGE_SIZE for 0-order pages.
116 	 */
117 	if (!PageCompound(page)) {
118 		struct vm_area_struct *vma;
119 
120 		vma = find_vma(current->mm, (unsigned long)objp);
121 		if (vma)
122 			return vma->vm_end - vma->vm_start;
123 	}
124 
125 	/*
126 	 * The ksize() function is only guaranteed to work for pointers
127 	 * returned by kmalloc(). So handle arbitrary pointers here.
128 	 */
129 	return PAGE_SIZE << compound_order(page);
130 }
131 
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 		     unsigned long start, int nr_pages, unsigned int foll_flags,
134 		     struct page **pages, struct vm_area_struct **vmas)
135 {
136 	struct vm_area_struct *vma;
137 	unsigned long vm_flags;
138 	int i;
139 
140 	/* calculate required read or write permissions.
141 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
142 	 */
143 	vm_flags  = (foll_flags & FOLL_WRITE) ?
144 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 	vm_flags &= (foll_flags & FOLL_FORCE) ?
146 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
147 
148 	for (i = 0; i < nr_pages; i++) {
149 		vma = find_vma(mm, start);
150 		if (!vma)
151 			goto finish_or_fault;
152 
153 		/* protect what we can, including chardevs */
154 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 		    !(vm_flags & vma->vm_flags))
156 			goto finish_or_fault;
157 
158 		if (pages) {
159 			pages[i] = virt_to_page(start);
160 			if (pages[i])
161 				page_cache_get(pages[i]);
162 		}
163 		if (vmas)
164 			vmas[i] = vma;
165 		start += PAGE_SIZE;
166 	}
167 
168 	return i;
169 
170 finish_or_fault:
171 	return i ? : -EFAULT;
172 }
173 
174 /*
175  * get a list of pages in an address range belonging to the specified process
176  * and indicate the VMA that covers each page
177  * - this is potentially dodgy as we may end incrementing the page count of a
178  *   slab page or a secondary page from a compound page
179  * - don't permit access to VMAs that don't support it, such as I/O mappings
180  */
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 	unsigned long start, int nr_pages, int write, int force,
183 	struct page **pages, struct vm_area_struct **vmas)
184 {
185 	int flags = 0;
186 
187 	if (write)
188 		flags |= FOLL_WRITE;
189 	if (force)
190 		flags |= FOLL_FORCE;
191 
192 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
193 }
194 EXPORT_SYMBOL(get_user_pages);
195 
196 /**
197  * follow_pfn - look up PFN at a user virtual address
198  * @vma: memory mapping
199  * @address: user virtual address
200  * @pfn: location to store found PFN
201  *
202  * Only IO mappings and raw PFN mappings are allowed.
203  *
204  * Returns zero and the pfn at @pfn on success, -ve otherwise.
205  */
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207 	unsigned long *pfn)
208 {
209 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210 		return -EINVAL;
211 
212 	*pfn = address >> PAGE_SHIFT;
213 	return 0;
214 }
215 EXPORT_SYMBOL(follow_pfn);
216 
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
219 
220 void vfree(const void *addr)
221 {
222 	kfree(addr);
223 }
224 EXPORT_SYMBOL(vfree);
225 
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 {
228 	/*
229 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 	 * returns only a logical address.
231 	 */
232 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
233 }
234 EXPORT_SYMBOL(__vmalloc);
235 
236 void *vmalloc_user(unsigned long size)
237 {
238 	void *ret;
239 
240 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 			PAGE_KERNEL);
242 	if (ret) {
243 		struct vm_area_struct *vma;
244 
245 		down_write(&current->mm->mmap_sem);
246 		vma = find_vma(current->mm, (unsigned long)ret);
247 		if (vma)
248 			vma->vm_flags |= VM_USERMAP;
249 		up_write(&current->mm->mmap_sem);
250 	}
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(vmalloc_user);
255 
256 struct page *vmalloc_to_page(const void *addr)
257 {
258 	return virt_to_page(addr);
259 }
260 EXPORT_SYMBOL(vmalloc_to_page);
261 
262 unsigned long vmalloc_to_pfn(const void *addr)
263 {
264 	return page_to_pfn(virt_to_page(addr));
265 }
266 EXPORT_SYMBOL(vmalloc_to_pfn);
267 
268 long vread(char *buf, char *addr, unsigned long count)
269 {
270 	memcpy(buf, addr, count);
271 	return count;
272 }
273 
274 long vwrite(char *buf, char *addr, unsigned long count)
275 {
276 	/* Don't allow overflow */
277 	if ((unsigned long) addr + count < count)
278 		count = -(unsigned long) addr;
279 
280 	memcpy(addr, buf, count);
281 	return(count);
282 }
283 
284 /*
285  *	vmalloc  -  allocate virtually continguos memory
286  *
287  *	@size:		allocation size
288  *
289  *	Allocate enough pages to cover @size from the page level
290  *	allocator and map them into continguos kernel virtual space.
291  *
292  *	For tight control over page level allocator and protection flags
293  *	use __vmalloc() instead.
294  */
295 void *vmalloc(unsigned long size)
296 {
297        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
298 }
299 EXPORT_SYMBOL(vmalloc);
300 
301 void *vmalloc_node(unsigned long size, int node)
302 {
303 	return vmalloc(size);
304 }
305 EXPORT_SYMBOL(vmalloc_node);
306 
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
310 
311 /**
312  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
313  *	@size:		allocation size
314  *
315  *	Kernel-internal function to allocate enough pages to cover @size
316  *	the page level allocator and map them into contiguous and
317  *	executable kernel virtual space.
318  *
319  *	For tight control over page level allocator and protection flags
320  *	use __vmalloc() instead.
321  */
322 
323 void *vmalloc_exec(unsigned long size)
324 {
325 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
326 }
327 
328 /**
329  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
330  *	@size:		allocation size
331  *
332  *	Allocate enough 32bit PA addressable pages to cover @size from the
333  *	page level allocator and map them into continguos kernel virtual space.
334  */
335 void *vmalloc_32(unsigned long size)
336 {
337 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc_32);
340 
341 /**
342  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343  *	@size:		allocation size
344  *
345  * The resulting memory area is 32bit addressable and zeroed so it can be
346  * mapped to userspace without leaking data.
347  *
348  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349  * remap_vmalloc_range() are permissible.
350  */
351 void *vmalloc_32_user(unsigned long size)
352 {
353 	/*
354 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 	 * but for now this can simply use vmalloc_user() directly.
356 	 */
357 	return vmalloc_user(size);
358 }
359 EXPORT_SYMBOL(vmalloc_32_user);
360 
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
362 {
363 	BUG();
364 	return NULL;
365 }
366 EXPORT_SYMBOL(vmap);
367 
368 void vunmap(const void *addr)
369 {
370 	BUG();
371 }
372 EXPORT_SYMBOL(vunmap);
373 
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
375 {
376 	BUG();
377 	return NULL;
378 }
379 EXPORT_SYMBOL(vm_map_ram);
380 
381 void vm_unmap_ram(const void *mem, unsigned int count)
382 {
383 	BUG();
384 }
385 EXPORT_SYMBOL(vm_unmap_ram);
386 
387 void vm_unmap_aliases(void)
388 {
389 }
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
391 
392 /*
393  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394  * have one.
395  */
396 void  __attribute__((weak)) vmalloc_sync_all(void)
397 {
398 }
399 
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401 		   struct page *page)
402 {
403 	return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_insert_page);
406 
407 /*
408  *  sys_brk() for the most part doesn't need the global kernel
409  *  lock, except when an application is doing something nasty
410  *  like trying to un-brk an area that has already been mapped
411  *  to a regular file.  in this case, the unmapping will need
412  *  to invoke file system routines that need the global lock.
413  */
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416 	struct mm_struct *mm = current->mm;
417 
418 	if (brk < mm->start_brk || brk > mm->context.end_brk)
419 		return mm->brk;
420 
421 	if (mm->brk == brk)
422 		return mm->brk;
423 
424 	/*
425 	 * Always allow shrinking brk
426 	 */
427 	if (brk <= mm->brk) {
428 		mm->brk = brk;
429 		return brk;
430 	}
431 
432 	/*
433 	 * Ok, looks good - let it rip.
434 	 */
435 	return mm->brk = brk;
436 }
437 
438 /*
439  * initialise the VMA and region record slabs
440  */
441 void __init mmap_init(void)
442 {
443 	int ret;
444 
445 	ret = percpu_counter_init(&vm_committed_as, 0);
446 	VM_BUG_ON(ret);
447 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
448 }
449 
450 /*
451  * validate the region tree
452  * - the caller must hold the region lock
453  */
454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
455 static noinline void validate_nommu_regions(void)
456 {
457 	struct vm_region *region, *last;
458 	struct rb_node *p, *lastp;
459 
460 	lastp = rb_first(&nommu_region_tree);
461 	if (!lastp)
462 		return;
463 
464 	last = rb_entry(lastp, struct vm_region, vm_rb);
465 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
466 	BUG_ON(unlikely(last->vm_top < last->vm_end));
467 
468 	while ((p = rb_next(lastp))) {
469 		region = rb_entry(p, struct vm_region, vm_rb);
470 		last = rb_entry(lastp, struct vm_region, vm_rb);
471 
472 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
473 		BUG_ON(unlikely(region->vm_top < region->vm_end));
474 		BUG_ON(unlikely(region->vm_start < last->vm_top));
475 
476 		lastp = p;
477 	}
478 }
479 #else
480 static void validate_nommu_regions(void)
481 {
482 }
483 #endif
484 
485 /*
486  * add a region into the global tree
487  */
488 static void add_nommu_region(struct vm_region *region)
489 {
490 	struct vm_region *pregion;
491 	struct rb_node **p, *parent;
492 
493 	validate_nommu_regions();
494 
495 	parent = NULL;
496 	p = &nommu_region_tree.rb_node;
497 	while (*p) {
498 		parent = *p;
499 		pregion = rb_entry(parent, struct vm_region, vm_rb);
500 		if (region->vm_start < pregion->vm_start)
501 			p = &(*p)->rb_left;
502 		else if (region->vm_start > pregion->vm_start)
503 			p = &(*p)->rb_right;
504 		else if (pregion == region)
505 			return;
506 		else
507 			BUG();
508 	}
509 
510 	rb_link_node(&region->vm_rb, parent, p);
511 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
512 
513 	validate_nommu_regions();
514 }
515 
516 /*
517  * delete a region from the global tree
518  */
519 static void delete_nommu_region(struct vm_region *region)
520 {
521 	BUG_ON(!nommu_region_tree.rb_node);
522 
523 	validate_nommu_regions();
524 	rb_erase(&region->vm_rb, &nommu_region_tree);
525 	validate_nommu_regions();
526 }
527 
528 /*
529  * free a contiguous series of pages
530  */
531 static void free_page_series(unsigned long from, unsigned long to)
532 {
533 	for (; from < to; from += PAGE_SIZE) {
534 		struct page *page = virt_to_page(from);
535 
536 		kdebug("- free %lx", from);
537 		atomic_long_dec(&mmap_pages_allocated);
538 		if (page_count(page) != 1)
539 			kdebug("free page %p: refcount not one: %d",
540 			       page, page_count(page));
541 		put_page(page);
542 	}
543 }
544 
545 /*
546  * release a reference to a region
547  * - the caller must hold the region semaphore for writing, which this releases
548  * - the region may not have been added to the tree yet, in which case vm_top
549  *   will equal vm_start
550  */
551 static void __put_nommu_region(struct vm_region *region)
552 	__releases(nommu_region_sem)
553 {
554 	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
555 
556 	BUG_ON(!nommu_region_tree.rb_node);
557 
558 	if (atomic_dec_and_test(&region->vm_usage)) {
559 		if (region->vm_top > region->vm_start)
560 			delete_nommu_region(region);
561 		up_write(&nommu_region_sem);
562 
563 		if (region->vm_file)
564 			fput(region->vm_file);
565 
566 		/* IO memory and memory shared directly out of the pagecache
567 		 * from ramfs/tmpfs mustn't be released here */
568 		if (region->vm_flags & VM_MAPPED_COPY) {
569 			kdebug("free series");
570 			free_page_series(region->vm_start, region->vm_top);
571 		}
572 		kmem_cache_free(vm_region_jar, region);
573 	} else {
574 		up_write(&nommu_region_sem);
575 	}
576 }
577 
578 /*
579  * release a reference to a region
580  */
581 static void put_nommu_region(struct vm_region *region)
582 {
583 	down_write(&nommu_region_sem);
584 	__put_nommu_region(region);
585 }
586 
587 /*
588  * update protection on a vma
589  */
590 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
591 {
592 #ifdef CONFIG_MPU
593 	struct mm_struct *mm = vma->vm_mm;
594 	long start = vma->vm_start & PAGE_MASK;
595 	while (start < vma->vm_end) {
596 		protect_page(mm, start, flags);
597 		start += PAGE_SIZE;
598 	}
599 	update_protections(mm);
600 #endif
601 }
602 
603 /*
604  * add a VMA into a process's mm_struct in the appropriate place in the list
605  * and tree and add to the address space's page tree also if not an anonymous
606  * page
607  * - should be called with mm->mmap_sem held writelocked
608  */
609 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
610 {
611 	struct vm_area_struct *pvma, **pp;
612 	struct address_space *mapping;
613 	struct rb_node **p, *parent;
614 
615 	kenter(",%p", vma);
616 
617 	BUG_ON(!vma->vm_region);
618 
619 	mm->map_count++;
620 	vma->vm_mm = mm;
621 
622 	protect_vma(vma, vma->vm_flags);
623 
624 	/* add the VMA to the mapping */
625 	if (vma->vm_file) {
626 		mapping = vma->vm_file->f_mapping;
627 
628 		flush_dcache_mmap_lock(mapping);
629 		vma_prio_tree_insert(vma, &mapping->i_mmap);
630 		flush_dcache_mmap_unlock(mapping);
631 	}
632 
633 	/* add the VMA to the tree */
634 	parent = NULL;
635 	p = &mm->mm_rb.rb_node;
636 	while (*p) {
637 		parent = *p;
638 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
639 
640 		/* sort by: start addr, end addr, VMA struct addr in that order
641 		 * (the latter is necessary as we may get identical VMAs) */
642 		if (vma->vm_start < pvma->vm_start)
643 			p = &(*p)->rb_left;
644 		else if (vma->vm_start > pvma->vm_start)
645 			p = &(*p)->rb_right;
646 		else if (vma->vm_end < pvma->vm_end)
647 			p = &(*p)->rb_left;
648 		else if (vma->vm_end > pvma->vm_end)
649 			p = &(*p)->rb_right;
650 		else if (vma < pvma)
651 			p = &(*p)->rb_left;
652 		else if (vma > pvma)
653 			p = &(*p)->rb_right;
654 		else
655 			BUG();
656 	}
657 
658 	rb_link_node(&vma->vm_rb, parent, p);
659 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
660 
661 	/* add VMA to the VMA list also */
662 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
663 		if (pvma->vm_start > vma->vm_start)
664 			break;
665 		if (pvma->vm_start < vma->vm_start)
666 			continue;
667 		if (pvma->vm_end < vma->vm_end)
668 			break;
669 	}
670 
671 	vma->vm_next = *pp;
672 	*pp = vma;
673 }
674 
675 /*
676  * delete a VMA from its owning mm_struct and address space
677  */
678 static void delete_vma_from_mm(struct vm_area_struct *vma)
679 {
680 	struct vm_area_struct **pp;
681 	struct address_space *mapping;
682 	struct mm_struct *mm = vma->vm_mm;
683 
684 	kenter("%p", vma);
685 
686 	protect_vma(vma, 0);
687 
688 	mm->map_count--;
689 	if (mm->mmap_cache == vma)
690 		mm->mmap_cache = NULL;
691 
692 	/* remove the VMA from the mapping */
693 	if (vma->vm_file) {
694 		mapping = vma->vm_file->f_mapping;
695 
696 		flush_dcache_mmap_lock(mapping);
697 		vma_prio_tree_remove(vma, &mapping->i_mmap);
698 		flush_dcache_mmap_unlock(mapping);
699 	}
700 
701 	/* remove from the MM's tree and list */
702 	rb_erase(&vma->vm_rb, &mm->mm_rb);
703 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
704 		if (*pp == vma) {
705 			*pp = vma->vm_next;
706 			break;
707 		}
708 	}
709 
710 	vma->vm_mm = NULL;
711 }
712 
713 /*
714  * destroy a VMA record
715  */
716 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
717 {
718 	kenter("%p", vma);
719 	if (vma->vm_ops && vma->vm_ops->close)
720 		vma->vm_ops->close(vma);
721 	if (vma->vm_file) {
722 		fput(vma->vm_file);
723 		if (vma->vm_flags & VM_EXECUTABLE)
724 			removed_exe_file_vma(mm);
725 	}
726 	put_nommu_region(vma->vm_region);
727 	kmem_cache_free(vm_area_cachep, vma);
728 }
729 
730 /*
731  * look up the first VMA in which addr resides, NULL if none
732  * - should be called with mm->mmap_sem at least held readlocked
733  */
734 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
735 {
736 	struct vm_area_struct *vma;
737 	struct rb_node *n = mm->mm_rb.rb_node;
738 
739 	/* check the cache first */
740 	vma = mm->mmap_cache;
741 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
742 		return vma;
743 
744 	/* trawl the tree (there may be multiple mappings in which addr
745 	 * resides) */
746 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
747 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
748 		if (vma->vm_start > addr)
749 			return NULL;
750 		if (vma->vm_end > addr) {
751 			mm->mmap_cache = vma;
752 			return vma;
753 		}
754 	}
755 
756 	return NULL;
757 }
758 EXPORT_SYMBOL(find_vma);
759 
760 /*
761  * find a VMA
762  * - we don't extend stack VMAs under NOMMU conditions
763  */
764 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
765 {
766 	return find_vma(mm, addr);
767 }
768 
769 /*
770  * expand a stack to a given address
771  * - not supported under NOMMU conditions
772  */
773 int expand_stack(struct vm_area_struct *vma, unsigned long address)
774 {
775 	return -ENOMEM;
776 }
777 
778 /*
779  * look up the first VMA exactly that exactly matches addr
780  * - should be called with mm->mmap_sem at least held readlocked
781  */
782 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
783 					     unsigned long addr,
784 					     unsigned long len)
785 {
786 	struct vm_area_struct *vma;
787 	struct rb_node *n = mm->mm_rb.rb_node;
788 	unsigned long end = addr + len;
789 
790 	/* check the cache first */
791 	vma = mm->mmap_cache;
792 	if (vma && vma->vm_start == addr && vma->vm_end == end)
793 		return vma;
794 
795 	/* trawl the tree (there may be multiple mappings in which addr
796 	 * resides) */
797 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
798 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
799 		if (vma->vm_start < addr)
800 			continue;
801 		if (vma->vm_start > addr)
802 			return NULL;
803 		if (vma->vm_end == end) {
804 			mm->mmap_cache = vma;
805 			return vma;
806 		}
807 	}
808 
809 	return NULL;
810 }
811 
812 /*
813  * determine whether a mapping should be permitted and, if so, what sort of
814  * mapping we're capable of supporting
815  */
816 static int validate_mmap_request(struct file *file,
817 				 unsigned long addr,
818 				 unsigned long len,
819 				 unsigned long prot,
820 				 unsigned long flags,
821 				 unsigned long pgoff,
822 				 unsigned long *_capabilities)
823 {
824 	unsigned long capabilities, rlen;
825 	unsigned long reqprot = prot;
826 	int ret;
827 
828 	/* do the simple checks first */
829 	if (flags & MAP_FIXED) {
830 		printk(KERN_DEBUG
831 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
832 		       current->pid);
833 		return -EINVAL;
834 	}
835 
836 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
837 	    (flags & MAP_TYPE) != MAP_SHARED)
838 		return -EINVAL;
839 
840 	if (!len)
841 		return -EINVAL;
842 
843 	/* Careful about overflows.. */
844 	rlen = PAGE_ALIGN(len);
845 	if (!rlen || rlen > TASK_SIZE)
846 		return -ENOMEM;
847 
848 	/* offset overflow? */
849 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
850 		return -EOVERFLOW;
851 
852 	if (file) {
853 		/* validate file mapping requests */
854 		struct address_space *mapping;
855 
856 		/* files must support mmap */
857 		if (!file->f_op || !file->f_op->mmap)
858 			return -ENODEV;
859 
860 		/* work out if what we've got could possibly be shared
861 		 * - we support chardevs that provide their own "memory"
862 		 * - we support files/blockdevs that are memory backed
863 		 */
864 		mapping = file->f_mapping;
865 		if (!mapping)
866 			mapping = file->f_path.dentry->d_inode->i_mapping;
867 
868 		capabilities = 0;
869 		if (mapping && mapping->backing_dev_info)
870 			capabilities = mapping->backing_dev_info->capabilities;
871 
872 		if (!capabilities) {
873 			/* no explicit capabilities set, so assume some
874 			 * defaults */
875 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
876 			case S_IFREG:
877 			case S_IFBLK:
878 				capabilities = BDI_CAP_MAP_COPY;
879 				break;
880 
881 			case S_IFCHR:
882 				capabilities =
883 					BDI_CAP_MAP_DIRECT |
884 					BDI_CAP_READ_MAP |
885 					BDI_CAP_WRITE_MAP;
886 				break;
887 
888 			default:
889 				return -EINVAL;
890 			}
891 		}
892 
893 		/* eliminate any capabilities that we can't support on this
894 		 * device */
895 		if (!file->f_op->get_unmapped_area)
896 			capabilities &= ~BDI_CAP_MAP_DIRECT;
897 		if (!file->f_op->read)
898 			capabilities &= ~BDI_CAP_MAP_COPY;
899 
900 		/* The file shall have been opened with read permission. */
901 		if (!(file->f_mode & FMODE_READ))
902 			return -EACCES;
903 
904 		if (flags & MAP_SHARED) {
905 			/* do checks for writing, appending and locking */
906 			if ((prot & PROT_WRITE) &&
907 			    !(file->f_mode & FMODE_WRITE))
908 				return -EACCES;
909 
910 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
911 			    (file->f_mode & FMODE_WRITE))
912 				return -EACCES;
913 
914 			if (locks_verify_locked(file->f_path.dentry->d_inode))
915 				return -EAGAIN;
916 
917 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
918 				return -ENODEV;
919 
920 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
921 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
922 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
923 			    ) {
924 				printk("MAP_SHARED not completely supported on !MMU\n");
925 				return -EINVAL;
926 			}
927 
928 			/* we mustn't privatise shared mappings */
929 			capabilities &= ~BDI_CAP_MAP_COPY;
930 		}
931 		else {
932 			/* we're going to read the file into private memory we
933 			 * allocate */
934 			if (!(capabilities & BDI_CAP_MAP_COPY))
935 				return -ENODEV;
936 
937 			/* we don't permit a private writable mapping to be
938 			 * shared with the backing device */
939 			if (prot & PROT_WRITE)
940 				capabilities &= ~BDI_CAP_MAP_DIRECT;
941 		}
942 
943 		/* handle executable mappings and implied executable
944 		 * mappings */
945 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
946 			if (prot & PROT_EXEC)
947 				return -EPERM;
948 		}
949 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
950 			/* handle implication of PROT_EXEC by PROT_READ */
951 			if (current->personality & READ_IMPLIES_EXEC) {
952 				if (capabilities & BDI_CAP_EXEC_MAP)
953 					prot |= PROT_EXEC;
954 			}
955 		}
956 		else if ((prot & PROT_READ) &&
957 			 (prot & PROT_EXEC) &&
958 			 !(capabilities & BDI_CAP_EXEC_MAP)
959 			 ) {
960 			/* backing file is not executable, try to copy */
961 			capabilities &= ~BDI_CAP_MAP_DIRECT;
962 		}
963 	}
964 	else {
965 		/* anonymous mappings are always memory backed and can be
966 		 * privately mapped
967 		 */
968 		capabilities = BDI_CAP_MAP_COPY;
969 
970 		/* handle PROT_EXEC implication by PROT_READ */
971 		if ((prot & PROT_READ) &&
972 		    (current->personality & READ_IMPLIES_EXEC))
973 			prot |= PROT_EXEC;
974 	}
975 
976 	/* allow the security API to have its say */
977 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
978 	if (ret < 0)
979 		return ret;
980 
981 	/* looks okay */
982 	*_capabilities = capabilities;
983 	return 0;
984 }
985 
986 /*
987  * we've determined that we can make the mapping, now translate what we
988  * now know into VMA flags
989  */
990 static unsigned long determine_vm_flags(struct file *file,
991 					unsigned long prot,
992 					unsigned long flags,
993 					unsigned long capabilities)
994 {
995 	unsigned long vm_flags;
996 
997 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
998 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
999 	/* vm_flags |= mm->def_flags; */
1000 
1001 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1002 		/* attempt to share read-only copies of mapped file chunks */
1003 		if (file && !(prot & PROT_WRITE))
1004 			vm_flags |= VM_MAYSHARE;
1005 	}
1006 	else {
1007 		/* overlay a shareable mapping on the backing device or inode
1008 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1009 		 * romfs/cramfs */
1010 		if (flags & MAP_SHARED)
1011 			vm_flags |= VM_MAYSHARE | VM_SHARED;
1012 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1013 			vm_flags |= VM_MAYSHARE;
1014 	}
1015 
1016 	/* refuse to let anyone share private mappings with this process if
1017 	 * it's being traced - otherwise breakpoints set in it may interfere
1018 	 * with another untraced process
1019 	 */
1020 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1021 		vm_flags &= ~VM_MAYSHARE;
1022 
1023 	return vm_flags;
1024 }
1025 
1026 /*
1027  * set up a shared mapping on a file (the driver or filesystem provides and
1028  * pins the storage)
1029  */
1030 static int do_mmap_shared_file(struct vm_area_struct *vma)
1031 {
1032 	int ret;
1033 
1034 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1035 	if (ret == 0) {
1036 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1037 		return 0;
1038 	}
1039 	if (ret != -ENOSYS)
1040 		return ret;
1041 
1042 	/* getting an ENOSYS error indicates that direct mmap isn't
1043 	 * possible (as opposed to tried but failed) so we'll fall
1044 	 * through to making a private copy of the data and mapping
1045 	 * that if we can */
1046 	return -ENODEV;
1047 }
1048 
1049 /*
1050  * set up a private mapping or an anonymous shared mapping
1051  */
1052 static int do_mmap_private(struct vm_area_struct *vma,
1053 			   struct vm_region *region,
1054 			   unsigned long len,
1055 			   unsigned long capabilities)
1056 {
1057 	struct page *pages;
1058 	unsigned long total, point, n, rlen;
1059 	void *base;
1060 	int ret, order;
1061 
1062 	/* invoke the file's mapping function so that it can keep track of
1063 	 * shared mappings on devices or memory
1064 	 * - VM_MAYSHARE will be set if it may attempt to share
1065 	 */
1066 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1067 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1068 		if (ret == 0) {
1069 			/* shouldn't return success if we're not sharing */
1070 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1071 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1072 			return 0;
1073 		}
1074 		if (ret != -ENOSYS)
1075 			return ret;
1076 
1077 		/* getting an ENOSYS error indicates that direct mmap isn't
1078 		 * possible (as opposed to tried but failed) so we'll try to
1079 		 * make a private copy of the data and map that instead */
1080 	}
1081 
1082 	rlen = PAGE_ALIGN(len);
1083 
1084 	/* allocate some memory to hold the mapping
1085 	 * - note that this may not return a page-aligned address if the object
1086 	 *   we're allocating is smaller than a page
1087 	 */
1088 	order = get_order(rlen);
1089 	kdebug("alloc order %d for %lx", order, len);
1090 
1091 	pages = alloc_pages(GFP_KERNEL, order);
1092 	if (!pages)
1093 		goto enomem;
1094 
1095 	total = 1 << order;
1096 	atomic_long_add(total, &mmap_pages_allocated);
1097 
1098 	point = rlen >> PAGE_SHIFT;
1099 
1100 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1101 	 * the excess */
1102 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1103 		while (total > point) {
1104 			order = ilog2(total - point);
1105 			n = 1 << order;
1106 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1107 			atomic_long_sub(n, &mmap_pages_allocated);
1108 			total -= n;
1109 			set_page_refcounted(pages + total);
1110 			__free_pages(pages + total, order);
1111 		}
1112 	}
1113 
1114 	for (point = 1; point < total; point++)
1115 		set_page_refcounted(&pages[point]);
1116 
1117 	base = page_address(pages);
1118 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1119 	region->vm_start = (unsigned long) base;
1120 	region->vm_end   = region->vm_start + rlen;
1121 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1122 
1123 	vma->vm_start = region->vm_start;
1124 	vma->vm_end   = region->vm_start + len;
1125 
1126 	if (vma->vm_file) {
1127 		/* read the contents of a file into the copy */
1128 		mm_segment_t old_fs;
1129 		loff_t fpos;
1130 
1131 		fpos = vma->vm_pgoff;
1132 		fpos <<= PAGE_SHIFT;
1133 
1134 		old_fs = get_fs();
1135 		set_fs(KERNEL_DS);
1136 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1137 		set_fs(old_fs);
1138 
1139 		if (ret < 0)
1140 			goto error_free;
1141 
1142 		/* clear the last little bit */
1143 		if (ret < rlen)
1144 			memset(base + ret, 0, rlen - ret);
1145 
1146 	} else {
1147 		/* if it's an anonymous mapping, then just clear it */
1148 		memset(base, 0, rlen);
1149 	}
1150 
1151 	return 0;
1152 
1153 error_free:
1154 	free_page_series(region->vm_start, region->vm_end);
1155 	region->vm_start = vma->vm_start = 0;
1156 	region->vm_end   = vma->vm_end = 0;
1157 	region->vm_top   = 0;
1158 	return ret;
1159 
1160 enomem:
1161 	printk("Allocation of length %lu from process %d (%s) failed\n",
1162 	       len, current->pid, current->comm);
1163 	show_free_areas();
1164 	return -ENOMEM;
1165 }
1166 
1167 /*
1168  * handle mapping creation for uClinux
1169  */
1170 unsigned long do_mmap_pgoff(struct file *file,
1171 			    unsigned long addr,
1172 			    unsigned long len,
1173 			    unsigned long prot,
1174 			    unsigned long flags,
1175 			    unsigned long pgoff)
1176 {
1177 	struct vm_area_struct *vma;
1178 	struct vm_region *region;
1179 	struct rb_node *rb;
1180 	unsigned long capabilities, vm_flags, result;
1181 	int ret;
1182 
1183 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1184 
1185 	/* decide whether we should attempt the mapping, and if so what sort of
1186 	 * mapping */
1187 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1188 				    &capabilities);
1189 	if (ret < 0) {
1190 		kleave(" = %d [val]", ret);
1191 		return ret;
1192 	}
1193 
1194 	/* we ignore the address hint */
1195 	addr = 0;
1196 
1197 	/* we've determined that we can make the mapping, now translate what we
1198 	 * now know into VMA flags */
1199 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1200 
1201 	/* we're going to need to record the mapping */
1202 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1203 	if (!region)
1204 		goto error_getting_region;
1205 
1206 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1207 	if (!vma)
1208 		goto error_getting_vma;
1209 
1210 	atomic_set(&region->vm_usage, 1);
1211 	region->vm_flags = vm_flags;
1212 	region->vm_pgoff = pgoff;
1213 
1214 	INIT_LIST_HEAD(&vma->anon_vma_node);
1215 	vma->vm_flags = vm_flags;
1216 	vma->vm_pgoff = pgoff;
1217 
1218 	if (file) {
1219 		region->vm_file = file;
1220 		get_file(file);
1221 		vma->vm_file = file;
1222 		get_file(file);
1223 		if (vm_flags & VM_EXECUTABLE) {
1224 			added_exe_file_vma(current->mm);
1225 			vma->vm_mm = current->mm;
1226 		}
1227 	}
1228 
1229 	down_write(&nommu_region_sem);
1230 
1231 	/* if we want to share, we need to check for regions created by other
1232 	 * mmap() calls that overlap with our proposed mapping
1233 	 * - we can only share with a superset match on most regular files
1234 	 * - shared mappings on character devices and memory backed files are
1235 	 *   permitted to overlap inexactly as far as we are concerned for in
1236 	 *   these cases, sharing is handled in the driver or filesystem rather
1237 	 *   than here
1238 	 */
1239 	if (vm_flags & VM_MAYSHARE) {
1240 		struct vm_region *pregion;
1241 		unsigned long pglen, rpglen, pgend, rpgend, start;
1242 
1243 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1244 		pgend = pgoff + pglen;
1245 
1246 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1247 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1248 
1249 			if (!(pregion->vm_flags & VM_MAYSHARE))
1250 				continue;
1251 
1252 			/* search for overlapping mappings on the same file */
1253 			if (pregion->vm_file->f_path.dentry->d_inode !=
1254 			    file->f_path.dentry->d_inode)
1255 				continue;
1256 
1257 			if (pregion->vm_pgoff >= pgend)
1258 				continue;
1259 
1260 			rpglen = pregion->vm_end - pregion->vm_start;
1261 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1262 			rpgend = pregion->vm_pgoff + rpglen;
1263 			if (pgoff >= rpgend)
1264 				continue;
1265 
1266 			/* handle inexactly overlapping matches between
1267 			 * mappings */
1268 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1269 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1270 				/* new mapping is not a subset of the region */
1271 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1272 					goto sharing_violation;
1273 				continue;
1274 			}
1275 
1276 			/* we've found a region we can share */
1277 			atomic_inc(&pregion->vm_usage);
1278 			vma->vm_region = pregion;
1279 			start = pregion->vm_start;
1280 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1281 			vma->vm_start = start;
1282 			vma->vm_end = start + len;
1283 
1284 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1285 				kdebug("share copy");
1286 				vma->vm_flags |= VM_MAPPED_COPY;
1287 			} else {
1288 				kdebug("share mmap");
1289 				ret = do_mmap_shared_file(vma);
1290 				if (ret < 0) {
1291 					vma->vm_region = NULL;
1292 					vma->vm_start = 0;
1293 					vma->vm_end = 0;
1294 					atomic_dec(&pregion->vm_usage);
1295 					pregion = NULL;
1296 					goto error_just_free;
1297 				}
1298 			}
1299 			fput(region->vm_file);
1300 			kmem_cache_free(vm_region_jar, region);
1301 			region = pregion;
1302 			result = start;
1303 			goto share;
1304 		}
1305 
1306 		/* obtain the address at which to make a shared mapping
1307 		 * - this is the hook for quasi-memory character devices to
1308 		 *   tell us the location of a shared mapping
1309 		 */
1310 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1311 			addr = file->f_op->get_unmapped_area(file, addr, len,
1312 							     pgoff, flags);
1313 			if (IS_ERR((void *) addr)) {
1314 				ret = addr;
1315 				if (ret != (unsigned long) -ENOSYS)
1316 					goto error_just_free;
1317 
1318 				/* the driver refused to tell us where to site
1319 				 * the mapping so we'll have to attempt to copy
1320 				 * it */
1321 				ret = (unsigned long) -ENODEV;
1322 				if (!(capabilities & BDI_CAP_MAP_COPY))
1323 					goto error_just_free;
1324 
1325 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1326 			} else {
1327 				vma->vm_start = region->vm_start = addr;
1328 				vma->vm_end = region->vm_end = addr + len;
1329 			}
1330 		}
1331 	}
1332 
1333 	vma->vm_region = region;
1334 
1335 	/* set up the mapping
1336 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1337 	 */
1338 	if (file && vma->vm_flags & VM_SHARED)
1339 		ret = do_mmap_shared_file(vma);
1340 	else
1341 		ret = do_mmap_private(vma, region, len, capabilities);
1342 	if (ret < 0)
1343 		goto error_just_free;
1344 	add_nommu_region(region);
1345 
1346 	/* okay... we have a mapping; now we have to register it */
1347 	result = vma->vm_start;
1348 
1349 	current->mm->total_vm += len >> PAGE_SHIFT;
1350 
1351 share:
1352 	add_vma_to_mm(current->mm, vma);
1353 
1354 	up_write(&nommu_region_sem);
1355 
1356 	if (prot & PROT_EXEC)
1357 		flush_icache_range(result, result + len);
1358 
1359 	kleave(" = %lx", result);
1360 	return result;
1361 
1362 error_just_free:
1363 	up_write(&nommu_region_sem);
1364 error:
1365 	if (region->vm_file)
1366 		fput(region->vm_file);
1367 	kmem_cache_free(vm_region_jar, region);
1368 	if (vma->vm_file)
1369 		fput(vma->vm_file);
1370 	if (vma->vm_flags & VM_EXECUTABLE)
1371 		removed_exe_file_vma(vma->vm_mm);
1372 	kmem_cache_free(vm_area_cachep, vma);
1373 	kleave(" = %d", ret);
1374 	return ret;
1375 
1376 sharing_violation:
1377 	up_write(&nommu_region_sem);
1378 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1379 	ret = -EINVAL;
1380 	goto error;
1381 
1382 error_getting_vma:
1383 	kmem_cache_free(vm_region_jar, region);
1384 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1385 	       " from process %d failed\n",
1386 	       len, current->pid);
1387 	show_free_areas();
1388 	return -ENOMEM;
1389 
1390 error_getting_region:
1391 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1392 	       " from process %d failed\n",
1393 	       len, current->pid);
1394 	show_free_areas();
1395 	return -ENOMEM;
1396 }
1397 EXPORT_SYMBOL(do_mmap_pgoff);
1398 
1399 /*
1400  * split a vma into two pieces at address 'addr', a new vma is allocated either
1401  * for the first part or the tail.
1402  */
1403 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1404 	      unsigned long addr, int new_below)
1405 {
1406 	struct vm_area_struct *new;
1407 	struct vm_region *region;
1408 	unsigned long npages;
1409 
1410 	kenter("");
1411 
1412 	/* we're only permitted to split anonymous regions that have a single
1413 	 * owner */
1414 	if (vma->vm_file ||
1415 	    atomic_read(&vma->vm_region->vm_usage) != 1)
1416 		return -ENOMEM;
1417 
1418 	if (mm->map_count >= sysctl_max_map_count)
1419 		return -ENOMEM;
1420 
1421 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1422 	if (!region)
1423 		return -ENOMEM;
1424 
1425 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1426 	if (!new) {
1427 		kmem_cache_free(vm_region_jar, region);
1428 		return -ENOMEM;
1429 	}
1430 
1431 	/* most fields are the same, copy all, and then fixup */
1432 	*new = *vma;
1433 	*region = *vma->vm_region;
1434 	new->vm_region = region;
1435 
1436 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1437 
1438 	if (new_below) {
1439 		region->vm_top = region->vm_end = new->vm_end = addr;
1440 	} else {
1441 		region->vm_start = new->vm_start = addr;
1442 		region->vm_pgoff = new->vm_pgoff += npages;
1443 	}
1444 
1445 	if (new->vm_ops && new->vm_ops->open)
1446 		new->vm_ops->open(new);
1447 
1448 	delete_vma_from_mm(vma);
1449 	down_write(&nommu_region_sem);
1450 	delete_nommu_region(vma->vm_region);
1451 	if (new_below) {
1452 		vma->vm_region->vm_start = vma->vm_start = addr;
1453 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1454 	} else {
1455 		vma->vm_region->vm_end = vma->vm_end = addr;
1456 		vma->vm_region->vm_top = addr;
1457 	}
1458 	add_nommu_region(vma->vm_region);
1459 	add_nommu_region(new->vm_region);
1460 	up_write(&nommu_region_sem);
1461 	add_vma_to_mm(mm, vma);
1462 	add_vma_to_mm(mm, new);
1463 	return 0;
1464 }
1465 
1466 /*
1467  * shrink a VMA by removing the specified chunk from either the beginning or
1468  * the end
1469  */
1470 static int shrink_vma(struct mm_struct *mm,
1471 		      struct vm_area_struct *vma,
1472 		      unsigned long from, unsigned long to)
1473 {
1474 	struct vm_region *region;
1475 
1476 	kenter("");
1477 
1478 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1479 	 * and list */
1480 	delete_vma_from_mm(vma);
1481 	if (from > vma->vm_start)
1482 		vma->vm_end = from;
1483 	else
1484 		vma->vm_start = to;
1485 	add_vma_to_mm(mm, vma);
1486 
1487 	/* cut the backing region down to size */
1488 	region = vma->vm_region;
1489 	BUG_ON(atomic_read(&region->vm_usage) != 1);
1490 
1491 	down_write(&nommu_region_sem);
1492 	delete_nommu_region(region);
1493 	if (from > region->vm_start) {
1494 		to = region->vm_top;
1495 		region->vm_top = region->vm_end = from;
1496 	} else {
1497 		region->vm_start = to;
1498 	}
1499 	add_nommu_region(region);
1500 	up_write(&nommu_region_sem);
1501 
1502 	free_page_series(from, to);
1503 	return 0;
1504 }
1505 
1506 /*
1507  * release a mapping
1508  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1509  *   VMA, though it need not cover the whole VMA
1510  */
1511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1512 {
1513 	struct vm_area_struct *vma;
1514 	struct rb_node *rb;
1515 	unsigned long end = start + len;
1516 	int ret;
1517 
1518 	kenter(",%lx,%zx", start, len);
1519 
1520 	if (len == 0)
1521 		return -EINVAL;
1522 
1523 	/* find the first potentially overlapping VMA */
1524 	vma = find_vma(mm, start);
1525 	if (!vma) {
1526 		static int limit = 0;
1527 		if (limit < 5) {
1528 			printk(KERN_WARNING
1529 			       "munmap of memory not mmapped by process %d"
1530 			       " (%s): 0x%lx-0x%lx\n",
1531 			       current->pid, current->comm,
1532 			       start, start + len - 1);
1533 			limit++;
1534 		}
1535 		return -EINVAL;
1536 	}
1537 
1538 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1539 	if (vma->vm_file) {
1540 		do {
1541 			if (start > vma->vm_start) {
1542 				kleave(" = -EINVAL [miss]");
1543 				return -EINVAL;
1544 			}
1545 			if (end == vma->vm_end)
1546 				goto erase_whole_vma;
1547 			rb = rb_next(&vma->vm_rb);
1548 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1549 		} while (rb);
1550 		kleave(" = -EINVAL [split file]");
1551 		return -EINVAL;
1552 	} else {
1553 		/* the chunk must be a subset of the VMA found */
1554 		if (start == vma->vm_start && end == vma->vm_end)
1555 			goto erase_whole_vma;
1556 		if (start < vma->vm_start || end > vma->vm_end) {
1557 			kleave(" = -EINVAL [superset]");
1558 			return -EINVAL;
1559 		}
1560 		if (start & ~PAGE_MASK) {
1561 			kleave(" = -EINVAL [unaligned start]");
1562 			return -EINVAL;
1563 		}
1564 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1565 			kleave(" = -EINVAL [unaligned split]");
1566 			return -EINVAL;
1567 		}
1568 		if (start != vma->vm_start && end != vma->vm_end) {
1569 			ret = split_vma(mm, vma, start, 1);
1570 			if (ret < 0) {
1571 				kleave(" = %d [split]", ret);
1572 				return ret;
1573 			}
1574 		}
1575 		return shrink_vma(mm, vma, start, end);
1576 	}
1577 
1578 erase_whole_vma:
1579 	delete_vma_from_mm(vma);
1580 	delete_vma(mm, vma);
1581 	kleave(" = 0");
1582 	return 0;
1583 }
1584 EXPORT_SYMBOL(do_munmap);
1585 
1586 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1587 {
1588 	int ret;
1589 	struct mm_struct *mm = current->mm;
1590 
1591 	down_write(&mm->mmap_sem);
1592 	ret = do_munmap(mm, addr, len);
1593 	up_write(&mm->mmap_sem);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * release all the mappings made in a process's VM space
1599  */
1600 void exit_mmap(struct mm_struct *mm)
1601 {
1602 	struct vm_area_struct *vma;
1603 
1604 	if (!mm)
1605 		return;
1606 
1607 	kenter("");
1608 
1609 	mm->total_vm = 0;
1610 
1611 	while ((vma = mm->mmap)) {
1612 		mm->mmap = vma->vm_next;
1613 		delete_vma_from_mm(vma);
1614 		delete_vma(mm, vma);
1615 	}
1616 
1617 	kleave("");
1618 }
1619 
1620 unsigned long do_brk(unsigned long addr, unsigned long len)
1621 {
1622 	return -ENOMEM;
1623 }
1624 
1625 /*
1626  * expand (or shrink) an existing mapping, potentially moving it at the same
1627  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1628  *
1629  * under NOMMU conditions, we only permit changing a mapping's size, and only
1630  * as long as it stays within the region allocated by do_mmap_private() and the
1631  * block is not shareable
1632  *
1633  * MREMAP_FIXED is not supported under NOMMU conditions
1634  */
1635 unsigned long do_mremap(unsigned long addr,
1636 			unsigned long old_len, unsigned long new_len,
1637 			unsigned long flags, unsigned long new_addr)
1638 {
1639 	struct vm_area_struct *vma;
1640 
1641 	/* insanity checks first */
1642 	if (old_len == 0 || new_len == 0)
1643 		return (unsigned long) -EINVAL;
1644 
1645 	if (addr & ~PAGE_MASK)
1646 		return -EINVAL;
1647 
1648 	if (flags & MREMAP_FIXED && new_addr != addr)
1649 		return (unsigned long) -EINVAL;
1650 
1651 	vma = find_vma_exact(current->mm, addr, old_len);
1652 	if (!vma)
1653 		return (unsigned long) -EINVAL;
1654 
1655 	if (vma->vm_end != vma->vm_start + old_len)
1656 		return (unsigned long) -EFAULT;
1657 
1658 	if (vma->vm_flags & VM_MAYSHARE)
1659 		return (unsigned long) -EPERM;
1660 
1661 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1662 		return (unsigned long) -ENOMEM;
1663 
1664 	/* all checks complete - do it */
1665 	vma->vm_end = vma->vm_start + new_len;
1666 	return vma->vm_start;
1667 }
1668 EXPORT_SYMBOL(do_mremap);
1669 
1670 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1671 		unsigned long, new_len, unsigned long, flags,
1672 		unsigned long, new_addr)
1673 {
1674 	unsigned long ret;
1675 
1676 	down_write(&current->mm->mmap_sem);
1677 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1678 	up_write(&current->mm->mmap_sem);
1679 	return ret;
1680 }
1681 
1682 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1683 			unsigned int foll_flags)
1684 {
1685 	return NULL;
1686 }
1687 
1688 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1689 		unsigned long to, unsigned long size, pgprot_t prot)
1690 {
1691 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(remap_pfn_range);
1695 
1696 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1697 			unsigned long pgoff)
1698 {
1699 	unsigned int size = vma->vm_end - vma->vm_start;
1700 
1701 	if (!(vma->vm_flags & VM_USERMAP))
1702 		return -EINVAL;
1703 
1704 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1705 	vma->vm_end = vma->vm_start + size;
1706 
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(remap_vmalloc_range);
1710 
1711 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1712 {
1713 }
1714 
1715 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1716 	unsigned long len, unsigned long pgoff, unsigned long flags)
1717 {
1718 	return -ENOMEM;
1719 }
1720 
1721 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1722 {
1723 }
1724 
1725 void unmap_mapping_range(struct address_space *mapping,
1726 			 loff_t const holebegin, loff_t const holelen,
1727 			 int even_cows)
1728 {
1729 }
1730 EXPORT_SYMBOL(unmap_mapping_range);
1731 
1732 /*
1733  * ask for an unmapped area at which to create a mapping on a file
1734  */
1735 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1736 				unsigned long len, unsigned long pgoff,
1737 				unsigned long flags)
1738 {
1739 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1740 				  unsigned long, unsigned long);
1741 
1742 	get_area = current->mm->get_unmapped_area;
1743 	if (file && file->f_op && file->f_op->get_unmapped_area)
1744 		get_area = file->f_op->get_unmapped_area;
1745 
1746 	if (!get_area)
1747 		return -ENOSYS;
1748 
1749 	return get_area(file, addr, len, pgoff, flags);
1750 }
1751 EXPORT_SYMBOL(get_unmapped_area);
1752 
1753 /*
1754  * Check that a process has enough memory to allocate a new virtual
1755  * mapping. 0 means there is enough memory for the allocation to
1756  * succeed and -ENOMEM implies there is not.
1757  *
1758  * We currently support three overcommit policies, which are set via the
1759  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1760  *
1761  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1762  * Additional code 2002 Jul 20 by Robert Love.
1763  *
1764  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1765  *
1766  * Note this is a helper function intended to be used by LSMs which
1767  * wish to use this logic.
1768  */
1769 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1770 {
1771 	unsigned long free, allowed;
1772 
1773 	vm_acct_memory(pages);
1774 
1775 	/*
1776 	 * Sometimes we want to use more memory than we have
1777 	 */
1778 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1779 		return 0;
1780 
1781 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1782 		unsigned long n;
1783 
1784 		free = global_page_state(NR_FILE_PAGES);
1785 		free += nr_swap_pages;
1786 
1787 		/*
1788 		 * Any slabs which are created with the
1789 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1790 		 * which are reclaimable, under pressure.  The dentry
1791 		 * cache and most inode caches should fall into this
1792 		 */
1793 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1794 
1795 		/*
1796 		 * Leave the last 3% for root
1797 		 */
1798 		if (!cap_sys_admin)
1799 			free -= free / 32;
1800 
1801 		if (free > pages)
1802 			return 0;
1803 
1804 		/*
1805 		 * nr_free_pages() is very expensive on large systems,
1806 		 * only call if we're about to fail.
1807 		 */
1808 		n = nr_free_pages();
1809 
1810 		/*
1811 		 * Leave reserved pages. The pages are not for anonymous pages.
1812 		 */
1813 		if (n <= totalreserve_pages)
1814 			goto error;
1815 		else
1816 			n -= totalreserve_pages;
1817 
1818 		/*
1819 		 * Leave the last 3% for root
1820 		 */
1821 		if (!cap_sys_admin)
1822 			n -= n / 32;
1823 		free += n;
1824 
1825 		if (free > pages)
1826 			return 0;
1827 
1828 		goto error;
1829 	}
1830 
1831 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1832 	/*
1833 	 * Leave the last 3% for root
1834 	 */
1835 	if (!cap_sys_admin)
1836 		allowed -= allowed / 32;
1837 	allowed += total_swap_pages;
1838 
1839 	/* Don't let a single process grow too big:
1840 	   leave 3% of the size of this process for other processes */
1841 	if (mm)
1842 		allowed -= mm->total_vm / 32;
1843 
1844 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1845 		return 0;
1846 
1847 error:
1848 	vm_unacct_memory(pages);
1849 
1850 	return -ENOMEM;
1851 }
1852 
1853 int in_gate_area_no_task(unsigned long addr)
1854 {
1855 	return 0;
1856 }
1857 
1858 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1859 {
1860 	BUG();
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(filemap_fault);
1864 
1865 /*
1866  * Access another process' address space.
1867  * - source/target buffer must be kernel space
1868  */
1869 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1870 {
1871 	struct vm_area_struct *vma;
1872 	struct mm_struct *mm;
1873 
1874 	if (addr + len < addr)
1875 		return 0;
1876 
1877 	mm = get_task_mm(tsk);
1878 	if (!mm)
1879 		return 0;
1880 
1881 	down_read(&mm->mmap_sem);
1882 
1883 	/* the access must start within one of the target process's mappings */
1884 	vma = find_vma(mm, addr);
1885 	if (vma) {
1886 		/* don't overrun this mapping */
1887 		if (addr + len >= vma->vm_end)
1888 			len = vma->vm_end - addr;
1889 
1890 		/* only read or write mappings where it is permitted */
1891 		if (write && vma->vm_flags & VM_MAYWRITE)
1892 			len -= copy_to_user((void *) addr, buf, len);
1893 		else if (!write && vma->vm_flags & VM_MAYREAD)
1894 			len -= copy_from_user(buf, (void *) addr, len);
1895 		else
1896 			len = 0;
1897 	} else {
1898 		len = 0;
1899 	}
1900 
1901 	up_read(&mm->mmap_sem);
1902 	mmput(mm);
1903 	return len;
1904 }
1905