xref: /linux/mm/nommu.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 #if 0
40 #define kenter(FMT, ...) \
41 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54 
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66 
67 atomic_long_t mmap_pages_allocated;
68 
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71 
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76 
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79 
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88 	struct page *page;
89 
90 	/*
91 	 * If the object we have should not have ksize performed on it,
92 	 * return size of 0
93 	 */
94 	if (!objp || !virt_addr_valid(objp))
95 		return 0;
96 
97 	page = virt_to_head_page(objp);
98 
99 	/*
100 	 * If the allocator sets PageSlab, we know the pointer came from
101 	 * kmalloc().
102 	 */
103 	if (PageSlab(page))
104 		return ksize(objp);
105 
106 	/*
107 	 * If it's not a compound page, see if we have a matching VMA
108 	 * region. This test is intentionally done in reverse order,
109 	 * so if there's no VMA, we still fall through and hand back
110 	 * PAGE_SIZE for 0-order pages.
111 	 */
112 	if (!PageCompound(page)) {
113 		struct vm_area_struct *vma;
114 
115 		vma = find_vma(current->mm, (unsigned long)objp);
116 		if (vma)
117 			return vma->vm_end - vma->vm_start;
118 	}
119 
120 	/*
121 	 * The ksize() function is only guaranteed to work for pointers
122 	 * returned by kmalloc(). So handle arbitrary pointers here.
123 	 */
124 	return PAGE_SIZE << compound_order(page);
125 }
126 
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128 		     unsigned long start, int nr_pages, unsigned int foll_flags,
129 		     struct page **pages, struct vm_area_struct **vmas)
130 {
131 	struct vm_area_struct *vma;
132 	unsigned long vm_flags;
133 	int i;
134 
135 	/* calculate required read or write permissions.
136 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
137 	 */
138 	vm_flags  = (foll_flags & FOLL_WRITE) ?
139 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
140 	vm_flags &= (foll_flags & FOLL_FORCE) ?
141 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
142 
143 	for (i = 0; i < nr_pages; i++) {
144 		vma = find_vma(mm, start);
145 		if (!vma)
146 			goto finish_or_fault;
147 
148 		/* protect what we can, including chardevs */
149 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
150 		    !(vm_flags & vma->vm_flags))
151 			goto finish_or_fault;
152 
153 		if (pages) {
154 			pages[i] = virt_to_page(start);
155 			if (pages[i])
156 				page_cache_get(pages[i]);
157 		}
158 		if (vmas)
159 			vmas[i] = vma;
160 		start = (start + PAGE_SIZE) & PAGE_MASK;
161 	}
162 
163 	return i;
164 
165 finish_or_fault:
166 	return i ? : -EFAULT;
167 }
168 
169 /*
170  * get a list of pages in an address range belonging to the specified process
171  * and indicate the VMA that covers each page
172  * - this is potentially dodgy as we may end incrementing the page count of a
173  *   slab page or a secondary page from a compound page
174  * - don't permit access to VMAs that don't support it, such as I/O mappings
175  */
176 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
177 	unsigned long start, int nr_pages, int write, int force,
178 	struct page **pages, struct vm_area_struct **vmas)
179 {
180 	int flags = 0;
181 
182 	if (write)
183 		flags |= FOLL_WRITE;
184 	if (force)
185 		flags |= FOLL_FORCE;
186 
187 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
188 }
189 EXPORT_SYMBOL(get_user_pages);
190 
191 /**
192  * follow_pfn - look up PFN at a user virtual address
193  * @vma: memory mapping
194  * @address: user virtual address
195  * @pfn: location to store found PFN
196  *
197  * Only IO mappings and raw PFN mappings are allowed.
198  *
199  * Returns zero and the pfn at @pfn on success, -ve otherwise.
200  */
201 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
202 	unsigned long *pfn)
203 {
204 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
205 		return -EINVAL;
206 
207 	*pfn = address >> PAGE_SHIFT;
208 	return 0;
209 }
210 EXPORT_SYMBOL(follow_pfn);
211 
212 DEFINE_RWLOCK(vmlist_lock);
213 struct vm_struct *vmlist;
214 
215 void vfree(const void *addr)
216 {
217 	kfree(addr);
218 }
219 EXPORT_SYMBOL(vfree);
220 
221 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
222 {
223 	/*
224 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
225 	 * returns only a logical address.
226 	 */
227 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
228 }
229 EXPORT_SYMBOL(__vmalloc);
230 
231 void *vmalloc_user(unsigned long size)
232 {
233 	void *ret;
234 
235 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
236 			PAGE_KERNEL);
237 	if (ret) {
238 		struct vm_area_struct *vma;
239 
240 		down_write(&current->mm->mmap_sem);
241 		vma = find_vma(current->mm, (unsigned long)ret);
242 		if (vma)
243 			vma->vm_flags |= VM_USERMAP;
244 		up_write(&current->mm->mmap_sem);
245 	}
246 
247 	return ret;
248 }
249 EXPORT_SYMBOL(vmalloc_user);
250 
251 struct page *vmalloc_to_page(const void *addr)
252 {
253 	return virt_to_page(addr);
254 }
255 EXPORT_SYMBOL(vmalloc_to_page);
256 
257 unsigned long vmalloc_to_pfn(const void *addr)
258 {
259 	return page_to_pfn(virt_to_page(addr));
260 }
261 EXPORT_SYMBOL(vmalloc_to_pfn);
262 
263 long vread(char *buf, char *addr, unsigned long count)
264 {
265 	memcpy(buf, addr, count);
266 	return count;
267 }
268 
269 long vwrite(char *buf, char *addr, unsigned long count)
270 {
271 	/* Don't allow overflow */
272 	if ((unsigned long) addr + count < count)
273 		count = -(unsigned long) addr;
274 
275 	memcpy(addr, buf, count);
276 	return(count);
277 }
278 
279 /*
280  *	vmalloc  -  allocate virtually continguos memory
281  *
282  *	@size:		allocation size
283  *
284  *	Allocate enough pages to cover @size from the page level
285  *	allocator and map them into continguos kernel virtual space.
286  *
287  *	For tight control over page level allocator and protection flags
288  *	use __vmalloc() instead.
289  */
290 void *vmalloc(unsigned long size)
291 {
292        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc);
295 
296 void *vmalloc_node(unsigned long size, int node)
297 {
298 	return vmalloc(size);
299 }
300 EXPORT_SYMBOL(vmalloc_node);
301 
302 #ifndef PAGE_KERNEL_EXEC
303 # define PAGE_KERNEL_EXEC PAGE_KERNEL
304 #endif
305 
306 /**
307  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
308  *	@size:		allocation size
309  *
310  *	Kernel-internal function to allocate enough pages to cover @size
311  *	the page level allocator and map them into contiguous and
312  *	executable kernel virtual space.
313  *
314  *	For tight control over page level allocator and protection flags
315  *	use __vmalloc() instead.
316  */
317 
318 void *vmalloc_exec(unsigned long size)
319 {
320 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
321 }
322 
323 /**
324  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
325  *	@size:		allocation size
326  *
327  *	Allocate enough 32bit PA addressable pages to cover @size from the
328  *	page level allocator and map them into continguos kernel virtual space.
329  */
330 void *vmalloc_32(unsigned long size)
331 {
332 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
333 }
334 EXPORT_SYMBOL(vmalloc_32);
335 
336 /**
337  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
338  *	@size:		allocation size
339  *
340  * The resulting memory area is 32bit addressable and zeroed so it can be
341  * mapped to userspace without leaking data.
342  *
343  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
344  * remap_vmalloc_range() are permissible.
345  */
346 void *vmalloc_32_user(unsigned long size)
347 {
348 	/*
349 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
350 	 * but for now this can simply use vmalloc_user() directly.
351 	 */
352 	return vmalloc_user(size);
353 }
354 EXPORT_SYMBOL(vmalloc_32_user);
355 
356 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
357 {
358 	BUG();
359 	return NULL;
360 }
361 EXPORT_SYMBOL(vmap);
362 
363 void vunmap(const void *addr)
364 {
365 	BUG();
366 }
367 EXPORT_SYMBOL(vunmap);
368 
369 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
370 {
371 	BUG();
372 	return NULL;
373 }
374 EXPORT_SYMBOL(vm_map_ram);
375 
376 void vm_unmap_ram(const void *mem, unsigned int count)
377 {
378 	BUG();
379 }
380 EXPORT_SYMBOL(vm_unmap_ram);
381 
382 void vm_unmap_aliases(void)
383 {
384 }
385 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
386 
387 /*
388  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
389  * have one.
390  */
391 void  __attribute__((weak)) vmalloc_sync_all(void)
392 {
393 }
394 
395 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
396 		   struct page *page)
397 {
398 	return -EINVAL;
399 }
400 EXPORT_SYMBOL(vm_insert_page);
401 
402 /*
403  *  sys_brk() for the most part doesn't need the global kernel
404  *  lock, except when an application is doing something nasty
405  *  like trying to un-brk an area that has already been mapped
406  *  to a regular file.  in this case, the unmapping will need
407  *  to invoke file system routines that need the global lock.
408  */
409 SYSCALL_DEFINE1(brk, unsigned long, brk)
410 {
411 	struct mm_struct *mm = current->mm;
412 
413 	if (brk < mm->start_brk || brk > mm->context.end_brk)
414 		return mm->brk;
415 
416 	if (mm->brk == brk)
417 		return mm->brk;
418 
419 	/*
420 	 * Always allow shrinking brk
421 	 */
422 	if (brk <= mm->brk) {
423 		mm->brk = brk;
424 		return brk;
425 	}
426 
427 	/*
428 	 * Ok, looks good - let it rip.
429 	 */
430 	flush_icache_range(mm->brk, brk);
431 	return mm->brk = brk;
432 }
433 
434 /*
435  * initialise the VMA and region record slabs
436  */
437 void __init mmap_init(void)
438 {
439 	int ret;
440 
441 	ret = percpu_counter_init(&vm_committed_as, 0);
442 	VM_BUG_ON(ret);
443 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
444 }
445 
446 /*
447  * validate the region tree
448  * - the caller must hold the region lock
449  */
450 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
451 static noinline void validate_nommu_regions(void)
452 {
453 	struct vm_region *region, *last;
454 	struct rb_node *p, *lastp;
455 
456 	lastp = rb_first(&nommu_region_tree);
457 	if (!lastp)
458 		return;
459 
460 	last = rb_entry(lastp, struct vm_region, vm_rb);
461 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
462 	BUG_ON(unlikely(last->vm_top < last->vm_end));
463 
464 	while ((p = rb_next(lastp))) {
465 		region = rb_entry(p, struct vm_region, vm_rb);
466 		last = rb_entry(lastp, struct vm_region, vm_rb);
467 
468 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
469 		BUG_ON(unlikely(region->vm_top < region->vm_end));
470 		BUG_ON(unlikely(region->vm_start < last->vm_top));
471 
472 		lastp = p;
473 	}
474 }
475 #else
476 static void validate_nommu_regions(void)
477 {
478 }
479 #endif
480 
481 /*
482  * add a region into the global tree
483  */
484 static void add_nommu_region(struct vm_region *region)
485 {
486 	struct vm_region *pregion;
487 	struct rb_node **p, *parent;
488 
489 	validate_nommu_regions();
490 
491 	parent = NULL;
492 	p = &nommu_region_tree.rb_node;
493 	while (*p) {
494 		parent = *p;
495 		pregion = rb_entry(parent, struct vm_region, vm_rb);
496 		if (region->vm_start < pregion->vm_start)
497 			p = &(*p)->rb_left;
498 		else if (region->vm_start > pregion->vm_start)
499 			p = &(*p)->rb_right;
500 		else if (pregion == region)
501 			return;
502 		else
503 			BUG();
504 	}
505 
506 	rb_link_node(&region->vm_rb, parent, p);
507 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
508 
509 	validate_nommu_regions();
510 }
511 
512 /*
513  * delete a region from the global tree
514  */
515 static void delete_nommu_region(struct vm_region *region)
516 {
517 	BUG_ON(!nommu_region_tree.rb_node);
518 
519 	validate_nommu_regions();
520 	rb_erase(&region->vm_rb, &nommu_region_tree);
521 	validate_nommu_regions();
522 }
523 
524 /*
525  * free a contiguous series of pages
526  */
527 static void free_page_series(unsigned long from, unsigned long to)
528 {
529 	for (; from < to; from += PAGE_SIZE) {
530 		struct page *page = virt_to_page(from);
531 
532 		kdebug("- free %lx", from);
533 		atomic_long_dec(&mmap_pages_allocated);
534 		if (page_count(page) != 1)
535 			kdebug("free page %p: refcount not one: %d",
536 			       page, page_count(page));
537 		put_page(page);
538 	}
539 }
540 
541 /*
542  * release a reference to a region
543  * - the caller must hold the region semaphore for writing, which this releases
544  * - the region may not have been added to the tree yet, in which case vm_top
545  *   will equal vm_start
546  */
547 static void __put_nommu_region(struct vm_region *region)
548 	__releases(nommu_region_sem)
549 {
550 	kenter("%p{%d}", region, region->vm_usage);
551 
552 	BUG_ON(!nommu_region_tree.rb_node);
553 
554 	if (--region->vm_usage == 0) {
555 		if (region->vm_top > region->vm_start)
556 			delete_nommu_region(region);
557 		up_write(&nommu_region_sem);
558 
559 		if (region->vm_file)
560 			fput(region->vm_file);
561 
562 		/* IO memory and memory shared directly out of the pagecache
563 		 * from ramfs/tmpfs mustn't be released here */
564 		if (region->vm_flags & VM_MAPPED_COPY) {
565 			kdebug("free series");
566 			free_page_series(region->vm_start, region->vm_top);
567 		}
568 		kmem_cache_free(vm_region_jar, region);
569 	} else {
570 		up_write(&nommu_region_sem);
571 	}
572 }
573 
574 /*
575  * release a reference to a region
576  */
577 static void put_nommu_region(struct vm_region *region)
578 {
579 	down_write(&nommu_region_sem);
580 	__put_nommu_region(region);
581 }
582 
583 /*
584  * update protection on a vma
585  */
586 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
587 {
588 #ifdef CONFIG_MPU
589 	struct mm_struct *mm = vma->vm_mm;
590 	long start = vma->vm_start & PAGE_MASK;
591 	while (start < vma->vm_end) {
592 		protect_page(mm, start, flags);
593 		start += PAGE_SIZE;
594 	}
595 	update_protections(mm);
596 #endif
597 }
598 
599 /*
600  * add a VMA into a process's mm_struct in the appropriate place in the list
601  * and tree and add to the address space's page tree also if not an anonymous
602  * page
603  * - should be called with mm->mmap_sem held writelocked
604  */
605 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
606 {
607 	struct vm_area_struct *pvma, **pp;
608 	struct address_space *mapping;
609 	struct rb_node **p, *parent;
610 
611 	kenter(",%p", vma);
612 
613 	BUG_ON(!vma->vm_region);
614 
615 	mm->map_count++;
616 	vma->vm_mm = mm;
617 
618 	protect_vma(vma, vma->vm_flags);
619 
620 	/* add the VMA to the mapping */
621 	if (vma->vm_file) {
622 		mapping = vma->vm_file->f_mapping;
623 
624 		flush_dcache_mmap_lock(mapping);
625 		vma_prio_tree_insert(vma, &mapping->i_mmap);
626 		flush_dcache_mmap_unlock(mapping);
627 	}
628 
629 	/* add the VMA to the tree */
630 	parent = NULL;
631 	p = &mm->mm_rb.rb_node;
632 	while (*p) {
633 		parent = *p;
634 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
635 
636 		/* sort by: start addr, end addr, VMA struct addr in that order
637 		 * (the latter is necessary as we may get identical VMAs) */
638 		if (vma->vm_start < pvma->vm_start)
639 			p = &(*p)->rb_left;
640 		else if (vma->vm_start > pvma->vm_start)
641 			p = &(*p)->rb_right;
642 		else if (vma->vm_end < pvma->vm_end)
643 			p = &(*p)->rb_left;
644 		else if (vma->vm_end > pvma->vm_end)
645 			p = &(*p)->rb_right;
646 		else if (vma < pvma)
647 			p = &(*p)->rb_left;
648 		else if (vma > pvma)
649 			p = &(*p)->rb_right;
650 		else
651 			BUG();
652 	}
653 
654 	rb_link_node(&vma->vm_rb, parent, p);
655 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
656 
657 	/* add VMA to the VMA list also */
658 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
659 		if (pvma->vm_start > vma->vm_start)
660 			break;
661 		if (pvma->vm_start < vma->vm_start)
662 			continue;
663 		if (pvma->vm_end < vma->vm_end)
664 			break;
665 	}
666 
667 	vma->vm_next = *pp;
668 	*pp = vma;
669 }
670 
671 /*
672  * delete a VMA from its owning mm_struct and address space
673  */
674 static void delete_vma_from_mm(struct vm_area_struct *vma)
675 {
676 	struct vm_area_struct **pp;
677 	struct address_space *mapping;
678 	struct mm_struct *mm = vma->vm_mm;
679 
680 	kenter("%p", vma);
681 
682 	protect_vma(vma, 0);
683 
684 	mm->map_count--;
685 	if (mm->mmap_cache == vma)
686 		mm->mmap_cache = NULL;
687 
688 	/* remove the VMA from the mapping */
689 	if (vma->vm_file) {
690 		mapping = vma->vm_file->f_mapping;
691 
692 		flush_dcache_mmap_lock(mapping);
693 		vma_prio_tree_remove(vma, &mapping->i_mmap);
694 		flush_dcache_mmap_unlock(mapping);
695 	}
696 
697 	/* remove from the MM's tree and list */
698 	rb_erase(&vma->vm_rb, &mm->mm_rb);
699 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
700 		if (*pp == vma) {
701 			*pp = vma->vm_next;
702 			break;
703 		}
704 	}
705 
706 	vma->vm_mm = NULL;
707 }
708 
709 /*
710  * destroy a VMA record
711  */
712 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
713 {
714 	kenter("%p", vma);
715 	if (vma->vm_ops && vma->vm_ops->close)
716 		vma->vm_ops->close(vma);
717 	if (vma->vm_file) {
718 		fput(vma->vm_file);
719 		if (vma->vm_flags & VM_EXECUTABLE)
720 			removed_exe_file_vma(mm);
721 	}
722 	put_nommu_region(vma->vm_region);
723 	kmem_cache_free(vm_area_cachep, vma);
724 }
725 
726 /*
727  * look up the first VMA in which addr resides, NULL if none
728  * - should be called with mm->mmap_sem at least held readlocked
729  */
730 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
731 {
732 	struct vm_area_struct *vma;
733 	struct rb_node *n = mm->mm_rb.rb_node;
734 
735 	/* check the cache first */
736 	vma = mm->mmap_cache;
737 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
738 		return vma;
739 
740 	/* trawl the tree (there may be multiple mappings in which addr
741 	 * resides) */
742 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
743 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
744 		if (vma->vm_start > addr)
745 			return NULL;
746 		if (vma->vm_end > addr) {
747 			mm->mmap_cache = vma;
748 			return vma;
749 		}
750 	}
751 
752 	return NULL;
753 }
754 EXPORT_SYMBOL(find_vma);
755 
756 /*
757  * find a VMA
758  * - we don't extend stack VMAs under NOMMU conditions
759  */
760 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
761 {
762 	return find_vma(mm, addr);
763 }
764 
765 /*
766  * expand a stack to a given address
767  * - not supported under NOMMU conditions
768  */
769 int expand_stack(struct vm_area_struct *vma, unsigned long address)
770 {
771 	return -ENOMEM;
772 }
773 
774 /*
775  * look up the first VMA exactly that exactly matches addr
776  * - should be called with mm->mmap_sem at least held readlocked
777  */
778 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
779 					     unsigned long addr,
780 					     unsigned long len)
781 {
782 	struct vm_area_struct *vma;
783 	struct rb_node *n = mm->mm_rb.rb_node;
784 	unsigned long end = addr + len;
785 
786 	/* check the cache first */
787 	vma = mm->mmap_cache;
788 	if (vma && vma->vm_start == addr && vma->vm_end == end)
789 		return vma;
790 
791 	/* trawl the tree (there may be multiple mappings in which addr
792 	 * resides) */
793 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
794 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
795 		if (vma->vm_start < addr)
796 			continue;
797 		if (vma->vm_start > addr)
798 			return NULL;
799 		if (vma->vm_end == end) {
800 			mm->mmap_cache = vma;
801 			return vma;
802 		}
803 	}
804 
805 	return NULL;
806 }
807 
808 /*
809  * determine whether a mapping should be permitted and, if so, what sort of
810  * mapping we're capable of supporting
811  */
812 static int validate_mmap_request(struct file *file,
813 				 unsigned long addr,
814 				 unsigned long len,
815 				 unsigned long prot,
816 				 unsigned long flags,
817 				 unsigned long pgoff,
818 				 unsigned long *_capabilities)
819 {
820 	unsigned long capabilities, rlen;
821 	unsigned long reqprot = prot;
822 	int ret;
823 
824 	/* do the simple checks first */
825 	if (flags & MAP_FIXED) {
826 		printk(KERN_DEBUG
827 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
828 		       current->pid);
829 		return -EINVAL;
830 	}
831 
832 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
833 	    (flags & MAP_TYPE) != MAP_SHARED)
834 		return -EINVAL;
835 
836 	if (!len)
837 		return -EINVAL;
838 
839 	/* Careful about overflows.. */
840 	rlen = PAGE_ALIGN(len);
841 	if (!rlen || rlen > TASK_SIZE)
842 		return -ENOMEM;
843 
844 	/* offset overflow? */
845 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
846 		return -EOVERFLOW;
847 
848 	if (file) {
849 		/* validate file mapping requests */
850 		struct address_space *mapping;
851 
852 		/* files must support mmap */
853 		if (!file->f_op || !file->f_op->mmap)
854 			return -ENODEV;
855 
856 		/* work out if what we've got could possibly be shared
857 		 * - we support chardevs that provide their own "memory"
858 		 * - we support files/blockdevs that are memory backed
859 		 */
860 		mapping = file->f_mapping;
861 		if (!mapping)
862 			mapping = file->f_path.dentry->d_inode->i_mapping;
863 
864 		capabilities = 0;
865 		if (mapping && mapping->backing_dev_info)
866 			capabilities = mapping->backing_dev_info->capabilities;
867 
868 		if (!capabilities) {
869 			/* no explicit capabilities set, so assume some
870 			 * defaults */
871 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
872 			case S_IFREG:
873 			case S_IFBLK:
874 				capabilities = BDI_CAP_MAP_COPY;
875 				break;
876 
877 			case S_IFCHR:
878 				capabilities =
879 					BDI_CAP_MAP_DIRECT |
880 					BDI_CAP_READ_MAP |
881 					BDI_CAP_WRITE_MAP;
882 				break;
883 
884 			default:
885 				return -EINVAL;
886 			}
887 		}
888 
889 		/* eliminate any capabilities that we can't support on this
890 		 * device */
891 		if (!file->f_op->get_unmapped_area)
892 			capabilities &= ~BDI_CAP_MAP_DIRECT;
893 		if (!file->f_op->read)
894 			capabilities &= ~BDI_CAP_MAP_COPY;
895 
896 		/* The file shall have been opened with read permission. */
897 		if (!(file->f_mode & FMODE_READ))
898 			return -EACCES;
899 
900 		if (flags & MAP_SHARED) {
901 			/* do checks for writing, appending and locking */
902 			if ((prot & PROT_WRITE) &&
903 			    !(file->f_mode & FMODE_WRITE))
904 				return -EACCES;
905 
906 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
907 			    (file->f_mode & FMODE_WRITE))
908 				return -EACCES;
909 
910 			if (locks_verify_locked(file->f_path.dentry->d_inode))
911 				return -EAGAIN;
912 
913 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
914 				return -ENODEV;
915 
916 			/* we mustn't privatise shared mappings */
917 			capabilities &= ~BDI_CAP_MAP_COPY;
918 		}
919 		else {
920 			/* we're going to read the file into private memory we
921 			 * allocate */
922 			if (!(capabilities & BDI_CAP_MAP_COPY))
923 				return -ENODEV;
924 
925 			/* we don't permit a private writable mapping to be
926 			 * shared with the backing device */
927 			if (prot & PROT_WRITE)
928 				capabilities &= ~BDI_CAP_MAP_DIRECT;
929 		}
930 
931 		if (capabilities & BDI_CAP_MAP_DIRECT) {
932 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
933 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
934 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
935 			    ) {
936 				capabilities &= ~BDI_CAP_MAP_DIRECT;
937 				if (flags & MAP_SHARED) {
938 					printk(KERN_WARNING
939 					       "MAP_SHARED not completely supported on !MMU\n");
940 					return -EINVAL;
941 				}
942 			}
943 		}
944 
945 		/* handle executable mappings and implied executable
946 		 * mappings */
947 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
948 			if (prot & PROT_EXEC)
949 				return -EPERM;
950 		}
951 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
952 			/* handle implication of PROT_EXEC by PROT_READ */
953 			if (current->personality & READ_IMPLIES_EXEC) {
954 				if (capabilities & BDI_CAP_EXEC_MAP)
955 					prot |= PROT_EXEC;
956 			}
957 		}
958 		else if ((prot & PROT_READ) &&
959 			 (prot & PROT_EXEC) &&
960 			 !(capabilities & BDI_CAP_EXEC_MAP)
961 			 ) {
962 			/* backing file is not executable, try to copy */
963 			capabilities &= ~BDI_CAP_MAP_DIRECT;
964 		}
965 	}
966 	else {
967 		/* anonymous mappings are always memory backed and can be
968 		 * privately mapped
969 		 */
970 		capabilities = BDI_CAP_MAP_COPY;
971 
972 		/* handle PROT_EXEC implication by PROT_READ */
973 		if ((prot & PROT_READ) &&
974 		    (current->personality & READ_IMPLIES_EXEC))
975 			prot |= PROT_EXEC;
976 	}
977 
978 	/* allow the security API to have its say */
979 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
980 	if (ret < 0)
981 		return ret;
982 
983 	/* looks okay */
984 	*_capabilities = capabilities;
985 	return 0;
986 }
987 
988 /*
989  * we've determined that we can make the mapping, now translate what we
990  * now know into VMA flags
991  */
992 static unsigned long determine_vm_flags(struct file *file,
993 					unsigned long prot,
994 					unsigned long flags,
995 					unsigned long capabilities)
996 {
997 	unsigned long vm_flags;
998 
999 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1000 	/* vm_flags |= mm->def_flags; */
1001 
1002 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1003 		/* attempt to share read-only copies of mapped file chunks */
1004 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1005 		if (file && !(prot & PROT_WRITE))
1006 			vm_flags |= VM_MAYSHARE;
1007 	} else {
1008 		/* overlay a shareable mapping on the backing device or inode
1009 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1010 		 * romfs/cramfs */
1011 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1012 		if (flags & MAP_SHARED)
1013 			vm_flags |= VM_SHARED;
1014 	}
1015 
1016 	/* refuse to let anyone share private mappings with this process if
1017 	 * it's being traced - otherwise breakpoints set in it may interfere
1018 	 * with another untraced process
1019 	 */
1020 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1021 		vm_flags &= ~VM_MAYSHARE;
1022 
1023 	return vm_flags;
1024 }
1025 
1026 /*
1027  * set up a shared mapping on a file (the driver or filesystem provides and
1028  * pins the storage)
1029  */
1030 static int do_mmap_shared_file(struct vm_area_struct *vma)
1031 {
1032 	int ret;
1033 
1034 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1035 	if (ret == 0) {
1036 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1037 		return 0;
1038 	}
1039 	if (ret != -ENOSYS)
1040 		return ret;
1041 
1042 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1043 	 * opposed to tried but failed) so we can only give a suitable error as
1044 	 * it's not possible to make a private copy if MAP_SHARED was given */
1045 	return -ENODEV;
1046 }
1047 
1048 /*
1049  * set up a private mapping or an anonymous shared mapping
1050  */
1051 static int do_mmap_private(struct vm_area_struct *vma,
1052 			   struct vm_region *region,
1053 			   unsigned long len,
1054 			   unsigned long capabilities)
1055 {
1056 	struct page *pages;
1057 	unsigned long total, point, n, rlen;
1058 	void *base;
1059 	int ret, order;
1060 
1061 	/* invoke the file's mapping function so that it can keep track of
1062 	 * shared mappings on devices or memory
1063 	 * - VM_MAYSHARE will be set if it may attempt to share
1064 	 */
1065 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1066 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1067 		if (ret == 0) {
1068 			/* shouldn't return success if we're not sharing */
1069 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1070 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1071 			return 0;
1072 		}
1073 		if (ret != -ENOSYS)
1074 			return ret;
1075 
1076 		/* getting an ENOSYS error indicates that direct mmap isn't
1077 		 * possible (as opposed to tried but failed) so we'll try to
1078 		 * make a private copy of the data and map that instead */
1079 	}
1080 
1081 	rlen = PAGE_ALIGN(len);
1082 
1083 	/* allocate some memory to hold the mapping
1084 	 * - note that this may not return a page-aligned address if the object
1085 	 *   we're allocating is smaller than a page
1086 	 */
1087 	order = get_order(rlen);
1088 	kdebug("alloc order %d for %lx", order, len);
1089 
1090 	pages = alloc_pages(GFP_KERNEL, order);
1091 	if (!pages)
1092 		goto enomem;
1093 
1094 	total = 1 << order;
1095 	atomic_long_add(total, &mmap_pages_allocated);
1096 
1097 	point = rlen >> PAGE_SHIFT;
1098 
1099 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1100 	 * the excess */
1101 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1102 		while (total > point) {
1103 			order = ilog2(total - point);
1104 			n = 1 << order;
1105 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1106 			atomic_long_sub(n, &mmap_pages_allocated);
1107 			total -= n;
1108 			set_page_refcounted(pages + total);
1109 			__free_pages(pages + total, order);
1110 		}
1111 	}
1112 
1113 	for (point = 1; point < total; point++)
1114 		set_page_refcounted(&pages[point]);
1115 
1116 	base = page_address(pages);
1117 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1118 	region->vm_start = (unsigned long) base;
1119 	region->vm_end   = region->vm_start + rlen;
1120 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1121 
1122 	vma->vm_start = region->vm_start;
1123 	vma->vm_end   = region->vm_start + len;
1124 
1125 	if (vma->vm_file) {
1126 		/* read the contents of a file into the copy */
1127 		mm_segment_t old_fs;
1128 		loff_t fpos;
1129 
1130 		fpos = vma->vm_pgoff;
1131 		fpos <<= PAGE_SHIFT;
1132 
1133 		old_fs = get_fs();
1134 		set_fs(KERNEL_DS);
1135 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1136 		set_fs(old_fs);
1137 
1138 		if (ret < 0)
1139 			goto error_free;
1140 
1141 		/* clear the last little bit */
1142 		if (ret < rlen)
1143 			memset(base + ret, 0, rlen - ret);
1144 
1145 	}
1146 
1147 	return 0;
1148 
1149 error_free:
1150 	free_page_series(region->vm_start, region->vm_end);
1151 	region->vm_start = vma->vm_start = 0;
1152 	region->vm_end   = vma->vm_end = 0;
1153 	region->vm_top   = 0;
1154 	return ret;
1155 
1156 enomem:
1157 	printk("Allocation of length %lu from process %d (%s) failed\n",
1158 	       len, current->pid, current->comm);
1159 	show_free_areas();
1160 	return -ENOMEM;
1161 }
1162 
1163 /*
1164  * handle mapping creation for uClinux
1165  */
1166 unsigned long do_mmap_pgoff(struct file *file,
1167 			    unsigned long addr,
1168 			    unsigned long len,
1169 			    unsigned long prot,
1170 			    unsigned long flags,
1171 			    unsigned long pgoff)
1172 {
1173 	struct vm_area_struct *vma;
1174 	struct vm_region *region;
1175 	struct rb_node *rb;
1176 	unsigned long capabilities, vm_flags, result;
1177 	int ret;
1178 
1179 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1180 
1181 	/* decide whether we should attempt the mapping, and if so what sort of
1182 	 * mapping */
1183 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1184 				    &capabilities);
1185 	if (ret < 0) {
1186 		kleave(" = %d [val]", ret);
1187 		return ret;
1188 	}
1189 
1190 	/* we ignore the address hint */
1191 	addr = 0;
1192 
1193 	/* we've determined that we can make the mapping, now translate what we
1194 	 * now know into VMA flags */
1195 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1196 
1197 	/* we're going to need to record the mapping */
1198 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1199 	if (!region)
1200 		goto error_getting_region;
1201 
1202 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1203 	if (!vma)
1204 		goto error_getting_vma;
1205 
1206 	region->vm_usage = 1;
1207 	region->vm_flags = vm_flags;
1208 	region->vm_pgoff = pgoff;
1209 
1210 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1211 	vma->vm_flags = vm_flags;
1212 	vma->vm_pgoff = pgoff;
1213 
1214 	if (file) {
1215 		region->vm_file = file;
1216 		get_file(file);
1217 		vma->vm_file = file;
1218 		get_file(file);
1219 		if (vm_flags & VM_EXECUTABLE) {
1220 			added_exe_file_vma(current->mm);
1221 			vma->vm_mm = current->mm;
1222 		}
1223 	}
1224 
1225 	down_write(&nommu_region_sem);
1226 
1227 	/* if we want to share, we need to check for regions created by other
1228 	 * mmap() calls that overlap with our proposed mapping
1229 	 * - we can only share with a superset match on most regular files
1230 	 * - shared mappings on character devices and memory backed files are
1231 	 *   permitted to overlap inexactly as far as we are concerned for in
1232 	 *   these cases, sharing is handled in the driver or filesystem rather
1233 	 *   than here
1234 	 */
1235 	if (vm_flags & VM_MAYSHARE) {
1236 		struct vm_region *pregion;
1237 		unsigned long pglen, rpglen, pgend, rpgend, start;
1238 
1239 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1240 		pgend = pgoff + pglen;
1241 
1242 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1243 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1244 
1245 			if (!(pregion->vm_flags & VM_MAYSHARE))
1246 				continue;
1247 
1248 			/* search for overlapping mappings on the same file */
1249 			if (pregion->vm_file->f_path.dentry->d_inode !=
1250 			    file->f_path.dentry->d_inode)
1251 				continue;
1252 
1253 			if (pregion->vm_pgoff >= pgend)
1254 				continue;
1255 
1256 			rpglen = pregion->vm_end - pregion->vm_start;
1257 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1258 			rpgend = pregion->vm_pgoff + rpglen;
1259 			if (pgoff >= rpgend)
1260 				continue;
1261 
1262 			/* handle inexactly overlapping matches between
1263 			 * mappings */
1264 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1265 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1266 				/* new mapping is not a subset of the region */
1267 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1268 					goto sharing_violation;
1269 				continue;
1270 			}
1271 
1272 			/* we've found a region we can share */
1273 			pregion->vm_usage++;
1274 			vma->vm_region = pregion;
1275 			start = pregion->vm_start;
1276 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1277 			vma->vm_start = start;
1278 			vma->vm_end = start + len;
1279 
1280 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1281 				kdebug("share copy");
1282 				vma->vm_flags |= VM_MAPPED_COPY;
1283 			} else {
1284 				kdebug("share mmap");
1285 				ret = do_mmap_shared_file(vma);
1286 				if (ret < 0) {
1287 					vma->vm_region = NULL;
1288 					vma->vm_start = 0;
1289 					vma->vm_end = 0;
1290 					pregion->vm_usage--;
1291 					pregion = NULL;
1292 					goto error_just_free;
1293 				}
1294 			}
1295 			fput(region->vm_file);
1296 			kmem_cache_free(vm_region_jar, region);
1297 			region = pregion;
1298 			result = start;
1299 			goto share;
1300 		}
1301 
1302 		/* obtain the address at which to make a shared mapping
1303 		 * - this is the hook for quasi-memory character devices to
1304 		 *   tell us the location of a shared mapping
1305 		 */
1306 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1307 			addr = file->f_op->get_unmapped_area(file, addr, len,
1308 							     pgoff, flags);
1309 			if (IS_ERR((void *) addr)) {
1310 				ret = addr;
1311 				if (ret != (unsigned long) -ENOSYS)
1312 					goto error_just_free;
1313 
1314 				/* the driver refused to tell us where to site
1315 				 * the mapping so we'll have to attempt to copy
1316 				 * it */
1317 				ret = (unsigned long) -ENODEV;
1318 				if (!(capabilities & BDI_CAP_MAP_COPY))
1319 					goto error_just_free;
1320 
1321 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1322 			} else {
1323 				vma->vm_start = region->vm_start = addr;
1324 				vma->vm_end = region->vm_end = addr + len;
1325 			}
1326 		}
1327 	}
1328 
1329 	vma->vm_region = region;
1330 
1331 	/* set up the mapping
1332 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1333 	 */
1334 	if (file && vma->vm_flags & VM_SHARED)
1335 		ret = do_mmap_shared_file(vma);
1336 	else
1337 		ret = do_mmap_private(vma, region, len, capabilities);
1338 	if (ret < 0)
1339 		goto error_just_free;
1340 	add_nommu_region(region);
1341 
1342 	/* clear anonymous mappings that don't ask for uninitialized data */
1343 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1344 		memset((void *)region->vm_start, 0,
1345 		       region->vm_end - region->vm_start);
1346 
1347 	/* okay... we have a mapping; now we have to register it */
1348 	result = vma->vm_start;
1349 
1350 	current->mm->total_vm += len >> PAGE_SHIFT;
1351 
1352 share:
1353 	add_vma_to_mm(current->mm, vma);
1354 
1355 	/* we flush the region from the icache only when the first executable
1356 	 * mapping of it is made  */
1357 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1358 		flush_icache_range(region->vm_start, region->vm_end);
1359 		region->vm_icache_flushed = true;
1360 	}
1361 
1362 	up_write(&nommu_region_sem);
1363 
1364 	kleave(" = %lx", result);
1365 	return result;
1366 
1367 error_just_free:
1368 	up_write(&nommu_region_sem);
1369 error:
1370 	if (region->vm_file)
1371 		fput(region->vm_file);
1372 	kmem_cache_free(vm_region_jar, region);
1373 	if (vma->vm_file)
1374 		fput(vma->vm_file);
1375 	if (vma->vm_flags & VM_EXECUTABLE)
1376 		removed_exe_file_vma(vma->vm_mm);
1377 	kmem_cache_free(vm_area_cachep, vma);
1378 	kleave(" = %d", ret);
1379 	return ret;
1380 
1381 sharing_violation:
1382 	up_write(&nommu_region_sem);
1383 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1384 	ret = -EINVAL;
1385 	goto error;
1386 
1387 error_getting_vma:
1388 	kmem_cache_free(vm_region_jar, region);
1389 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1390 	       " from process %d failed\n",
1391 	       len, current->pid);
1392 	show_free_areas();
1393 	return -ENOMEM;
1394 
1395 error_getting_region:
1396 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1397 	       " from process %d failed\n",
1398 	       len, current->pid);
1399 	show_free_areas();
1400 	return -ENOMEM;
1401 }
1402 EXPORT_SYMBOL(do_mmap_pgoff);
1403 
1404 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1405 		unsigned long, prot, unsigned long, flags,
1406 		unsigned long, fd, unsigned long, pgoff)
1407 {
1408 	struct file *file = NULL;
1409 	unsigned long retval = -EBADF;
1410 
1411 	if (!(flags & MAP_ANONYMOUS)) {
1412 		file = fget(fd);
1413 		if (!file)
1414 			goto out;
1415 	}
1416 
1417 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1418 
1419 	down_write(&current->mm->mmap_sem);
1420 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1421 	up_write(&current->mm->mmap_sem);
1422 
1423 	if (file)
1424 		fput(file);
1425 out:
1426 	return retval;
1427 }
1428 
1429 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1430 struct mmap_arg_struct {
1431 	unsigned long addr;
1432 	unsigned long len;
1433 	unsigned long prot;
1434 	unsigned long flags;
1435 	unsigned long fd;
1436 	unsigned long offset;
1437 };
1438 
1439 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1440 {
1441 	struct mmap_arg_struct a;
1442 
1443 	if (copy_from_user(&a, arg, sizeof(a)))
1444 		return -EFAULT;
1445 	if (a.offset & ~PAGE_MASK)
1446 		return -EINVAL;
1447 
1448 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1449 			      a.offset >> PAGE_SHIFT);
1450 }
1451 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1452 
1453 /*
1454  * split a vma into two pieces at address 'addr', a new vma is allocated either
1455  * for the first part or the tail.
1456  */
1457 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1458 	      unsigned long addr, int new_below)
1459 {
1460 	struct vm_area_struct *new;
1461 	struct vm_region *region;
1462 	unsigned long npages;
1463 
1464 	kenter("");
1465 
1466 	/* we're only permitted to split anonymous regions (these should have
1467 	 * only a single usage on the region) */
1468 	if (vma->vm_file)
1469 		return -ENOMEM;
1470 
1471 	if (mm->map_count >= sysctl_max_map_count)
1472 		return -ENOMEM;
1473 
1474 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1475 	if (!region)
1476 		return -ENOMEM;
1477 
1478 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1479 	if (!new) {
1480 		kmem_cache_free(vm_region_jar, region);
1481 		return -ENOMEM;
1482 	}
1483 
1484 	/* most fields are the same, copy all, and then fixup */
1485 	*new = *vma;
1486 	*region = *vma->vm_region;
1487 	new->vm_region = region;
1488 
1489 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1490 
1491 	if (new_below) {
1492 		region->vm_top = region->vm_end = new->vm_end = addr;
1493 	} else {
1494 		region->vm_start = new->vm_start = addr;
1495 		region->vm_pgoff = new->vm_pgoff += npages;
1496 	}
1497 
1498 	if (new->vm_ops && new->vm_ops->open)
1499 		new->vm_ops->open(new);
1500 
1501 	delete_vma_from_mm(vma);
1502 	down_write(&nommu_region_sem);
1503 	delete_nommu_region(vma->vm_region);
1504 	if (new_below) {
1505 		vma->vm_region->vm_start = vma->vm_start = addr;
1506 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1507 	} else {
1508 		vma->vm_region->vm_end = vma->vm_end = addr;
1509 		vma->vm_region->vm_top = addr;
1510 	}
1511 	add_nommu_region(vma->vm_region);
1512 	add_nommu_region(new->vm_region);
1513 	up_write(&nommu_region_sem);
1514 	add_vma_to_mm(mm, vma);
1515 	add_vma_to_mm(mm, new);
1516 	return 0;
1517 }
1518 
1519 /*
1520  * shrink a VMA by removing the specified chunk from either the beginning or
1521  * the end
1522  */
1523 static int shrink_vma(struct mm_struct *mm,
1524 		      struct vm_area_struct *vma,
1525 		      unsigned long from, unsigned long to)
1526 {
1527 	struct vm_region *region;
1528 
1529 	kenter("");
1530 
1531 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1532 	 * and list */
1533 	delete_vma_from_mm(vma);
1534 	if (from > vma->vm_start)
1535 		vma->vm_end = from;
1536 	else
1537 		vma->vm_start = to;
1538 	add_vma_to_mm(mm, vma);
1539 
1540 	/* cut the backing region down to size */
1541 	region = vma->vm_region;
1542 	BUG_ON(region->vm_usage != 1);
1543 
1544 	down_write(&nommu_region_sem);
1545 	delete_nommu_region(region);
1546 	if (from > region->vm_start) {
1547 		to = region->vm_top;
1548 		region->vm_top = region->vm_end = from;
1549 	} else {
1550 		region->vm_start = to;
1551 	}
1552 	add_nommu_region(region);
1553 	up_write(&nommu_region_sem);
1554 
1555 	free_page_series(from, to);
1556 	return 0;
1557 }
1558 
1559 /*
1560  * release a mapping
1561  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1562  *   VMA, though it need not cover the whole VMA
1563  */
1564 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1565 {
1566 	struct vm_area_struct *vma;
1567 	struct rb_node *rb;
1568 	unsigned long end = start + len;
1569 	int ret;
1570 
1571 	kenter(",%lx,%zx", start, len);
1572 
1573 	if (len == 0)
1574 		return -EINVAL;
1575 
1576 	/* find the first potentially overlapping VMA */
1577 	vma = find_vma(mm, start);
1578 	if (!vma) {
1579 		static int limit = 0;
1580 		if (limit < 5) {
1581 			printk(KERN_WARNING
1582 			       "munmap of memory not mmapped by process %d"
1583 			       " (%s): 0x%lx-0x%lx\n",
1584 			       current->pid, current->comm,
1585 			       start, start + len - 1);
1586 			limit++;
1587 		}
1588 		return -EINVAL;
1589 	}
1590 
1591 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1592 	if (vma->vm_file) {
1593 		do {
1594 			if (start > vma->vm_start) {
1595 				kleave(" = -EINVAL [miss]");
1596 				return -EINVAL;
1597 			}
1598 			if (end == vma->vm_end)
1599 				goto erase_whole_vma;
1600 			rb = rb_next(&vma->vm_rb);
1601 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1602 		} while (rb);
1603 		kleave(" = -EINVAL [split file]");
1604 		return -EINVAL;
1605 	} else {
1606 		/* the chunk must be a subset of the VMA found */
1607 		if (start == vma->vm_start && end == vma->vm_end)
1608 			goto erase_whole_vma;
1609 		if (start < vma->vm_start || end > vma->vm_end) {
1610 			kleave(" = -EINVAL [superset]");
1611 			return -EINVAL;
1612 		}
1613 		if (start & ~PAGE_MASK) {
1614 			kleave(" = -EINVAL [unaligned start]");
1615 			return -EINVAL;
1616 		}
1617 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1618 			kleave(" = -EINVAL [unaligned split]");
1619 			return -EINVAL;
1620 		}
1621 		if (start != vma->vm_start && end != vma->vm_end) {
1622 			ret = split_vma(mm, vma, start, 1);
1623 			if (ret < 0) {
1624 				kleave(" = %d [split]", ret);
1625 				return ret;
1626 			}
1627 		}
1628 		return shrink_vma(mm, vma, start, end);
1629 	}
1630 
1631 erase_whole_vma:
1632 	delete_vma_from_mm(vma);
1633 	delete_vma(mm, vma);
1634 	kleave(" = 0");
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(do_munmap);
1638 
1639 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1640 {
1641 	int ret;
1642 	struct mm_struct *mm = current->mm;
1643 
1644 	down_write(&mm->mmap_sem);
1645 	ret = do_munmap(mm, addr, len);
1646 	up_write(&mm->mmap_sem);
1647 	return ret;
1648 }
1649 
1650 /*
1651  * release all the mappings made in a process's VM space
1652  */
1653 void exit_mmap(struct mm_struct *mm)
1654 {
1655 	struct vm_area_struct *vma;
1656 
1657 	if (!mm)
1658 		return;
1659 
1660 	kenter("");
1661 
1662 	mm->total_vm = 0;
1663 
1664 	while ((vma = mm->mmap)) {
1665 		mm->mmap = vma->vm_next;
1666 		delete_vma_from_mm(vma);
1667 		delete_vma(mm, vma);
1668 	}
1669 
1670 	kleave("");
1671 }
1672 
1673 unsigned long do_brk(unsigned long addr, unsigned long len)
1674 {
1675 	return -ENOMEM;
1676 }
1677 
1678 /*
1679  * expand (or shrink) an existing mapping, potentially moving it at the same
1680  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1681  *
1682  * under NOMMU conditions, we only permit changing a mapping's size, and only
1683  * as long as it stays within the region allocated by do_mmap_private() and the
1684  * block is not shareable
1685  *
1686  * MREMAP_FIXED is not supported under NOMMU conditions
1687  */
1688 unsigned long do_mremap(unsigned long addr,
1689 			unsigned long old_len, unsigned long new_len,
1690 			unsigned long flags, unsigned long new_addr)
1691 {
1692 	struct vm_area_struct *vma;
1693 
1694 	/* insanity checks first */
1695 	if (old_len == 0 || new_len == 0)
1696 		return (unsigned long) -EINVAL;
1697 
1698 	if (addr & ~PAGE_MASK)
1699 		return -EINVAL;
1700 
1701 	if (flags & MREMAP_FIXED && new_addr != addr)
1702 		return (unsigned long) -EINVAL;
1703 
1704 	vma = find_vma_exact(current->mm, addr, old_len);
1705 	if (!vma)
1706 		return (unsigned long) -EINVAL;
1707 
1708 	if (vma->vm_end != vma->vm_start + old_len)
1709 		return (unsigned long) -EFAULT;
1710 
1711 	if (vma->vm_flags & VM_MAYSHARE)
1712 		return (unsigned long) -EPERM;
1713 
1714 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1715 		return (unsigned long) -ENOMEM;
1716 
1717 	/* all checks complete - do it */
1718 	vma->vm_end = vma->vm_start + new_len;
1719 	return vma->vm_start;
1720 }
1721 EXPORT_SYMBOL(do_mremap);
1722 
1723 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1724 		unsigned long, new_len, unsigned long, flags,
1725 		unsigned long, new_addr)
1726 {
1727 	unsigned long ret;
1728 
1729 	down_write(&current->mm->mmap_sem);
1730 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1731 	up_write(&current->mm->mmap_sem);
1732 	return ret;
1733 }
1734 
1735 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1736 			unsigned int foll_flags)
1737 {
1738 	return NULL;
1739 }
1740 
1741 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1742 		unsigned long to, unsigned long size, pgprot_t prot)
1743 {
1744 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL(remap_pfn_range);
1748 
1749 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1750 			unsigned long pgoff)
1751 {
1752 	unsigned int size = vma->vm_end - vma->vm_start;
1753 
1754 	if (!(vma->vm_flags & VM_USERMAP))
1755 		return -EINVAL;
1756 
1757 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1758 	vma->vm_end = vma->vm_start + size;
1759 
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(remap_vmalloc_range);
1763 
1764 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1765 {
1766 }
1767 
1768 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1769 	unsigned long len, unsigned long pgoff, unsigned long flags)
1770 {
1771 	return -ENOMEM;
1772 }
1773 
1774 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1775 {
1776 }
1777 
1778 void unmap_mapping_range(struct address_space *mapping,
1779 			 loff_t const holebegin, loff_t const holelen,
1780 			 int even_cows)
1781 {
1782 }
1783 EXPORT_SYMBOL(unmap_mapping_range);
1784 
1785 /*
1786  * Check that a process has enough memory to allocate a new virtual
1787  * mapping. 0 means there is enough memory for the allocation to
1788  * succeed and -ENOMEM implies there is not.
1789  *
1790  * We currently support three overcommit policies, which are set via the
1791  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1792  *
1793  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1794  * Additional code 2002 Jul 20 by Robert Love.
1795  *
1796  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1797  *
1798  * Note this is a helper function intended to be used by LSMs which
1799  * wish to use this logic.
1800  */
1801 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1802 {
1803 	unsigned long free, allowed;
1804 
1805 	vm_acct_memory(pages);
1806 
1807 	/*
1808 	 * Sometimes we want to use more memory than we have
1809 	 */
1810 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1811 		return 0;
1812 
1813 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1814 		unsigned long n;
1815 
1816 		free = global_page_state(NR_FILE_PAGES);
1817 		free += nr_swap_pages;
1818 
1819 		/*
1820 		 * Any slabs which are created with the
1821 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1822 		 * which are reclaimable, under pressure.  The dentry
1823 		 * cache and most inode caches should fall into this
1824 		 */
1825 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1826 
1827 		/*
1828 		 * Leave the last 3% for root
1829 		 */
1830 		if (!cap_sys_admin)
1831 			free -= free / 32;
1832 
1833 		if (free > pages)
1834 			return 0;
1835 
1836 		/*
1837 		 * nr_free_pages() is very expensive on large systems,
1838 		 * only call if we're about to fail.
1839 		 */
1840 		n = nr_free_pages();
1841 
1842 		/*
1843 		 * Leave reserved pages. The pages are not for anonymous pages.
1844 		 */
1845 		if (n <= totalreserve_pages)
1846 			goto error;
1847 		else
1848 			n -= totalreserve_pages;
1849 
1850 		/*
1851 		 * Leave the last 3% for root
1852 		 */
1853 		if (!cap_sys_admin)
1854 			n -= n / 32;
1855 		free += n;
1856 
1857 		if (free > pages)
1858 			return 0;
1859 
1860 		goto error;
1861 	}
1862 
1863 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1864 	/*
1865 	 * Leave the last 3% for root
1866 	 */
1867 	if (!cap_sys_admin)
1868 		allowed -= allowed / 32;
1869 	allowed += total_swap_pages;
1870 
1871 	/* Don't let a single process grow too big:
1872 	   leave 3% of the size of this process for other processes */
1873 	if (mm)
1874 		allowed -= mm->total_vm / 32;
1875 
1876 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1877 		return 0;
1878 
1879 error:
1880 	vm_unacct_memory(pages);
1881 
1882 	return -ENOMEM;
1883 }
1884 
1885 int in_gate_area_no_task(unsigned long addr)
1886 {
1887 	return 0;
1888 }
1889 
1890 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1891 {
1892 	BUG();
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(filemap_fault);
1896 
1897 /*
1898  * Access another process' address space.
1899  * - source/target buffer must be kernel space
1900  */
1901 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1902 {
1903 	struct vm_area_struct *vma;
1904 	struct mm_struct *mm;
1905 
1906 	if (addr + len < addr)
1907 		return 0;
1908 
1909 	mm = get_task_mm(tsk);
1910 	if (!mm)
1911 		return 0;
1912 
1913 	down_read(&mm->mmap_sem);
1914 
1915 	/* the access must start within one of the target process's mappings */
1916 	vma = find_vma(mm, addr);
1917 	if (vma) {
1918 		/* don't overrun this mapping */
1919 		if (addr + len >= vma->vm_end)
1920 			len = vma->vm_end - addr;
1921 
1922 		/* only read or write mappings where it is permitted */
1923 		if (write && vma->vm_flags & VM_MAYWRITE)
1924 			copy_to_user_page(vma, NULL, addr,
1925 					 (void *) addr, buf, len);
1926 		else if (!write && vma->vm_flags & VM_MAYREAD)
1927 			copy_from_user_page(vma, NULL, addr,
1928 					    buf, (void *) addr, len);
1929 		else
1930 			len = 0;
1931 	} else {
1932 		len = 0;
1933 	}
1934 
1935 	up_read(&mm->mmap_sem);
1936 	mmput(mm);
1937 	return len;
1938 }
1939 
1940 /**
1941  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1942  * @inode: The inode to check
1943  * @size: The current filesize of the inode
1944  * @newsize: The proposed filesize of the inode
1945  *
1946  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1947  * make sure that that any outstanding VMAs aren't broken and then shrink the
1948  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1949  * automatically grant mappings that are too large.
1950  */
1951 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1952 				size_t newsize)
1953 {
1954 	struct vm_area_struct *vma;
1955 	struct prio_tree_iter iter;
1956 	struct vm_region *region;
1957 	pgoff_t low, high;
1958 	size_t r_size, r_top;
1959 
1960 	low = newsize >> PAGE_SHIFT;
1961 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1962 
1963 	down_write(&nommu_region_sem);
1964 
1965 	/* search for VMAs that fall within the dead zone */
1966 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1967 			      low, high) {
1968 		/* found one - only interested if it's shared out of the page
1969 		 * cache */
1970 		if (vma->vm_flags & VM_SHARED) {
1971 			up_write(&nommu_region_sem);
1972 			return -ETXTBSY; /* not quite true, but near enough */
1973 		}
1974 	}
1975 
1976 	/* reduce any regions that overlap the dead zone - if in existence,
1977 	 * these will be pointed to by VMAs that don't overlap the dead zone
1978 	 *
1979 	 * we don't check for any regions that start beyond the EOF as there
1980 	 * shouldn't be any
1981 	 */
1982 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1983 			      0, ULONG_MAX) {
1984 		if (!(vma->vm_flags & VM_SHARED))
1985 			continue;
1986 
1987 		region = vma->vm_region;
1988 		r_size = region->vm_top - region->vm_start;
1989 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1990 
1991 		if (r_top > newsize) {
1992 			region->vm_top -= r_top - newsize;
1993 			if (region->vm_end > region->vm_top)
1994 				region->vm_end = region->vm_top;
1995 		}
1996 	}
1997 
1998 	up_write(&nommu_region_sem);
1999 	return 0;
2000 }
2001