xref: /linux/mm/nommu.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 struct percpu_counter vm_committed_as;
52 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
53 int sysctl_overcommit_ratio = 50; /* default is 50% */
54 unsigned long sysctl_overcommit_kbytes __read_mostly;
55 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
56 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
57 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
58 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
59 int heap_stack_gap = 0;
60 
61 atomic_long_t mmap_pages_allocated;
62 
63 /*
64  * The global memory commitment made in the system can be a metric
65  * that can be used to drive ballooning decisions when Linux is hosted
66  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
67  * balancing memory across competing virtual machines that are hosted.
68  * Several metrics drive this policy engine including the guest reported
69  * memory commitment.
70  */
71 unsigned long vm_memory_committed(void)
72 {
73 	return percpu_counter_read_positive(&vm_committed_as);
74 }
75 
76 EXPORT_SYMBOL_GPL(vm_memory_committed);
77 
78 EXPORT_SYMBOL(mem_map);
79 
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache *vm_region_jar;
82 struct rb_root nommu_region_tree = RB_ROOT;
83 DECLARE_RWSEM(nommu_region_sem);
84 
85 const struct vm_operations_struct generic_file_vm_ops = {
86 };
87 
88 /*
89  * Return the total memory allocated for this pointer, not
90  * just what the caller asked for.
91  *
92  * Doesn't have to be accurate, i.e. may have races.
93  */
94 unsigned int kobjsize(const void *objp)
95 {
96 	struct page *page;
97 
98 	/*
99 	 * If the object we have should not have ksize performed on it,
100 	 * return size of 0
101 	 */
102 	if (!objp || !virt_addr_valid(objp))
103 		return 0;
104 
105 	page = virt_to_head_page(objp);
106 
107 	/*
108 	 * If the allocator sets PageSlab, we know the pointer came from
109 	 * kmalloc().
110 	 */
111 	if (PageSlab(page))
112 		return ksize(objp);
113 
114 	/*
115 	 * If it's not a compound page, see if we have a matching VMA
116 	 * region. This test is intentionally done in reverse order,
117 	 * so if there's no VMA, we still fall through and hand back
118 	 * PAGE_SIZE for 0-order pages.
119 	 */
120 	if (!PageCompound(page)) {
121 		struct vm_area_struct *vma;
122 
123 		vma = find_vma(current->mm, (unsigned long)objp);
124 		if (vma)
125 			return vma->vm_end - vma->vm_start;
126 	}
127 
128 	/*
129 	 * The ksize() function is only guaranteed to work for pointers
130 	 * returned by kmalloc(). So handle arbitrary pointers here.
131 	 */
132 	return PAGE_SIZE << compound_order(page);
133 }
134 
135 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
136 		      unsigned long start, unsigned long nr_pages,
137 		      unsigned int foll_flags, struct page **pages,
138 		      struct vm_area_struct **vmas, int *nonblocking)
139 {
140 	struct vm_area_struct *vma;
141 	unsigned long vm_flags;
142 	int i;
143 
144 	/* calculate required read or write permissions.
145 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
146 	 */
147 	vm_flags  = (foll_flags & FOLL_WRITE) ?
148 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
149 	vm_flags &= (foll_flags & FOLL_FORCE) ?
150 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
151 
152 	for (i = 0; i < nr_pages; i++) {
153 		vma = find_vma(mm, start);
154 		if (!vma)
155 			goto finish_or_fault;
156 
157 		/* protect what we can, including chardevs */
158 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
159 		    !(vm_flags & vma->vm_flags))
160 			goto finish_or_fault;
161 
162 		if (pages) {
163 			pages[i] = virt_to_page(start);
164 			if (pages[i])
165 				page_cache_get(pages[i]);
166 		}
167 		if (vmas)
168 			vmas[i] = vma;
169 		start = (start + PAGE_SIZE) & PAGE_MASK;
170 	}
171 
172 	return i;
173 
174 finish_or_fault:
175 	return i ? : -EFAULT;
176 }
177 
178 /*
179  * get a list of pages in an address range belonging to the specified process
180  * and indicate the VMA that covers each page
181  * - this is potentially dodgy as we may end incrementing the page count of a
182  *   slab page or a secondary page from a compound page
183  * - don't permit access to VMAs that don't support it, such as I/O mappings
184  */
185 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
186 		    unsigned long start, unsigned long nr_pages,
187 		    int write, int force, struct page **pages,
188 		    struct vm_area_struct **vmas)
189 {
190 	int flags = 0;
191 
192 	if (write)
193 		flags |= FOLL_WRITE;
194 	if (force)
195 		flags |= FOLL_FORCE;
196 
197 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
198 				NULL);
199 }
200 EXPORT_SYMBOL(get_user_pages);
201 
202 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
203 			   unsigned long start, unsigned long nr_pages,
204 			   int write, int force, struct page **pages,
205 			   int *locked)
206 {
207 	return get_user_pages(tsk, mm, start, nr_pages, write, force,
208 			      pages, NULL);
209 }
210 EXPORT_SYMBOL(get_user_pages_locked);
211 
212 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
213 			       unsigned long start, unsigned long nr_pages,
214 			       int write, int force, struct page **pages,
215 			       unsigned int gup_flags)
216 {
217 	long ret;
218 	down_read(&mm->mmap_sem);
219 	ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
220 			     pages, NULL);
221 	up_read(&mm->mmap_sem);
222 	return ret;
223 }
224 EXPORT_SYMBOL(__get_user_pages_unlocked);
225 
226 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
227 			     unsigned long start, unsigned long nr_pages,
228 			     int write, int force, struct page **pages)
229 {
230 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
231 					 force, pages, 0);
232 }
233 EXPORT_SYMBOL(get_user_pages_unlocked);
234 
235 /**
236  * follow_pfn - look up PFN at a user virtual address
237  * @vma: memory mapping
238  * @address: user virtual address
239  * @pfn: location to store found PFN
240  *
241  * Only IO mappings and raw PFN mappings are allowed.
242  *
243  * Returns zero and the pfn at @pfn on success, -ve otherwise.
244  */
245 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
246 	unsigned long *pfn)
247 {
248 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
249 		return -EINVAL;
250 
251 	*pfn = address >> PAGE_SHIFT;
252 	return 0;
253 }
254 EXPORT_SYMBOL(follow_pfn);
255 
256 LIST_HEAD(vmap_area_list);
257 
258 void vfree(const void *addr)
259 {
260 	kfree(addr);
261 }
262 EXPORT_SYMBOL(vfree);
263 
264 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
265 {
266 	/*
267 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
268 	 * returns only a logical address.
269 	 */
270 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
271 }
272 EXPORT_SYMBOL(__vmalloc);
273 
274 void *vmalloc_user(unsigned long size)
275 {
276 	void *ret;
277 
278 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
279 			PAGE_KERNEL);
280 	if (ret) {
281 		struct vm_area_struct *vma;
282 
283 		down_write(&current->mm->mmap_sem);
284 		vma = find_vma(current->mm, (unsigned long)ret);
285 		if (vma)
286 			vma->vm_flags |= VM_USERMAP;
287 		up_write(&current->mm->mmap_sem);
288 	}
289 
290 	return ret;
291 }
292 EXPORT_SYMBOL(vmalloc_user);
293 
294 struct page *vmalloc_to_page(const void *addr)
295 {
296 	return virt_to_page(addr);
297 }
298 EXPORT_SYMBOL(vmalloc_to_page);
299 
300 unsigned long vmalloc_to_pfn(const void *addr)
301 {
302 	return page_to_pfn(virt_to_page(addr));
303 }
304 EXPORT_SYMBOL(vmalloc_to_pfn);
305 
306 long vread(char *buf, char *addr, unsigned long count)
307 {
308 	/* Don't allow overflow */
309 	if ((unsigned long) buf + count < count)
310 		count = -(unsigned long) buf;
311 
312 	memcpy(buf, addr, count);
313 	return count;
314 }
315 
316 long vwrite(char *buf, char *addr, unsigned long count)
317 {
318 	/* Don't allow overflow */
319 	if ((unsigned long) addr + count < count)
320 		count = -(unsigned long) addr;
321 
322 	memcpy(addr, buf, count);
323 	return count;
324 }
325 
326 /*
327  *	vmalloc  -  allocate virtually contiguous memory
328  *
329  *	@size:		allocation size
330  *
331  *	Allocate enough pages to cover @size from the page level
332  *	allocator and map them into contiguous kernel virtual space.
333  *
334  *	For tight control over page level allocator and protection flags
335  *	use __vmalloc() instead.
336  */
337 void *vmalloc(unsigned long size)
338 {
339        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vmalloc);
342 
343 /*
344  *	vzalloc - allocate virtually contiguous memory with zero fill
345  *
346  *	@size:		allocation size
347  *
348  *	Allocate enough pages to cover @size from the page level
349  *	allocator and map them into contiguous kernel virtual space.
350  *	The memory allocated is set to zero.
351  *
352  *	For tight control over page level allocator and protection flags
353  *	use __vmalloc() instead.
354  */
355 void *vzalloc(unsigned long size)
356 {
357 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
358 			PAGE_KERNEL);
359 }
360 EXPORT_SYMBOL(vzalloc);
361 
362 /**
363  * vmalloc_node - allocate memory on a specific node
364  * @size:	allocation size
365  * @node:	numa node
366  *
367  * Allocate enough pages to cover @size from the page level
368  * allocator and map them into contiguous kernel virtual space.
369  *
370  * For tight control over page level allocator and protection flags
371  * use __vmalloc() instead.
372  */
373 void *vmalloc_node(unsigned long size, int node)
374 {
375 	return vmalloc(size);
376 }
377 EXPORT_SYMBOL(vmalloc_node);
378 
379 /**
380  * vzalloc_node - allocate memory on a specific node with zero fill
381  * @size:	allocation size
382  * @node:	numa node
383  *
384  * Allocate enough pages to cover @size from the page level
385  * allocator and map them into contiguous kernel virtual space.
386  * The memory allocated is set to zero.
387  *
388  * For tight control over page level allocator and protection flags
389  * use __vmalloc() instead.
390  */
391 void *vzalloc_node(unsigned long size, int node)
392 {
393 	return vzalloc(size);
394 }
395 EXPORT_SYMBOL(vzalloc_node);
396 
397 #ifndef PAGE_KERNEL_EXEC
398 # define PAGE_KERNEL_EXEC PAGE_KERNEL
399 #endif
400 
401 /**
402  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
403  *	@size:		allocation size
404  *
405  *	Kernel-internal function to allocate enough pages to cover @size
406  *	the page level allocator and map them into contiguous and
407  *	executable kernel virtual space.
408  *
409  *	For tight control over page level allocator and protection flags
410  *	use __vmalloc() instead.
411  */
412 
413 void *vmalloc_exec(unsigned long size)
414 {
415 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
416 }
417 
418 /**
419  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
420  *	@size:		allocation size
421  *
422  *	Allocate enough 32bit PA addressable pages to cover @size from the
423  *	page level allocator and map them into contiguous kernel virtual space.
424  */
425 void *vmalloc_32(unsigned long size)
426 {
427 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
428 }
429 EXPORT_SYMBOL(vmalloc_32);
430 
431 /**
432  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
433  *	@size:		allocation size
434  *
435  * The resulting memory area is 32bit addressable and zeroed so it can be
436  * mapped to userspace without leaking data.
437  *
438  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
439  * remap_vmalloc_range() are permissible.
440  */
441 void *vmalloc_32_user(unsigned long size)
442 {
443 	/*
444 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
445 	 * but for now this can simply use vmalloc_user() directly.
446 	 */
447 	return vmalloc_user(size);
448 }
449 EXPORT_SYMBOL(vmalloc_32_user);
450 
451 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
452 {
453 	BUG();
454 	return NULL;
455 }
456 EXPORT_SYMBOL(vmap);
457 
458 void vunmap(const void *addr)
459 {
460 	BUG();
461 }
462 EXPORT_SYMBOL(vunmap);
463 
464 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
465 {
466 	BUG();
467 	return NULL;
468 }
469 EXPORT_SYMBOL(vm_map_ram);
470 
471 void vm_unmap_ram(const void *mem, unsigned int count)
472 {
473 	BUG();
474 }
475 EXPORT_SYMBOL(vm_unmap_ram);
476 
477 void vm_unmap_aliases(void)
478 {
479 }
480 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
481 
482 /*
483  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
484  * have one.
485  */
486 void __weak vmalloc_sync_all(void)
487 {
488 }
489 
490 /**
491  *	alloc_vm_area - allocate a range of kernel address space
492  *	@size:		size of the area
493  *
494  *	Returns:	NULL on failure, vm_struct on success
495  *
496  *	This function reserves a range of kernel address space, and
497  *	allocates pagetables to map that range.  No actual mappings
498  *	are created.  If the kernel address space is not shared
499  *	between processes, it syncs the pagetable across all
500  *	processes.
501  */
502 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
503 {
504 	BUG();
505 	return NULL;
506 }
507 EXPORT_SYMBOL_GPL(alloc_vm_area);
508 
509 void free_vm_area(struct vm_struct *area)
510 {
511 	BUG();
512 }
513 EXPORT_SYMBOL_GPL(free_vm_area);
514 
515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
516 		   struct page *page)
517 {
518 	return -EINVAL;
519 }
520 EXPORT_SYMBOL(vm_insert_page);
521 
522 /*
523  *  sys_brk() for the most part doesn't need the global kernel
524  *  lock, except when an application is doing something nasty
525  *  like trying to un-brk an area that has already been mapped
526  *  to a regular file.  in this case, the unmapping will need
527  *  to invoke file system routines that need the global lock.
528  */
529 SYSCALL_DEFINE1(brk, unsigned long, brk)
530 {
531 	struct mm_struct *mm = current->mm;
532 
533 	if (brk < mm->start_brk || brk > mm->context.end_brk)
534 		return mm->brk;
535 
536 	if (mm->brk == brk)
537 		return mm->brk;
538 
539 	/*
540 	 * Always allow shrinking brk
541 	 */
542 	if (brk <= mm->brk) {
543 		mm->brk = brk;
544 		return brk;
545 	}
546 
547 	/*
548 	 * Ok, looks good - let it rip.
549 	 */
550 	flush_icache_range(mm->brk, brk);
551 	return mm->brk = brk;
552 }
553 
554 /*
555  * initialise the VMA and region record slabs
556  */
557 void __init mmap_init(void)
558 {
559 	int ret;
560 
561 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
562 	VM_BUG_ON(ret);
563 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
564 }
565 
566 /*
567  * validate the region tree
568  * - the caller must hold the region lock
569  */
570 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
571 static noinline void validate_nommu_regions(void)
572 {
573 	struct vm_region *region, *last;
574 	struct rb_node *p, *lastp;
575 
576 	lastp = rb_first(&nommu_region_tree);
577 	if (!lastp)
578 		return;
579 
580 	last = rb_entry(lastp, struct vm_region, vm_rb);
581 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
582 	BUG_ON(unlikely(last->vm_top < last->vm_end));
583 
584 	while ((p = rb_next(lastp))) {
585 		region = rb_entry(p, struct vm_region, vm_rb);
586 		last = rb_entry(lastp, struct vm_region, vm_rb);
587 
588 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
589 		BUG_ON(unlikely(region->vm_top < region->vm_end));
590 		BUG_ON(unlikely(region->vm_start < last->vm_top));
591 
592 		lastp = p;
593 	}
594 }
595 #else
596 static void validate_nommu_regions(void)
597 {
598 }
599 #endif
600 
601 /*
602  * add a region into the global tree
603  */
604 static void add_nommu_region(struct vm_region *region)
605 {
606 	struct vm_region *pregion;
607 	struct rb_node **p, *parent;
608 
609 	validate_nommu_regions();
610 
611 	parent = NULL;
612 	p = &nommu_region_tree.rb_node;
613 	while (*p) {
614 		parent = *p;
615 		pregion = rb_entry(parent, struct vm_region, vm_rb);
616 		if (region->vm_start < pregion->vm_start)
617 			p = &(*p)->rb_left;
618 		else if (region->vm_start > pregion->vm_start)
619 			p = &(*p)->rb_right;
620 		else if (pregion == region)
621 			return;
622 		else
623 			BUG();
624 	}
625 
626 	rb_link_node(&region->vm_rb, parent, p);
627 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
628 
629 	validate_nommu_regions();
630 }
631 
632 /*
633  * delete a region from the global tree
634  */
635 static void delete_nommu_region(struct vm_region *region)
636 {
637 	BUG_ON(!nommu_region_tree.rb_node);
638 
639 	validate_nommu_regions();
640 	rb_erase(&region->vm_rb, &nommu_region_tree);
641 	validate_nommu_regions();
642 }
643 
644 /*
645  * free a contiguous series of pages
646  */
647 static void free_page_series(unsigned long from, unsigned long to)
648 {
649 	for (; from < to; from += PAGE_SIZE) {
650 		struct page *page = virt_to_page(from);
651 
652 		atomic_long_dec(&mmap_pages_allocated);
653 		put_page(page);
654 	}
655 }
656 
657 /*
658  * release a reference to a region
659  * - the caller must hold the region semaphore for writing, which this releases
660  * - the region may not have been added to the tree yet, in which case vm_top
661  *   will equal vm_start
662  */
663 static void __put_nommu_region(struct vm_region *region)
664 	__releases(nommu_region_sem)
665 {
666 	BUG_ON(!nommu_region_tree.rb_node);
667 
668 	if (--region->vm_usage == 0) {
669 		if (region->vm_top > region->vm_start)
670 			delete_nommu_region(region);
671 		up_write(&nommu_region_sem);
672 
673 		if (region->vm_file)
674 			fput(region->vm_file);
675 
676 		/* IO memory and memory shared directly out of the pagecache
677 		 * from ramfs/tmpfs mustn't be released here */
678 		if (region->vm_flags & VM_MAPPED_COPY)
679 			free_page_series(region->vm_start, region->vm_top);
680 		kmem_cache_free(vm_region_jar, region);
681 	} else {
682 		up_write(&nommu_region_sem);
683 	}
684 }
685 
686 /*
687  * release a reference to a region
688  */
689 static void put_nommu_region(struct vm_region *region)
690 {
691 	down_write(&nommu_region_sem);
692 	__put_nommu_region(region);
693 }
694 
695 /*
696  * update protection on a vma
697  */
698 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
699 {
700 #ifdef CONFIG_MPU
701 	struct mm_struct *mm = vma->vm_mm;
702 	long start = vma->vm_start & PAGE_MASK;
703 	while (start < vma->vm_end) {
704 		protect_page(mm, start, flags);
705 		start += PAGE_SIZE;
706 	}
707 	update_protections(mm);
708 #endif
709 }
710 
711 /*
712  * add a VMA into a process's mm_struct in the appropriate place in the list
713  * and tree and add to the address space's page tree also if not an anonymous
714  * page
715  * - should be called with mm->mmap_sem held writelocked
716  */
717 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 	struct vm_area_struct *pvma, *prev;
720 	struct address_space *mapping;
721 	struct rb_node **p, *parent, *rb_prev;
722 
723 	BUG_ON(!vma->vm_region);
724 
725 	mm->map_count++;
726 	vma->vm_mm = mm;
727 
728 	protect_vma(vma, vma->vm_flags);
729 
730 	/* add the VMA to the mapping */
731 	if (vma->vm_file) {
732 		mapping = vma->vm_file->f_mapping;
733 
734 		i_mmap_lock_write(mapping);
735 		flush_dcache_mmap_lock(mapping);
736 		vma_interval_tree_insert(vma, &mapping->i_mmap);
737 		flush_dcache_mmap_unlock(mapping);
738 		i_mmap_unlock_write(mapping);
739 	}
740 
741 	/* add the VMA to the tree */
742 	parent = rb_prev = NULL;
743 	p = &mm->mm_rb.rb_node;
744 	while (*p) {
745 		parent = *p;
746 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
747 
748 		/* sort by: start addr, end addr, VMA struct addr in that order
749 		 * (the latter is necessary as we may get identical VMAs) */
750 		if (vma->vm_start < pvma->vm_start)
751 			p = &(*p)->rb_left;
752 		else if (vma->vm_start > pvma->vm_start) {
753 			rb_prev = parent;
754 			p = &(*p)->rb_right;
755 		} else if (vma->vm_end < pvma->vm_end)
756 			p = &(*p)->rb_left;
757 		else if (vma->vm_end > pvma->vm_end) {
758 			rb_prev = parent;
759 			p = &(*p)->rb_right;
760 		} else if (vma < pvma)
761 			p = &(*p)->rb_left;
762 		else if (vma > pvma) {
763 			rb_prev = parent;
764 			p = &(*p)->rb_right;
765 		} else
766 			BUG();
767 	}
768 
769 	rb_link_node(&vma->vm_rb, parent, p);
770 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
771 
772 	/* add VMA to the VMA list also */
773 	prev = NULL;
774 	if (rb_prev)
775 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
776 
777 	__vma_link_list(mm, vma, prev, parent);
778 }
779 
780 /*
781  * delete a VMA from its owning mm_struct and address space
782  */
783 static void delete_vma_from_mm(struct vm_area_struct *vma)
784 {
785 	int i;
786 	struct address_space *mapping;
787 	struct mm_struct *mm = vma->vm_mm;
788 	struct task_struct *curr = current;
789 
790 	protect_vma(vma, 0);
791 
792 	mm->map_count--;
793 	for (i = 0; i < VMACACHE_SIZE; i++) {
794 		/* if the vma is cached, invalidate the entire cache */
795 		if (curr->vmacache[i] == vma) {
796 			vmacache_invalidate(mm);
797 			break;
798 		}
799 	}
800 
801 	/* remove the VMA from the mapping */
802 	if (vma->vm_file) {
803 		mapping = vma->vm_file->f_mapping;
804 
805 		i_mmap_lock_write(mapping);
806 		flush_dcache_mmap_lock(mapping);
807 		vma_interval_tree_remove(vma, &mapping->i_mmap);
808 		flush_dcache_mmap_unlock(mapping);
809 		i_mmap_unlock_write(mapping);
810 	}
811 
812 	/* remove from the MM's tree and list */
813 	rb_erase(&vma->vm_rb, &mm->mm_rb);
814 
815 	if (vma->vm_prev)
816 		vma->vm_prev->vm_next = vma->vm_next;
817 	else
818 		mm->mmap = vma->vm_next;
819 
820 	if (vma->vm_next)
821 		vma->vm_next->vm_prev = vma->vm_prev;
822 }
823 
824 /*
825  * destroy a VMA record
826  */
827 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
828 {
829 	if (vma->vm_ops && vma->vm_ops->close)
830 		vma->vm_ops->close(vma);
831 	if (vma->vm_file)
832 		fput(vma->vm_file);
833 	put_nommu_region(vma->vm_region);
834 	kmem_cache_free(vm_area_cachep, vma);
835 }
836 
837 /*
838  * look up the first VMA in which addr resides, NULL if none
839  * - should be called with mm->mmap_sem at least held readlocked
840  */
841 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
842 {
843 	struct vm_area_struct *vma;
844 
845 	/* check the cache first */
846 	vma = vmacache_find(mm, addr);
847 	if (likely(vma))
848 		return vma;
849 
850 	/* trawl the list (there may be multiple mappings in which addr
851 	 * resides) */
852 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
853 		if (vma->vm_start > addr)
854 			return NULL;
855 		if (vma->vm_end > addr) {
856 			vmacache_update(addr, vma);
857 			return vma;
858 		}
859 	}
860 
861 	return NULL;
862 }
863 EXPORT_SYMBOL(find_vma);
864 
865 /*
866  * find a VMA
867  * - we don't extend stack VMAs under NOMMU conditions
868  */
869 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
870 {
871 	return find_vma(mm, addr);
872 }
873 
874 /*
875  * expand a stack to a given address
876  * - not supported under NOMMU conditions
877  */
878 int expand_stack(struct vm_area_struct *vma, unsigned long address)
879 {
880 	return -ENOMEM;
881 }
882 
883 /*
884  * look up the first VMA exactly that exactly matches addr
885  * - should be called with mm->mmap_sem at least held readlocked
886  */
887 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
888 					     unsigned long addr,
889 					     unsigned long len)
890 {
891 	struct vm_area_struct *vma;
892 	unsigned long end = addr + len;
893 
894 	/* check the cache first */
895 	vma = vmacache_find_exact(mm, addr, end);
896 	if (vma)
897 		return vma;
898 
899 	/* trawl the list (there may be multiple mappings in which addr
900 	 * resides) */
901 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 		if (vma->vm_start < addr)
903 			continue;
904 		if (vma->vm_start > addr)
905 			return NULL;
906 		if (vma->vm_end == end) {
907 			vmacache_update(addr, vma);
908 			return vma;
909 		}
910 	}
911 
912 	return NULL;
913 }
914 
915 /*
916  * determine whether a mapping should be permitted and, if so, what sort of
917  * mapping we're capable of supporting
918  */
919 static int validate_mmap_request(struct file *file,
920 				 unsigned long addr,
921 				 unsigned long len,
922 				 unsigned long prot,
923 				 unsigned long flags,
924 				 unsigned long pgoff,
925 				 unsigned long *_capabilities)
926 {
927 	unsigned long capabilities, rlen;
928 	int ret;
929 
930 	/* do the simple checks first */
931 	if (flags & MAP_FIXED)
932 		return -EINVAL;
933 
934 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
935 	    (flags & MAP_TYPE) != MAP_SHARED)
936 		return -EINVAL;
937 
938 	if (!len)
939 		return -EINVAL;
940 
941 	/* Careful about overflows.. */
942 	rlen = PAGE_ALIGN(len);
943 	if (!rlen || rlen > TASK_SIZE)
944 		return -ENOMEM;
945 
946 	/* offset overflow? */
947 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
948 		return -EOVERFLOW;
949 
950 	if (file) {
951 		/* files must support mmap */
952 		if (!file->f_op->mmap)
953 			return -ENODEV;
954 
955 		/* work out if what we've got could possibly be shared
956 		 * - we support chardevs that provide their own "memory"
957 		 * - we support files/blockdevs that are memory backed
958 		 */
959 		if (file->f_op->mmap_capabilities) {
960 			capabilities = file->f_op->mmap_capabilities(file);
961 		} else {
962 			/* no explicit capabilities set, so assume some
963 			 * defaults */
964 			switch (file_inode(file)->i_mode & S_IFMT) {
965 			case S_IFREG:
966 			case S_IFBLK:
967 				capabilities = NOMMU_MAP_COPY;
968 				break;
969 
970 			case S_IFCHR:
971 				capabilities =
972 					NOMMU_MAP_DIRECT |
973 					NOMMU_MAP_READ |
974 					NOMMU_MAP_WRITE;
975 				break;
976 
977 			default:
978 				return -EINVAL;
979 			}
980 		}
981 
982 		/* eliminate any capabilities that we can't support on this
983 		 * device */
984 		if (!file->f_op->get_unmapped_area)
985 			capabilities &= ~NOMMU_MAP_DIRECT;
986 		if (!(file->f_mode & FMODE_CAN_READ))
987 			capabilities &= ~NOMMU_MAP_COPY;
988 
989 		/* The file shall have been opened with read permission. */
990 		if (!(file->f_mode & FMODE_READ))
991 			return -EACCES;
992 
993 		if (flags & MAP_SHARED) {
994 			/* do checks for writing, appending and locking */
995 			if ((prot & PROT_WRITE) &&
996 			    !(file->f_mode & FMODE_WRITE))
997 				return -EACCES;
998 
999 			if (IS_APPEND(file_inode(file)) &&
1000 			    (file->f_mode & FMODE_WRITE))
1001 				return -EACCES;
1002 
1003 			if (locks_verify_locked(file))
1004 				return -EAGAIN;
1005 
1006 			if (!(capabilities & NOMMU_MAP_DIRECT))
1007 				return -ENODEV;
1008 
1009 			/* we mustn't privatise shared mappings */
1010 			capabilities &= ~NOMMU_MAP_COPY;
1011 		} else {
1012 			/* we're going to read the file into private memory we
1013 			 * allocate */
1014 			if (!(capabilities & NOMMU_MAP_COPY))
1015 				return -ENODEV;
1016 
1017 			/* we don't permit a private writable mapping to be
1018 			 * shared with the backing device */
1019 			if (prot & PROT_WRITE)
1020 				capabilities &= ~NOMMU_MAP_DIRECT;
1021 		}
1022 
1023 		if (capabilities & NOMMU_MAP_DIRECT) {
1024 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1025 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1026 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1027 			    ) {
1028 				capabilities &= ~NOMMU_MAP_DIRECT;
1029 				if (flags & MAP_SHARED) {
1030 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
1031 					return -EINVAL;
1032 				}
1033 			}
1034 		}
1035 
1036 		/* handle executable mappings and implied executable
1037 		 * mappings */
1038 		if (path_noexec(&file->f_path)) {
1039 			if (prot & PROT_EXEC)
1040 				return -EPERM;
1041 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1042 			/* handle implication of PROT_EXEC by PROT_READ */
1043 			if (current->personality & READ_IMPLIES_EXEC) {
1044 				if (capabilities & NOMMU_MAP_EXEC)
1045 					prot |= PROT_EXEC;
1046 			}
1047 		} else if ((prot & PROT_READ) &&
1048 			 (prot & PROT_EXEC) &&
1049 			 !(capabilities & NOMMU_MAP_EXEC)
1050 			 ) {
1051 			/* backing file is not executable, try to copy */
1052 			capabilities &= ~NOMMU_MAP_DIRECT;
1053 		}
1054 	} else {
1055 		/* anonymous mappings are always memory backed and can be
1056 		 * privately mapped
1057 		 */
1058 		capabilities = NOMMU_MAP_COPY;
1059 
1060 		/* handle PROT_EXEC implication by PROT_READ */
1061 		if ((prot & PROT_READ) &&
1062 		    (current->personality & READ_IMPLIES_EXEC))
1063 			prot |= PROT_EXEC;
1064 	}
1065 
1066 	/* allow the security API to have its say */
1067 	ret = security_mmap_addr(addr);
1068 	if (ret < 0)
1069 		return ret;
1070 
1071 	/* looks okay */
1072 	*_capabilities = capabilities;
1073 	return 0;
1074 }
1075 
1076 /*
1077  * we've determined that we can make the mapping, now translate what we
1078  * now know into VMA flags
1079  */
1080 static unsigned long determine_vm_flags(struct file *file,
1081 					unsigned long prot,
1082 					unsigned long flags,
1083 					unsigned long capabilities)
1084 {
1085 	unsigned long vm_flags;
1086 
1087 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1088 	/* vm_flags |= mm->def_flags; */
1089 
1090 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1091 		/* attempt to share read-only copies of mapped file chunks */
1092 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1093 		if (file && !(prot & PROT_WRITE))
1094 			vm_flags |= VM_MAYSHARE;
1095 	} else {
1096 		/* overlay a shareable mapping on the backing device or inode
1097 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1098 		 * romfs/cramfs */
1099 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1100 		if (flags & MAP_SHARED)
1101 			vm_flags |= VM_SHARED;
1102 	}
1103 
1104 	/* refuse to let anyone share private mappings with this process if
1105 	 * it's being traced - otherwise breakpoints set in it may interfere
1106 	 * with another untraced process
1107 	 */
1108 	if ((flags & MAP_PRIVATE) && current->ptrace)
1109 		vm_flags &= ~VM_MAYSHARE;
1110 
1111 	return vm_flags;
1112 }
1113 
1114 /*
1115  * set up a shared mapping on a file (the driver or filesystem provides and
1116  * pins the storage)
1117  */
1118 static int do_mmap_shared_file(struct vm_area_struct *vma)
1119 {
1120 	int ret;
1121 
1122 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1123 	if (ret == 0) {
1124 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1125 		return 0;
1126 	}
1127 	if (ret != -ENOSYS)
1128 		return ret;
1129 
1130 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1131 	 * opposed to tried but failed) so we can only give a suitable error as
1132 	 * it's not possible to make a private copy if MAP_SHARED was given */
1133 	return -ENODEV;
1134 }
1135 
1136 /*
1137  * set up a private mapping or an anonymous shared mapping
1138  */
1139 static int do_mmap_private(struct vm_area_struct *vma,
1140 			   struct vm_region *region,
1141 			   unsigned long len,
1142 			   unsigned long capabilities)
1143 {
1144 	unsigned long total, point;
1145 	void *base;
1146 	int ret, order;
1147 
1148 	/* invoke the file's mapping function so that it can keep track of
1149 	 * shared mappings on devices or memory
1150 	 * - VM_MAYSHARE will be set if it may attempt to share
1151 	 */
1152 	if (capabilities & NOMMU_MAP_DIRECT) {
1153 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1154 		if (ret == 0) {
1155 			/* shouldn't return success if we're not sharing */
1156 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1157 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1158 			return 0;
1159 		}
1160 		if (ret != -ENOSYS)
1161 			return ret;
1162 
1163 		/* getting an ENOSYS error indicates that direct mmap isn't
1164 		 * possible (as opposed to tried but failed) so we'll try to
1165 		 * make a private copy of the data and map that instead */
1166 	}
1167 
1168 
1169 	/* allocate some memory to hold the mapping
1170 	 * - note that this may not return a page-aligned address if the object
1171 	 *   we're allocating is smaller than a page
1172 	 */
1173 	order = get_order(len);
1174 	total = 1 << order;
1175 	point = len >> PAGE_SHIFT;
1176 
1177 	/* we don't want to allocate a power-of-2 sized page set */
1178 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1179 		total = point;
1180 
1181 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1182 	if (!base)
1183 		goto enomem;
1184 
1185 	atomic_long_add(total, &mmap_pages_allocated);
1186 
1187 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1188 	region->vm_start = (unsigned long) base;
1189 	region->vm_end   = region->vm_start + len;
1190 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1191 
1192 	vma->vm_start = region->vm_start;
1193 	vma->vm_end   = region->vm_start + len;
1194 
1195 	if (vma->vm_file) {
1196 		/* read the contents of a file into the copy */
1197 		mm_segment_t old_fs;
1198 		loff_t fpos;
1199 
1200 		fpos = vma->vm_pgoff;
1201 		fpos <<= PAGE_SHIFT;
1202 
1203 		old_fs = get_fs();
1204 		set_fs(KERNEL_DS);
1205 		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1206 		set_fs(old_fs);
1207 
1208 		if (ret < 0)
1209 			goto error_free;
1210 
1211 		/* clear the last little bit */
1212 		if (ret < len)
1213 			memset(base + ret, 0, len - ret);
1214 
1215 	}
1216 
1217 	return 0;
1218 
1219 error_free:
1220 	free_page_series(region->vm_start, region->vm_top);
1221 	region->vm_start = vma->vm_start = 0;
1222 	region->vm_end   = vma->vm_end = 0;
1223 	region->vm_top   = 0;
1224 	return ret;
1225 
1226 enomem:
1227 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1228 	       len, current->pid, current->comm);
1229 	show_free_areas(0);
1230 	return -ENOMEM;
1231 }
1232 
1233 /*
1234  * handle mapping creation for uClinux
1235  */
1236 unsigned long do_mmap(struct file *file,
1237 			unsigned long addr,
1238 			unsigned long len,
1239 			unsigned long prot,
1240 			unsigned long flags,
1241 			vm_flags_t vm_flags,
1242 			unsigned long pgoff,
1243 			unsigned long *populate)
1244 {
1245 	struct vm_area_struct *vma;
1246 	struct vm_region *region;
1247 	struct rb_node *rb;
1248 	unsigned long capabilities, result;
1249 	int ret;
1250 
1251 	*populate = 0;
1252 
1253 	/* decide whether we should attempt the mapping, and if so what sort of
1254 	 * mapping */
1255 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1256 				    &capabilities);
1257 	if (ret < 0)
1258 		return ret;
1259 
1260 	/* we ignore the address hint */
1261 	addr = 0;
1262 	len = PAGE_ALIGN(len);
1263 
1264 	/* we've determined that we can make the mapping, now translate what we
1265 	 * now know into VMA flags */
1266 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1267 
1268 	/* we're going to need to record the mapping */
1269 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1270 	if (!region)
1271 		goto error_getting_region;
1272 
1273 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1274 	if (!vma)
1275 		goto error_getting_vma;
1276 
1277 	region->vm_usage = 1;
1278 	region->vm_flags = vm_flags;
1279 	region->vm_pgoff = pgoff;
1280 
1281 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1282 	vma->vm_flags = vm_flags;
1283 	vma->vm_pgoff = pgoff;
1284 
1285 	if (file) {
1286 		region->vm_file = get_file(file);
1287 		vma->vm_file = get_file(file);
1288 	}
1289 
1290 	down_write(&nommu_region_sem);
1291 
1292 	/* if we want to share, we need to check for regions created by other
1293 	 * mmap() calls that overlap with our proposed mapping
1294 	 * - we can only share with a superset match on most regular files
1295 	 * - shared mappings on character devices and memory backed files are
1296 	 *   permitted to overlap inexactly as far as we are concerned for in
1297 	 *   these cases, sharing is handled in the driver or filesystem rather
1298 	 *   than here
1299 	 */
1300 	if (vm_flags & VM_MAYSHARE) {
1301 		struct vm_region *pregion;
1302 		unsigned long pglen, rpglen, pgend, rpgend, start;
1303 
1304 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305 		pgend = pgoff + pglen;
1306 
1307 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1308 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1309 
1310 			if (!(pregion->vm_flags & VM_MAYSHARE))
1311 				continue;
1312 
1313 			/* search for overlapping mappings on the same file */
1314 			if (file_inode(pregion->vm_file) !=
1315 			    file_inode(file))
1316 				continue;
1317 
1318 			if (pregion->vm_pgoff >= pgend)
1319 				continue;
1320 
1321 			rpglen = pregion->vm_end - pregion->vm_start;
1322 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1323 			rpgend = pregion->vm_pgoff + rpglen;
1324 			if (pgoff >= rpgend)
1325 				continue;
1326 
1327 			/* handle inexactly overlapping matches between
1328 			 * mappings */
1329 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1330 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1331 				/* new mapping is not a subset of the region */
1332 				if (!(capabilities & NOMMU_MAP_DIRECT))
1333 					goto sharing_violation;
1334 				continue;
1335 			}
1336 
1337 			/* we've found a region we can share */
1338 			pregion->vm_usage++;
1339 			vma->vm_region = pregion;
1340 			start = pregion->vm_start;
1341 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1342 			vma->vm_start = start;
1343 			vma->vm_end = start + len;
1344 
1345 			if (pregion->vm_flags & VM_MAPPED_COPY)
1346 				vma->vm_flags |= VM_MAPPED_COPY;
1347 			else {
1348 				ret = do_mmap_shared_file(vma);
1349 				if (ret < 0) {
1350 					vma->vm_region = NULL;
1351 					vma->vm_start = 0;
1352 					vma->vm_end = 0;
1353 					pregion->vm_usage--;
1354 					pregion = NULL;
1355 					goto error_just_free;
1356 				}
1357 			}
1358 			fput(region->vm_file);
1359 			kmem_cache_free(vm_region_jar, region);
1360 			region = pregion;
1361 			result = start;
1362 			goto share;
1363 		}
1364 
1365 		/* obtain the address at which to make a shared mapping
1366 		 * - this is the hook for quasi-memory character devices to
1367 		 *   tell us the location of a shared mapping
1368 		 */
1369 		if (capabilities & NOMMU_MAP_DIRECT) {
1370 			addr = file->f_op->get_unmapped_area(file, addr, len,
1371 							     pgoff, flags);
1372 			if (IS_ERR_VALUE(addr)) {
1373 				ret = addr;
1374 				if (ret != -ENOSYS)
1375 					goto error_just_free;
1376 
1377 				/* the driver refused to tell us where to site
1378 				 * the mapping so we'll have to attempt to copy
1379 				 * it */
1380 				ret = -ENODEV;
1381 				if (!(capabilities & NOMMU_MAP_COPY))
1382 					goto error_just_free;
1383 
1384 				capabilities &= ~NOMMU_MAP_DIRECT;
1385 			} else {
1386 				vma->vm_start = region->vm_start = addr;
1387 				vma->vm_end = region->vm_end = addr + len;
1388 			}
1389 		}
1390 	}
1391 
1392 	vma->vm_region = region;
1393 
1394 	/* set up the mapping
1395 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1396 	 */
1397 	if (file && vma->vm_flags & VM_SHARED)
1398 		ret = do_mmap_shared_file(vma);
1399 	else
1400 		ret = do_mmap_private(vma, region, len, capabilities);
1401 	if (ret < 0)
1402 		goto error_just_free;
1403 	add_nommu_region(region);
1404 
1405 	/* clear anonymous mappings that don't ask for uninitialized data */
1406 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1407 		memset((void *)region->vm_start, 0,
1408 		       region->vm_end - region->vm_start);
1409 
1410 	/* okay... we have a mapping; now we have to register it */
1411 	result = vma->vm_start;
1412 
1413 	current->mm->total_vm += len >> PAGE_SHIFT;
1414 
1415 share:
1416 	add_vma_to_mm(current->mm, vma);
1417 
1418 	/* we flush the region from the icache only when the first executable
1419 	 * mapping of it is made  */
1420 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1421 		flush_icache_range(region->vm_start, region->vm_end);
1422 		region->vm_icache_flushed = true;
1423 	}
1424 
1425 	up_write(&nommu_region_sem);
1426 
1427 	return result;
1428 
1429 error_just_free:
1430 	up_write(&nommu_region_sem);
1431 error:
1432 	if (region->vm_file)
1433 		fput(region->vm_file);
1434 	kmem_cache_free(vm_region_jar, region);
1435 	if (vma->vm_file)
1436 		fput(vma->vm_file);
1437 	kmem_cache_free(vm_area_cachep, vma);
1438 	return ret;
1439 
1440 sharing_violation:
1441 	up_write(&nommu_region_sem);
1442 	pr_warn("Attempt to share mismatched mappings\n");
1443 	ret = -EINVAL;
1444 	goto error;
1445 
1446 error_getting_vma:
1447 	kmem_cache_free(vm_region_jar, region);
1448 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1449 			len, current->pid);
1450 	show_free_areas(0);
1451 	return -ENOMEM;
1452 
1453 error_getting_region:
1454 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1455 			len, current->pid);
1456 	show_free_areas(0);
1457 	return -ENOMEM;
1458 }
1459 
1460 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1461 		unsigned long, prot, unsigned long, flags,
1462 		unsigned long, fd, unsigned long, pgoff)
1463 {
1464 	struct file *file = NULL;
1465 	unsigned long retval = -EBADF;
1466 
1467 	audit_mmap_fd(fd, flags);
1468 	if (!(flags & MAP_ANONYMOUS)) {
1469 		file = fget(fd);
1470 		if (!file)
1471 			goto out;
1472 	}
1473 
1474 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1475 
1476 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1477 
1478 	if (file)
1479 		fput(file);
1480 out:
1481 	return retval;
1482 }
1483 
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct {
1486 	unsigned long addr;
1487 	unsigned long len;
1488 	unsigned long prot;
1489 	unsigned long flags;
1490 	unsigned long fd;
1491 	unsigned long offset;
1492 };
1493 
1494 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1495 {
1496 	struct mmap_arg_struct a;
1497 
1498 	if (copy_from_user(&a, arg, sizeof(a)))
1499 		return -EFAULT;
1500 	if (a.offset & ~PAGE_MASK)
1501 		return -EINVAL;
1502 
1503 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1504 			      a.offset >> PAGE_SHIFT);
1505 }
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1507 
1508 /*
1509  * split a vma into two pieces at address 'addr', a new vma is allocated either
1510  * for the first part or the tail.
1511  */
1512 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1513 	      unsigned long addr, int new_below)
1514 {
1515 	struct vm_area_struct *new;
1516 	struct vm_region *region;
1517 	unsigned long npages;
1518 
1519 	/* we're only permitted to split anonymous regions (these should have
1520 	 * only a single usage on the region) */
1521 	if (vma->vm_file)
1522 		return -ENOMEM;
1523 
1524 	if (mm->map_count >= sysctl_max_map_count)
1525 		return -ENOMEM;
1526 
1527 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1528 	if (!region)
1529 		return -ENOMEM;
1530 
1531 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1532 	if (!new) {
1533 		kmem_cache_free(vm_region_jar, region);
1534 		return -ENOMEM;
1535 	}
1536 
1537 	/* most fields are the same, copy all, and then fixup */
1538 	*new = *vma;
1539 	*region = *vma->vm_region;
1540 	new->vm_region = region;
1541 
1542 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1543 
1544 	if (new_below) {
1545 		region->vm_top = region->vm_end = new->vm_end = addr;
1546 	} else {
1547 		region->vm_start = new->vm_start = addr;
1548 		region->vm_pgoff = new->vm_pgoff += npages;
1549 	}
1550 
1551 	if (new->vm_ops && new->vm_ops->open)
1552 		new->vm_ops->open(new);
1553 
1554 	delete_vma_from_mm(vma);
1555 	down_write(&nommu_region_sem);
1556 	delete_nommu_region(vma->vm_region);
1557 	if (new_below) {
1558 		vma->vm_region->vm_start = vma->vm_start = addr;
1559 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1560 	} else {
1561 		vma->vm_region->vm_end = vma->vm_end = addr;
1562 		vma->vm_region->vm_top = addr;
1563 	}
1564 	add_nommu_region(vma->vm_region);
1565 	add_nommu_region(new->vm_region);
1566 	up_write(&nommu_region_sem);
1567 	add_vma_to_mm(mm, vma);
1568 	add_vma_to_mm(mm, new);
1569 	return 0;
1570 }
1571 
1572 /*
1573  * shrink a VMA by removing the specified chunk from either the beginning or
1574  * the end
1575  */
1576 static int shrink_vma(struct mm_struct *mm,
1577 		      struct vm_area_struct *vma,
1578 		      unsigned long from, unsigned long to)
1579 {
1580 	struct vm_region *region;
1581 
1582 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1583 	 * and list */
1584 	delete_vma_from_mm(vma);
1585 	if (from > vma->vm_start)
1586 		vma->vm_end = from;
1587 	else
1588 		vma->vm_start = to;
1589 	add_vma_to_mm(mm, vma);
1590 
1591 	/* cut the backing region down to size */
1592 	region = vma->vm_region;
1593 	BUG_ON(region->vm_usage != 1);
1594 
1595 	down_write(&nommu_region_sem);
1596 	delete_nommu_region(region);
1597 	if (from > region->vm_start) {
1598 		to = region->vm_top;
1599 		region->vm_top = region->vm_end = from;
1600 	} else {
1601 		region->vm_start = to;
1602 	}
1603 	add_nommu_region(region);
1604 	up_write(&nommu_region_sem);
1605 
1606 	free_page_series(from, to);
1607 	return 0;
1608 }
1609 
1610 /*
1611  * release a mapping
1612  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1613  *   VMA, though it need not cover the whole VMA
1614  */
1615 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1616 {
1617 	struct vm_area_struct *vma;
1618 	unsigned long end;
1619 	int ret;
1620 
1621 	len = PAGE_ALIGN(len);
1622 	if (len == 0)
1623 		return -EINVAL;
1624 
1625 	end = start + len;
1626 
1627 	/* find the first potentially overlapping VMA */
1628 	vma = find_vma(mm, start);
1629 	if (!vma) {
1630 		static int limit;
1631 		if (limit < 5) {
1632 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1633 					current->pid, current->comm,
1634 					start, start + len - 1);
1635 			limit++;
1636 		}
1637 		return -EINVAL;
1638 	}
1639 
1640 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1641 	if (vma->vm_file) {
1642 		do {
1643 			if (start > vma->vm_start)
1644 				return -EINVAL;
1645 			if (end == vma->vm_end)
1646 				goto erase_whole_vma;
1647 			vma = vma->vm_next;
1648 		} while (vma);
1649 		return -EINVAL;
1650 	} else {
1651 		/* the chunk must be a subset of the VMA found */
1652 		if (start == vma->vm_start && end == vma->vm_end)
1653 			goto erase_whole_vma;
1654 		if (start < vma->vm_start || end > vma->vm_end)
1655 			return -EINVAL;
1656 		if (start & ~PAGE_MASK)
1657 			return -EINVAL;
1658 		if (end != vma->vm_end && end & ~PAGE_MASK)
1659 			return -EINVAL;
1660 		if (start != vma->vm_start && end != vma->vm_end) {
1661 			ret = split_vma(mm, vma, start, 1);
1662 			if (ret < 0)
1663 				return ret;
1664 		}
1665 		return shrink_vma(mm, vma, start, end);
1666 	}
1667 
1668 erase_whole_vma:
1669 	delete_vma_from_mm(vma);
1670 	delete_vma(mm, vma);
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL(do_munmap);
1674 
1675 int vm_munmap(unsigned long addr, size_t len)
1676 {
1677 	struct mm_struct *mm = current->mm;
1678 	int ret;
1679 
1680 	down_write(&mm->mmap_sem);
1681 	ret = do_munmap(mm, addr, len);
1682 	up_write(&mm->mmap_sem);
1683 	return ret;
1684 }
1685 EXPORT_SYMBOL(vm_munmap);
1686 
1687 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1688 {
1689 	return vm_munmap(addr, len);
1690 }
1691 
1692 /*
1693  * release all the mappings made in a process's VM space
1694  */
1695 void exit_mmap(struct mm_struct *mm)
1696 {
1697 	struct vm_area_struct *vma;
1698 
1699 	if (!mm)
1700 		return;
1701 
1702 	mm->total_vm = 0;
1703 
1704 	while ((vma = mm->mmap)) {
1705 		mm->mmap = vma->vm_next;
1706 		delete_vma_from_mm(vma);
1707 		delete_vma(mm, vma);
1708 		cond_resched();
1709 	}
1710 }
1711 
1712 unsigned long vm_brk(unsigned long addr, unsigned long len)
1713 {
1714 	return -ENOMEM;
1715 }
1716 
1717 /*
1718  * expand (or shrink) an existing mapping, potentially moving it at the same
1719  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1720  *
1721  * under NOMMU conditions, we only permit changing a mapping's size, and only
1722  * as long as it stays within the region allocated by do_mmap_private() and the
1723  * block is not shareable
1724  *
1725  * MREMAP_FIXED is not supported under NOMMU conditions
1726  */
1727 static unsigned long do_mremap(unsigned long addr,
1728 			unsigned long old_len, unsigned long new_len,
1729 			unsigned long flags, unsigned long new_addr)
1730 {
1731 	struct vm_area_struct *vma;
1732 
1733 	/* insanity checks first */
1734 	old_len = PAGE_ALIGN(old_len);
1735 	new_len = PAGE_ALIGN(new_len);
1736 	if (old_len == 0 || new_len == 0)
1737 		return (unsigned long) -EINVAL;
1738 
1739 	if (addr & ~PAGE_MASK)
1740 		return -EINVAL;
1741 
1742 	if (flags & MREMAP_FIXED && new_addr != addr)
1743 		return (unsigned long) -EINVAL;
1744 
1745 	vma = find_vma_exact(current->mm, addr, old_len);
1746 	if (!vma)
1747 		return (unsigned long) -EINVAL;
1748 
1749 	if (vma->vm_end != vma->vm_start + old_len)
1750 		return (unsigned long) -EFAULT;
1751 
1752 	if (vma->vm_flags & VM_MAYSHARE)
1753 		return (unsigned long) -EPERM;
1754 
1755 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1756 		return (unsigned long) -ENOMEM;
1757 
1758 	/* all checks complete - do it */
1759 	vma->vm_end = vma->vm_start + new_len;
1760 	return vma->vm_start;
1761 }
1762 
1763 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1764 		unsigned long, new_len, unsigned long, flags,
1765 		unsigned long, new_addr)
1766 {
1767 	unsigned long ret;
1768 
1769 	down_write(&current->mm->mmap_sem);
1770 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1771 	up_write(&current->mm->mmap_sem);
1772 	return ret;
1773 }
1774 
1775 struct page *follow_page_mask(struct vm_area_struct *vma,
1776 			      unsigned long address, unsigned int flags,
1777 			      unsigned int *page_mask)
1778 {
1779 	*page_mask = 0;
1780 	return NULL;
1781 }
1782 
1783 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1784 		unsigned long pfn, unsigned long size, pgprot_t prot)
1785 {
1786 	if (addr != (pfn << PAGE_SHIFT))
1787 		return -EINVAL;
1788 
1789 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(remap_pfn_range);
1793 
1794 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1795 {
1796 	unsigned long pfn = start >> PAGE_SHIFT;
1797 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1798 
1799 	pfn += vma->vm_pgoff;
1800 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1801 }
1802 EXPORT_SYMBOL(vm_iomap_memory);
1803 
1804 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1805 			unsigned long pgoff)
1806 {
1807 	unsigned int size = vma->vm_end - vma->vm_start;
1808 
1809 	if (!(vma->vm_flags & VM_USERMAP))
1810 		return -EINVAL;
1811 
1812 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1813 	vma->vm_end = vma->vm_start + size;
1814 
1815 	return 0;
1816 }
1817 EXPORT_SYMBOL(remap_vmalloc_range);
1818 
1819 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1820 	unsigned long len, unsigned long pgoff, unsigned long flags)
1821 {
1822 	return -ENOMEM;
1823 }
1824 
1825 void unmap_mapping_range(struct address_space *mapping,
1826 			 loff_t const holebegin, loff_t const holelen,
1827 			 int even_cows)
1828 {
1829 }
1830 EXPORT_SYMBOL(unmap_mapping_range);
1831 
1832 /*
1833  * Check that a process has enough memory to allocate a new virtual
1834  * mapping. 0 means there is enough memory for the allocation to
1835  * succeed and -ENOMEM implies there is not.
1836  *
1837  * We currently support three overcommit policies, which are set via the
1838  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1839  *
1840  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1841  * Additional code 2002 Jul 20 by Robert Love.
1842  *
1843  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1844  *
1845  * Note this is a helper function intended to be used by LSMs which
1846  * wish to use this logic.
1847  */
1848 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1849 {
1850 	long free, allowed, reserve;
1851 
1852 	vm_acct_memory(pages);
1853 
1854 	/*
1855 	 * Sometimes we want to use more memory than we have
1856 	 */
1857 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1858 		return 0;
1859 
1860 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1861 		free = global_page_state(NR_FREE_PAGES);
1862 		free += global_page_state(NR_FILE_PAGES);
1863 
1864 		/*
1865 		 * shmem pages shouldn't be counted as free in this
1866 		 * case, they can't be purged, only swapped out, and
1867 		 * that won't affect the overall amount of available
1868 		 * memory in the system.
1869 		 */
1870 		free -= global_page_state(NR_SHMEM);
1871 
1872 		free += get_nr_swap_pages();
1873 
1874 		/*
1875 		 * Any slabs which are created with the
1876 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1877 		 * which are reclaimable, under pressure.  The dentry
1878 		 * cache and most inode caches should fall into this
1879 		 */
1880 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1881 
1882 		/*
1883 		 * Leave reserved pages. The pages are not for anonymous pages.
1884 		 */
1885 		if (free <= totalreserve_pages)
1886 			goto error;
1887 		else
1888 			free -= totalreserve_pages;
1889 
1890 		/*
1891 		 * Reserve some for root
1892 		 */
1893 		if (!cap_sys_admin)
1894 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1895 
1896 		if (free > pages)
1897 			return 0;
1898 
1899 		goto error;
1900 	}
1901 
1902 	allowed = vm_commit_limit();
1903 	/*
1904 	 * Reserve some 3% for root
1905 	 */
1906 	if (!cap_sys_admin)
1907 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1908 
1909 	/*
1910 	 * Don't let a single process grow so big a user can't recover
1911 	 */
1912 	if (mm) {
1913 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1914 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1915 	}
1916 
1917 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1918 		return 0;
1919 
1920 error:
1921 	vm_unacct_memory(pages);
1922 
1923 	return -ENOMEM;
1924 }
1925 
1926 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1927 {
1928 	BUG();
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL(filemap_fault);
1932 
1933 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1934 {
1935 	BUG();
1936 }
1937 EXPORT_SYMBOL(filemap_map_pages);
1938 
1939 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1940 		unsigned long addr, void *buf, int len, int write)
1941 {
1942 	struct vm_area_struct *vma;
1943 
1944 	down_read(&mm->mmap_sem);
1945 
1946 	/* the access must start within one of the target process's mappings */
1947 	vma = find_vma(mm, addr);
1948 	if (vma) {
1949 		/* don't overrun this mapping */
1950 		if (addr + len >= vma->vm_end)
1951 			len = vma->vm_end - addr;
1952 
1953 		/* only read or write mappings where it is permitted */
1954 		if (write && vma->vm_flags & VM_MAYWRITE)
1955 			copy_to_user_page(vma, NULL, addr,
1956 					 (void *) addr, buf, len);
1957 		else if (!write && vma->vm_flags & VM_MAYREAD)
1958 			copy_from_user_page(vma, NULL, addr,
1959 					    buf, (void *) addr, len);
1960 		else
1961 			len = 0;
1962 	} else {
1963 		len = 0;
1964 	}
1965 
1966 	up_read(&mm->mmap_sem);
1967 
1968 	return len;
1969 }
1970 
1971 /**
1972  * @access_remote_vm - access another process' address space
1973  * @mm:		the mm_struct of the target address space
1974  * @addr:	start address to access
1975  * @buf:	source or destination buffer
1976  * @len:	number of bytes to transfer
1977  * @write:	whether the access is a write
1978  *
1979  * The caller must hold a reference on @mm.
1980  */
1981 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1982 		void *buf, int len, int write)
1983 {
1984 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
1985 }
1986 
1987 /*
1988  * Access another process' address space.
1989  * - source/target buffer must be kernel space
1990  */
1991 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1992 {
1993 	struct mm_struct *mm;
1994 
1995 	if (addr + len < addr)
1996 		return 0;
1997 
1998 	mm = get_task_mm(tsk);
1999 	if (!mm)
2000 		return 0;
2001 
2002 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2003 
2004 	mmput(mm);
2005 	return len;
2006 }
2007 
2008 /**
2009  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2010  * @inode: The inode to check
2011  * @size: The current filesize of the inode
2012  * @newsize: The proposed filesize of the inode
2013  *
2014  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2015  * make sure that that any outstanding VMAs aren't broken and then shrink the
2016  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2017  * automatically grant mappings that are too large.
2018  */
2019 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2020 				size_t newsize)
2021 {
2022 	struct vm_area_struct *vma;
2023 	struct vm_region *region;
2024 	pgoff_t low, high;
2025 	size_t r_size, r_top;
2026 
2027 	low = newsize >> PAGE_SHIFT;
2028 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2029 
2030 	down_write(&nommu_region_sem);
2031 	i_mmap_lock_read(inode->i_mapping);
2032 
2033 	/* search for VMAs that fall within the dead zone */
2034 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2035 		/* found one - only interested if it's shared out of the page
2036 		 * cache */
2037 		if (vma->vm_flags & VM_SHARED) {
2038 			i_mmap_unlock_read(inode->i_mapping);
2039 			up_write(&nommu_region_sem);
2040 			return -ETXTBSY; /* not quite true, but near enough */
2041 		}
2042 	}
2043 
2044 	/* reduce any regions that overlap the dead zone - if in existence,
2045 	 * these will be pointed to by VMAs that don't overlap the dead zone
2046 	 *
2047 	 * we don't check for any regions that start beyond the EOF as there
2048 	 * shouldn't be any
2049 	 */
2050 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2051 		if (!(vma->vm_flags & VM_SHARED))
2052 			continue;
2053 
2054 		region = vma->vm_region;
2055 		r_size = region->vm_top - region->vm_start;
2056 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2057 
2058 		if (r_top > newsize) {
2059 			region->vm_top -= r_top - newsize;
2060 			if (region->vm_end > region->vm_top)
2061 				region->vm_end = region->vm_top;
2062 		}
2063 	}
2064 
2065 	i_mmap_unlock_read(inode->i_mapping);
2066 	up_write(&nommu_region_sem);
2067 	return 0;
2068 }
2069 
2070 /*
2071  * Initialise sysctl_user_reserve_kbytes.
2072  *
2073  * This is intended to prevent a user from starting a single memory hogging
2074  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2075  * mode.
2076  *
2077  * The default value is min(3% of free memory, 128MB)
2078  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2079  */
2080 static int __meminit init_user_reserve(void)
2081 {
2082 	unsigned long free_kbytes;
2083 
2084 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2085 
2086 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2087 	return 0;
2088 }
2089 subsys_initcall(init_user_reserve);
2090 
2091 /*
2092  * Initialise sysctl_admin_reserve_kbytes.
2093  *
2094  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2095  * to log in and kill a memory hogging process.
2096  *
2097  * Systems with more than 256MB will reserve 8MB, enough to recover
2098  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2099  * only reserve 3% of free pages by default.
2100  */
2101 static int __meminit init_admin_reserve(void)
2102 {
2103 	unsigned long free_kbytes;
2104 
2105 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2106 
2107 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2108 	return 0;
2109 }
2110 subsys_initcall(init_admin_reserve);
2111