1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmacache.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/blkdev.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return PAGE_SIZE << compound_order(page); 111 } 112 113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 114 unsigned long start, unsigned long nr_pages, 115 unsigned int foll_flags, struct page **pages, 116 struct vm_area_struct **vmas, int *nonblocking) 117 { 118 struct vm_area_struct *vma; 119 unsigned long vm_flags; 120 int i; 121 122 /* calculate required read or write permissions. 123 * If FOLL_FORCE is set, we only require the "MAY" flags. 124 */ 125 vm_flags = (foll_flags & FOLL_WRITE) ? 126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 127 vm_flags &= (foll_flags & FOLL_FORCE) ? 128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 129 130 for (i = 0; i < nr_pages; i++) { 131 vma = find_vma(mm, start); 132 if (!vma) 133 goto finish_or_fault; 134 135 /* protect what we can, including chardevs */ 136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 137 !(vm_flags & vma->vm_flags)) 138 goto finish_or_fault; 139 140 if (pages) { 141 pages[i] = virt_to_page(start); 142 if (pages[i]) 143 get_page(pages[i]); 144 } 145 if (vmas) 146 vmas[i] = vma; 147 start = (start + PAGE_SIZE) & PAGE_MASK; 148 } 149 150 return i; 151 152 finish_or_fault: 153 return i ? : -EFAULT; 154 } 155 156 /* 157 * get a list of pages in an address range belonging to the specified process 158 * and indicate the VMA that covers each page 159 * - this is potentially dodgy as we may end incrementing the page count of a 160 * slab page or a secondary page from a compound page 161 * - don't permit access to VMAs that don't support it, such as I/O mappings 162 */ 163 long get_user_pages(unsigned long start, unsigned long nr_pages, 164 unsigned int gup_flags, struct page **pages, 165 struct vm_area_struct **vmas) 166 { 167 return __get_user_pages(current, current->mm, start, nr_pages, 168 gup_flags, pages, vmas, NULL); 169 } 170 EXPORT_SYMBOL(get_user_pages); 171 172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 173 unsigned int gup_flags, struct page **pages, 174 int *locked) 175 { 176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 177 } 178 EXPORT_SYMBOL(get_user_pages_locked); 179 180 static long __get_user_pages_unlocked(struct task_struct *tsk, 181 struct mm_struct *mm, unsigned long start, 182 unsigned long nr_pages, struct page **pages, 183 unsigned int gup_flags) 184 { 185 long ret; 186 down_read(&mm->mmap_sem); 187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 188 NULL, NULL); 189 up_read(&mm->mmap_sem); 190 return ret; 191 } 192 193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 194 struct page **pages, unsigned int gup_flags) 195 { 196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 197 pages, gup_flags); 198 } 199 EXPORT_SYMBOL(get_user_pages_unlocked); 200 201 /** 202 * follow_pfn - look up PFN at a user virtual address 203 * @vma: memory mapping 204 * @address: user virtual address 205 * @pfn: location to store found PFN 206 * 207 * Only IO mappings and raw PFN mappings are allowed. 208 * 209 * Returns zero and the pfn at @pfn on success, -ve otherwise. 210 */ 211 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 212 unsigned long *pfn) 213 { 214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 215 return -EINVAL; 216 217 *pfn = address >> PAGE_SHIFT; 218 return 0; 219 } 220 EXPORT_SYMBOL(follow_pfn); 221 222 LIST_HEAD(vmap_area_list); 223 224 void vfree(const void *addr) 225 { 226 kfree(addr); 227 } 228 EXPORT_SYMBOL(vfree); 229 230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 231 { 232 /* 233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 234 * returns only a logical address. 235 */ 236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(__vmalloc); 239 240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 241 { 242 return __vmalloc(size, flags, PAGE_KERNEL); 243 } 244 245 void *vmalloc_user(unsigned long size) 246 { 247 void *ret; 248 249 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 250 if (ret) { 251 struct vm_area_struct *vma; 252 253 down_write(¤t->mm->mmap_sem); 254 vma = find_vma(current->mm, (unsigned long)ret); 255 if (vma) 256 vma->vm_flags |= VM_USERMAP; 257 up_write(¤t->mm->mmap_sem); 258 } 259 260 return ret; 261 } 262 EXPORT_SYMBOL(vmalloc_user); 263 264 struct page *vmalloc_to_page(const void *addr) 265 { 266 return virt_to_page(addr); 267 } 268 EXPORT_SYMBOL(vmalloc_to_page); 269 270 unsigned long vmalloc_to_pfn(const void *addr) 271 { 272 return page_to_pfn(virt_to_page(addr)); 273 } 274 EXPORT_SYMBOL(vmalloc_to_pfn); 275 276 long vread(char *buf, char *addr, unsigned long count) 277 { 278 /* Don't allow overflow */ 279 if ((unsigned long) buf + count < count) 280 count = -(unsigned long) buf; 281 282 memcpy(buf, addr, count); 283 return count; 284 } 285 286 long vwrite(char *buf, char *addr, unsigned long count) 287 { 288 /* Don't allow overflow */ 289 if ((unsigned long) addr + count < count) 290 count = -(unsigned long) addr; 291 292 memcpy(addr, buf, count); 293 return count; 294 } 295 296 /* 297 * vmalloc - allocate virtually contiguous memory 298 * 299 * @size: allocation size 300 * 301 * Allocate enough pages to cover @size from the page level 302 * allocator and map them into contiguous kernel virtual space. 303 * 304 * For tight control over page level allocator and protection flags 305 * use __vmalloc() instead. 306 */ 307 void *vmalloc(unsigned long size) 308 { 309 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 310 } 311 EXPORT_SYMBOL(vmalloc); 312 313 /* 314 * vzalloc - allocate virtually contiguous memory with zero fill 315 * 316 * @size: allocation size 317 * 318 * Allocate enough pages to cover @size from the page level 319 * allocator and map them into contiguous kernel virtual space. 320 * The memory allocated is set to zero. 321 * 322 * For tight control over page level allocator and protection flags 323 * use __vmalloc() instead. 324 */ 325 void *vzalloc(unsigned long size) 326 { 327 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 328 PAGE_KERNEL); 329 } 330 EXPORT_SYMBOL(vzalloc); 331 332 /** 333 * vmalloc_node - allocate memory on a specific node 334 * @size: allocation size 335 * @node: numa node 336 * 337 * Allocate enough pages to cover @size from the page level 338 * allocator and map them into contiguous kernel virtual space. 339 * 340 * For tight control over page level allocator and protection flags 341 * use __vmalloc() instead. 342 */ 343 void *vmalloc_node(unsigned long size, int node) 344 { 345 return vmalloc(size); 346 } 347 EXPORT_SYMBOL(vmalloc_node); 348 349 /** 350 * vzalloc_node - allocate memory on a specific node with zero fill 351 * @size: allocation size 352 * @node: numa node 353 * 354 * Allocate enough pages to cover @size from the page level 355 * allocator and map them into contiguous kernel virtual space. 356 * The memory allocated is set to zero. 357 * 358 * For tight control over page level allocator and protection flags 359 * use __vmalloc() instead. 360 */ 361 void *vzalloc_node(unsigned long size, int node) 362 { 363 return vzalloc(size); 364 } 365 EXPORT_SYMBOL(vzalloc_node); 366 367 #ifndef PAGE_KERNEL_EXEC 368 # define PAGE_KERNEL_EXEC PAGE_KERNEL 369 #endif 370 371 /** 372 * vmalloc_exec - allocate virtually contiguous, executable memory 373 * @size: allocation size 374 * 375 * Kernel-internal function to allocate enough pages to cover @size 376 * the page level allocator and map them into contiguous and 377 * executable kernel virtual space. 378 * 379 * For tight control over page level allocator and protection flags 380 * use __vmalloc() instead. 381 */ 382 383 void *vmalloc_exec(unsigned long size) 384 { 385 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 386 } 387 388 /** 389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 390 * @size: allocation size 391 * 392 * Allocate enough 32bit PA addressable pages to cover @size from the 393 * page level allocator and map them into contiguous kernel virtual space. 394 */ 395 void *vmalloc_32(unsigned long size) 396 { 397 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 398 } 399 EXPORT_SYMBOL(vmalloc_32); 400 401 /** 402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 403 * @size: allocation size 404 * 405 * The resulting memory area is 32bit addressable and zeroed so it can be 406 * mapped to userspace without leaking data. 407 * 408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 409 * remap_vmalloc_range() are permissible. 410 */ 411 void *vmalloc_32_user(unsigned long size) 412 { 413 /* 414 * We'll have to sort out the ZONE_DMA bits for 64-bit, 415 * but for now this can simply use vmalloc_user() directly. 416 */ 417 return vmalloc_user(size); 418 } 419 EXPORT_SYMBOL(vmalloc_32_user); 420 421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 422 { 423 BUG(); 424 return NULL; 425 } 426 EXPORT_SYMBOL(vmap); 427 428 void vunmap(const void *addr) 429 { 430 BUG(); 431 } 432 EXPORT_SYMBOL(vunmap); 433 434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 435 { 436 BUG(); 437 return NULL; 438 } 439 EXPORT_SYMBOL(vm_map_ram); 440 441 void vm_unmap_ram(const void *mem, unsigned int count) 442 { 443 BUG(); 444 } 445 EXPORT_SYMBOL(vm_unmap_ram); 446 447 void vm_unmap_aliases(void) 448 { 449 } 450 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 451 452 /* 453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 454 * have one. 455 */ 456 void __weak vmalloc_sync_all(void) 457 { 458 } 459 460 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 461 { 462 BUG(); 463 return NULL; 464 } 465 EXPORT_SYMBOL_GPL(alloc_vm_area); 466 467 void free_vm_area(struct vm_struct *area) 468 { 469 BUG(); 470 } 471 EXPORT_SYMBOL_GPL(free_vm_area); 472 473 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 474 struct page *page) 475 { 476 return -EINVAL; 477 } 478 EXPORT_SYMBOL(vm_insert_page); 479 480 /* 481 * sys_brk() for the most part doesn't need the global kernel 482 * lock, except when an application is doing something nasty 483 * like trying to un-brk an area that has already been mapped 484 * to a regular file. in this case, the unmapping will need 485 * to invoke file system routines that need the global lock. 486 */ 487 SYSCALL_DEFINE1(brk, unsigned long, brk) 488 { 489 struct mm_struct *mm = current->mm; 490 491 if (brk < mm->start_brk || brk > mm->context.end_brk) 492 return mm->brk; 493 494 if (mm->brk == brk) 495 return mm->brk; 496 497 /* 498 * Always allow shrinking brk 499 */ 500 if (brk <= mm->brk) { 501 mm->brk = brk; 502 return brk; 503 } 504 505 /* 506 * Ok, looks good - let it rip. 507 */ 508 flush_icache_range(mm->brk, brk); 509 return mm->brk = brk; 510 } 511 512 /* 513 * initialise the percpu counter for VM and region record slabs 514 */ 515 void __init mmap_init(void) 516 { 517 int ret; 518 519 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 520 VM_BUG_ON(ret); 521 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 522 } 523 524 /* 525 * validate the region tree 526 * - the caller must hold the region lock 527 */ 528 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 529 static noinline void validate_nommu_regions(void) 530 { 531 struct vm_region *region, *last; 532 struct rb_node *p, *lastp; 533 534 lastp = rb_first(&nommu_region_tree); 535 if (!lastp) 536 return; 537 538 last = rb_entry(lastp, struct vm_region, vm_rb); 539 BUG_ON(last->vm_end <= last->vm_start); 540 BUG_ON(last->vm_top < last->vm_end); 541 542 while ((p = rb_next(lastp))) { 543 region = rb_entry(p, struct vm_region, vm_rb); 544 last = rb_entry(lastp, struct vm_region, vm_rb); 545 546 BUG_ON(region->vm_end <= region->vm_start); 547 BUG_ON(region->vm_top < region->vm_end); 548 BUG_ON(region->vm_start < last->vm_top); 549 550 lastp = p; 551 } 552 } 553 #else 554 static void validate_nommu_regions(void) 555 { 556 } 557 #endif 558 559 /* 560 * add a region into the global tree 561 */ 562 static void add_nommu_region(struct vm_region *region) 563 { 564 struct vm_region *pregion; 565 struct rb_node **p, *parent; 566 567 validate_nommu_regions(); 568 569 parent = NULL; 570 p = &nommu_region_tree.rb_node; 571 while (*p) { 572 parent = *p; 573 pregion = rb_entry(parent, struct vm_region, vm_rb); 574 if (region->vm_start < pregion->vm_start) 575 p = &(*p)->rb_left; 576 else if (region->vm_start > pregion->vm_start) 577 p = &(*p)->rb_right; 578 else if (pregion == region) 579 return; 580 else 581 BUG(); 582 } 583 584 rb_link_node(®ion->vm_rb, parent, p); 585 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 586 587 validate_nommu_regions(); 588 } 589 590 /* 591 * delete a region from the global tree 592 */ 593 static void delete_nommu_region(struct vm_region *region) 594 { 595 BUG_ON(!nommu_region_tree.rb_node); 596 597 validate_nommu_regions(); 598 rb_erase(®ion->vm_rb, &nommu_region_tree); 599 validate_nommu_regions(); 600 } 601 602 /* 603 * free a contiguous series of pages 604 */ 605 static void free_page_series(unsigned long from, unsigned long to) 606 { 607 for (; from < to; from += PAGE_SIZE) { 608 struct page *page = virt_to_page(from); 609 610 atomic_long_dec(&mmap_pages_allocated); 611 put_page(page); 612 } 613 } 614 615 /* 616 * release a reference to a region 617 * - the caller must hold the region semaphore for writing, which this releases 618 * - the region may not have been added to the tree yet, in which case vm_top 619 * will equal vm_start 620 */ 621 static void __put_nommu_region(struct vm_region *region) 622 __releases(nommu_region_sem) 623 { 624 BUG_ON(!nommu_region_tree.rb_node); 625 626 if (--region->vm_usage == 0) { 627 if (region->vm_top > region->vm_start) 628 delete_nommu_region(region); 629 up_write(&nommu_region_sem); 630 631 if (region->vm_file) 632 fput(region->vm_file); 633 634 /* IO memory and memory shared directly out of the pagecache 635 * from ramfs/tmpfs mustn't be released here */ 636 if (region->vm_flags & VM_MAPPED_COPY) 637 free_page_series(region->vm_start, region->vm_top); 638 kmem_cache_free(vm_region_jar, region); 639 } else { 640 up_write(&nommu_region_sem); 641 } 642 } 643 644 /* 645 * release a reference to a region 646 */ 647 static void put_nommu_region(struct vm_region *region) 648 { 649 down_write(&nommu_region_sem); 650 __put_nommu_region(region); 651 } 652 653 /* 654 * add a VMA into a process's mm_struct in the appropriate place in the list 655 * and tree and add to the address space's page tree also if not an anonymous 656 * page 657 * - should be called with mm->mmap_sem held writelocked 658 */ 659 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 660 { 661 struct vm_area_struct *pvma, *prev; 662 struct address_space *mapping; 663 struct rb_node **p, *parent, *rb_prev; 664 665 BUG_ON(!vma->vm_region); 666 667 mm->map_count++; 668 vma->vm_mm = mm; 669 670 /* add the VMA to the mapping */ 671 if (vma->vm_file) { 672 mapping = vma->vm_file->f_mapping; 673 674 i_mmap_lock_write(mapping); 675 flush_dcache_mmap_lock(mapping); 676 vma_interval_tree_insert(vma, &mapping->i_mmap); 677 flush_dcache_mmap_unlock(mapping); 678 i_mmap_unlock_write(mapping); 679 } 680 681 /* add the VMA to the tree */ 682 parent = rb_prev = NULL; 683 p = &mm->mm_rb.rb_node; 684 while (*p) { 685 parent = *p; 686 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 687 688 /* sort by: start addr, end addr, VMA struct addr in that order 689 * (the latter is necessary as we may get identical VMAs) */ 690 if (vma->vm_start < pvma->vm_start) 691 p = &(*p)->rb_left; 692 else if (vma->vm_start > pvma->vm_start) { 693 rb_prev = parent; 694 p = &(*p)->rb_right; 695 } else if (vma->vm_end < pvma->vm_end) 696 p = &(*p)->rb_left; 697 else if (vma->vm_end > pvma->vm_end) { 698 rb_prev = parent; 699 p = &(*p)->rb_right; 700 } else if (vma < pvma) 701 p = &(*p)->rb_left; 702 else if (vma > pvma) { 703 rb_prev = parent; 704 p = &(*p)->rb_right; 705 } else 706 BUG(); 707 } 708 709 rb_link_node(&vma->vm_rb, parent, p); 710 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 711 712 /* add VMA to the VMA list also */ 713 prev = NULL; 714 if (rb_prev) 715 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 716 717 __vma_link_list(mm, vma, prev, parent); 718 } 719 720 /* 721 * delete a VMA from its owning mm_struct and address space 722 */ 723 static void delete_vma_from_mm(struct vm_area_struct *vma) 724 { 725 int i; 726 struct address_space *mapping; 727 struct mm_struct *mm = vma->vm_mm; 728 struct task_struct *curr = current; 729 730 mm->map_count--; 731 for (i = 0; i < VMACACHE_SIZE; i++) { 732 /* if the vma is cached, invalidate the entire cache */ 733 if (curr->vmacache.vmas[i] == vma) { 734 vmacache_invalidate(mm); 735 break; 736 } 737 } 738 739 /* remove the VMA from the mapping */ 740 if (vma->vm_file) { 741 mapping = vma->vm_file->f_mapping; 742 743 i_mmap_lock_write(mapping); 744 flush_dcache_mmap_lock(mapping); 745 vma_interval_tree_remove(vma, &mapping->i_mmap); 746 flush_dcache_mmap_unlock(mapping); 747 i_mmap_unlock_write(mapping); 748 } 749 750 /* remove from the MM's tree and list */ 751 rb_erase(&vma->vm_rb, &mm->mm_rb); 752 753 if (vma->vm_prev) 754 vma->vm_prev->vm_next = vma->vm_next; 755 else 756 mm->mmap = vma->vm_next; 757 758 if (vma->vm_next) 759 vma->vm_next->vm_prev = vma->vm_prev; 760 } 761 762 /* 763 * destroy a VMA record 764 */ 765 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 766 { 767 if (vma->vm_ops && vma->vm_ops->close) 768 vma->vm_ops->close(vma); 769 if (vma->vm_file) 770 fput(vma->vm_file); 771 put_nommu_region(vma->vm_region); 772 vm_area_free(vma); 773 } 774 775 /* 776 * look up the first VMA in which addr resides, NULL if none 777 * - should be called with mm->mmap_sem at least held readlocked 778 */ 779 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 780 { 781 struct vm_area_struct *vma; 782 783 /* check the cache first */ 784 vma = vmacache_find(mm, addr); 785 if (likely(vma)) 786 return vma; 787 788 /* trawl the list (there may be multiple mappings in which addr 789 * resides) */ 790 for (vma = mm->mmap; vma; vma = vma->vm_next) { 791 if (vma->vm_start > addr) 792 return NULL; 793 if (vma->vm_end > addr) { 794 vmacache_update(addr, vma); 795 return vma; 796 } 797 } 798 799 return NULL; 800 } 801 EXPORT_SYMBOL(find_vma); 802 803 /* 804 * find a VMA 805 * - we don't extend stack VMAs under NOMMU conditions 806 */ 807 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 808 { 809 return find_vma(mm, addr); 810 } 811 812 /* 813 * expand a stack to a given address 814 * - not supported under NOMMU conditions 815 */ 816 int expand_stack(struct vm_area_struct *vma, unsigned long address) 817 { 818 return -ENOMEM; 819 } 820 821 /* 822 * look up the first VMA exactly that exactly matches addr 823 * - should be called with mm->mmap_sem at least held readlocked 824 */ 825 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 826 unsigned long addr, 827 unsigned long len) 828 { 829 struct vm_area_struct *vma; 830 unsigned long end = addr + len; 831 832 /* check the cache first */ 833 vma = vmacache_find_exact(mm, addr, end); 834 if (vma) 835 return vma; 836 837 /* trawl the list (there may be multiple mappings in which addr 838 * resides) */ 839 for (vma = mm->mmap; vma; vma = vma->vm_next) { 840 if (vma->vm_start < addr) 841 continue; 842 if (vma->vm_start > addr) 843 return NULL; 844 if (vma->vm_end == end) { 845 vmacache_update(addr, vma); 846 return vma; 847 } 848 } 849 850 return NULL; 851 } 852 853 /* 854 * determine whether a mapping should be permitted and, if so, what sort of 855 * mapping we're capable of supporting 856 */ 857 static int validate_mmap_request(struct file *file, 858 unsigned long addr, 859 unsigned long len, 860 unsigned long prot, 861 unsigned long flags, 862 unsigned long pgoff, 863 unsigned long *_capabilities) 864 { 865 unsigned long capabilities, rlen; 866 int ret; 867 868 /* do the simple checks first */ 869 if (flags & MAP_FIXED) 870 return -EINVAL; 871 872 if ((flags & MAP_TYPE) != MAP_PRIVATE && 873 (flags & MAP_TYPE) != MAP_SHARED) 874 return -EINVAL; 875 876 if (!len) 877 return -EINVAL; 878 879 /* Careful about overflows.. */ 880 rlen = PAGE_ALIGN(len); 881 if (!rlen || rlen > TASK_SIZE) 882 return -ENOMEM; 883 884 /* offset overflow? */ 885 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 886 return -EOVERFLOW; 887 888 if (file) { 889 /* files must support mmap */ 890 if (!file->f_op->mmap) 891 return -ENODEV; 892 893 /* work out if what we've got could possibly be shared 894 * - we support chardevs that provide their own "memory" 895 * - we support files/blockdevs that are memory backed 896 */ 897 if (file->f_op->mmap_capabilities) { 898 capabilities = file->f_op->mmap_capabilities(file); 899 } else { 900 /* no explicit capabilities set, so assume some 901 * defaults */ 902 switch (file_inode(file)->i_mode & S_IFMT) { 903 case S_IFREG: 904 case S_IFBLK: 905 capabilities = NOMMU_MAP_COPY; 906 break; 907 908 case S_IFCHR: 909 capabilities = 910 NOMMU_MAP_DIRECT | 911 NOMMU_MAP_READ | 912 NOMMU_MAP_WRITE; 913 break; 914 915 default: 916 return -EINVAL; 917 } 918 } 919 920 /* eliminate any capabilities that we can't support on this 921 * device */ 922 if (!file->f_op->get_unmapped_area) 923 capabilities &= ~NOMMU_MAP_DIRECT; 924 if (!(file->f_mode & FMODE_CAN_READ)) 925 capabilities &= ~NOMMU_MAP_COPY; 926 927 /* The file shall have been opened with read permission. */ 928 if (!(file->f_mode & FMODE_READ)) 929 return -EACCES; 930 931 if (flags & MAP_SHARED) { 932 /* do checks for writing, appending and locking */ 933 if ((prot & PROT_WRITE) && 934 !(file->f_mode & FMODE_WRITE)) 935 return -EACCES; 936 937 if (IS_APPEND(file_inode(file)) && 938 (file->f_mode & FMODE_WRITE)) 939 return -EACCES; 940 941 if (locks_verify_locked(file)) 942 return -EAGAIN; 943 944 if (!(capabilities & NOMMU_MAP_DIRECT)) 945 return -ENODEV; 946 947 /* we mustn't privatise shared mappings */ 948 capabilities &= ~NOMMU_MAP_COPY; 949 } else { 950 /* we're going to read the file into private memory we 951 * allocate */ 952 if (!(capabilities & NOMMU_MAP_COPY)) 953 return -ENODEV; 954 955 /* we don't permit a private writable mapping to be 956 * shared with the backing device */ 957 if (prot & PROT_WRITE) 958 capabilities &= ~NOMMU_MAP_DIRECT; 959 } 960 961 if (capabilities & NOMMU_MAP_DIRECT) { 962 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 963 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 964 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 965 ) { 966 capabilities &= ~NOMMU_MAP_DIRECT; 967 if (flags & MAP_SHARED) { 968 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 969 return -EINVAL; 970 } 971 } 972 } 973 974 /* handle executable mappings and implied executable 975 * mappings */ 976 if (path_noexec(&file->f_path)) { 977 if (prot & PROT_EXEC) 978 return -EPERM; 979 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 980 /* handle implication of PROT_EXEC by PROT_READ */ 981 if (current->personality & READ_IMPLIES_EXEC) { 982 if (capabilities & NOMMU_MAP_EXEC) 983 prot |= PROT_EXEC; 984 } 985 } else if ((prot & PROT_READ) && 986 (prot & PROT_EXEC) && 987 !(capabilities & NOMMU_MAP_EXEC) 988 ) { 989 /* backing file is not executable, try to copy */ 990 capabilities &= ~NOMMU_MAP_DIRECT; 991 } 992 } else { 993 /* anonymous mappings are always memory backed and can be 994 * privately mapped 995 */ 996 capabilities = NOMMU_MAP_COPY; 997 998 /* handle PROT_EXEC implication by PROT_READ */ 999 if ((prot & PROT_READ) && 1000 (current->personality & READ_IMPLIES_EXEC)) 1001 prot |= PROT_EXEC; 1002 } 1003 1004 /* allow the security API to have its say */ 1005 ret = security_mmap_addr(addr); 1006 if (ret < 0) 1007 return ret; 1008 1009 /* looks okay */ 1010 *_capabilities = capabilities; 1011 return 0; 1012 } 1013 1014 /* 1015 * we've determined that we can make the mapping, now translate what we 1016 * now know into VMA flags 1017 */ 1018 static unsigned long determine_vm_flags(struct file *file, 1019 unsigned long prot, 1020 unsigned long flags, 1021 unsigned long capabilities) 1022 { 1023 unsigned long vm_flags; 1024 1025 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1026 /* vm_flags |= mm->def_flags; */ 1027 1028 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1029 /* attempt to share read-only copies of mapped file chunks */ 1030 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1031 if (file && !(prot & PROT_WRITE)) 1032 vm_flags |= VM_MAYSHARE; 1033 } else { 1034 /* overlay a shareable mapping on the backing device or inode 1035 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1036 * romfs/cramfs */ 1037 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1038 if (flags & MAP_SHARED) 1039 vm_flags |= VM_SHARED; 1040 } 1041 1042 /* refuse to let anyone share private mappings with this process if 1043 * it's being traced - otherwise breakpoints set in it may interfere 1044 * with another untraced process 1045 */ 1046 if ((flags & MAP_PRIVATE) && current->ptrace) 1047 vm_flags &= ~VM_MAYSHARE; 1048 1049 return vm_flags; 1050 } 1051 1052 /* 1053 * set up a shared mapping on a file (the driver or filesystem provides and 1054 * pins the storage) 1055 */ 1056 static int do_mmap_shared_file(struct vm_area_struct *vma) 1057 { 1058 int ret; 1059 1060 ret = call_mmap(vma->vm_file, vma); 1061 if (ret == 0) { 1062 vma->vm_region->vm_top = vma->vm_region->vm_end; 1063 return 0; 1064 } 1065 if (ret != -ENOSYS) 1066 return ret; 1067 1068 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1069 * opposed to tried but failed) so we can only give a suitable error as 1070 * it's not possible to make a private copy if MAP_SHARED was given */ 1071 return -ENODEV; 1072 } 1073 1074 /* 1075 * set up a private mapping or an anonymous shared mapping 1076 */ 1077 static int do_mmap_private(struct vm_area_struct *vma, 1078 struct vm_region *region, 1079 unsigned long len, 1080 unsigned long capabilities) 1081 { 1082 unsigned long total, point; 1083 void *base; 1084 int ret, order; 1085 1086 /* invoke the file's mapping function so that it can keep track of 1087 * shared mappings on devices or memory 1088 * - VM_MAYSHARE will be set if it may attempt to share 1089 */ 1090 if (capabilities & NOMMU_MAP_DIRECT) { 1091 ret = call_mmap(vma->vm_file, vma); 1092 if (ret == 0) { 1093 /* shouldn't return success if we're not sharing */ 1094 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1095 vma->vm_region->vm_top = vma->vm_region->vm_end; 1096 return 0; 1097 } 1098 if (ret != -ENOSYS) 1099 return ret; 1100 1101 /* getting an ENOSYS error indicates that direct mmap isn't 1102 * possible (as opposed to tried but failed) so we'll try to 1103 * make a private copy of the data and map that instead */ 1104 } 1105 1106 1107 /* allocate some memory to hold the mapping 1108 * - note that this may not return a page-aligned address if the object 1109 * we're allocating is smaller than a page 1110 */ 1111 order = get_order(len); 1112 total = 1 << order; 1113 point = len >> PAGE_SHIFT; 1114 1115 /* we don't want to allocate a power-of-2 sized page set */ 1116 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1117 total = point; 1118 1119 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1120 if (!base) 1121 goto enomem; 1122 1123 atomic_long_add(total, &mmap_pages_allocated); 1124 1125 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1126 region->vm_start = (unsigned long) base; 1127 region->vm_end = region->vm_start + len; 1128 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1129 1130 vma->vm_start = region->vm_start; 1131 vma->vm_end = region->vm_start + len; 1132 1133 if (vma->vm_file) { 1134 /* read the contents of a file into the copy */ 1135 loff_t fpos; 1136 1137 fpos = vma->vm_pgoff; 1138 fpos <<= PAGE_SHIFT; 1139 1140 ret = kernel_read(vma->vm_file, base, len, &fpos); 1141 if (ret < 0) 1142 goto error_free; 1143 1144 /* clear the last little bit */ 1145 if (ret < len) 1146 memset(base + ret, 0, len - ret); 1147 1148 } else { 1149 vma_set_anonymous(vma); 1150 } 1151 1152 return 0; 1153 1154 error_free: 1155 free_page_series(region->vm_start, region->vm_top); 1156 region->vm_start = vma->vm_start = 0; 1157 region->vm_end = vma->vm_end = 0; 1158 region->vm_top = 0; 1159 return ret; 1160 1161 enomem: 1162 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1163 len, current->pid, current->comm); 1164 show_free_areas(0, NULL); 1165 return -ENOMEM; 1166 } 1167 1168 /* 1169 * handle mapping creation for uClinux 1170 */ 1171 unsigned long do_mmap(struct file *file, 1172 unsigned long addr, 1173 unsigned long len, 1174 unsigned long prot, 1175 unsigned long flags, 1176 vm_flags_t vm_flags, 1177 unsigned long pgoff, 1178 unsigned long *populate, 1179 struct list_head *uf) 1180 { 1181 struct vm_area_struct *vma; 1182 struct vm_region *region; 1183 struct rb_node *rb; 1184 unsigned long capabilities, result; 1185 int ret; 1186 1187 *populate = 0; 1188 1189 /* decide whether we should attempt the mapping, and if so what sort of 1190 * mapping */ 1191 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1192 &capabilities); 1193 if (ret < 0) 1194 return ret; 1195 1196 /* we ignore the address hint */ 1197 addr = 0; 1198 len = PAGE_ALIGN(len); 1199 1200 /* we've determined that we can make the mapping, now translate what we 1201 * now know into VMA flags */ 1202 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1203 1204 /* we're going to need to record the mapping */ 1205 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1206 if (!region) 1207 goto error_getting_region; 1208 1209 vma = vm_area_alloc(current->mm); 1210 if (!vma) 1211 goto error_getting_vma; 1212 1213 region->vm_usage = 1; 1214 region->vm_flags = vm_flags; 1215 region->vm_pgoff = pgoff; 1216 1217 vma->vm_flags = vm_flags; 1218 vma->vm_pgoff = pgoff; 1219 1220 if (file) { 1221 region->vm_file = get_file(file); 1222 vma->vm_file = get_file(file); 1223 } 1224 1225 down_write(&nommu_region_sem); 1226 1227 /* if we want to share, we need to check for regions created by other 1228 * mmap() calls that overlap with our proposed mapping 1229 * - we can only share with a superset match on most regular files 1230 * - shared mappings on character devices and memory backed files are 1231 * permitted to overlap inexactly as far as we are concerned for in 1232 * these cases, sharing is handled in the driver or filesystem rather 1233 * than here 1234 */ 1235 if (vm_flags & VM_MAYSHARE) { 1236 struct vm_region *pregion; 1237 unsigned long pglen, rpglen, pgend, rpgend, start; 1238 1239 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1240 pgend = pgoff + pglen; 1241 1242 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1243 pregion = rb_entry(rb, struct vm_region, vm_rb); 1244 1245 if (!(pregion->vm_flags & VM_MAYSHARE)) 1246 continue; 1247 1248 /* search for overlapping mappings on the same file */ 1249 if (file_inode(pregion->vm_file) != 1250 file_inode(file)) 1251 continue; 1252 1253 if (pregion->vm_pgoff >= pgend) 1254 continue; 1255 1256 rpglen = pregion->vm_end - pregion->vm_start; 1257 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1258 rpgend = pregion->vm_pgoff + rpglen; 1259 if (pgoff >= rpgend) 1260 continue; 1261 1262 /* handle inexactly overlapping matches between 1263 * mappings */ 1264 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1265 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1266 /* new mapping is not a subset of the region */ 1267 if (!(capabilities & NOMMU_MAP_DIRECT)) 1268 goto sharing_violation; 1269 continue; 1270 } 1271 1272 /* we've found a region we can share */ 1273 pregion->vm_usage++; 1274 vma->vm_region = pregion; 1275 start = pregion->vm_start; 1276 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1277 vma->vm_start = start; 1278 vma->vm_end = start + len; 1279 1280 if (pregion->vm_flags & VM_MAPPED_COPY) 1281 vma->vm_flags |= VM_MAPPED_COPY; 1282 else { 1283 ret = do_mmap_shared_file(vma); 1284 if (ret < 0) { 1285 vma->vm_region = NULL; 1286 vma->vm_start = 0; 1287 vma->vm_end = 0; 1288 pregion->vm_usage--; 1289 pregion = NULL; 1290 goto error_just_free; 1291 } 1292 } 1293 fput(region->vm_file); 1294 kmem_cache_free(vm_region_jar, region); 1295 region = pregion; 1296 result = start; 1297 goto share; 1298 } 1299 1300 /* obtain the address at which to make a shared mapping 1301 * - this is the hook for quasi-memory character devices to 1302 * tell us the location of a shared mapping 1303 */ 1304 if (capabilities & NOMMU_MAP_DIRECT) { 1305 addr = file->f_op->get_unmapped_area(file, addr, len, 1306 pgoff, flags); 1307 if (IS_ERR_VALUE(addr)) { 1308 ret = addr; 1309 if (ret != -ENOSYS) 1310 goto error_just_free; 1311 1312 /* the driver refused to tell us where to site 1313 * the mapping so we'll have to attempt to copy 1314 * it */ 1315 ret = -ENODEV; 1316 if (!(capabilities & NOMMU_MAP_COPY)) 1317 goto error_just_free; 1318 1319 capabilities &= ~NOMMU_MAP_DIRECT; 1320 } else { 1321 vma->vm_start = region->vm_start = addr; 1322 vma->vm_end = region->vm_end = addr + len; 1323 } 1324 } 1325 } 1326 1327 vma->vm_region = region; 1328 1329 /* set up the mapping 1330 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1331 */ 1332 if (file && vma->vm_flags & VM_SHARED) 1333 ret = do_mmap_shared_file(vma); 1334 else 1335 ret = do_mmap_private(vma, region, len, capabilities); 1336 if (ret < 0) 1337 goto error_just_free; 1338 add_nommu_region(region); 1339 1340 /* clear anonymous mappings that don't ask for uninitialized data */ 1341 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1342 memset((void *)region->vm_start, 0, 1343 region->vm_end - region->vm_start); 1344 1345 /* okay... we have a mapping; now we have to register it */ 1346 result = vma->vm_start; 1347 1348 current->mm->total_vm += len >> PAGE_SHIFT; 1349 1350 share: 1351 add_vma_to_mm(current->mm, vma); 1352 1353 /* we flush the region from the icache only when the first executable 1354 * mapping of it is made */ 1355 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1356 flush_icache_range(region->vm_start, region->vm_end); 1357 region->vm_icache_flushed = true; 1358 } 1359 1360 up_write(&nommu_region_sem); 1361 1362 return result; 1363 1364 error_just_free: 1365 up_write(&nommu_region_sem); 1366 error: 1367 if (region->vm_file) 1368 fput(region->vm_file); 1369 kmem_cache_free(vm_region_jar, region); 1370 if (vma->vm_file) 1371 fput(vma->vm_file); 1372 vm_area_free(vma); 1373 return ret; 1374 1375 sharing_violation: 1376 up_write(&nommu_region_sem); 1377 pr_warn("Attempt to share mismatched mappings\n"); 1378 ret = -EINVAL; 1379 goto error; 1380 1381 error_getting_vma: 1382 kmem_cache_free(vm_region_jar, region); 1383 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1384 len, current->pid); 1385 show_free_areas(0, NULL); 1386 return -ENOMEM; 1387 1388 error_getting_region: 1389 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1390 len, current->pid); 1391 show_free_areas(0, NULL); 1392 return -ENOMEM; 1393 } 1394 1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1396 unsigned long prot, unsigned long flags, 1397 unsigned long fd, unsigned long pgoff) 1398 { 1399 struct file *file = NULL; 1400 unsigned long retval = -EBADF; 1401 1402 audit_mmap_fd(fd, flags); 1403 if (!(flags & MAP_ANONYMOUS)) { 1404 file = fget(fd); 1405 if (!file) 1406 goto out; 1407 } 1408 1409 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1410 1411 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1412 1413 if (file) 1414 fput(file); 1415 out: 1416 return retval; 1417 } 1418 1419 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1420 unsigned long, prot, unsigned long, flags, 1421 unsigned long, fd, unsigned long, pgoff) 1422 { 1423 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1424 } 1425 1426 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1427 struct mmap_arg_struct { 1428 unsigned long addr; 1429 unsigned long len; 1430 unsigned long prot; 1431 unsigned long flags; 1432 unsigned long fd; 1433 unsigned long offset; 1434 }; 1435 1436 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1437 { 1438 struct mmap_arg_struct a; 1439 1440 if (copy_from_user(&a, arg, sizeof(a))) 1441 return -EFAULT; 1442 if (offset_in_page(a.offset)) 1443 return -EINVAL; 1444 1445 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1446 a.offset >> PAGE_SHIFT); 1447 } 1448 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1449 1450 /* 1451 * split a vma into two pieces at address 'addr', a new vma is allocated either 1452 * for the first part or the tail. 1453 */ 1454 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1455 unsigned long addr, int new_below) 1456 { 1457 struct vm_area_struct *new; 1458 struct vm_region *region; 1459 unsigned long npages; 1460 1461 /* we're only permitted to split anonymous regions (these should have 1462 * only a single usage on the region) */ 1463 if (vma->vm_file) 1464 return -ENOMEM; 1465 1466 if (mm->map_count >= sysctl_max_map_count) 1467 return -ENOMEM; 1468 1469 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1470 if (!region) 1471 return -ENOMEM; 1472 1473 new = vm_area_dup(vma); 1474 if (!new) { 1475 kmem_cache_free(vm_region_jar, region); 1476 return -ENOMEM; 1477 } 1478 1479 /* most fields are the same, copy all, and then fixup */ 1480 *region = *vma->vm_region; 1481 new->vm_region = region; 1482 1483 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1484 1485 if (new_below) { 1486 region->vm_top = region->vm_end = new->vm_end = addr; 1487 } else { 1488 region->vm_start = new->vm_start = addr; 1489 region->vm_pgoff = new->vm_pgoff += npages; 1490 } 1491 1492 if (new->vm_ops && new->vm_ops->open) 1493 new->vm_ops->open(new); 1494 1495 delete_vma_from_mm(vma); 1496 down_write(&nommu_region_sem); 1497 delete_nommu_region(vma->vm_region); 1498 if (new_below) { 1499 vma->vm_region->vm_start = vma->vm_start = addr; 1500 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1501 } else { 1502 vma->vm_region->vm_end = vma->vm_end = addr; 1503 vma->vm_region->vm_top = addr; 1504 } 1505 add_nommu_region(vma->vm_region); 1506 add_nommu_region(new->vm_region); 1507 up_write(&nommu_region_sem); 1508 add_vma_to_mm(mm, vma); 1509 add_vma_to_mm(mm, new); 1510 return 0; 1511 } 1512 1513 /* 1514 * shrink a VMA by removing the specified chunk from either the beginning or 1515 * the end 1516 */ 1517 static int shrink_vma(struct mm_struct *mm, 1518 struct vm_area_struct *vma, 1519 unsigned long from, unsigned long to) 1520 { 1521 struct vm_region *region; 1522 1523 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1524 * and list */ 1525 delete_vma_from_mm(vma); 1526 if (from > vma->vm_start) 1527 vma->vm_end = from; 1528 else 1529 vma->vm_start = to; 1530 add_vma_to_mm(mm, vma); 1531 1532 /* cut the backing region down to size */ 1533 region = vma->vm_region; 1534 BUG_ON(region->vm_usage != 1); 1535 1536 down_write(&nommu_region_sem); 1537 delete_nommu_region(region); 1538 if (from > region->vm_start) { 1539 to = region->vm_top; 1540 region->vm_top = region->vm_end = from; 1541 } else { 1542 region->vm_start = to; 1543 } 1544 add_nommu_region(region); 1545 up_write(&nommu_region_sem); 1546 1547 free_page_series(from, to); 1548 return 0; 1549 } 1550 1551 /* 1552 * release a mapping 1553 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1554 * VMA, though it need not cover the whole VMA 1555 */ 1556 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1557 { 1558 struct vm_area_struct *vma; 1559 unsigned long end; 1560 int ret; 1561 1562 len = PAGE_ALIGN(len); 1563 if (len == 0) 1564 return -EINVAL; 1565 1566 end = start + len; 1567 1568 /* find the first potentially overlapping VMA */ 1569 vma = find_vma(mm, start); 1570 if (!vma) { 1571 static int limit; 1572 if (limit < 5) { 1573 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1574 current->pid, current->comm, 1575 start, start + len - 1); 1576 limit++; 1577 } 1578 return -EINVAL; 1579 } 1580 1581 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1582 if (vma->vm_file) { 1583 do { 1584 if (start > vma->vm_start) 1585 return -EINVAL; 1586 if (end == vma->vm_end) 1587 goto erase_whole_vma; 1588 vma = vma->vm_next; 1589 } while (vma); 1590 return -EINVAL; 1591 } else { 1592 /* the chunk must be a subset of the VMA found */ 1593 if (start == vma->vm_start && end == vma->vm_end) 1594 goto erase_whole_vma; 1595 if (start < vma->vm_start || end > vma->vm_end) 1596 return -EINVAL; 1597 if (offset_in_page(start)) 1598 return -EINVAL; 1599 if (end != vma->vm_end && offset_in_page(end)) 1600 return -EINVAL; 1601 if (start != vma->vm_start && end != vma->vm_end) { 1602 ret = split_vma(mm, vma, start, 1); 1603 if (ret < 0) 1604 return ret; 1605 } 1606 return shrink_vma(mm, vma, start, end); 1607 } 1608 1609 erase_whole_vma: 1610 delete_vma_from_mm(vma); 1611 delete_vma(mm, vma); 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(do_munmap); 1615 1616 int vm_munmap(unsigned long addr, size_t len) 1617 { 1618 struct mm_struct *mm = current->mm; 1619 int ret; 1620 1621 down_write(&mm->mmap_sem); 1622 ret = do_munmap(mm, addr, len, NULL); 1623 up_write(&mm->mmap_sem); 1624 return ret; 1625 } 1626 EXPORT_SYMBOL(vm_munmap); 1627 1628 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1629 { 1630 return vm_munmap(addr, len); 1631 } 1632 1633 /* 1634 * release all the mappings made in a process's VM space 1635 */ 1636 void exit_mmap(struct mm_struct *mm) 1637 { 1638 struct vm_area_struct *vma; 1639 1640 if (!mm) 1641 return; 1642 1643 mm->total_vm = 0; 1644 1645 while ((vma = mm->mmap)) { 1646 mm->mmap = vma->vm_next; 1647 delete_vma_from_mm(vma); 1648 delete_vma(mm, vma); 1649 cond_resched(); 1650 } 1651 } 1652 1653 int vm_brk(unsigned long addr, unsigned long len) 1654 { 1655 return -ENOMEM; 1656 } 1657 1658 /* 1659 * expand (or shrink) an existing mapping, potentially moving it at the same 1660 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1661 * 1662 * under NOMMU conditions, we only permit changing a mapping's size, and only 1663 * as long as it stays within the region allocated by do_mmap_private() and the 1664 * block is not shareable 1665 * 1666 * MREMAP_FIXED is not supported under NOMMU conditions 1667 */ 1668 static unsigned long do_mremap(unsigned long addr, 1669 unsigned long old_len, unsigned long new_len, 1670 unsigned long flags, unsigned long new_addr) 1671 { 1672 struct vm_area_struct *vma; 1673 1674 /* insanity checks first */ 1675 old_len = PAGE_ALIGN(old_len); 1676 new_len = PAGE_ALIGN(new_len); 1677 if (old_len == 0 || new_len == 0) 1678 return (unsigned long) -EINVAL; 1679 1680 if (offset_in_page(addr)) 1681 return -EINVAL; 1682 1683 if (flags & MREMAP_FIXED && new_addr != addr) 1684 return (unsigned long) -EINVAL; 1685 1686 vma = find_vma_exact(current->mm, addr, old_len); 1687 if (!vma) 1688 return (unsigned long) -EINVAL; 1689 1690 if (vma->vm_end != vma->vm_start + old_len) 1691 return (unsigned long) -EFAULT; 1692 1693 if (vma->vm_flags & VM_MAYSHARE) 1694 return (unsigned long) -EPERM; 1695 1696 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1697 return (unsigned long) -ENOMEM; 1698 1699 /* all checks complete - do it */ 1700 vma->vm_end = vma->vm_start + new_len; 1701 return vma->vm_start; 1702 } 1703 1704 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1705 unsigned long, new_len, unsigned long, flags, 1706 unsigned long, new_addr) 1707 { 1708 unsigned long ret; 1709 1710 down_write(¤t->mm->mmap_sem); 1711 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1712 up_write(¤t->mm->mmap_sem); 1713 return ret; 1714 } 1715 1716 struct page *follow_page_mask(struct vm_area_struct *vma, 1717 unsigned long address, unsigned int flags, 1718 unsigned int *page_mask) 1719 { 1720 *page_mask = 0; 1721 return NULL; 1722 } 1723 1724 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1725 unsigned long pfn, unsigned long size, pgprot_t prot) 1726 { 1727 if (addr != (pfn << PAGE_SHIFT)) 1728 return -EINVAL; 1729 1730 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1731 return 0; 1732 } 1733 EXPORT_SYMBOL(remap_pfn_range); 1734 1735 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1736 { 1737 unsigned long pfn = start >> PAGE_SHIFT; 1738 unsigned long vm_len = vma->vm_end - vma->vm_start; 1739 1740 pfn += vma->vm_pgoff; 1741 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1742 } 1743 EXPORT_SYMBOL(vm_iomap_memory); 1744 1745 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1746 unsigned long pgoff) 1747 { 1748 unsigned int size = vma->vm_end - vma->vm_start; 1749 1750 if (!(vma->vm_flags & VM_USERMAP)) 1751 return -EINVAL; 1752 1753 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1754 vma->vm_end = vma->vm_start + size; 1755 1756 return 0; 1757 } 1758 EXPORT_SYMBOL(remap_vmalloc_range); 1759 1760 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1761 unsigned long len, unsigned long pgoff, unsigned long flags) 1762 { 1763 return -ENOMEM; 1764 } 1765 1766 vm_fault_t filemap_fault(struct vm_fault *vmf) 1767 { 1768 BUG(); 1769 return 0; 1770 } 1771 EXPORT_SYMBOL(filemap_fault); 1772 1773 void filemap_map_pages(struct vm_fault *vmf, 1774 pgoff_t start_pgoff, pgoff_t end_pgoff) 1775 { 1776 BUG(); 1777 } 1778 EXPORT_SYMBOL(filemap_map_pages); 1779 1780 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1781 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1782 { 1783 struct vm_area_struct *vma; 1784 int write = gup_flags & FOLL_WRITE; 1785 1786 down_read(&mm->mmap_sem); 1787 1788 /* the access must start within one of the target process's mappings */ 1789 vma = find_vma(mm, addr); 1790 if (vma) { 1791 /* don't overrun this mapping */ 1792 if (addr + len >= vma->vm_end) 1793 len = vma->vm_end - addr; 1794 1795 /* only read or write mappings where it is permitted */ 1796 if (write && vma->vm_flags & VM_MAYWRITE) 1797 copy_to_user_page(vma, NULL, addr, 1798 (void *) addr, buf, len); 1799 else if (!write && vma->vm_flags & VM_MAYREAD) 1800 copy_from_user_page(vma, NULL, addr, 1801 buf, (void *) addr, len); 1802 else 1803 len = 0; 1804 } else { 1805 len = 0; 1806 } 1807 1808 up_read(&mm->mmap_sem); 1809 1810 return len; 1811 } 1812 1813 /** 1814 * access_remote_vm - access another process' address space 1815 * @mm: the mm_struct of the target address space 1816 * @addr: start address to access 1817 * @buf: source or destination buffer 1818 * @len: number of bytes to transfer 1819 * @gup_flags: flags modifying lookup behaviour 1820 * 1821 * The caller must hold a reference on @mm. 1822 */ 1823 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1824 void *buf, int len, unsigned int gup_flags) 1825 { 1826 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1827 } 1828 1829 /* 1830 * Access another process' address space. 1831 * - source/target buffer must be kernel space 1832 */ 1833 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1834 unsigned int gup_flags) 1835 { 1836 struct mm_struct *mm; 1837 1838 if (addr + len < addr) 1839 return 0; 1840 1841 mm = get_task_mm(tsk); 1842 if (!mm) 1843 return 0; 1844 1845 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1846 1847 mmput(mm); 1848 return len; 1849 } 1850 EXPORT_SYMBOL_GPL(access_process_vm); 1851 1852 /** 1853 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1854 * @inode: The inode to check 1855 * @size: The current filesize of the inode 1856 * @newsize: The proposed filesize of the inode 1857 * 1858 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1859 * make sure that that any outstanding VMAs aren't broken and then shrink the 1860 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1861 * automatically grant mappings that are too large. 1862 */ 1863 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1864 size_t newsize) 1865 { 1866 struct vm_area_struct *vma; 1867 struct vm_region *region; 1868 pgoff_t low, high; 1869 size_t r_size, r_top; 1870 1871 low = newsize >> PAGE_SHIFT; 1872 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1873 1874 down_write(&nommu_region_sem); 1875 i_mmap_lock_read(inode->i_mapping); 1876 1877 /* search for VMAs that fall within the dead zone */ 1878 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1879 /* found one - only interested if it's shared out of the page 1880 * cache */ 1881 if (vma->vm_flags & VM_SHARED) { 1882 i_mmap_unlock_read(inode->i_mapping); 1883 up_write(&nommu_region_sem); 1884 return -ETXTBSY; /* not quite true, but near enough */ 1885 } 1886 } 1887 1888 /* reduce any regions that overlap the dead zone - if in existence, 1889 * these will be pointed to by VMAs that don't overlap the dead zone 1890 * 1891 * we don't check for any regions that start beyond the EOF as there 1892 * shouldn't be any 1893 */ 1894 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1895 if (!(vma->vm_flags & VM_SHARED)) 1896 continue; 1897 1898 region = vma->vm_region; 1899 r_size = region->vm_top - region->vm_start; 1900 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1901 1902 if (r_top > newsize) { 1903 region->vm_top -= r_top - newsize; 1904 if (region->vm_end > region->vm_top) 1905 region->vm_end = region->vm_top; 1906 } 1907 } 1908 1909 i_mmap_unlock_read(inode->i_mapping); 1910 up_write(&nommu_region_sem); 1911 return 0; 1912 } 1913 1914 /* 1915 * Initialise sysctl_user_reserve_kbytes. 1916 * 1917 * This is intended to prevent a user from starting a single memory hogging 1918 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1919 * mode. 1920 * 1921 * The default value is min(3% of free memory, 128MB) 1922 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1923 */ 1924 static int __meminit init_user_reserve(void) 1925 { 1926 unsigned long free_kbytes; 1927 1928 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1929 1930 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1931 return 0; 1932 } 1933 subsys_initcall(init_user_reserve); 1934 1935 /* 1936 * Initialise sysctl_admin_reserve_kbytes. 1937 * 1938 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1939 * to log in and kill a memory hogging process. 1940 * 1941 * Systems with more than 256MB will reserve 8MB, enough to recover 1942 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1943 * only reserve 3% of free pages by default. 1944 */ 1945 static int __meminit init_admin_reserve(void) 1946 { 1947 unsigned long free_kbytes; 1948 1949 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1950 1951 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1952 return 0; 1953 } 1954 subsys_initcall(init_admin_reserve); 1955