1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/nommu-mmap.txt 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 154 { 155 return __vmalloc(size, flags, PAGE_KERNEL); 156 } 157 158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 159 { 160 void *ret; 161 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 if (ret) { 164 struct vm_area_struct *vma; 165 166 down_write(¤t->mm->mmap_sem); 167 vma = find_vma(current->mm, (unsigned long)ret); 168 if (vma) 169 vma->vm_flags |= VM_USERMAP; 170 up_write(¤t->mm->mmap_sem); 171 } 172 173 return ret; 174 } 175 176 void *vmalloc_user(unsigned long size) 177 { 178 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 179 } 180 EXPORT_SYMBOL(vmalloc_user); 181 182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags) 183 { 184 return __vmalloc_user_flags(size, flags | __GFP_ZERO); 185 } 186 EXPORT_SYMBOL(vmalloc_user_node_flags); 187 188 struct page *vmalloc_to_page(const void *addr) 189 { 190 return virt_to_page(addr); 191 } 192 EXPORT_SYMBOL(vmalloc_to_page); 193 194 unsigned long vmalloc_to_pfn(const void *addr) 195 { 196 return page_to_pfn(virt_to_page(addr)); 197 } 198 EXPORT_SYMBOL(vmalloc_to_pfn); 199 200 long vread(char *buf, char *addr, unsigned long count) 201 { 202 /* Don't allow overflow */ 203 if ((unsigned long) buf + count < count) 204 count = -(unsigned long) buf; 205 206 memcpy(buf, addr, count); 207 return count; 208 } 209 210 long vwrite(char *buf, char *addr, unsigned long count) 211 { 212 /* Don't allow overflow */ 213 if ((unsigned long) addr + count < count) 214 count = -(unsigned long) addr; 215 216 memcpy(addr, buf, count); 217 return count; 218 } 219 220 /* 221 * vmalloc - allocate virtually contiguous memory 222 * 223 * @size: allocation size 224 * 225 * Allocate enough pages to cover @size from the page level 226 * allocator and map them into contiguous kernel virtual space. 227 * 228 * For tight control over page level allocator and protection flags 229 * use __vmalloc() instead. 230 */ 231 void *vmalloc(unsigned long size) 232 { 233 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 234 } 235 EXPORT_SYMBOL(vmalloc); 236 237 /* 238 * vzalloc - allocate virtually contiguous memory with zero fill 239 * 240 * @size: allocation size 241 * 242 * Allocate enough pages to cover @size from the page level 243 * allocator and map them into contiguous kernel virtual space. 244 * The memory allocated is set to zero. 245 * 246 * For tight control over page level allocator and protection flags 247 * use __vmalloc() instead. 248 */ 249 void *vzalloc(unsigned long size) 250 { 251 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 252 PAGE_KERNEL); 253 } 254 EXPORT_SYMBOL(vzalloc); 255 256 /** 257 * vmalloc_node - allocate memory on a specific node 258 * @size: allocation size 259 * @node: numa node 260 * 261 * Allocate enough pages to cover @size from the page level 262 * allocator and map them into contiguous kernel virtual space. 263 * 264 * For tight control over page level allocator and protection flags 265 * use __vmalloc() instead. 266 */ 267 void *vmalloc_node(unsigned long size, int node) 268 { 269 return vmalloc(size); 270 } 271 EXPORT_SYMBOL(vmalloc_node); 272 273 /** 274 * vzalloc_node - allocate memory on a specific node with zero fill 275 * @size: allocation size 276 * @node: numa node 277 * 278 * Allocate enough pages to cover @size from the page level 279 * allocator and map them into contiguous kernel virtual space. 280 * The memory allocated is set to zero. 281 * 282 * For tight control over page level allocator and protection flags 283 * use __vmalloc() instead. 284 */ 285 void *vzalloc_node(unsigned long size, int node) 286 { 287 return vzalloc(size); 288 } 289 EXPORT_SYMBOL(vzalloc_node); 290 291 /** 292 * vmalloc_exec - allocate virtually contiguous, executable memory 293 * @size: allocation size 294 * 295 * Kernel-internal function to allocate enough pages to cover @size 296 * the page level allocator and map them into contiguous and 297 * executable kernel virtual space. 298 * 299 * For tight control over page level allocator and protection flags 300 * use __vmalloc() instead. 301 */ 302 303 void *vmalloc_exec(unsigned long size) 304 { 305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 306 } 307 308 /** 309 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 310 * @size: allocation size 311 * 312 * Allocate enough 32bit PA addressable pages to cover @size from the 313 * page level allocator and map them into contiguous kernel virtual space. 314 */ 315 void *vmalloc_32(unsigned long size) 316 { 317 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 318 } 319 EXPORT_SYMBOL(vmalloc_32); 320 321 /** 322 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 323 * @size: allocation size 324 * 325 * The resulting memory area is 32bit addressable and zeroed so it can be 326 * mapped to userspace without leaking data. 327 * 328 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 329 * remap_vmalloc_range() are permissible. 330 */ 331 void *vmalloc_32_user(unsigned long size) 332 { 333 /* 334 * We'll have to sort out the ZONE_DMA bits for 64-bit, 335 * but for now this can simply use vmalloc_user() directly. 336 */ 337 return vmalloc_user(size); 338 } 339 EXPORT_SYMBOL(vmalloc_32_user); 340 341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 342 { 343 BUG(); 344 return NULL; 345 } 346 EXPORT_SYMBOL(vmap); 347 348 void vunmap(const void *addr) 349 { 350 BUG(); 351 } 352 EXPORT_SYMBOL(vunmap); 353 354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 355 { 356 BUG(); 357 return NULL; 358 } 359 EXPORT_SYMBOL(vm_map_ram); 360 361 void vm_unmap_ram(const void *mem, unsigned int count) 362 { 363 BUG(); 364 } 365 EXPORT_SYMBOL(vm_unmap_ram); 366 367 void vm_unmap_aliases(void) 368 { 369 } 370 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 371 372 /* 373 * Implement a stub for vmalloc_sync_[un]mapping() if the architecture 374 * chose not to have one. 375 */ 376 void __weak vmalloc_sync_mappings(void) 377 { 378 } 379 380 void __weak vmalloc_sync_unmappings(void) 381 { 382 } 383 384 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 385 { 386 BUG(); 387 return NULL; 388 } 389 EXPORT_SYMBOL_GPL(alloc_vm_area); 390 391 void free_vm_area(struct vm_struct *area) 392 { 393 BUG(); 394 } 395 EXPORT_SYMBOL_GPL(free_vm_area); 396 397 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 398 struct page *page) 399 { 400 return -EINVAL; 401 } 402 EXPORT_SYMBOL(vm_insert_page); 403 404 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 405 unsigned long num) 406 { 407 return -EINVAL; 408 } 409 EXPORT_SYMBOL(vm_map_pages); 410 411 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 412 unsigned long num) 413 { 414 return -EINVAL; 415 } 416 EXPORT_SYMBOL(vm_map_pages_zero); 417 418 /* 419 * sys_brk() for the most part doesn't need the global kernel 420 * lock, except when an application is doing something nasty 421 * like trying to un-brk an area that has already been mapped 422 * to a regular file. in this case, the unmapping will need 423 * to invoke file system routines that need the global lock. 424 */ 425 SYSCALL_DEFINE1(brk, unsigned long, brk) 426 { 427 struct mm_struct *mm = current->mm; 428 429 if (brk < mm->start_brk || brk > mm->context.end_brk) 430 return mm->brk; 431 432 if (mm->brk == brk) 433 return mm->brk; 434 435 /* 436 * Always allow shrinking brk 437 */ 438 if (brk <= mm->brk) { 439 mm->brk = brk; 440 return brk; 441 } 442 443 /* 444 * Ok, looks good - let it rip. 445 */ 446 flush_icache_range(mm->brk, brk); 447 return mm->brk = brk; 448 } 449 450 /* 451 * initialise the percpu counter for VM and region record slabs 452 */ 453 void __init mmap_init(void) 454 { 455 int ret; 456 457 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 458 VM_BUG_ON(ret); 459 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 460 } 461 462 /* 463 * validate the region tree 464 * - the caller must hold the region lock 465 */ 466 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 467 static noinline void validate_nommu_regions(void) 468 { 469 struct vm_region *region, *last; 470 struct rb_node *p, *lastp; 471 472 lastp = rb_first(&nommu_region_tree); 473 if (!lastp) 474 return; 475 476 last = rb_entry(lastp, struct vm_region, vm_rb); 477 BUG_ON(last->vm_end <= last->vm_start); 478 BUG_ON(last->vm_top < last->vm_end); 479 480 while ((p = rb_next(lastp))) { 481 region = rb_entry(p, struct vm_region, vm_rb); 482 last = rb_entry(lastp, struct vm_region, vm_rb); 483 484 BUG_ON(region->vm_end <= region->vm_start); 485 BUG_ON(region->vm_top < region->vm_end); 486 BUG_ON(region->vm_start < last->vm_top); 487 488 lastp = p; 489 } 490 } 491 #else 492 static void validate_nommu_regions(void) 493 { 494 } 495 #endif 496 497 /* 498 * add a region into the global tree 499 */ 500 static void add_nommu_region(struct vm_region *region) 501 { 502 struct vm_region *pregion; 503 struct rb_node **p, *parent; 504 505 validate_nommu_regions(); 506 507 parent = NULL; 508 p = &nommu_region_tree.rb_node; 509 while (*p) { 510 parent = *p; 511 pregion = rb_entry(parent, struct vm_region, vm_rb); 512 if (region->vm_start < pregion->vm_start) 513 p = &(*p)->rb_left; 514 else if (region->vm_start > pregion->vm_start) 515 p = &(*p)->rb_right; 516 else if (pregion == region) 517 return; 518 else 519 BUG(); 520 } 521 522 rb_link_node(®ion->vm_rb, parent, p); 523 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 524 525 validate_nommu_regions(); 526 } 527 528 /* 529 * delete a region from the global tree 530 */ 531 static void delete_nommu_region(struct vm_region *region) 532 { 533 BUG_ON(!nommu_region_tree.rb_node); 534 535 validate_nommu_regions(); 536 rb_erase(®ion->vm_rb, &nommu_region_tree); 537 validate_nommu_regions(); 538 } 539 540 /* 541 * free a contiguous series of pages 542 */ 543 static void free_page_series(unsigned long from, unsigned long to) 544 { 545 for (; from < to; from += PAGE_SIZE) { 546 struct page *page = virt_to_page(from); 547 548 atomic_long_dec(&mmap_pages_allocated); 549 put_page(page); 550 } 551 } 552 553 /* 554 * release a reference to a region 555 * - the caller must hold the region semaphore for writing, which this releases 556 * - the region may not have been added to the tree yet, in which case vm_top 557 * will equal vm_start 558 */ 559 static void __put_nommu_region(struct vm_region *region) 560 __releases(nommu_region_sem) 561 { 562 BUG_ON(!nommu_region_tree.rb_node); 563 564 if (--region->vm_usage == 0) { 565 if (region->vm_top > region->vm_start) 566 delete_nommu_region(region); 567 up_write(&nommu_region_sem); 568 569 if (region->vm_file) 570 fput(region->vm_file); 571 572 /* IO memory and memory shared directly out of the pagecache 573 * from ramfs/tmpfs mustn't be released here */ 574 if (region->vm_flags & VM_MAPPED_COPY) 575 free_page_series(region->vm_start, region->vm_top); 576 kmem_cache_free(vm_region_jar, region); 577 } else { 578 up_write(&nommu_region_sem); 579 } 580 } 581 582 /* 583 * release a reference to a region 584 */ 585 static void put_nommu_region(struct vm_region *region) 586 { 587 down_write(&nommu_region_sem); 588 __put_nommu_region(region); 589 } 590 591 /* 592 * add a VMA into a process's mm_struct in the appropriate place in the list 593 * and tree and add to the address space's page tree also if not an anonymous 594 * page 595 * - should be called with mm->mmap_sem held writelocked 596 */ 597 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 598 { 599 struct vm_area_struct *pvma, *prev; 600 struct address_space *mapping; 601 struct rb_node **p, *parent, *rb_prev; 602 603 BUG_ON(!vma->vm_region); 604 605 mm->map_count++; 606 vma->vm_mm = mm; 607 608 /* add the VMA to the mapping */ 609 if (vma->vm_file) { 610 mapping = vma->vm_file->f_mapping; 611 612 i_mmap_lock_write(mapping); 613 flush_dcache_mmap_lock(mapping); 614 vma_interval_tree_insert(vma, &mapping->i_mmap); 615 flush_dcache_mmap_unlock(mapping); 616 i_mmap_unlock_write(mapping); 617 } 618 619 /* add the VMA to the tree */ 620 parent = rb_prev = NULL; 621 p = &mm->mm_rb.rb_node; 622 while (*p) { 623 parent = *p; 624 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 625 626 /* sort by: start addr, end addr, VMA struct addr in that order 627 * (the latter is necessary as we may get identical VMAs) */ 628 if (vma->vm_start < pvma->vm_start) 629 p = &(*p)->rb_left; 630 else if (vma->vm_start > pvma->vm_start) { 631 rb_prev = parent; 632 p = &(*p)->rb_right; 633 } else if (vma->vm_end < pvma->vm_end) 634 p = &(*p)->rb_left; 635 else if (vma->vm_end > pvma->vm_end) { 636 rb_prev = parent; 637 p = &(*p)->rb_right; 638 } else if (vma < pvma) 639 p = &(*p)->rb_left; 640 else if (vma > pvma) { 641 rb_prev = parent; 642 p = &(*p)->rb_right; 643 } else 644 BUG(); 645 } 646 647 rb_link_node(&vma->vm_rb, parent, p); 648 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 649 650 /* add VMA to the VMA list also */ 651 prev = NULL; 652 if (rb_prev) 653 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 654 655 __vma_link_list(mm, vma, prev); 656 } 657 658 /* 659 * delete a VMA from its owning mm_struct and address space 660 */ 661 static void delete_vma_from_mm(struct vm_area_struct *vma) 662 { 663 int i; 664 struct address_space *mapping; 665 struct mm_struct *mm = vma->vm_mm; 666 struct task_struct *curr = current; 667 668 mm->map_count--; 669 for (i = 0; i < VMACACHE_SIZE; i++) { 670 /* if the vma is cached, invalidate the entire cache */ 671 if (curr->vmacache.vmas[i] == vma) { 672 vmacache_invalidate(mm); 673 break; 674 } 675 } 676 677 /* remove the VMA from the mapping */ 678 if (vma->vm_file) { 679 mapping = vma->vm_file->f_mapping; 680 681 i_mmap_lock_write(mapping); 682 flush_dcache_mmap_lock(mapping); 683 vma_interval_tree_remove(vma, &mapping->i_mmap); 684 flush_dcache_mmap_unlock(mapping); 685 i_mmap_unlock_write(mapping); 686 } 687 688 /* remove from the MM's tree and list */ 689 rb_erase(&vma->vm_rb, &mm->mm_rb); 690 691 __vma_unlink_list(mm, vma); 692 } 693 694 /* 695 * destroy a VMA record 696 */ 697 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 698 { 699 if (vma->vm_ops && vma->vm_ops->close) 700 vma->vm_ops->close(vma); 701 if (vma->vm_file) 702 fput(vma->vm_file); 703 put_nommu_region(vma->vm_region); 704 vm_area_free(vma); 705 } 706 707 /* 708 * look up the first VMA in which addr resides, NULL if none 709 * - should be called with mm->mmap_sem at least held readlocked 710 */ 711 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 712 { 713 struct vm_area_struct *vma; 714 715 /* check the cache first */ 716 vma = vmacache_find(mm, addr); 717 if (likely(vma)) 718 return vma; 719 720 /* trawl the list (there may be multiple mappings in which addr 721 * resides) */ 722 for (vma = mm->mmap; vma; vma = vma->vm_next) { 723 if (vma->vm_start > addr) 724 return NULL; 725 if (vma->vm_end > addr) { 726 vmacache_update(addr, vma); 727 return vma; 728 } 729 } 730 731 return NULL; 732 } 733 EXPORT_SYMBOL(find_vma); 734 735 /* 736 * find a VMA 737 * - we don't extend stack VMAs under NOMMU conditions 738 */ 739 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 740 { 741 return find_vma(mm, addr); 742 } 743 744 /* 745 * expand a stack to a given address 746 * - not supported under NOMMU conditions 747 */ 748 int expand_stack(struct vm_area_struct *vma, unsigned long address) 749 { 750 return -ENOMEM; 751 } 752 753 /* 754 * look up the first VMA exactly that exactly matches addr 755 * - should be called with mm->mmap_sem at least held readlocked 756 */ 757 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 758 unsigned long addr, 759 unsigned long len) 760 { 761 struct vm_area_struct *vma; 762 unsigned long end = addr + len; 763 764 /* check the cache first */ 765 vma = vmacache_find_exact(mm, addr, end); 766 if (vma) 767 return vma; 768 769 /* trawl the list (there may be multiple mappings in which addr 770 * resides) */ 771 for (vma = mm->mmap; vma; vma = vma->vm_next) { 772 if (vma->vm_start < addr) 773 continue; 774 if (vma->vm_start > addr) 775 return NULL; 776 if (vma->vm_end == end) { 777 vmacache_update(addr, vma); 778 return vma; 779 } 780 } 781 782 return NULL; 783 } 784 785 /* 786 * determine whether a mapping should be permitted and, if so, what sort of 787 * mapping we're capable of supporting 788 */ 789 static int validate_mmap_request(struct file *file, 790 unsigned long addr, 791 unsigned long len, 792 unsigned long prot, 793 unsigned long flags, 794 unsigned long pgoff, 795 unsigned long *_capabilities) 796 { 797 unsigned long capabilities, rlen; 798 int ret; 799 800 /* do the simple checks first */ 801 if (flags & MAP_FIXED) 802 return -EINVAL; 803 804 if ((flags & MAP_TYPE) != MAP_PRIVATE && 805 (flags & MAP_TYPE) != MAP_SHARED) 806 return -EINVAL; 807 808 if (!len) 809 return -EINVAL; 810 811 /* Careful about overflows.. */ 812 rlen = PAGE_ALIGN(len); 813 if (!rlen || rlen > TASK_SIZE) 814 return -ENOMEM; 815 816 /* offset overflow? */ 817 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 818 return -EOVERFLOW; 819 820 if (file) { 821 /* files must support mmap */ 822 if (!file->f_op->mmap) 823 return -ENODEV; 824 825 /* work out if what we've got could possibly be shared 826 * - we support chardevs that provide their own "memory" 827 * - we support files/blockdevs that are memory backed 828 */ 829 if (file->f_op->mmap_capabilities) { 830 capabilities = file->f_op->mmap_capabilities(file); 831 } else { 832 /* no explicit capabilities set, so assume some 833 * defaults */ 834 switch (file_inode(file)->i_mode & S_IFMT) { 835 case S_IFREG: 836 case S_IFBLK: 837 capabilities = NOMMU_MAP_COPY; 838 break; 839 840 case S_IFCHR: 841 capabilities = 842 NOMMU_MAP_DIRECT | 843 NOMMU_MAP_READ | 844 NOMMU_MAP_WRITE; 845 break; 846 847 default: 848 return -EINVAL; 849 } 850 } 851 852 /* eliminate any capabilities that we can't support on this 853 * device */ 854 if (!file->f_op->get_unmapped_area) 855 capabilities &= ~NOMMU_MAP_DIRECT; 856 if (!(file->f_mode & FMODE_CAN_READ)) 857 capabilities &= ~NOMMU_MAP_COPY; 858 859 /* The file shall have been opened with read permission. */ 860 if (!(file->f_mode & FMODE_READ)) 861 return -EACCES; 862 863 if (flags & MAP_SHARED) { 864 /* do checks for writing, appending and locking */ 865 if ((prot & PROT_WRITE) && 866 !(file->f_mode & FMODE_WRITE)) 867 return -EACCES; 868 869 if (IS_APPEND(file_inode(file)) && 870 (file->f_mode & FMODE_WRITE)) 871 return -EACCES; 872 873 if (locks_verify_locked(file)) 874 return -EAGAIN; 875 876 if (!(capabilities & NOMMU_MAP_DIRECT)) 877 return -ENODEV; 878 879 /* we mustn't privatise shared mappings */ 880 capabilities &= ~NOMMU_MAP_COPY; 881 } else { 882 /* we're going to read the file into private memory we 883 * allocate */ 884 if (!(capabilities & NOMMU_MAP_COPY)) 885 return -ENODEV; 886 887 /* we don't permit a private writable mapping to be 888 * shared with the backing device */ 889 if (prot & PROT_WRITE) 890 capabilities &= ~NOMMU_MAP_DIRECT; 891 } 892 893 if (capabilities & NOMMU_MAP_DIRECT) { 894 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 895 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 896 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 897 ) { 898 capabilities &= ~NOMMU_MAP_DIRECT; 899 if (flags & MAP_SHARED) { 900 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 901 return -EINVAL; 902 } 903 } 904 } 905 906 /* handle executable mappings and implied executable 907 * mappings */ 908 if (path_noexec(&file->f_path)) { 909 if (prot & PROT_EXEC) 910 return -EPERM; 911 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 912 /* handle implication of PROT_EXEC by PROT_READ */ 913 if (current->personality & READ_IMPLIES_EXEC) { 914 if (capabilities & NOMMU_MAP_EXEC) 915 prot |= PROT_EXEC; 916 } 917 } else if ((prot & PROT_READ) && 918 (prot & PROT_EXEC) && 919 !(capabilities & NOMMU_MAP_EXEC) 920 ) { 921 /* backing file is not executable, try to copy */ 922 capabilities &= ~NOMMU_MAP_DIRECT; 923 } 924 } else { 925 /* anonymous mappings are always memory backed and can be 926 * privately mapped 927 */ 928 capabilities = NOMMU_MAP_COPY; 929 930 /* handle PROT_EXEC implication by PROT_READ */ 931 if ((prot & PROT_READ) && 932 (current->personality & READ_IMPLIES_EXEC)) 933 prot |= PROT_EXEC; 934 } 935 936 /* allow the security API to have its say */ 937 ret = security_mmap_addr(addr); 938 if (ret < 0) 939 return ret; 940 941 /* looks okay */ 942 *_capabilities = capabilities; 943 return 0; 944 } 945 946 /* 947 * we've determined that we can make the mapping, now translate what we 948 * now know into VMA flags 949 */ 950 static unsigned long determine_vm_flags(struct file *file, 951 unsigned long prot, 952 unsigned long flags, 953 unsigned long capabilities) 954 { 955 unsigned long vm_flags; 956 957 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 958 /* vm_flags |= mm->def_flags; */ 959 960 if (!(capabilities & NOMMU_MAP_DIRECT)) { 961 /* attempt to share read-only copies of mapped file chunks */ 962 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 963 if (file && !(prot & PROT_WRITE)) 964 vm_flags |= VM_MAYSHARE; 965 } else { 966 /* overlay a shareable mapping on the backing device or inode 967 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 968 * romfs/cramfs */ 969 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 970 if (flags & MAP_SHARED) 971 vm_flags |= VM_SHARED; 972 } 973 974 /* refuse to let anyone share private mappings with this process if 975 * it's being traced - otherwise breakpoints set in it may interfere 976 * with another untraced process 977 */ 978 if ((flags & MAP_PRIVATE) && current->ptrace) 979 vm_flags &= ~VM_MAYSHARE; 980 981 return vm_flags; 982 } 983 984 /* 985 * set up a shared mapping on a file (the driver or filesystem provides and 986 * pins the storage) 987 */ 988 static int do_mmap_shared_file(struct vm_area_struct *vma) 989 { 990 int ret; 991 992 ret = call_mmap(vma->vm_file, vma); 993 if (ret == 0) { 994 vma->vm_region->vm_top = vma->vm_region->vm_end; 995 return 0; 996 } 997 if (ret != -ENOSYS) 998 return ret; 999 1000 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1001 * opposed to tried but failed) so we can only give a suitable error as 1002 * it's not possible to make a private copy if MAP_SHARED was given */ 1003 return -ENODEV; 1004 } 1005 1006 /* 1007 * set up a private mapping or an anonymous shared mapping 1008 */ 1009 static int do_mmap_private(struct vm_area_struct *vma, 1010 struct vm_region *region, 1011 unsigned long len, 1012 unsigned long capabilities) 1013 { 1014 unsigned long total, point; 1015 void *base; 1016 int ret, order; 1017 1018 /* invoke the file's mapping function so that it can keep track of 1019 * shared mappings on devices or memory 1020 * - VM_MAYSHARE will be set if it may attempt to share 1021 */ 1022 if (capabilities & NOMMU_MAP_DIRECT) { 1023 ret = call_mmap(vma->vm_file, vma); 1024 if (ret == 0) { 1025 /* shouldn't return success if we're not sharing */ 1026 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1027 vma->vm_region->vm_top = vma->vm_region->vm_end; 1028 return 0; 1029 } 1030 if (ret != -ENOSYS) 1031 return ret; 1032 1033 /* getting an ENOSYS error indicates that direct mmap isn't 1034 * possible (as opposed to tried but failed) so we'll try to 1035 * make a private copy of the data and map that instead */ 1036 } 1037 1038 1039 /* allocate some memory to hold the mapping 1040 * - note that this may not return a page-aligned address if the object 1041 * we're allocating is smaller than a page 1042 */ 1043 order = get_order(len); 1044 total = 1 << order; 1045 point = len >> PAGE_SHIFT; 1046 1047 /* we don't want to allocate a power-of-2 sized page set */ 1048 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1049 total = point; 1050 1051 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1052 if (!base) 1053 goto enomem; 1054 1055 atomic_long_add(total, &mmap_pages_allocated); 1056 1057 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1058 region->vm_start = (unsigned long) base; 1059 region->vm_end = region->vm_start + len; 1060 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1061 1062 vma->vm_start = region->vm_start; 1063 vma->vm_end = region->vm_start + len; 1064 1065 if (vma->vm_file) { 1066 /* read the contents of a file into the copy */ 1067 loff_t fpos; 1068 1069 fpos = vma->vm_pgoff; 1070 fpos <<= PAGE_SHIFT; 1071 1072 ret = kernel_read(vma->vm_file, base, len, &fpos); 1073 if (ret < 0) 1074 goto error_free; 1075 1076 /* clear the last little bit */ 1077 if (ret < len) 1078 memset(base + ret, 0, len - ret); 1079 1080 } else { 1081 vma_set_anonymous(vma); 1082 } 1083 1084 return 0; 1085 1086 error_free: 1087 free_page_series(region->vm_start, region->vm_top); 1088 region->vm_start = vma->vm_start = 0; 1089 region->vm_end = vma->vm_end = 0; 1090 region->vm_top = 0; 1091 return ret; 1092 1093 enomem: 1094 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1095 len, current->pid, current->comm); 1096 show_free_areas(0, NULL); 1097 return -ENOMEM; 1098 } 1099 1100 /* 1101 * handle mapping creation for uClinux 1102 */ 1103 unsigned long do_mmap(struct file *file, 1104 unsigned long addr, 1105 unsigned long len, 1106 unsigned long prot, 1107 unsigned long flags, 1108 vm_flags_t vm_flags, 1109 unsigned long pgoff, 1110 unsigned long *populate, 1111 struct list_head *uf) 1112 { 1113 struct vm_area_struct *vma; 1114 struct vm_region *region; 1115 struct rb_node *rb; 1116 unsigned long capabilities, result; 1117 int ret; 1118 1119 *populate = 0; 1120 1121 /* decide whether we should attempt the mapping, and if so what sort of 1122 * mapping */ 1123 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1124 &capabilities); 1125 if (ret < 0) 1126 return ret; 1127 1128 /* we ignore the address hint */ 1129 addr = 0; 1130 len = PAGE_ALIGN(len); 1131 1132 /* we've determined that we can make the mapping, now translate what we 1133 * now know into VMA flags */ 1134 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1135 1136 /* we're going to need to record the mapping */ 1137 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1138 if (!region) 1139 goto error_getting_region; 1140 1141 vma = vm_area_alloc(current->mm); 1142 if (!vma) 1143 goto error_getting_vma; 1144 1145 region->vm_usage = 1; 1146 region->vm_flags = vm_flags; 1147 region->vm_pgoff = pgoff; 1148 1149 vma->vm_flags = vm_flags; 1150 vma->vm_pgoff = pgoff; 1151 1152 if (file) { 1153 region->vm_file = get_file(file); 1154 vma->vm_file = get_file(file); 1155 } 1156 1157 down_write(&nommu_region_sem); 1158 1159 /* if we want to share, we need to check for regions created by other 1160 * mmap() calls that overlap with our proposed mapping 1161 * - we can only share with a superset match on most regular files 1162 * - shared mappings on character devices and memory backed files are 1163 * permitted to overlap inexactly as far as we are concerned for in 1164 * these cases, sharing is handled in the driver or filesystem rather 1165 * than here 1166 */ 1167 if (vm_flags & VM_MAYSHARE) { 1168 struct vm_region *pregion; 1169 unsigned long pglen, rpglen, pgend, rpgend, start; 1170 1171 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1172 pgend = pgoff + pglen; 1173 1174 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1175 pregion = rb_entry(rb, struct vm_region, vm_rb); 1176 1177 if (!(pregion->vm_flags & VM_MAYSHARE)) 1178 continue; 1179 1180 /* search for overlapping mappings on the same file */ 1181 if (file_inode(pregion->vm_file) != 1182 file_inode(file)) 1183 continue; 1184 1185 if (pregion->vm_pgoff >= pgend) 1186 continue; 1187 1188 rpglen = pregion->vm_end - pregion->vm_start; 1189 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1190 rpgend = pregion->vm_pgoff + rpglen; 1191 if (pgoff >= rpgend) 1192 continue; 1193 1194 /* handle inexactly overlapping matches between 1195 * mappings */ 1196 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1197 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1198 /* new mapping is not a subset of the region */ 1199 if (!(capabilities & NOMMU_MAP_DIRECT)) 1200 goto sharing_violation; 1201 continue; 1202 } 1203 1204 /* we've found a region we can share */ 1205 pregion->vm_usage++; 1206 vma->vm_region = pregion; 1207 start = pregion->vm_start; 1208 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1209 vma->vm_start = start; 1210 vma->vm_end = start + len; 1211 1212 if (pregion->vm_flags & VM_MAPPED_COPY) 1213 vma->vm_flags |= VM_MAPPED_COPY; 1214 else { 1215 ret = do_mmap_shared_file(vma); 1216 if (ret < 0) { 1217 vma->vm_region = NULL; 1218 vma->vm_start = 0; 1219 vma->vm_end = 0; 1220 pregion->vm_usage--; 1221 pregion = NULL; 1222 goto error_just_free; 1223 } 1224 } 1225 fput(region->vm_file); 1226 kmem_cache_free(vm_region_jar, region); 1227 region = pregion; 1228 result = start; 1229 goto share; 1230 } 1231 1232 /* obtain the address at which to make a shared mapping 1233 * - this is the hook for quasi-memory character devices to 1234 * tell us the location of a shared mapping 1235 */ 1236 if (capabilities & NOMMU_MAP_DIRECT) { 1237 addr = file->f_op->get_unmapped_area(file, addr, len, 1238 pgoff, flags); 1239 if (IS_ERR_VALUE(addr)) { 1240 ret = addr; 1241 if (ret != -ENOSYS) 1242 goto error_just_free; 1243 1244 /* the driver refused to tell us where to site 1245 * the mapping so we'll have to attempt to copy 1246 * it */ 1247 ret = -ENODEV; 1248 if (!(capabilities & NOMMU_MAP_COPY)) 1249 goto error_just_free; 1250 1251 capabilities &= ~NOMMU_MAP_DIRECT; 1252 } else { 1253 vma->vm_start = region->vm_start = addr; 1254 vma->vm_end = region->vm_end = addr + len; 1255 } 1256 } 1257 } 1258 1259 vma->vm_region = region; 1260 1261 /* set up the mapping 1262 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1263 */ 1264 if (file && vma->vm_flags & VM_SHARED) 1265 ret = do_mmap_shared_file(vma); 1266 else 1267 ret = do_mmap_private(vma, region, len, capabilities); 1268 if (ret < 0) 1269 goto error_just_free; 1270 add_nommu_region(region); 1271 1272 /* clear anonymous mappings that don't ask for uninitialized data */ 1273 if (!vma->vm_file && 1274 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1275 !(flags & MAP_UNINITIALIZED))) 1276 memset((void *)region->vm_start, 0, 1277 region->vm_end - region->vm_start); 1278 1279 /* okay... we have a mapping; now we have to register it */ 1280 result = vma->vm_start; 1281 1282 current->mm->total_vm += len >> PAGE_SHIFT; 1283 1284 share: 1285 add_vma_to_mm(current->mm, vma); 1286 1287 /* we flush the region from the icache only when the first executable 1288 * mapping of it is made */ 1289 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1290 flush_icache_range(region->vm_start, region->vm_end); 1291 region->vm_icache_flushed = true; 1292 } 1293 1294 up_write(&nommu_region_sem); 1295 1296 return result; 1297 1298 error_just_free: 1299 up_write(&nommu_region_sem); 1300 error: 1301 if (region->vm_file) 1302 fput(region->vm_file); 1303 kmem_cache_free(vm_region_jar, region); 1304 if (vma->vm_file) 1305 fput(vma->vm_file); 1306 vm_area_free(vma); 1307 return ret; 1308 1309 sharing_violation: 1310 up_write(&nommu_region_sem); 1311 pr_warn("Attempt to share mismatched mappings\n"); 1312 ret = -EINVAL; 1313 goto error; 1314 1315 error_getting_vma: 1316 kmem_cache_free(vm_region_jar, region); 1317 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1318 len, current->pid); 1319 show_free_areas(0, NULL); 1320 return -ENOMEM; 1321 1322 error_getting_region: 1323 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1324 len, current->pid); 1325 show_free_areas(0, NULL); 1326 return -ENOMEM; 1327 } 1328 1329 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1330 unsigned long prot, unsigned long flags, 1331 unsigned long fd, unsigned long pgoff) 1332 { 1333 struct file *file = NULL; 1334 unsigned long retval = -EBADF; 1335 1336 audit_mmap_fd(fd, flags); 1337 if (!(flags & MAP_ANONYMOUS)) { 1338 file = fget(fd); 1339 if (!file) 1340 goto out; 1341 } 1342 1343 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1344 1345 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1346 1347 if (file) 1348 fput(file); 1349 out: 1350 return retval; 1351 } 1352 1353 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1354 unsigned long, prot, unsigned long, flags, 1355 unsigned long, fd, unsigned long, pgoff) 1356 { 1357 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1358 } 1359 1360 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1361 struct mmap_arg_struct { 1362 unsigned long addr; 1363 unsigned long len; 1364 unsigned long prot; 1365 unsigned long flags; 1366 unsigned long fd; 1367 unsigned long offset; 1368 }; 1369 1370 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1371 { 1372 struct mmap_arg_struct a; 1373 1374 if (copy_from_user(&a, arg, sizeof(a))) 1375 return -EFAULT; 1376 if (offset_in_page(a.offset)) 1377 return -EINVAL; 1378 1379 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1380 a.offset >> PAGE_SHIFT); 1381 } 1382 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1383 1384 /* 1385 * split a vma into two pieces at address 'addr', a new vma is allocated either 1386 * for the first part or the tail. 1387 */ 1388 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1389 unsigned long addr, int new_below) 1390 { 1391 struct vm_area_struct *new; 1392 struct vm_region *region; 1393 unsigned long npages; 1394 1395 /* we're only permitted to split anonymous regions (these should have 1396 * only a single usage on the region) */ 1397 if (vma->vm_file) 1398 return -ENOMEM; 1399 1400 if (mm->map_count >= sysctl_max_map_count) 1401 return -ENOMEM; 1402 1403 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1404 if (!region) 1405 return -ENOMEM; 1406 1407 new = vm_area_dup(vma); 1408 if (!new) { 1409 kmem_cache_free(vm_region_jar, region); 1410 return -ENOMEM; 1411 } 1412 1413 /* most fields are the same, copy all, and then fixup */ 1414 *region = *vma->vm_region; 1415 new->vm_region = region; 1416 1417 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1418 1419 if (new_below) { 1420 region->vm_top = region->vm_end = new->vm_end = addr; 1421 } else { 1422 region->vm_start = new->vm_start = addr; 1423 region->vm_pgoff = new->vm_pgoff += npages; 1424 } 1425 1426 if (new->vm_ops && new->vm_ops->open) 1427 new->vm_ops->open(new); 1428 1429 delete_vma_from_mm(vma); 1430 down_write(&nommu_region_sem); 1431 delete_nommu_region(vma->vm_region); 1432 if (new_below) { 1433 vma->vm_region->vm_start = vma->vm_start = addr; 1434 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1435 } else { 1436 vma->vm_region->vm_end = vma->vm_end = addr; 1437 vma->vm_region->vm_top = addr; 1438 } 1439 add_nommu_region(vma->vm_region); 1440 add_nommu_region(new->vm_region); 1441 up_write(&nommu_region_sem); 1442 add_vma_to_mm(mm, vma); 1443 add_vma_to_mm(mm, new); 1444 return 0; 1445 } 1446 1447 /* 1448 * shrink a VMA by removing the specified chunk from either the beginning or 1449 * the end 1450 */ 1451 static int shrink_vma(struct mm_struct *mm, 1452 struct vm_area_struct *vma, 1453 unsigned long from, unsigned long to) 1454 { 1455 struct vm_region *region; 1456 1457 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1458 * and list */ 1459 delete_vma_from_mm(vma); 1460 if (from > vma->vm_start) 1461 vma->vm_end = from; 1462 else 1463 vma->vm_start = to; 1464 add_vma_to_mm(mm, vma); 1465 1466 /* cut the backing region down to size */ 1467 region = vma->vm_region; 1468 BUG_ON(region->vm_usage != 1); 1469 1470 down_write(&nommu_region_sem); 1471 delete_nommu_region(region); 1472 if (from > region->vm_start) { 1473 to = region->vm_top; 1474 region->vm_top = region->vm_end = from; 1475 } else { 1476 region->vm_start = to; 1477 } 1478 add_nommu_region(region); 1479 up_write(&nommu_region_sem); 1480 1481 free_page_series(from, to); 1482 return 0; 1483 } 1484 1485 /* 1486 * release a mapping 1487 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1488 * VMA, though it need not cover the whole VMA 1489 */ 1490 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1491 { 1492 struct vm_area_struct *vma; 1493 unsigned long end; 1494 int ret; 1495 1496 len = PAGE_ALIGN(len); 1497 if (len == 0) 1498 return -EINVAL; 1499 1500 end = start + len; 1501 1502 /* find the first potentially overlapping VMA */ 1503 vma = find_vma(mm, start); 1504 if (!vma) { 1505 static int limit; 1506 if (limit < 5) { 1507 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1508 current->pid, current->comm, 1509 start, start + len - 1); 1510 limit++; 1511 } 1512 return -EINVAL; 1513 } 1514 1515 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1516 if (vma->vm_file) { 1517 do { 1518 if (start > vma->vm_start) 1519 return -EINVAL; 1520 if (end == vma->vm_end) 1521 goto erase_whole_vma; 1522 vma = vma->vm_next; 1523 } while (vma); 1524 return -EINVAL; 1525 } else { 1526 /* the chunk must be a subset of the VMA found */ 1527 if (start == vma->vm_start && end == vma->vm_end) 1528 goto erase_whole_vma; 1529 if (start < vma->vm_start || end > vma->vm_end) 1530 return -EINVAL; 1531 if (offset_in_page(start)) 1532 return -EINVAL; 1533 if (end != vma->vm_end && offset_in_page(end)) 1534 return -EINVAL; 1535 if (start != vma->vm_start && end != vma->vm_end) { 1536 ret = split_vma(mm, vma, start, 1); 1537 if (ret < 0) 1538 return ret; 1539 } 1540 return shrink_vma(mm, vma, start, end); 1541 } 1542 1543 erase_whole_vma: 1544 delete_vma_from_mm(vma); 1545 delete_vma(mm, vma); 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(do_munmap); 1549 1550 int vm_munmap(unsigned long addr, size_t len) 1551 { 1552 struct mm_struct *mm = current->mm; 1553 int ret; 1554 1555 down_write(&mm->mmap_sem); 1556 ret = do_munmap(mm, addr, len, NULL); 1557 up_write(&mm->mmap_sem); 1558 return ret; 1559 } 1560 EXPORT_SYMBOL(vm_munmap); 1561 1562 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1563 { 1564 return vm_munmap(addr, len); 1565 } 1566 1567 /* 1568 * release all the mappings made in a process's VM space 1569 */ 1570 void exit_mmap(struct mm_struct *mm) 1571 { 1572 struct vm_area_struct *vma; 1573 1574 if (!mm) 1575 return; 1576 1577 mm->total_vm = 0; 1578 1579 while ((vma = mm->mmap)) { 1580 mm->mmap = vma->vm_next; 1581 delete_vma_from_mm(vma); 1582 delete_vma(mm, vma); 1583 cond_resched(); 1584 } 1585 } 1586 1587 int vm_brk(unsigned long addr, unsigned long len) 1588 { 1589 return -ENOMEM; 1590 } 1591 1592 /* 1593 * expand (or shrink) an existing mapping, potentially moving it at the same 1594 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1595 * 1596 * under NOMMU conditions, we only permit changing a mapping's size, and only 1597 * as long as it stays within the region allocated by do_mmap_private() and the 1598 * block is not shareable 1599 * 1600 * MREMAP_FIXED is not supported under NOMMU conditions 1601 */ 1602 static unsigned long do_mremap(unsigned long addr, 1603 unsigned long old_len, unsigned long new_len, 1604 unsigned long flags, unsigned long new_addr) 1605 { 1606 struct vm_area_struct *vma; 1607 1608 /* insanity checks first */ 1609 old_len = PAGE_ALIGN(old_len); 1610 new_len = PAGE_ALIGN(new_len); 1611 if (old_len == 0 || new_len == 0) 1612 return (unsigned long) -EINVAL; 1613 1614 if (offset_in_page(addr)) 1615 return -EINVAL; 1616 1617 if (flags & MREMAP_FIXED && new_addr != addr) 1618 return (unsigned long) -EINVAL; 1619 1620 vma = find_vma_exact(current->mm, addr, old_len); 1621 if (!vma) 1622 return (unsigned long) -EINVAL; 1623 1624 if (vma->vm_end != vma->vm_start + old_len) 1625 return (unsigned long) -EFAULT; 1626 1627 if (vma->vm_flags & VM_MAYSHARE) 1628 return (unsigned long) -EPERM; 1629 1630 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1631 return (unsigned long) -ENOMEM; 1632 1633 /* all checks complete - do it */ 1634 vma->vm_end = vma->vm_start + new_len; 1635 return vma->vm_start; 1636 } 1637 1638 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1639 unsigned long, new_len, unsigned long, flags, 1640 unsigned long, new_addr) 1641 { 1642 unsigned long ret; 1643 1644 down_write(¤t->mm->mmap_sem); 1645 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1646 up_write(¤t->mm->mmap_sem); 1647 return ret; 1648 } 1649 1650 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1651 unsigned int foll_flags) 1652 { 1653 return NULL; 1654 } 1655 1656 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1657 unsigned long pfn, unsigned long size, pgprot_t prot) 1658 { 1659 if (addr != (pfn << PAGE_SHIFT)) 1660 return -EINVAL; 1661 1662 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1663 return 0; 1664 } 1665 EXPORT_SYMBOL(remap_pfn_range); 1666 1667 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1668 { 1669 unsigned long pfn = start >> PAGE_SHIFT; 1670 unsigned long vm_len = vma->vm_end - vma->vm_start; 1671 1672 pfn += vma->vm_pgoff; 1673 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1674 } 1675 EXPORT_SYMBOL(vm_iomap_memory); 1676 1677 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1678 unsigned long pgoff) 1679 { 1680 unsigned int size = vma->vm_end - vma->vm_start; 1681 1682 if (!(vma->vm_flags & VM_USERMAP)) 1683 return -EINVAL; 1684 1685 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1686 vma->vm_end = vma->vm_start + size; 1687 1688 return 0; 1689 } 1690 EXPORT_SYMBOL(remap_vmalloc_range); 1691 1692 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1693 unsigned long len, unsigned long pgoff, unsigned long flags) 1694 { 1695 return -ENOMEM; 1696 } 1697 1698 vm_fault_t filemap_fault(struct vm_fault *vmf) 1699 { 1700 BUG(); 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(filemap_fault); 1704 1705 void filemap_map_pages(struct vm_fault *vmf, 1706 pgoff_t start_pgoff, pgoff_t end_pgoff) 1707 { 1708 BUG(); 1709 } 1710 EXPORT_SYMBOL(filemap_map_pages); 1711 1712 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1713 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1714 { 1715 struct vm_area_struct *vma; 1716 int write = gup_flags & FOLL_WRITE; 1717 1718 if (down_read_killable(&mm->mmap_sem)) 1719 return 0; 1720 1721 /* the access must start within one of the target process's mappings */ 1722 vma = find_vma(mm, addr); 1723 if (vma) { 1724 /* don't overrun this mapping */ 1725 if (addr + len >= vma->vm_end) 1726 len = vma->vm_end - addr; 1727 1728 /* only read or write mappings where it is permitted */ 1729 if (write && vma->vm_flags & VM_MAYWRITE) 1730 copy_to_user_page(vma, NULL, addr, 1731 (void *) addr, buf, len); 1732 else if (!write && vma->vm_flags & VM_MAYREAD) 1733 copy_from_user_page(vma, NULL, addr, 1734 buf, (void *) addr, len); 1735 else 1736 len = 0; 1737 } else { 1738 len = 0; 1739 } 1740 1741 up_read(&mm->mmap_sem); 1742 1743 return len; 1744 } 1745 1746 /** 1747 * access_remote_vm - access another process' address space 1748 * @mm: the mm_struct of the target address space 1749 * @addr: start address to access 1750 * @buf: source or destination buffer 1751 * @len: number of bytes to transfer 1752 * @gup_flags: flags modifying lookup behaviour 1753 * 1754 * The caller must hold a reference on @mm. 1755 */ 1756 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1757 void *buf, int len, unsigned int gup_flags) 1758 { 1759 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1760 } 1761 1762 /* 1763 * Access another process' address space. 1764 * - source/target buffer must be kernel space 1765 */ 1766 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1767 unsigned int gup_flags) 1768 { 1769 struct mm_struct *mm; 1770 1771 if (addr + len < addr) 1772 return 0; 1773 1774 mm = get_task_mm(tsk); 1775 if (!mm) 1776 return 0; 1777 1778 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1779 1780 mmput(mm); 1781 return len; 1782 } 1783 EXPORT_SYMBOL_GPL(access_process_vm); 1784 1785 /** 1786 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1787 * @inode: The inode to check 1788 * @size: The current filesize of the inode 1789 * @newsize: The proposed filesize of the inode 1790 * 1791 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1792 * make sure that that any outstanding VMAs aren't broken and then shrink the 1793 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1794 * automatically grant mappings that are too large. 1795 */ 1796 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1797 size_t newsize) 1798 { 1799 struct vm_area_struct *vma; 1800 struct vm_region *region; 1801 pgoff_t low, high; 1802 size_t r_size, r_top; 1803 1804 low = newsize >> PAGE_SHIFT; 1805 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1806 1807 down_write(&nommu_region_sem); 1808 i_mmap_lock_read(inode->i_mapping); 1809 1810 /* search for VMAs that fall within the dead zone */ 1811 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1812 /* found one - only interested if it's shared out of the page 1813 * cache */ 1814 if (vma->vm_flags & VM_SHARED) { 1815 i_mmap_unlock_read(inode->i_mapping); 1816 up_write(&nommu_region_sem); 1817 return -ETXTBSY; /* not quite true, but near enough */ 1818 } 1819 } 1820 1821 /* reduce any regions that overlap the dead zone - if in existence, 1822 * these will be pointed to by VMAs that don't overlap the dead zone 1823 * 1824 * we don't check for any regions that start beyond the EOF as there 1825 * shouldn't be any 1826 */ 1827 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1828 if (!(vma->vm_flags & VM_SHARED)) 1829 continue; 1830 1831 region = vma->vm_region; 1832 r_size = region->vm_top - region->vm_start; 1833 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1834 1835 if (r_top > newsize) { 1836 region->vm_top -= r_top - newsize; 1837 if (region->vm_end > region->vm_top) 1838 region->vm_end = region->vm_top; 1839 } 1840 } 1841 1842 i_mmap_unlock_read(inode->i_mapping); 1843 up_write(&nommu_region_sem); 1844 return 0; 1845 } 1846 1847 /* 1848 * Initialise sysctl_user_reserve_kbytes. 1849 * 1850 * This is intended to prevent a user from starting a single memory hogging 1851 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1852 * mode. 1853 * 1854 * The default value is min(3% of free memory, 128MB) 1855 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1856 */ 1857 static int __meminit init_user_reserve(void) 1858 { 1859 unsigned long free_kbytes; 1860 1861 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1862 1863 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1864 return 0; 1865 } 1866 subsys_initcall(init_user_reserve); 1867 1868 /* 1869 * Initialise sysctl_admin_reserve_kbytes. 1870 * 1871 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1872 * to log in and kill a memory hogging process. 1873 * 1874 * Systems with more than 256MB will reserve 8MB, enough to recover 1875 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1876 * only reserve 3% of free pages by default. 1877 */ 1878 static int __meminit init_admin_reserve(void) 1879 { 1880 unsigned long free_kbytes; 1881 1882 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1883 1884 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1885 return 0; 1886 } 1887 subsys_initcall(init_admin_reserve); 1888