xref: /linux/mm/nommu.c (revision c40d04df152a1111c5bbcb632278394dabd2b73d)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 #if 0
40 #define kenter(FMT, ...) \
41 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54 
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66 
67 atomic_long_t mmap_pages_allocated;
68 
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71 
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76 
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79 
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88 	struct page *page;
89 
90 	/*
91 	 * If the object we have should not have ksize performed on it,
92 	 * return size of 0
93 	 */
94 	if (!objp || !virt_addr_valid(objp))
95 		return 0;
96 
97 	page = virt_to_head_page(objp);
98 
99 	/*
100 	 * If the allocator sets PageSlab, we know the pointer came from
101 	 * kmalloc().
102 	 */
103 	if (PageSlab(page))
104 		return ksize(objp);
105 
106 	/*
107 	 * If it's not a compound page, see if we have a matching VMA
108 	 * region. This test is intentionally done in reverse order,
109 	 * so if there's no VMA, we still fall through and hand back
110 	 * PAGE_SIZE for 0-order pages.
111 	 */
112 	if (!PageCompound(page)) {
113 		struct vm_area_struct *vma;
114 
115 		vma = find_vma(current->mm, (unsigned long)objp);
116 		if (vma)
117 			return vma->vm_end - vma->vm_start;
118 	}
119 
120 	/*
121 	 * The ksize() function is only guaranteed to work for pointers
122 	 * returned by kmalloc(). So handle arbitrary pointers here.
123 	 */
124 	return PAGE_SIZE << compound_order(page);
125 }
126 
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128 		     unsigned long start, int nr_pages, unsigned int foll_flags,
129 		     struct page **pages, struct vm_area_struct **vmas,
130 		     int *retry)
131 {
132 	struct vm_area_struct *vma;
133 	unsigned long vm_flags;
134 	int i;
135 
136 	/* calculate required read or write permissions.
137 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
138 	 */
139 	vm_flags  = (foll_flags & FOLL_WRITE) ?
140 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141 	vm_flags &= (foll_flags & FOLL_FORCE) ?
142 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
143 
144 	for (i = 0; i < nr_pages; i++) {
145 		vma = find_vma(mm, start);
146 		if (!vma)
147 			goto finish_or_fault;
148 
149 		/* protect what we can, including chardevs */
150 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151 		    !(vm_flags & vma->vm_flags))
152 			goto finish_or_fault;
153 
154 		if (pages) {
155 			pages[i] = virt_to_page(start);
156 			if (pages[i])
157 				page_cache_get(pages[i]);
158 		}
159 		if (vmas)
160 			vmas[i] = vma;
161 		start = (start + PAGE_SIZE) & PAGE_MASK;
162 	}
163 
164 	return i;
165 
166 finish_or_fault:
167 	return i ? : -EFAULT;
168 }
169 
170 /*
171  * get a list of pages in an address range belonging to the specified process
172  * and indicate the VMA that covers each page
173  * - this is potentially dodgy as we may end incrementing the page count of a
174  *   slab page or a secondary page from a compound page
175  * - don't permit access to VMAs that don't support it, such as I/O mappings
176  */
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178 	unsigned long start, int nr_pages, int write, int force,
179 	struct page **pages, struct vm_area_struct **vmas)
180 {
181 	int flags = 0;
182 
183 	if (write)
184 		flags |= FOLL_WRITE;
185 	if (force)
186 		flags |= FOLL_FORCE;
187 
188 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
189 				NULL);
190 }
191 EXPORT_SYMBOL(get_user_pages);
192 
193 /**
194  * follow_pfn - look up PFN at a user virtual address
195  * @vma: memory mapping
196  * @address: user virtual address
197  * @pfn: location to store found PFN
198  *
199  * Only IO mappings and raw PFN mappings are allowed.
200  *
201  * Returns zero and the pfn at @pfn on success, -ve otherwise.
202  */
203 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
204 	unsigned long *pfn)
205 {
206 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
207 		return -EINVAL;
208 
209 	*pfn = address >> PAGE_SHIFT;
210 	return 0;
211 }
212 EXPORT_SYMBOL(follow_pfn);
213 
214 DEFINE_RWLOCK(vmlist_lock);
215 struct vm_struct *vmlist;
216 
217 void vfree(const void *addr)
218 {
219 	kfree(addr);
220 }
221 EXPORT_SYMBOL(vfree);
222 
223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
224 {
225 	/*
226 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
227 	 * returns only a logical address.
228 	 */
229 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
230 }
231 EXPORT_SYMBOL(__vmalloc);
232 
233 void *vmalloc_user(unsigned long size)
234 {
235 	void *ret;
236 
237 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
238 			PAGE_KERNEL);
239 	if (ret) {
240 		struct vm_area_struct *vma;
241 
242 		down_write(&current->mm->mmap_sem);
243 		vma = find_vma(current->mm, (unsigned long)ret);
244 		if (vma)
245 			vma->vm_flags |= VM_USERMAP;
246 		up_write(&current->mm->mmap_sem);
247 	}
248 
249 	return ret;
250 }
251 EXPORT_SYMBOL(vmalloc_user);
252 
253 struct page *vmalloc_to_page(const void *addr)
254 {
255 	return virt_to_page(addr);
256 }
257 EXPORT_SYMBOL(vmalloc_to_page);
258 
259 unsigned long vmalloc_to_pfn(const void *addr)
260 {
261 	return page_to_pfn(virt_to_page(addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264 
265 long vread(char *buf, char *addr, unsigned long count)
266 {
267 	memcpy(buf, addr, count);
268 	return count;
269 }
270 
271 long vwrite(char *buf, char *addr, unsigned long count)
272 {
273 	/* Don't allow overflow */
274 	if ((unsigned long) addr + count < count)
275 		count = -(unsigned long) addr;
276 
277 	memcpy(addr, buf, count);
278 	return(count);
279 }
280 
281 /*
282  *	vmalloc  -  allocate virtually continguos memory
283  *
284  *	@size:		allocation size
285  *
286  *	Allocate enough pages to cover @size from the page level
287  *	allocator and map them into continguos kernel virtual space.
288  *
289  *	For tight control over page level allocator and protection flags
290  *	use __vmalloc() instead.
291  */
292 void *vmalloc(unsigned long size)
293 {
294        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
295 }
296 EXPORT_SYMBOL(vmalloc);
297 
298 /*
299  *	vzalloc - allocate virtually continguos memory with zero fill
300  *
301  *	@size:		allocation size
302  *
303  *	Allocate enough pages to cover @size from the page level
304  *	allocator and map them into continguos kernel virtual space.
305  *	The memory allocated is set to zero.
306  *
307  *	For tight control over page level allocator and protection flags
308  *	use __vmalloc() instead.
309  */
310 void *vzalloc(unsigned long size)
311 {
312 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
313 			PAGE_KERNEL);
314 }
315 EXPORT_SYMBOL(vzalloc);
316 
317 /**
318  * vmalloc_node - allocate memory on a specific node
319  * @size:	allocation size
320  * @node:	numa node
321  *
322  * Allocate enough pages to cover @size from the page level
323  * allocator and map them into contiguous kernel virtual space.
324  *
325  * For tight control over page level allocator and protection flags
326  * use __vmalloc() instead.
327  */
328 void *vmalloc_node(unsigned long size, int node)
329 {
330 	return vmalloc(size);
331 }
332 EXPORT_SYMBOL(vmalloc_node);
333 
334 /**
335  * vzalloc_node - allocate memory on a specific node with zero fill
336  * @size:	allocation size
337  * @node:	numa node
338  *
339  * Allocate enough pages to cover @size from the page level
340  * allocator and map them into contiguous kernel virtual space.
341  * The memory allocated is set to zero.
342  *
343  * For tight control over page level allocator and protection flags
344  * use __vmalloc() instead.
345  */
346 void *vzalloc_node(unsigned long size, int node)
347 {
348 	return vzalloc(size);
349 }
350 EXPORT_SYMBOL(vzalloc_node);
351 
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
354 #endif
355 
356 /**
357  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
358  *	@size:		allocation size
359  *
360  *	Kernel-internal function to allocate enough pages to cover @size
361  *	the page level allocator and map them into contiguous and
362  *	executable kernel virtual space.
363  *
364  *	For tight control over page level allocator and protection flags
365  *	use __vmalloc() instead.
366  */
367 
368 void *vmalloc_exec(unsigned long size)
369 {
370 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
371 }
372 
373 /**
374  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
375  *	@size:		allocation size
376  *
377  *	Allocate enough 32bit PA addressable pages to cover @size from the
378  *	page level allocator and map them into continguos kernel virtual space.
379  */
380 void *vmalloc_32(unsigned long size)
381 {
382 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 }
384 EXPORT_SYMBOL(vmalloc_32);
385 
386 /**
387  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
388  *	@size:		allocation size
389  *
390  * The resulting memory area is 32bit addressable and zeroed so it can be
391  * mapped to userspace without leaking data.
392  *
393  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
394  * remap_vmalloc_range() are permissible.
395  */
396 void *vmalloc_32_user(unsigned long size)
397 {
398 	/*
399 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
400 	 * but for now this can simply use vmalloc_user() directly.
401 	 */
402 	return vmalloc_user(size);
403 }
404 EXPORT_SYMBOL(vmalloc_32_user);
405 
406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 {
408 	BUG();
409 	return NULL;
410 }
411 EXPORT_SYMBOL(vmap);
412 
413 void vunmap(const void *addr)
414 {
415 	BUG();
416 }
417 EXPORT_SYMBOL(vunmap);
418 
419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 {
421 	BUG();
422 	return NULL;
423 }
424 EXPORT_SYMBOL(vm_map_ram);
425 
426 void vm_unmap_ram(const void *mem, unsigned int count)
427 {
428 	BUG();
429 }
430 EXPORT_SYMBOL(vm_unmap_ram);
431 
432 void vm_unmap_aliases(void)
433 {
434 }
435 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
436 
437 /*
438  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
439  * have one.
440  */
441 void  __attribute__((weak)) vmalloc_sync_all(void)
442 {
443 }
444 
445 /**
446  *	alloc_vm_area - allocate a range of kernel address space
447  *	@size:		size of the area
448  *
449  *	Returns:	NULL on failure, vm_struct on success
450  *
451  *	This function reserves a range of kernel address space, and
452  *	allocates pagetables to map that range.  No actual mappings
453  *	are created.  If the kernel address space is not shared
454  *	between processes, it syncs the pagetable across all
455  *	processes.
456  */
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459 	BUG();
460 	return NULL;
461 }
462 EXPORT_SYMBOL_GPL(alloc_vm_area);
463 
464 void free_vm_area(struct vm_struct *area)
465 {
466 	BUG();
467 }
468 EXPORT_SYMBOL_GPL(free_vm_area);
469 
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471 		   struct page *page)
472 {
473 	return -EINVAL;
474 }
475 EXPORT_SYMBOL(vm_insert_page);
476 
477 /*
478  *  sys_brk() for the most part doesn't need the global kernel
479  *  lock, except when an application is doing something nasty
480  *  like trying to un-brk an area that has already been mapped
481  *  to a regular file.  in this case, the unmapping will need
482  *  to invoke file system routines that need the global lock.
483  */
484 SYSCALL_DEFINE1(brk, unsigned long, brk)
485 {
486 	struct mm_struct *mm = current->mm;
487 
488 	if (brk < mm->start_brk || brk > mm->context.end_brk)
489 		return mm->brk;
490 
491 	if (mm->brk == brk)
492 		return mm->brk;
493 
494 	/*
495 	 * Always allow shrinking brk
496 	 */
497 	if (brk <= mm->brk) {
498 		mm->brk = brk;
499 		return brk;
500 	}
501 
502 	/*
503 	 * Ok, looks good - let it rip.
504 	 */
505 	flush_icache_range(mm->brk, brk);
506 	return mm->brk = brk;
507 }
508 
509 /*
510  * initialise the VMA and region record slabs
511  */
512 void __init mmap_init(void)
513 {
514 	int ret;
515 
516 	ret = percpu_counter_init(&vm_committed_as, 0);
517 	VM_BUG_ON(ret);
518 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
519 }
520 
521 /*
522  * validate the region tree
523  * - the caller must hold the region lock
524  */
525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
526 static noinline void validate_nommu_regions(void)
527 {
528 	struct vm_region *region, *last;
529 	struct rb_node *p, *lastp;
530 
531 	lastp = rb_first(&nommu_region_tree);
532 	if (!lastp)
533 		return;
534 
535 	last = rb_entry(lastp, struct vm_region, vm_rb);
536 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
537 	BUG_ON(unlikely(last->vm_top < last->vm_end));
538 
539 	while ((p = rb_next(lastp))) {
540 		region = rb_entry(p, struct vm_region, vm_rb);
541 		last = rb_entry(lastp, struct vm_region, vm_rb);
542 
543 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
544 		BUG_ON(unlikely(region->vm_top < region->vm_end));
545 		BUG_ON(unlikely(region->vm_start < last->vm_top));
546 
547 		lastp = p;
548 	}
549 }
550 #else
551 static void validate_nommu_regions(void)
552 {
553 }
554 #endif
555 
556 /*
557  * add a region into the global tree
558  */
559 static void add_nommu_region(struct vm_region *region)
560 {
561 	struct vm_region *pregion;
562 	struct rb_node **p, *parent;
563 
564 	validate_nommu_regions();
565 
566 	parent = NULL;
567 	p = &nommu_region_tree.rb_node;
568 	while (*p) {
569 		parent = *p;
570 		pregion = rb_entry(parent, struct vm_region, vm_rb);
571 		if (region->vm_start < pregion->vm_start)
572 			p = &(*p)->rb_left;
573 		else if (region->vm_start > pregion->vm_start)
574 			p = &(*p)->rb_right;
575 		else if (pregion == region)
576 			return;
577 		else
578 			BUG();
579 	}
580 
581 	rb_link_node(&region->vm_rb, parent, p);
582 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
583 
584 	validate_nommu_regions();
585 }
586 
587 /*
588  * delete a region from the global tree
589  */
590 static void delete_nommu_region(struct vm_region *region)
591 {
592 	BUG_ON(!nommu_region_tree.rb_node);
593 
594 	validate_nommu_regions();
595 	rb_erase(&region->vm_rb, &nommu_region_tree);
596 	validate_nommu_regions();
597 }
598 
599 /*
600  * free a contiguous series of pages
601  */
602 static void free_page_series(unsigned long from, unsigned long to)
603 {
604 	for (; from < to; from += PAGE_SIZE) {
605 		struct page *page = virt_to_page(from);
606 
607 		kdebug("- free %lx", from);
608 		atomic_long_dec(&mmap_pages_allocated);
609 		if (page_count(page) != 1)
610 			kdebug("free page %p: refcount not one: %d",
611 			       page, page_count(page));
612 		put_page(page);
613 	}
614 }
615 
616 /*
617  * release a reference to a region
618  * - the caller must hold the region semaphore for writing, which this releases
619  * - the region may not have been added to the tree yet, in which case vm_top
620  *   will equal vm_start
621  */
622 static void __put_nommu_region(struct vm_region *region)
623 	__releases(nommu_region_sem)
624 {
625 	kenter("%p{%d}", region, region->vm_usage);
626 
627 	BUG_ON(!nommu_region_tree.rb_node);
628 
629 	if (--region->vm_usage == 0) {
630 		if (region->vm_top > region->vm_start)
631 			delete_nommu_region(region);
632 		up_write(&nommu_region_sem);
633 
634 		if (region->vm_file)
635 			fput(region->vm_file);
636 
637 		/* IO memory and memory shared directly out of the pagecache
638 		 * from ramfs/tmpfs mustn't be released here */
639 		if (region->vm_flags & VM_MAPPED_COPY) {
640 			kdebug("free series");
641 			free_page_series(region->vm_start, region->vm_top);
642 		}
643 		kmem_cache_free(vm_region_jar, region);
644 	} else {
645 		up_write(&nommu_region_sem);
646 	}
647 }
648 
649 /*
650  * release a reference to a region
651  */
652 static void put_nommu_region(struct vm_region *region)
653 {
654 	down_write(&nommu_region_sem);
655 	__put_nommu_region(region);
656 }
657 
658 /*
659  * update protection on a vma
660  */
661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
662 {
663 #ifdef CONFIG_MPU
664 	struct mm_struct *mm = vma->vm_mm;
665 	long start = vma->vm_start & PAGE_MASK;
666 	while (start < vma->vm_end) {
667 		protect_page(mm, start, flags);
668 		start += PAGE_SIZE;
669 	}
670 	update_protections(mm);
671 #endif
672 }
673 
674 /*
675  * add a VMA into a process's mm_struct in the appropriate place in the list
676  * and tree and add to the address space's page tree also if not an anonymous
677  * page
678  * - should be called with mm->mmap_sem held writelocked
679  */
680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
681 {
682 	struct vm_area_struct *pvma, *prev;
683 	struct address_space *mapping;
684 	struct rb_node **p, *parent, *rb_prev;
685 
686 	kenter(",%p", vma);
687 
688 	BUG_ON(!vma->vm_region);
689 
690 	mm->map_count++;
691 	vma->vm_mm = mm;
692 
693 	protect_vma(vma, vma->vm_flags);
694 
695 	/* add the VMA to the mapping */
696 	if (vma->vm_file) {
697 		mapping = vma->vm_file->f_mapping;
698 
699 		mutex_lock(&mapping->i_mmap_mutex);
700 		flush_dcache_mmap_lock(mapping);
701 		vma_prio_tree_insert(vma, &mapping->i_mmap);
702 		flush_dcache_mmap_unlock(mapping);
703 		mutex_unlock(&mapping->i_mmap_mutex);
704 	}
705 
706 	/* add the VMA to the tree */
707 	parent = rb_prev = NULL;
708 	p = &mm->mm_rb.rb_node;
709 	while (*p) {
710 		parent = *p;
711 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712 
713 		/* sort by: start addr, end addr, VMA struct addr in that order
714 		 * (the latter is necessary as we may get identical VMAs) */
715 		if (vma->vm_start < pvma->vm_start)
716 			p = &(*p)->rb_left;
717 		else if (vma->vm_start > pvma->vm_start) {
718 			rb_prev = parent;
719 			p = &(*p)->rb_right;
720 		} else if (vma->vm_end < pvma->vm_end)
721 			p = &(*p)->rb_left;
722 		else if (vma->vm_end > pvma->vm_end) {
723 			rb_prev = parent;
724 			p = &(*p)->rb_right;
725 		} else if (vma < pvma)
726 			p = &(*p)->rb_left;
727 		else if (vma > pvma) {
728 			rb_prev = parent;
729 			p = &(*p)->rb_right;
730 		} else
731 			BUG();
732 	}
733 
734 	rb_link_node(&vma->vm_rb, parent, p);
735 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736 
737 	/* add VMA to the VMA list also */
738 	prev = NULL;
739 	if (rb_prev)
740 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741 
742 	__vma_link_list(mm, vma, prev, parent);
743 }
744 
745 /*
746  * delete a VMA from its owning mm_struct and address space
747  */
748 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 {
750 	struct address_space *mapping;
751 	struct mm_struct *mm = vma->vm_mm;
752 
753 	kenter("%p", vma);
754 
755 	protect_vma(vma, 0);
756 
757 	mm->map_count--;
758 	if (mm->mmap_cache == vma)
759 		mm->mmap_cache = NULL;
760 
761 	/* remove the VMA from the mapping */
762 	if (vma->vm_file) {
763 		mapping = vma->vm_file->f_mapping;
764 
765 		mutex_lock(&mapping->i_mmap_mutex);
766 		flush_dcache_mmap_lock(mapping);
767 		vma_prio_tree_remove(vma, &mapping->i_mmap);
768 		flush_dcache_mmap_unlock(mapping);
769 		mutex_unlock(&mapping->i_mmap_mutex);
770 	}
771 
772 	/* remove from the MM's tree and list */
773 	rb_erase(&vma->vm_rb, &mm->mm_rb);
774 
775 	if (vma->vm_prev)
776 		vma->vm_prev->vm_next = vma->vm_next;
777 	else
778 		mm->mmap = vma->vm_next;
779 
780 	if (vma->vm_next)
781 		vma->vm_next->vm_prev = vma->vm_prev;
782 }
783 
784 /*
785  * destroy a VMA record
786  */
787 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
788 {
789 	kenter("%p", vma);
790 	if (vma->vm_ops && vma->vm_ops->close)
791 		vma->vm_ops->close(vma);
792 	if (vma->vm_file) {
793 		fput(vma->vm_file);
794 		if (vma->vm_flags & VM_EXECUTABLE)
795 			removed_exe_file_vma(mm);
796 	}
797 	put_nommu_region(vma->vm_region);
798 	kmem_cache_free(vm_area_cachep, vma);
799 }
800 
801 /*
802  * look up the first VMA in which addr resides, NULL if none
803  * - should be called with mm->mmap_sem at least held readlocked
804  */
805 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
806 {
807 	struct vm_area_struct *vma;
808 
809 	/* check the cache first */
810 	vma = mm->mmap_cache;
811 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
812 		return vma;
813 
814 	/* trawl the list (there may be multiple mappings in which addr
815 	 * resides) */
816 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
817 		if (vma->vm_start > addr)
818 			return NULL;
819 		if (vma->vm_end > addr) {
820 			mm->mmap_cache = vma;
821 			return vma;
822 		}
823 	}
824 
825 	return NULL;
826 }
827 EXPORT_SYMBOL(find_vma);
828 
829 /*
830  * find a VMA
831  * - we don't extend stack VMAs under NOMMU conditions
832  */
833 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
834 {
835 	return find_vma(mm, addr);
836 }
837 
838 /*
839  * expand a stack to a given address
840  * - not supported under NOMMU conditions
841  */
842 int expand_stack(struct vm_area_struct *vma, unsigned long address)
843 {
844 	return -ENOMEM;
845 }
846 
847 /*
848  * look up the first VMA exactly that exactly matches addr
849  * - should be called with mm->mmap_sem at least held readlocked
850  */
851 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
852 					     unsigned long addr,
853 					     unsigned long len)
854 {
855 	struct vm_area_struct *vma;
856 	unsigned long end = addr + len;
857 
858 	/* check the cache first */
859 	vma = mm->mmap_cache;
860 	if (vma && vma->vm_start == addr && vma->vm_end == end)
861 		return vma;
862 
863 	/* trawl the list (there may be multiple mappings in which addr
864 	 * resides) */
865 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
866 		if (vma->vm_start < addr)
867 			continue;
868 		if (vma->vm_start > addr)
869 			return NULL;
870 		if (vma->vm_end == end) {
871 			mm->mmap_cache = vma;
872 			return vma;
873 		}
874 	}
875 
876 	return NULL;
877 }
878 
879 /*
880  * determine whether a mapping should be permitted and, if so, what sort of
881  * mapping we're capable of supporting
882  */
883 static int validate_mmap_request(struct file *file,
884 				 unsigned long addr,
885 				 unsigned long len,
886 				 unsigned long prot,
887 				 unsigned long flags,
888 				 unsigned long pgoff,
889 				 unsigned long *_capabilities)
890 {
891 	unsigned long capabilities, rlen;
892 	unsigned long reqprot = prot;
893 	int ret;
894 
895 	/* do the simple checks first */
896 	if (flags & MAP_FIXED) {
897 		printk(KERN_DEBUG
898 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
899 		       current->pid);
900 		return -EINVAL;
901 	}
902 
903 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
904 	    (flags & MAP_TYPE) != MAP_SHARED)
905 		return -EINVAL;
906 
907 	if (!len)
908 		return -EINVAL;
909 
910 	/* Careful about overflows.. */
911 	rlen = PAGE_ALIGN(len);
912 	if (!rlen || rlen > TASK_SIZE)
913 		return -ENOMEM;
914 
915 	/* offset overflow? */
916 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
917 		return -EOVERFLOW;
918 
919 	if (file) {
920 		/* validate file mapping requests */
921 		struct address_space *mapping;
922 
923 		/* files must support mmap */
924 		if (!file->f_op || !file->f_op->mmap)
925 			return -ENODEV;
926 
927 		/* work out if what we've got could possibly be shared
928 		 * - we support chardevs that provide their own "memory"
929 		 * - we support files/blockdevs that are memory backed
930 		 */
931 		mapping = file->f_mapping;
932 		if (!mapping)
933 			mapping = file->f_path.dentry->d_inode->i_mapping;
934 
935 		capabilities = 0;
936 		if (mapping && mapping->backing_dev_info)
937 			capabilities = mapping->backing_dev_info->capabilities;
938 
939 		if (!capabilities) {
940 			/* no explicit capabilities set, so assume some
941 			 * defaults */
942 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
943 			case S_IFREG:
944 			case S_IFBLK:
945 				capabilities = BDI_CAP_MAP_COPY;
946 				break;
947 
948 			case S_IFCHR:
949 				capabilities =
950 					BDI_CAP_MAP_DIRECT |
951 					BDI_CAP_READ_MAP |
952 					BDI_CAP_WRITE_MAP;
953 				break;
954 
955 			default:
956 				return -EINVAL;
957 			}
958 		}
959 
960 		/* eliminate any capabilities that we can't support on this
961 		 * device */
962 		if (!file->f_op->get_unmapped_area)
963 			capabilities &= ~BDI_CAP_MAP_DIRECT;
964 		if (!file->f_op->read)
965 			capabilities &= ~BDI_CAP_MAP_COPY;
966 
967 		/* The file shall have been opened with read permission. */
968 		if (!(file->f_mode & FMODE_READ))
969 			return -EACCES;
970 
971 		if (flags & MAP_SHARED) {
972 			/* do checks for writing, appending and locking */
973 			if ((prot & PROT_WRITE) &&
974 			    !(file->f_mode & FMODE_WRITE))
975 				return -EACCES;
976 
977 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
978 			    (file->f_mode & FMODE_WRITE))
979 				return -EACCES;
980 
981 			if (locks_verify_locked(file->f_path.dentry->d_inode))
982 				return -EAGAIN;
983 
984 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
985 				return -ENODEV;
986 
987 			/* we mustn't privatise shared mappings */
988 			capabilities &= ~BDI_CAP_MAP_COPY;
989 		}
990 		else {
991 			/* we're going to read the file into private memory we
992 			 * allocate */
993 			if (!(capabilities & BDI_CAP_MAP_COPY))
994 				return -ENODEV;
995 
996 			/* we don't permit a private writable mapping to be
997 			 * shared with the backing device */
998 			if (prot & PROT_WRITE)
999 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1000 		}
1001 
1002 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1003 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1004 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1005 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1006 			    ) {
1007 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1008 				if (flags & MAP_SHARED) {
1009 					printk(KERN_WARNING
1010 					       "MAP_SHARED not completely supported on !MMU\n");
1011 					return -EINVAL;
1012 				}
1013 			}
1014 		}
1015 
1016 		/* handle executable mappings and implied executable
1017 		 * mappings */
1018 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1019 			if (prot & PROT_EXEC)
1020 				return -EPERM;
1021 		}
1022 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1023 			/* handle implication of PROT_EXEC by PROT_READ */
1024 			if (current->personality & READ_IMPLIES_EXEC) {
1025 				if (capabilities & BDI_CAP_EXEC_MAP)
1026 					prot |= PROT_EXEC;
1027 			}
1028 		}
1029 		else if ((prot & PROT_READ) &&
1030 			 (prot & PROT_EXEC) &&
1031 			 !(capabilities & BDI_CAP_EXEC_MAP)
1032 			 ) {
1033 			/* backing file is not executable, try to copy */
1034 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1035 		}
1036 	}
1037 	else {
1038 		/* anonymous mappings are always memory backed and can be
1039 		 * privately mapped
1040 		 */
1041 		capabilities = BDI_CAP_MAP_COPY;
1042 
1043 		/* handle PROT_EXEC implication by PROT_READ */
1044 		if ((prot & PROT_READ) &&
1045 		    (current->personality & READ_IMPLIES_EXEC))
1046 			prot |= PROT_EXEC;
1047 	}
1048 
1049 	/* allow the security API to have its say */
1050 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1051 	if (ret < 0)
1052 		return ret;
1053 
1054 	/* looks okay */
1055 	*_capabilities = capabilities;
1056 	return 0;
1057 }
1058 
1059 /*
1060  * we've determined that we can make the mapping, now translate what we
1061  * now know into VMA flags
1062  */
1063 static unsigned long determine_vm_flags(struct file *file,
1064 					unsigned long prot,
1065 					unsigned long flags,
1066 					unsigned long capabilities)
1067 {
1068 	unsigned long vm_flags;
1069 
1070 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1071 	/* vm_flags |= mm->def_flags; */
1072 
1073 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1074 		/* attempt to share read-only copies of mapped file chunks */
1075 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1076 		if (file && !(prot & PROT_WRITE))
1077 			vm_flags |= VM_MAYSHARE;
1078 	} else {
1079 		/* overlay a shareable mapping on the backing device or inode
1080 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1081 		 * romfs/cramfs */
1082 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1083 		if (flags & MAP_SHARED)
1084 			vm_flags |= VM_SHARED;
1085 	}
1086 
1087 	/* refuse to let anyone share private mappings with this process if
1088 	 * it's being traced - otherwise breakpoints set in it may interfere
1089 	 * with another untraced process
1090 	 */
1091 	if ((flags & MAP_PRIVATE) && current->ptrace)
1092 		vm_flags &= ~VM_MAYSHARE;
1093 
1094 	return vm_flags;
1095 }
1096 
1097 /*
1098  * set up a shared mapping on a file (the driver or filesystem provides and
1099  * pins the storage)
1100  */
1101 static int do_mmap_shared_file(struct vm_area_struct *vma)
1102 {
1103 	int ret;
1104 
1105 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1106 	if (ret == 0) {
1107 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1108 		return 0;
1109 	}
1110 	if (ret != -ENOSYS)
1111 		return ret;
1112 
1113 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1114 	 * opposed to tried but failed) so we can only give a suitable error as
1115 	 * it's not possible to make a private copy if MAP_SHARED was given */
1116 	return -ENODEV;
1117 }
1118 
1119 /*
1120  * set up a private mapping or an anonymous shared mapping
1121  */
1122 static int do_mmap_private(struct vm_area_struct *vma,
1123 			   struct vm_region *region,
1124 			   unsigned long len,
1125 			   unsigned long capabilities)
1126 {
1127 	struct page *pages;
1128 	unsigned long total, point, n;
1129 	void *base;
1130 	int ret, order;
1131 
1132 	/* invoke the file's mapping function so that it can keep track of
1133 	 * shared mappings on devices or memory
1134 	 * - VM_MAYSHARE will be set if it may attempt to share
1135 	 */
1136 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1137 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1138 		if (ret == 0) {
1139 			/* shouldn't return success if we're not sharing */
1140 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1141 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1142 			return 0;
1143 		}
1144 		if (ret != -ENOSYS)
1145 			return ret;
1146 
1147 		/* getting an ENOSYS error indicates that direct mmap isn't
1148 		 * possible (as opposed to tried but failed) so we'll try to
1149 		 * make a private copy of the data and map that instead */
1150 	}
1151 
1152 
1153 	/* allocate some memory to hold the mapping
1154 	 * - note that this may not return a page-aligned address if the object
1155 	 *   we're allocating is smaller than a page
1156 	 */
1157 	order = get_order(len);
1158 	kdebug("alloc order %d for %lx", order, len);
1159 
1160 	pages = alloc_pages(GFP_KERNEL, order);
1161 	if (!pages)
1162 		goto enomem;
1163 
1164 	total = 1 << order;
1165 	atomic_long_add(total, &mmap_pages_allocated);
1166 
1167 	point = len >> PAGE_SHIFT;
1168 
1169 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1170 	 * the excess */
1171 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1172 		while (total > point) {
1173 			order = ilog2(total - point);
1174 			n = 1 << order;
1175 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1176 			atomic_long_sub(n, &mmap_pages_allocated);
1177 			total -= n;
1178 			set_page_refcounted(pages + total);
1179 			__free_pages(pages + total, order);
1180 		}
1181 	}
1182 
1183 	for (point = 1; point < total; point++)
1184 		set_page_refcounted(&pages[point]);
1185 
1186 	base = page_address(pages);
1187 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1188 	region->vm_start = (unsigned long) base;
1189 	region->vm_end   = region->vm_start + len;
1190 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1191 
1192 	vma->vm_start = region->vm_start;
1193 	vma->vm_end   = region->vm_start + len;
1194 
1195 	if (vma->vm_file) {
1196 		/* read the contents of a file into the copy */
1197 		mm_segment_t old_fs;
1198 		loff_t fpos;
1199 
1200 		fpos = vma->vm_pgoff;
1201 		fpos <<= PAGE_SHIFT;
1202 
1203 		old_fs = get_fs();
1204 		set_fs(KERNEL_DS);
1205 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1206 		set_fs(old_fs);
1207 
1208 		if (ret < 0)
1209 			goto error_free;
1210 
1211 		/* clear the last little bit */
1212 		if (ret < len)
1213 			memset(base + ret, 0, len - ret);
1214 
1215 	}
1216 
1217 	return 0;
1218 
1219 error_free:
1220 	free_page_series(region->vm_start, region->vm_top);
1221 	region->vm_start = vma->vm_start = 0;
1222 	region->vm_end   = vma->vm_end = 0;
1223 	region->vm_top   = 0;
1224 	return ret;
1225 
1226 enomem:
1227 	printk("Allocation of length %lu from process %d (%s) failed\n",
1228 	       len, current->pid, current->comm);
1229 	show_free_areas(0);
1230 	return -ENOMEM;
1231 }
1232 
1233 /*
1234  * handle mapping creation for uClinux
1235  */
1236 unsigned long do_mmap_pgoff(struct file *file,
1237 			    unsigned long addr,
1238 			    unsigned long len,
1239 			    unsigned long prot,
1240 			    unsigned long flags,
1241 			    unsigned long pgoff)
1242 {
1243 	struct vm_area_struct *vma;
1244 	struct vm_region *region;
1245 	struct rb_node *rb;
1246 	unsigned long capabilities, vm_flags, result;
1247 	int ret;
1248 
1249 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1250 
1251 	/* decide whether we should attempt the mapping, and if so what sort of
1252 	 * mapping */
1253 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1254 				    &capabilities);
1255 	if (ret < 0) {
1256 		kleave(" = %d [val]", ret);
1257 		return ret;
1258 	}
1259 
1260 	/* we ignore the address hint */
1261 	addr = 0;
1262 	len = PAGE_ALIGN(len);
1263 
1264 	/* we've determined that we can make the mapping, now translate what we
1265 	 * now know into VMA flags */
1266 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1267 
1268 	/* we're going to need to record the mapping */
1269 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1270 	if (!region)
1271 		goto error_getting_region;
1272 
1273 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1274 	if (!vma)
1275 		goto error_getting_vma;
1276 
1277 	region->vm_usage = 1;
1278 	region->vm_flags = vm_flags;
1279 	region->vm_pgoff = pgoff;
1280 
1281 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1282 	vma->vm_flags = vm_flags;
1283 	vma->vm_pgoff = pgoff;
1284 
1285 	if (file) {
1286 		region->vm_file = file;
1287 		get_file(file);
1288 		vma->vm_file = file;
1289 		get_file(file);
1290 		if (vm_flags & VM_EXECUTABLE) {
1291 			added_exe_file_vma(current->mm);
1292 			vma->vm_mm = current->mm;
1293 		}
1294 	}
1295 
1296 	down_write(&nommu_region_sem);
1297 
1298 	/* if we want to share, we need to check for regions created by other
1299 	 * mmap() calls that overlap with our proposed mapping
1300 	 * - we can only share with a superset match on most regular files
1301 	 * - shared mappings on character devices and memory backed files are
1302 	 *   permitted to overlap inexactly as far as we are concerned for in
1303 	 *   these cases, sharing is handled in the driver or filesystem rather
1304 	 *   than here
1305 	 */
1306 	if (vm_flags & VM_MAYSHARE) {
1307 		struct vm_region *pregion;
1308 		unsigned long pglen, rpglen, pgend, rpgend, start;
1309 
1310 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1311 		pgend = pgoff + pglen;
1312 
1313 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1314 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1315 
1316 			if (!(pregion->vm_flags & VM_MAYSHARE))
1317 				continue;
1318 
1319 			/* search for overlapping mappings on the same file */
1320 			if (pregion->vm_file->f_path.dentry->d_inode !=
1321 			    file->f_path.dentry->d_inode)
1322 				continue;
1323 
1324 			if (pregion->vm_pgoff >= pgend)
1325 				continue;
1326 
1327 			rpglen = pregion->vm_end - pregion->vm_start;
1328 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1329 			rpgend = pregion->vm_pgoff + rpglen;
1330 			if (pgoff >= rpgend)
1331 				continue;
1332 
1333 			/* handle inexactly overlapping matches between
1334 			 * mappings */
1335 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1336 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1337 				/* new mapping is not a subset of the region */
1338 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1339 					goto sharing_violation;
1340 				continue;
1341 			}
1342 
1343 			/* we've found a region we can share */
1344 			pregion->vm_usage++;
1345 			vma->vm_region = pregion;
1346 			start = pregion->vm_start;
1347 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1348 			vma->vm_start = start;
1349 			vma->vm_end = start + len;
1350 
1351 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1352 				kdebug("share copy");
1353 				vma->vm_flags |= VM_MAPPED_COPY;
1354 			} else {
1355 				kdebug("share mmap");
1356 				ret = do_mmap_shared_file(vma);
1357 				if (ret < 0) {
1358 					vma->vm_region = NULL;
1359 					vma->vm_start = 0;
1360 					vma->vm_end = 0;
1361 					pregion->vm_usage--;
1362 					pregion = NULL;
1363 					goto error_just_free;
1364 				}
1365 			}
1366 			fput(region->vm_file);
1367 			kmem_cache_free(vm_region_jar, region);
1368 			region = pregion;
1369 			result = start;
1370 			goto share;
1371 		}
1372 
1373 		/* obtain the address at which to make a shared mapping
1374 		 * - this is the hook for quasi-memory character devices to
1375 		 *   tell us the location of a shared mapping
1376 		 */
1377 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1378 			addr = file->f_op->get_unmapped_area(file, addr, len,
1379 							     pgoff, flags);
1380 			if (IS_ERR_VALUE(addr)) {
1381 				ret = addr;
1382 				if (ret != -ENOSYS)
1383 					goto error_just_free;
1384 
1385 				/* the driver refused to tell us where to site
1386 				 * the mapping so we'll have to attempt to copy
1387 				 * it */
1388 				ret = -ENODEV;
1389 				if (!(capabilities & BDI_CAP_MAP_COPY))
1390 					goto error_just_free;
1391 
1392 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1393 			} else {
1394 				vma->vm_start = region->vm_start = addr;
1395 				vma->vm_end = region->vm_end = addr + len;
1396 			}
1397 		}
1398 	}
1399 
1400 	vma->vm_region = region;
1401 
1402 	/* set up the mapping
1403 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1404 	 */
1405 	if (file && vma->vm_flags & VM_SHARED)
1406 		ret = do_mmap_shared_file(vma);
1407 	else
1408 		ret = do_mmap_private(vma, region, len, capabilities);
1409 	if (ret < 0)
1410 		goto error_just_free;
1411 	add_nommu_region(region);
1412 
1413 	/* clear anonymous mappings that don't ask for uninitialized data */
1414 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1415 		memset((void *)region->vm_start, 0,
1416 		       region->vm_end - region->vm_start);
1417 
1418 	/* okay... we have a mapping; now we have to register it */
1419 	result = vma->vm_start;
1420 
1421 	current->mm->total_vm += len >> PAGE_SHIFT;
1422 
1423 share:
1424 	add_vma_to_mm(current->mm, vma);
1425 
1426 	/* we flush the region from the icache only when the first executable
1427 	 * mapping of it is made  */
1428 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1429 		flush_icache_range(region->vm_start, region->vm_end);
1430 		region->vm_icache_flushed = true;
1431 	}
1432 
1433 	up_write(&nommu_region_sem);
1434 
1435 	kleave(" = %lx", result);
1436 	return result;
1437 
1438 error_just_free:
1439 	up_write(&nommu_region_sem);
1440 error:
1441 	if (region->vm_file)
1442 		fput(region->vm_file);
1443 	kmem_cache_free(vm_region_jar, region);
1444 	if (vma->vm_file)
1445 		fput(vma->vm_file);
1446 	if (vma->vm_flags & VM_EXECUTABLE)
1447 		removed_exe_file_vma(vma->vm_mm);
1448 	kmem_cache_free(vm_area_cachep, vma);
1449 	kleave(" = %d", ret);
1450 	return ret;
1451 
1452 sharing_violation:
1453 	up_write(&nommu_region_sem);
1454 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1455 	ret = -EINVAL;
1456 	goto error;
1457 
1458 error_getting_vma:
1459 	kmem_cache_free(vm_region_jar, region);
1460 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1461 	       " from process %d failed\n",
1462 	       len, current->pid);
1463 	show_free_areas(0);
1464 	return -ENOMEM;
1465 
1466 error_getting_region:
1467 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1468 	       " from process %d failed\n",
1469 	       len, current->pid);
1470 	show_free_areas(0);
1471 	return -ENOMEM;
1472 }
1473 EXPORT_SYMBOL(do_mmap_pgoff);
1474 
1475 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1476 		unsigned long, prot, unsigned long, flags,
1477 		unsigned long, fd, unsigned long, pgoff)
1478 {
1479 	struct file *file = NULL;
1480 	unsigned long retval = -EBADF;
1481 
1482 	audit_mmap_fd(fd, flags);
1483 	if (!(flags & MAP_ANONYMOUS)) {
1484 		file = fget(fd);
1485 		if (!file)
1486 			goto out;
1487 	}
1488 
1489 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1490 
1491 	down_write(&current->mm->mmap_sem);
1492 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1493 	up_write(&current->mm->mmap_sem);
1494 
1495 	if (file)
1496 		fput(file);
1497 out:
1498 	return retval;
1499 }
1500 
1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1502 struct mmap_arg_struct {
1503 	unsigned long addr;
1504 	unsigned long len;
1505 	unsigned long prot;
1506 	unsigned long flags;
1507 	unsigned long fd;
1508 	unsigned long offset;
1509 };
1510 
1511 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1512 {
1513 	struct mmap_arg_struct a;
1514 
1515 	if (copy_from_user(&a, arg, sizeof(a)))
1516 		return -EFAULT;
1517 	if (a.offset & ~PAGE_MASK)
1518 		return -EINVAL;
1519 
1520 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1521 			      a.offset >> PAGE_SHIFT);
1522 }
1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1524 
1525 /*
1526  * split a vma into two pieces at address 'addr', a new vma is allocated either
1527  * for the first part or the tail.
1528  */
1529 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1530 	      unsigned long addr, int new_below)
1531 {
1532 	struct vm_area_struct *new;
1533 	struct vm_region *region;
1534 	unsigned long npages;
1535 
1536 	kenter("");
1537 
1538 	/* we're only permitted to split anonymous regions (these should have
1539 	 * only a single usage on the region) */
1540 	if (vma->vm_file)
1541 		return -ENOMEM;
1542 
1543 	if (mm->map_count >= sysctl_max_map_count)
1544 		return -ENOMEM;
1545 
1546 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1547 	if (!region)
1548 		return -ENOMEM;
1549 
1550 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1551 	if (!new) {
1552 		kmem_cache_free(vm_region_jar, region);
1553 		return -ENOMEM;
1554 	}
1555 
1556 	/* most fields are the same, copy all, and then fixup */
1557 	*new = *vma;
1558 	*region = *vma->vm_region;
1559 	new->vm_region = region;
1560 
1561 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1562 
1563 	if (new_below) {
1564 		region->vm_top = region->vm_end = new->vm_end = addr;
1565 	} else {
1566 		region->vm_start = new->vm_start = addr;
1567 		region->vm_pgoff = new->vm_pgoff += npages;
1568 	}
1569 
1570 	if (new->vm_ops && new->vm_ops->open)
1571 		new->vm_ops->open(new);
1572 
1573 	delete_vma_from_mm(vma);
1574 	down_write(&nommu_region_sem);
1575 	delete_nommu_region(vma->vm_region);
1576 	if (new_below) {
1577 		vma->vm_region->vm_start = vma->vm_start = addr;
1578 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1579 	} else {
1580 		vma->vm_region->vm_end = vma->vm_end = addr;
1581 		vma->vm_region->vm_top = addr;
1582 	}
1583 	add_nommu_region(vma->vm_region);
1584 	add_nommu_region(new->vm_region);
1585 	up_write(&nommu_region_sem);
1586 	add_vma_to_mm(mm, vma);
1587 	add_vma_to_mm(mm, new);
1588 	return 0;
1589 }
1590 
1591 /*
1592  * shrink a VMA by removing the specified chunk from either the beginning or
1593  * the end
1594  */
1595 static int shrink_vma(struct mm_struct *mm,
1596 		      struct vm_area_struct *vma,
1597 		      unsigned long from, unsigned long to)
1598 {
1599 	struct vm_region *region;
1600 
1601 	kenter("");
1602 
1603 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1604 	 * and list */
1605 	delete_vma_from_mm(vma);
1606 	if (from > vma->vm_start)
1607 		vma->vm_end = from;
1608 	else
1609 		vma->vm_start = to;
1610 	add_vma_to_mm(mm, vma);
1611 
1612 	/* cut the backing region down to size */
1613 	region = vma->vm_region;
1614 	BUG_ON(region->vm_usage != 1);
1615 
1616 	down_write(&nommu_region_sem);
1617 	delete_nommu_region(region);
1618 	if (from > region->vm_start) {
1619 		to = region->vm_top;
1620 		region->vm_top = region->vm_end = from;
1621 	} else {
1622 		region->vm_start = to;
1623 	}
1624 	add_nommu_region(region);
1625 	up_write(&nommu_region_sem);
1626 
1627 	free_page_series(from, to);
1628 	return 0;
1629 }
1630 
1631 /*
1632  * release a mapping
1633  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1634  *   VMA, though it need not cover the whole VMA
1635  */
1636 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1637 {
1638 	struct vm_area_struct *vma;
1639 	unsigned long end;
1640 	int ret;
1641 
1642 	kenter(",%lx,%zx", start, len);
1643 
1644 	len = PAGE_ALIGN(len);
1645 	if (len == 0)
1646 		return -EINVAL;
1647 
1648 	end = start + len;
1649 
1650 	/* find the first potentially overlapping VMA */
1651 	vma = find_vma(mm, start);
1652 	if (!vma) {
1653 		static int limit = 0;
1654 		if (limit < 5) {
1655 			printk(KERN_WARNING
1656 			       "munmap of memory not mmapped by process %d"
1657 			       " (%s): 0x%lx-0x%lx\n",
1658 			       current->pid, current->comm,
1659 			       start, start + len - 1);
1660 			limit++;
1661 		}
1662 		return -EINVAL;
1663 	}
1664 
1665 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1666 	if (vma->vm_file) {
1667 		do {
1668 			if (start > vma->vm_start) {
1669 				kleave(" = -EINVAL [miss]");
1670 				return -EINVAL;
1671 			}
1672 			if (end == vma->vm_end)
1673 				goto erase_whole_vma;
1674 			vma = vma->vm_next;
1675 		} while (vma);
1676 		kleave(" = -EINVAL [split file]");
1677 		return -EINVAL;
1678 	} else {
1679 		/* the chunk must be a subset of the VMA found */
1680 		if (start == vma->vm_start && end == vma->vm_end)
1681 			goto erase_whole_vma;
1682 		if (start < vma->vm_start || end > vma->vm_end) {
1683 			kleave(" = -EINVAL [superset]");
1684 			return -EINVAL;
1685 		}
1686 		if (start & ~PAGE_MASK) {
1687 			kleave(" = -EINVAL [unaligned start]");
1688 			return -EINVAL;
1689 		}
1690 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1691 			kleave(" = -EINVAL [unaligned split]");
1692 			return -EINVAL;
1693 		}
1694 		if (start != vma->vm_start && end != vma->vm_end) {
1695 			ret = split_vma(mm, vma, start, 1);
1696 			if (ret < 0) {
1697 				kleave(" = %d [split]", ret);
1698 				return ret;
1699 			}
1700 		}
1701 		return shrink_vma(mm, vma, start, end);
1702 	}
1703 
1704 erase_whole_vma:
1705 	delete_vma_from_mm(vma);
1706 	delete_vma(mm, vma);
1707 	kleave(" = 0");
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL(do_munmap);
1711 
1712 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1713 {
1714 	int ret;
1715 	struct mm_struct *mm = current->mm;
1716 
1717 	down_write(&mm->mmap_sem);
1718 	ret = do_munmap(mm, addr, len);
1719 	up_write(&mm->mmap_sem);
1720 	return ret;
1721 }
1722 
1723 /*
1724  * release all the mappings made in a process's VM space
1725  */
1726 void exit_mmap(struct mm_struct *mm)
1727 {
1728 	struct vm_area_struct *vma;
1729 
1730 	if (!mm)
1731 		return;
1732 
1733 	kenter("");
1734 
1735 	mm->total_vm = 0;
1736 
1737 	while ((vma = mm->mmap)) {
1738 		mm->mmap = vma->vm_next;
1739 		delete_vma_from_mm(vma);
1740 		delete_vma(mm, vma);
1741 		cond_resched();
1742 	}
1743 
1744 	kleave("");
1745 }
1746 
1747 unsigned long do_brk(unsigned long addr, unsigned long len)
1748 {
1749 	return -ENOMEM;
1750 }
1751 
1752 /*
1753  * expand (or shrink) an existing mapping, potentially moving it at the same
1754  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1755  *
1756  * under NOMMU conditions, we only permit changing a mapping's size, and only
1757  * as long as it stays within the region allocated by do_mmap_private() and the
1758  * block is not shareable
1759  *
1760  * MREMAP_FIXED is not supported under NOMMU conditions
1761  */
1762 unsigned long do_mremap(unsigned long addr,
1763 			unsigned long old_len, unsigned long new_len,
1764 			unsigned long flags, unsigned long new_addr)
1765 {
1766 	struct vm_area_struct *vma;
1767 
1768 	/* insanity checks first */
1769 	old_len = PAGE_ALIGN(old_len);
1770 	new_len = PAGE_ALIGN(new_len);
1771 	if (old_len == 0 || new_len == 0)
1772 		return (unsigned long) -EINVAL;
1773 
1774 	if (addr & ~PAGE_MASK)
1775 		return -EINVAL;
1776 
1777 	if (flags & MREMAP_FIXED && new_addr != addr)
1778 		return (unsigned long) -EINVAL;
1779 
1780 	vma = find_vma_exact(current->mm, addr, old_len);
1781 	if (!vma)
1782 		return (unsigned long) -EINVAL;
1783 
1784 	if (vma->vm_end != vma->vm_start + old_len)
1785 		return (unsigned long) -EFAULT;
1786 
1787 	if (vma->vm_flags & VM_MAYSHARE)
1788 		return (unsigned long) -EPERM;
1789 
1790 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1791 		return (unsigned long) -ENOMEM;
1792 
1793 	/* all checks complete - do it */
1794 	vma->vm_end = vma->vm_start + new_len;
1795 	return vma->vm_start;
1796 }
1797 EXPORT_SYMBOL(do_mremap);
1798 
1799 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1800 		unsigned long, new_len, unsigned long, flags,
1801 		unsigned long, new_addr)
1802 {
1803 	unsigned long ret;
1804 
1805 	down_write(&current->mm->mmap_sem);
1806 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1807 	up_write(&current->mm->mmap_sem);
1808 	return ret;
1809 }
1810 
1811 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1812 			unsigned int foll_flags)
1813 {
1814 	return NULL;
1815 }
1816 
1817 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1818 		unsigned long pfn, unsigned long size, pgprot_t prot)
1819 {
1820 	if (addr != (pfn << PAGE_SHIFT))
1821 		return -EINVAL;
1822 
1823 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1824 	return 0;
1825 }
1826 EXPORT_SYMBOL(remap_pfn_range);
1827 
1828 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1829 			unsigned long pgoff)
1830 {
1831 	unsigned int size = vma->vm_end - vma->vm_start;
1832 
1833 	if (!(vma->vm_flags & VM_USERMAP))
1834 		return -EINVAL;
1835 
1836 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1837 	vma->vm_end = vma->vm_start + size;
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL(remap_vmalloc_range);
1842 
1843 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1844 	unsigned long len, unsigned long pgoff, unsigned long flags)
1845 {
1846 	return -ENOMEM;
1847 }
1848 
1849 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1850 {
1851 }
1852 
1853 void unmap_mapping_range(struct address_space *mapping,
1854 			 loff_t const holebegin, loff_t const holelen,
1855 			 int even_cows)
1856 {
1857 }
1858 EXPORT_SYMBOL(unmap_mapping_range);
1859 
1860 /*
1861  * Check that a process has enough memory to allocate a new virtual
1862  * mapping. 0 means there is enough memory for the allocation to
1863  * succeed and -ENOMEM implies there is not.
1864  *
1865  * We currently support three overcommit policies, which are set via the
1866  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1867  *
1868  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1869  * Additional code 2002 Jul 20 by Robert Love.
1870  *
1871  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1872  *
1873  * Note this is a helper function intended to be used by LSMs which
1874  * wish to use this logic.
1875  */
1876 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1877 {
1878 	unsigned long free, allowed;
1879 
1880 	vm_acct_memory(pages);
1881 
1882 	/*
1883 	 * Sometimes we want to use more memory than we have
1884 	 */
1885 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1886 		return 0;
1887 
1888 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1889 		free = global_page_state(NR_FREE_PAGES);
1890 		free += global_page_state(NR_FILE_PAGES);
1891 
1892 		/*
1893 		 * shmem pages shouldn't be counted as free in this
1894 		 * case, they can't be purged, only swapped out, and
1895 		 * that won't affect the overall amount of available
1896 		 * memory in the system.
1897 		 */
1898 		free -= global_page_state(NR_SHMEM);
1899 
1900 		free += nr_swap_pages;
1901 
1902 		/*
1903 		 * Any slabs which are created with the
1904 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1905 		 * which are reclaimable, under pressure.  The dentry
1906 		 * cache and most inode caches should fall into this
1907 		 */
1908 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1909 
1910 		/*
1911 		 * Leave reserved pages. The pages are not for anonymous pages.
1912 		 */
1913 		if (free <= totalreserve_pages)
1914 			goto error;
1915 		else
1916 			free -= totalreserve_pages;
1917 
1918 		/*
1919 		 * Leave the last 3% for root
1920 		 */
1921 		if (!cap_sys_admin)
1922 			free -= free / 32;
1923 
1924 		if (free > pages)
1925 			return 0;
1926 
1927 		goto error;
1928 	}
1929 
1930 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1931 	/*
1932 	 * Leave the last 3% for root
1933 	 */
1934 	if (!cap_sys_admin)
1935 		allowed -= allowed / 32;
1936 	allowed += total_swap_pages;
1937 
1938 	/* Don't let a single process grow too big:
1939 	   leave 3% of the size of this process for other processes */
1940 	if (mm)
1941 		allowed -= mm->total_vm / 32;
1942 
1943 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1944 		return 0;
1945 
1946 error:
1947 	vm_unacct_memory(pages);
1948 
1949 	return -ENOMEM;
1950 }
1951 
1952 int in_gate_area_no_mm(unsigned long addr)
1953 {
1954 	return 0;
1955 }
1956 
1957 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1958 {
1959 	BUG();
1960 	return 0;
1961 }
1962 EXPORT_SYMBOL(filemap_fault);
1963 
1964 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1965 		unsigned long addr, void *buf, int len, int write)
1966 {
1967 	struct vm_area_struct *vma;
1968 
1969 	down_read(&mm->mmap_sem);
1970 
1971 	/* the access must start within one of the target process's mappings */
1972 	vma = find_vma(mm, addr);
1973 	if (vma) {
1974 		/* don't overrun this mapping */
1975 		if (addr + len >= vma->vm_end)
1976 			len = vma->vm_end - addr;
1977 
1978 		/* only read or write mappings where it is permitted */
1979 		if (write && vma->vm_flags & VM_MAYWRITE)
1980 			copy_to_user_page(vma, NULL, addr,
1981 					 (void *) addr, buf, len);
1982 		else if (!write && vma->vm_flags & VM_MAYREAD)
1983 			copy_from_user_page(vma, NULL, addr,
1984 					    buf, (void *) addr, len);
1985 		else
1986 			len = 0;
1987 	} else {
1988 		len = 0;
1989 	}
1990 
1991 	up_read(&mm->mmap_sem);
1992 
1993 	return len;
1994 }
1995 
1996 /**
1997  * @access_remote_vm - access another process' address space
1998  * @mm:		the mm_struct of the target address space
1999  * @addr:	start address to access
2000  * @buf:	source or destination buffer
2001  * @len:	number of bytes to transfer
2002  * @write:	whether the access is a write
2003  *
2004  * The caller must hold a reference on @mm.
2005  */
2006 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2007 		void *buf, int len, int write)
2008 {
2009 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2010 }
2011 
2012 /*
2013  * Access another process' address space.
2014  * - source/target buffer must be kernel space
2015  */
2016 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2017 {
2018 	struct mm_struct *mm;
2019 
2020 	if (addr + len < addr)
2021 		return 0;
2022 
2023 	mm = get_task_mm(tsk);
2024 	if (!mm)
2025 		return 0;
2026 
2027 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2028 
2029 	mmput(mm);
2030 	return len;
2031 }
2032 
2033 /**
2034  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2035  * @inode: The inode to check
2036  * @size: The current filesize of the inode
2037  * @newsize: The proposed filesize of the inode
2038  *
2039  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2040  * make sure that that any outstanding VMAs aren't broken and then shrink the
2041  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2042  * automatically grant mappings that are too large.
2043  */
2044 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2045 				size_t newsize)
2046 {
2047 	struct vm_area_struct *vma;
2048 	struct prio_tree_iter iter;
2049 	struct vm_region *region;
2050 	pgoff_t low, high;
2051 	size_t r_size, r_top;
2052 
2053 	low = newsize >> PAGE_SHIFT;
2054 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2055 
2056 	down_write(&nommu_region_sem);
2057 	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2058 
2059 	/* search for VMAs that fall within the dead zone */
2060 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2061 			      low, high) {
2062 		/* found one - only interested if it's shared out of the page
2063 		 * cache */
2064 		if (vma->vm_flags & VM_SHARED) {
2065 			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2066 			up_write(&nommu_region_sem);
2067 			return -ETXTBSY; /* not quite true, but near enough */
2068 		}
2069 	}
2070 
2071 	/* reduce any regions that overlap the dead zone - if in existence,
2072 	 * these will be pointed to by VMAs that don't overlap the dead zone
2073 	 *
2074 	 * we don't check for any regions that start beyond the EOF as there
2075 	 * shouldn't be any
2076 	 */
2077 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2078 			      0, ULONG_MAX) {
2079 		if (!(vma->vm_flags & VM_SHARED))
2080 			continue;
2081 
2082 		region = vma->vm_region;
2083 		r_size = region->vm_top - region->vm_start;
2084 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2085 
2086 		if (r_top > newsize) {
2087 			region->vm_top -= r_top - newsize;
2088 			if (region->vm_end > region->vm_top)
2089 				region->vm_end = region->vm_top;
2090 		}
2091 	}
2092 
2093 	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2094 	up_write(&nommu_region_sem);
2095 	return 0;
2096 }
2097