1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mmu_context.h> 37 #include "internal.h" 38 39 #if 0 40 #define kenter(FMT, ...) \ 41 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 42 #define kleave(FMT, ...) \ 43 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 44 #define kdebug(FMT, ...) \ 45 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 46 #else 47 #define kenter(FMT, ...) \ 48 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 49 #define kleave(FMT, ...) \ 50 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 51 #define kdebug(FMT, ...) \ 52 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 53 #endif 54 55 void *high_memory; 56 struct page *mem_map; 57 unsigned long max_mapnr; 58 unsigned long num_physpages; 59 unsigned long highest_memmap_pfn; 60 struct percpu_counter vm_committed_as; 61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 62 int sysctl_overcommit_ratio = 50; /* default is 50% */ 63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 65 int heap_stack_gap = 0; 66 67 atomic_long_t mmap_pages_allocated; 68 69 EXPORT_SYMBOL(mem_map); 70 EXPORT_SYMBOL(num_physpages); 71 72 /* list of mapped, potentially shareable regions */ 73 static struct kmem_cache *vm_region_jar; 74 struct rb_root nommu_region_tree = RB_ROOT; 75 DECLARE_RWSEM(nommu_region_sem); 76 77 const struct vm_operations_struct generic_file_vm_ops = { 78 }; 79 80 /* 81 * Return the total memory allocated for this pointer, not 82 * just what the caller asked for. 83 * 84 * Doesn't have to be accurate, i.e. may have races. 85 */ 86 unsigned int kobjsize(const void *objp) 87 { 88 struct page *page; 89 90 /* 91 * If the object we have should not have ksize performed on it, 92 * return size of 0 93 */ 94 if (!objp || !virt_addr_valid(objp)) 95 return 0; 96 97 page = virt_to_head_page(objp); 98 99 /* 100 * If the allocator sets PageSlab, we know the pointer came from 101 * kmalloc(). 102 */ 103 if (PageSlab(page)) 104 return ksize(objp); 105 106 /* 107 * If it's not a compound page, see if we have a matching VMA 108 * region. This test is intentionally done in reverse order, 109 * so if there's no VMA, we still fall through and hand back 110 * PAGE_SIZE for 0-order pages. 111 */ 112 if (!PageCompound(page)) { 113 struct vm_area_struct *vma; 114 115 vma = find_vma(current->mm, (unsigned long)objp); 116 if (vma) 117 return vma->vm_end - vma->vm_start; 118 } 119 120 /* 121 * The ksize() function is only guaranteed to work for pointers 122 * returned by kmalloc(). So handle arbitrary pointers here. 123 */ 124 return PAGE_SIZE << compound_order(page); 125 } 126 127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 128 unsigned long start, int nr_pages, unsigned int foll_flags, 129 struct page **pages, struct vm_area_struct **vmas, 130 int *retry) 131 { 132 struct vm_area_struct *vma; 133 unsigned long vm_flags; 134 int i; 135 136 /* calculate required read or write permissions. 137 * If FOLL_FORCE is set, we only require the "MAY" flags. 138 */ 139 vm_flags = (foll_flags & FOLL_WRITE) ? 140 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 141 vm_flags &= (foll_flags & FOLL_FORCE) ? 142 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 143 144 for (i = 0; i < nr_pages; i++) { 145 vma = find_vma(mm, start); 146 if (!vma) 147 goto finish_or_fault; 148 149 /* protect what we can, including chardevs */ 150 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 151 !(vm_flags & vma->vm_flags)) 152 goto finish_or_fault; 153 154 if (pages) { 155 pages[i] = virt_to_page(start); 156 if (pages[i]) 157 page_cache_get(pages[i]); 158 } 159 if (vmas) 160 vmas[i] = vma; 161 start = (start + PAGE_SIZE) & PAGE_MASK; 162 } 163 164 return i; 165 166 finish_or_fault: 167 return i ? : -EFAULT; 168 } 169 170 /* 171 * get a list of pages in an address range belonging to the specified process 172 * and indicate the VMA that covers each page 173 * - this is potentially dodgy as we may end incrementing the page count of a 174 * slab page or a secondary page from a compound page 175 * - don't permit access to VMAs that don't support it, such as I/O mappings 176 */ 177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 178 unsigned long start, int nr_pages, int write, int force, 179 struct page **pages, struct vm_area_struct **vmas) 180 { 181 int flags = 0; 182 183 if (write) 184 flags |= FOLL_WRITE; 185 if (force) 186 flags |= FOLL_FORCE; 187 188 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 189 NULL); 190 } 191 EXPORT_SYMBOL(get_user_pages); 192 193 /** 194 * follow_pfn - look up PFN at a user virtual address 195 * @vma: memory mapping 196 * @address: user virtual address 197 * @pfn: location to store found PFN 198 * 199 * Only IO mappings and raw PFN mappings are allowed. 200 * 201 * Returns zero and the pfn at @pfn on success, -ve otherwise. 202 */ 203 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 204 unsigned long *pfn) 205 { 206 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 207 return -EINVAL; 208 209 *pfn = address >> PAGE_SHIFT; 210 return 0; 211 } 212 EXPORT_SYMBOL(follow_pfn); 213 214 DEFINE_RWLOCK(vmlist_lock); 215 struct vm_struct *vmlist; 216 217 void vfree(const void *addr) 218 { 219 kfree(addr); 220 } 221 EXPORT_SYMBOL(vfree); 222 223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 224 { 225 /* 226 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 227 * returns only a logical address. 228 */ 229 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 230 } 231 EXPORT_SYMBOL(__vmalloc); 232 233 void *vmalloc_user(unsigned long size) 234 { 235 void *ret; 236 237 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 238 PAGE_KERNEL); 239 if (ret) { 240 struct vm_area_struct *vma; 241 242 down_write(¤t->mm->mmap_sem); 243 vma = find_vma(current->mm, (unsigned long)ret); 244 if (vma) 245 vma->vm_flags |= VM_USERMAP; 246 up_write(¤t->mm->mmap_sem); 247 } 248 249 return ret; 250 } 251 EXPORT_SYMBOL(vmalloc_user); 252 253 struct page *vmalloc_to_page(const void *addr) 254 { 255 return virt_to_page(addr); 256 } 257 EXPORT_SYMBOL(vmalloc_to_page); 258 259 unsigned long vmalloc_to_pfn(const void *addr) 260 { 261 return page_to_pfn(virt_to_page(addr)); 262 } 263 EXPORT_SYMBOL(vmalloc_to_pfn); 264 265 long vread(char *buf, char *addr, unsigned long count) 266 { 267 memcpy(buf, addr, count); 268 return count; 269 } 270 271 long vwrite(char *buf, char *addr, unsigned long count) 272 { 273 /* Don't allow overflow */ 274 if ((unsigned long) addr + count < count) 275 count = -(unsigned long) addr; 276 277 memcpy(addr, buf, count); 278 return(count); 279 } 280 281 /* 282 * vmalloc - allocate virtually continguos memory 283 * 284 * @size: allocation size 285 * 286 * Allocate enough pages to cover @size from the page level 287 * allocator and map them into continguos kernel virtual space. 288 * 289 * For tight control over page level allocator and protection flags 290 * use __vmalloc() instead. 291 */ 292 void *vmalloc(unsigned long size) 293 { 294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 295 } 296 EXPORT_SYMBOL(vmalloc); 297 298 /* 299 * vzalloc - allocate virtually continguos memory with zero fill 300 * 301 * @size: allocation size 302 * 303 * Allocate enough pages to cover @size from the page level 304 * allocator and map them into continguos kernel virtual space. 305 * The memory allocated is set to zero. 306 * 307 * For tight control over page level allocator and protection flags 308 * use __vmalloc() instead. 309 */ 310 void *vzalloc(unsigned long size) 311 { 312 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 313 PAGE_KERNEL); 314 } 315 EXPORT_SYMBOL(vzalloc); 316 317 /** 318 * vmalloc_node - allocate memory on a specific node 319 * @size: allocation size 320 * @node: numa node 321 * 322 * Allocate enough pages to cover @size from the page level 323 * allocator and map them into contiguous kernel virtual space. 324 * 325 * For tight control over page level allocator and protection flags 326 * use __vmalloc() instead. 327 */ 328 void *vmalloc_node(unsigned long size, int node) 329 { 330 return vmalloc(size); 331 } 332 EXPORT_SYMBOL(vmalloc_node); 333 334 /** 335 * vzalloc_node - allocate memory on a specific node with zero fill 336 * @size: allocation size 337 * @node: numa node 338 * 339 * Allocate enough pages to cover @size from the page level 340 * allocator and map them into contiguous kernel virtual space. 341 * The memory allocated is set to zero. 342 * 343 * For tight control over page level allocator and protection flags 344 * use __vmalloc() instead. 345 */ 346 void *vzalloc_node(unsigned long size, int node) 347 { 348 return vzalloc(size); 349 } 350 EXPORT_SYMBOL(vzalloc_node); 351 352 #ifndef PAGE_KERNEL_EXEC 353 # define PAGE_KERNEL_EXEC PAGE_KERNEL 354 #endif 355 356 /** 357 * vmalloc_exec - allocate virtually contiguous, executable memory 358 * @size: allocation size 359 * 360 * Kernel-internal function to allocate enough pages to cover @size 361 * the page level allocator and map them into contiguous and 362 * executable kernel virtual space. 363 * 364 * For tight control over page level allocator and protection flags 365 * use __vmalloc() instead. 366 */ 367 368 void *vmalloc_exec(unsigned long size) 369 { 370 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 371 } 372 373 /** 374 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 375 * @size: allocation size 376 * 377 * Allocate enough 32bit PA addressable pages to cover @size from the 378 * page level allocator and map them into continguos kernel virtual space. 379 */ 380 void *vmalloc_32(unsigned long size) 381 { 382 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 383 } 384 EXPORT_SYMBOL(vmalloc_32); 385 386 /** 387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 388 * @size: allocation size 389 * 390 * The resulting memory area is 32bit addressable and zeroed so it can be 391 * mapped to userspace without leaking data. 392 * 393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 394 * remap_vmalloc_range() are permissible. 395 */ 396 void *vmalloc_32_user(unsigned long size) 397 { 398 /* 399 * We'll have to sort out the ZONE_DMA bits for 64-bit, 400 * but for now this can simply use vmalloc_user() directly. 401 */ 402 return vmalloc_user(size); 403 } 404 EXPORT_SYMBOL(vmalloc_32_user); 405 406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 407 { 408 BUG(); 409 return NULL; 410 } 411 EXPORT_SYMBOL(vmap); 412 413 void vunmap(const void *addr) 414 { 415 BUG(); 416 } 417 EXPORT_SYMBOL(vunmap); 418 419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 420 { 421 BUG(); 422 return NULL; 423 } 424 EXPORT_SYMBOL(vm_map_ram); 425 426 void vm_unmap_ram(const void *mem, unsigned int count) 427 { 428 BUG(); 429 } 430 EXPORT_SYMBOL(vm_unmap_ram); 431 432 void vm_unmap_aliases(void) 433 { 434 } 435 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 436 437 /* 438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 439 * have one. 440 */ 441 void __attribute__((weak)) vmalloc_sync_all(void) 442 { 443 } 444 445 /** 446 * alloc_vm_area - allocate a range of kernel address space 447 * @size: size of the area 448 * 449 * Returns: NULL on failure, vm_struct on success 450 * 451 * This function reserves a range of kernel address space, and 452 * allocates pagetables to map that range. No actual mappings 453 * are created. If the kernel address space is not shared 454 * between processes, it syncs the pagetable across all 455 * processes. 456 */ 457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 458 { 459 BUG(); 460 return NULL; 461 } 462 EXPORT_SYMBOL_GPL(alloc_vm_area); 463 464 void free_vm_area(struct vm_struct *area) 465 { 466 BUG(); 467 } 468 EXPORT_SYMBOL_GPL(free_vm_area); 469 470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 471 struct page *page) 472 { 473 return -EINVAL; 474 } 475 EXPORT_SYMBOL(vm_insert_page); 476 477 /* 478 * sys_brk() for the most part doesn't need the global kernel 479 * lock, except when an application is doing something nasty 480 * like trying to un-brk an area that has already been mapped 481 * to a regular file. in this case, the unmapping will need 482 * to invoke file system routines that need the global lock. 483 */ 484 SYSCALL_DEFINE1(brk, unsigned long, brk) 485 { 486 struct mm_struct *mm = current->mm; 487 488 if (brk < mm->start_brk || brk > mm->context.end_brk) 489 return mm->brk; 490 491 if (mm->brk == brk) 492 return mm->brk; 493 494 /* 495 * Always allow shrinking brk 496 */ 497 if (brk <= mm->brk) { 498 mm->brk = brk; 499 return brk; 500 } 501 502 /* 503 * Ok, looks good - let it rip. 504 */ 505 flush_icache_range(mm->brk, brk); 506 return mm->brk = brk; 507 } 508 509 /* 510 * initialise the VMA and region record slabs 511 */ 512 void __init mmap_init(void) 513 { 514 int ret; 515 516 ret = percpu_counter_init(&vm_committed_as, 0); 517 VM_BUG_ON(ret); 518 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 519 } 520 521 /* 522 * validate the region tree 523 * - the caller must hold the region lock 524 */ 525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 526 static noinline void validate_nommu_regions(void) 527 { 528 struct vm_region *region, *last; 529 struct rb_node *p, *lastp; 530 531 lastp = rb_first(&nommu_region_tree); 532 if (!lastp) 533 return; 534 535 last = rb_entry(lastp, struct vm_region, vm_rb); 536 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 537 BUG_ON(unlikely(last->vm_top < last->vm_end)); 538 539 while ((p = rb_next(lastp))) { 540 region = rb_entry(p, struct vm_region, vm_rb); 541 last = rb_entry(lastp, struct vm_region, vm_rb); 542 543 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 544 BUG_ON(unlikely(region->vm_top < region->vm_end)); 545 BUG_ON(unlikely(region->vm_start < last->vm_top)); 546 547 lastp = p; 548 } 549 } 550 #else 551 static void validate_nommu_regions(void) 552 { 553 } 554 #endif 555 556 /* 557 * add a region into the global tree 558 */ 559 static void add_nommu_region(struct vm_region *region) 560 { 561 struct vm_region *pregion; 562 struct rb_node **p, *parent; 563 564 validate_nommu_regions(); 565 566 parent = NULL; 567 p = &nommu_region_tree.rb_node; 568 while (*p) { 569 parent = *p; 570 pregion = rb_entry(parent, struct vm_region, vm_rb); 571 if (region->vm_start < pregion->vm_start) 572 p = &(*p)->rb_left; 573 else if (region->vm_start > pregion->vm_start) 574 p = &(*p)->rb_right; 575 else if (pregion == region) 576 return; 577 else 578 BUG(); 579 } 580 581 rb_link_node(®ion->vm_rb, parent, p); 582 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 583 584 validate_nommu_regions(); 585 } 586 587 /* 588 * delete a region from the global tree 589 */ 590 static void delete_nommu_region(struct vm_region *region) 591 { 592 BUG_ON(!nommu_region_tree.rb_node); 593 594 validate_nommu_regions(); 595 rb_erase(®ion->vm_rb, &nommu_region_tree); 596 validate_nommu_regions(); 597 } 598 599 /* 600 * free a contiguous series of pages 601 */ 602 static void free_page_series(unsigned long from, unsigned long to) 603 { 604 for (; from < to; from += PAGE_SIZE) { 605 struct page *page = virt_to_page(from); 606 607 kdebug("- free %lx", from); 608 atomic_long_dec(&mmap_pages_allocated); 609 if (page_count(page) != 1) 610 kdebug("free page %p: refcount not one: %d", 611 page, page_count(page)); 612 put_page(page); 613 } 614 } 615 616 /* 617 * release a reference to a region 618 * - the caller must hold the region semaphore for writing, which this releases 619 * - the region may not have been added to the tree yet, in which case vm_top 620 * will equal vm_start 621 */ 622 static void __put_nommu_region(struct vm_region *region) 623 __releases(nommu_region_sem) 624 { 625 kenter("%p{%d}", region, region->vm_usage); 626 627 BUG_ON(!nommu_region_tree.rb_node); 628 629 if (--region->vm_usage == 0) { 630 if (region->vm_top > region->vm_start) 631 delete_nommu_region(region); 632 up_write(&nommu_region_sem); 633 634 if (region->vm_file) 635 fput(region->vm_file); 636 637 /* IO memory and memory shared directly out of the pagecache 638 * from ramfs/tmpfs mustn't be released here */ 639 if (region->vm_flags & VM_MAPPED_COPY) { 640 kdebug("free series"); 641 free_page_series(region->vm_start, region->vm_top); 642 } 643 kmem_cache_free(vm_region_jar, region); 644 } else { 645 up_write(&nommu_region_sem); 646 } 647 } 648 649 /* 650 * release a reference to a region 651 */ 652 static void put_nommu_region(struct vm_region *region) 653 { 654 down_write(&nommu_region_sem); 655 __put_nommu_region(region); 656 } 657 658 /* 659 * update protection on a vma 660 */ 661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 662 { 663 #ifdef CONFIG_MPU 664 struct mm_struct *mm = vma->vm_mm; 665 long start = vma->vm_start & PAGE_MASK; 666 while (start < vma->vm_end) { 667 protect_page(mm, start, flags); 668 start += PAGE_SIZE; 669 } 670 update_protections(mm); 671 #endif 672 } 673 674 /* 675 * add a VMA into a process's mm_struct in the appropriate place in the list 676 * and tree and add to the address space's page tree also if not an anonymous 677 * page 678 * - should be called with mm->mmap_sem held writelocked 679 */ 680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 681 { 682 struct vm_area_struct *pvma, *prev; 683 struct address_space *mapping; 684 struct rb_node **p, *parent, *rb_prev; 685 686 kenter(",%p", vma); 687 688 BUG_ON(!vma->vm_region); 689 690 mm->map_count++; 691 vma->vm_mm = mm; 692 693 protect_vma(vma, vma->vm_flags); 694 695 /* add the VMA to the mapping */ 696 if (vma->vm_file) { 697 mapping = vma->vm_file->f_mapping; 698 699 mutex_lock(&mapping->i_mmap_mutex); 700 flush_dcache_mmap_lock(mapping); 701 vma_prio_tree_insert(vma, &mapping->i_mmap); 702 flush_dcache_mmap_unlock(mapping); 703 mutex_unlock(&mapping->i_mmap_mutex); 704 } 705 706 /* add the VMA to the tree */ 707 parent = rb_prev = NULL; 708 p = &mm->mm_rb.rb_node; 709 while (*p) { 710 parent = *p; 711 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 712 713 /* sort by: start addr, end addr, VMA struct addr in that order 714 * (the latter is necessary as we may get identical VMAs) */ 715 if (vma->vm_start < pvma->vm_start) 716 p = &(*p)->rb_left; 717 else if (vma->vm_start > pvma->vm_start) { 718 rb_prev = parent; 719 p = &(*p)->rb_right; 720 } else if (vma->vm_end < pvma->vm_end) 721 p = &(*p)->rb_left; 722 else if (vma->vm_end > pvma->vm_end) { 723 rb_prev = parent; 724 p = &(*p)->rb_right; 725 } else if (vma < pvma) 726 p = &(*p)->rb_left; 727 else if (vma > pvma) { 728 rb_prev = parent; 729 p = &(*p)->rb_right; 730 } else 731 BUG(); 732 } 733 734 rb_link_node(&vma->vm_rb, parent, p); 735 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 736 737 /* add VMA to the VMA list also */ 738 prev = NULL; 739 if (rb_prev) 740 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 741 742 __vma_link_list(mm, vma, prev, parent); 743 } 744 745 /* 746 * delete a VMA from its owning mm_struct and address space 747 */ 748 static void delete_vma_from_mm(struct vm_area_struct *vma) 749 { 750 struct address_space *mapping; 751 struct mm_struct *mm = vma->vm_mm; 752 753 kenter("%p", vma); 754 755 protect_vma(vma, 0); 756 757 mm->map_count--; 758 if (mm->mmap_cache == vma) 759 mm->mmap_cache = NULL; 760 761 /* remove the VMA from the mapping */ 762 if (vma->vm_file) { 763 mapping = vma->vm_file->f_mapping; 764 765 mutex_lock(&mapping->i_mmap_mutex); 766 flush_dcache_mmap_lock(mapping); 767 vma_prio_tree_remove(vma, &mapping->i_mmap); 768 flush_dcache_mmap_unlock(mapping); 769 mutex_unlock(&mapping->i_mmap_mutex); 770 } 771 772 /* remove from the MM's tree and list */ 773 rb_erase(&vma->vm_rb, &mm->mm_rb); 774 775 if (vma->vm_prev) 776 vma->vm_prev->vm_next = vma->vm_next; 777 else 778 mm->mmap = vma->vm_next; 779 780 if (vma->vm_next) 781 vma->vm_next->vm_prev = vma->vm_prev; 782 } 783 784 /* 785 * destroy a VMA record 786 */ 787 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 788 { 789 kenter("%p", vma); 790 if (vma->vm_ops && vma->vm_ops->close) 791 vma->vm_ops->close(vma); 792 if (vma->vm_file) { 793 fput(vma->vm_file); 794 if (vma->vm_flags & VM_EXECUTABLE) 795 removed_exe_file_vma(mm); 796 } 797 put_nommu_region(vma->vm_region); 798 kmem_cache_free(vm_area_cachep, vma); 799 } 800 801 /* 802 * look up the first VMA in which addr resides, NULL if none 803 * - should be called with mm->mmap_sem at least held readlocked 804 */ 805 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 806 { 807 struct vm_area_struct *vma; 808 809 /* check the cache first */ 810 vma = mm->mmap_cache; 811 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 812 return vma; 813 814 /* trawl the list (there may be multiple mappings in which addr 815 * resides) */ 816 for (vma = mm->mmap; vma; vma = vma->vm_next) { 817 if (vma->vm_start > addr) 818 return NULL; 819 if (vma->vm_end > addr) { 820 mm->mmap_cache = vma; 821 return vma; 822 } 823 } 824 825 return NULL; 826 } 827 EXPORT_SYMBOL(find_vma); 828 829 /* 830 * find a VMA 831 * - we don't extend stack VMAs under NOMMU conditions 832 */ 833 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 834 { 835 return find_vma(mm, addr); 836 } 837 838 /* 839 * expand a stack to a given address 840 * - not supported under NOMMU conditions 841 */ 842 int expand_stack(struct vm_area_struct *vma, unsigned long address) 843 { 844 return -ENOMEM; 845 } 846 847 /* 848 * look up the first VMA exactly that exactly matches addr 849 * - should be called with mm->mmap_sem at least held readlocked 850 */ 851 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 852 unsigned long addr, 853 unsigned long len) 854 { 855 struct vm_area_struct *vma; 856 unsigned long end = addr + len; 857 858 /* check the cache first */ 859 vma = mm->mmap_cache; 860 if (vma && vma->vm_start == addr && vma->vm_end == end) 861 return vma; 862 863 /* trawl the list (there may be multiple mappings in which addr 864 * resides) */ 865 for (vma = mm->mmap; vma; vma = vma->vm_next) { 866 if (vma->vm_start < addr) 867 continue; 868 if (vma->vm_start > addr) 869 return NULL; 870 if (vma->vm_end == end) { 871 mm->mmap_cache = vma; 872 return vma; 873 } 874 } 875 876 return NULL; 877 } 878 879 /* 880 * determine whether a mapping should be permitted and, if so, what sort of 881 * mapping we're capable of supporting 882 */ 883 static int validate_mmap_request(struct file *file, 884 unsigned long addr, 885 unsigned long len, 886 unsigned long prot, 887 unsigned long flags, 888 unsigned long pgoff, 889 unsigned long *_capabilities) 890 { 891 unsigned long capabilities, rlen; 892 unsigned long reqprot = prot; 893 int ret; 894 895 /* do the simple checks first */ 896 if (flags & MAP_FIXED) { 897 printk(KERN_DEBUG 898 "%d: Can't do fixed-address/overlay mmap of RAM\n", 899 current->pid); 900 return -EINVAL; 901 } 902 903 if ((flags & MAP_TYPE) != MAP_PRIVATE && 904 (flags & MAP_TYPE) != MAP_SHARED) 905 return -EINVAL; 906 907 if (!len) 908 return -EINVAL; 909 910 /* Careful about overflows.. */ 911 rlen = PAGE_ALIGN(len); 912 if (!rlen || rlen > TASK_SIZE) 913 return -ENOMEM; 914 915 /* offset overflow? */ 916 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 917 return -EOVERFLOW; 918 919 if (file) { 920 /* validate file mapping requests */ 921 struct address_space *mapping; 922 923 /* files must support mmap */ 924 if (!file->f_op || !file->f_op->mmap) 925 return -ENODEV; 926 927 /* work out if what we've got could possibly be shared 928 * - we support chardevs that provide their own "memory" 929 * - we support files/blockdevs that are memory backed 930 */ 931 mapping = file->f_mapping; 932 if (!mapping) 933 mapping = file->f_path.dentry->d_inode->i_mapping; 934 935 capabilities = 0; 936 if (mapping && mapping->backing_dev_info) 937 capabilities = mapping->backing_dev_info->capabilities; 938 939 if (!capabilities) { 940 /* no explicit capabilities set, so assume some 941 * defaults */ 942 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 943 case S_IFREG: 944 case S_IFBLK: 945 capabilities = BDI_CAP_MAP_COPY; 946 break; 947 948 case S_IFCHR: 949 capabilities = 950 BDI_CAP_MAP_DIRECT | 951 BDI_CAP_READ_MAP | 952 BDI_CAP_WRITE_MAP; 953 break; 954 955 default: 956 return -EINVAL; 957 } 958 } 959 960 /* eliminate any capabilities that we can't support on this 961 * device */ 962 if (!file->f_op->get_unmapped_area) 963 capabilities &= ~BDI_CAP_MAP_DIRECT; 964 if (!file->f_op->read) 965 capabilities &= ~BDI_CAP_MAP_COPY; 966 967 /* The file shall have been opened with read permission. */ 968 if (!(file->f_mode & FMODE_READ)) 969 return -EACCES; 970 971 if (flags & MAP_SHARED) { 972 /* do checks for writing, appending and locking */ 973 if ((prot & PROT_WRITE) && 974 !(file->f_mode & FMODE_WRITE)) 975 return -EACCES; 976 977 if (IS_APPEND(file->f_path.dentry->d_inode) && 978 (file->f_mode & FMODE_WRITE)) 979 return -EACCES; 980 981 if (locks_verify_locked(file->f_path.dentry->d_inode)) 982 return -EAGAIN; 983 984 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 985 return -ENODEV; 986 987 /* we mustn't privatise shared mappings */ 988 capabilities &= ~BDI_CAP_MAP_COPY; 989 } 990 else { 991 /* we're going to read the file into private memory we 992 * allocate */ 993 if (!(capabilities & BDI_CAP_MAP_COPY)) 994 return -ENODEV; 995 996 /* we don't permit a private writable mapping to be 997 * shared with the backing device */ 998 if (prot & PROT_WRITE) 999 capabilities &= ~BDI_CAP_MAP_DIRECT; 1000 } 1001 1002 if (capabilities & BDI_CAP_MAP_DIRECT) { 1003 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 1004 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 1005 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 1006 ) { 1007 capabilities &= ~BDI_CAP_MAP_DIRECT; 1008 if (flags & MAP_SHARED) { 1009 printk(KERN_WARNING 1010 "MAP_SHARED not completely supported on !MMU\n"); 1011 return -EINVAL; 1012 } 1013 } 1014 } 1015 1016 /* handle executable mappings and implied executable 1017 * mappings */ 1018 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1019 if (prot & PROT_EXEC) 1020 return -EPERM; 1021 } 1022 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1023 /* handle implication of PROT_EXEC by PROT_READ */ 1024 if (current->personality & READ_IMPLIES_EXEC) { 1025 if (capabilities & BDI_CAP_EXEC_MAP) 1026 prot |= PROT_EXEC; 1027 } 1028 } 1029 else if ((prot & PROT_READ) && 1030 (prot & PROT_EXEC) && 1031 !(capabilities & BDI_CAP_EXEC_MAP) 1032 ) { 1033 /* backing file is not executable, try to copy */ 1034 capabilities &= ~BDI_CAP_MAP_DIRECT; 1035 } 1036 } 1037 else { 1038 /* anonymous mappings are always memory backed and can be 1039 * privately mapped 1040 */ 1041 capabilities = BDI_CAP_MAP_COPY; 1042 1043 /* handle PROT_EXEC implication by PROT_READ */ 1044 if ((prot & PROT_READ) && 1045 (current->personality & READ_IMPLIES_EXEC)) 1046 prot |= PROT_EXEC; 1047 } 1048 1049 /* allow the security API to have its say */ 1050 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1051 if (ret < 0) 1052 return ret; 1053 1054 /* looks okay */ 1055 *_capabilities = capabilities; 1056 return 0; 1057 } 1058 1059 /* 1060 * we've determined that we can make the mapping, now translate what we 1061 * now know into VMA flags 1062 */ 1063 static unsigned long determine_vm_flags(struct file *file, 1064 unsigned long prot, 1065 unsigned long flags, 1066 unsigned long capabilities) 1067 { 1068 unsigned long vm_flags; 1069 1070 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1071 /* vm_flags |= mm->def_flags; */ 1072 1073 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1074 /* attempt to share read-only copies of mapped file chunks */ 1075 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1076 if (file && !(prot & PROT_WRITE)) 1077 vm_flags |= VM_MAYSHARE; 1078 } else { 1079 /* overlay a shareable mapping on the backing device or inode 1080 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1081 * romfs/cramfs */ 1082 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1083 if (flags & MAP_SHARED) 1084 vm_flags |= VM_SHARED; 1085 } 1086 1087 /* refuse to let anyone share private mappings with this process if 1088 * it's being traced - otherwise breakpoints set in it may interfere 1089 * with another untraced process 1090 */ 1091 if ((flags & MAP_PRIVATE) && current->ptrace) 1092 vm_flags &= ~VM_MAYSHARE; 1093 1094 return vm_flags; 1095 } 1096 1097 /* 1098 * set up a shared mapping on a file (the driver or filesystem provides and 1099 * pins the storage) 1100 */ 1101 static int do_mmap_shared_file(struct vm_area_struct *vma) 1102 { 1103 int ret; 1104 1105 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1106 if (ret == 0) { 1107 vma->vm_region->vm_top = vma->vm_region->vm_end; 1108 return 0; 1109 } 1110 if (ret != -ENOSYS) 1111 return ret; 1112 1113 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1114 * opposed to tried but failed) so we can only give a suitable error as 1115 * it's not possible to make a private copy if MAP_SHARED was given */ 1116 return -ENODEV; 1117 } 1118 1119 /* 1120 * set up a private mapping or an anonymous shared mapping 1121 */ 1122 static int do_mmap_private(struct vm_area_struct *vma, 1123 struct vm_region *region, 1124 unsigned long len, 1125 unsigned long capabilities) 1126 { 1127 struct page *pages; 1128 unsigned long total, point, n; 1129 void *base; 1130 int ret, order; 1131 1132 /* invoke the file's mapping function so that it can keep track of 1133 * shared mappings on devices or memory 1134 * - VM_MAYSHARE will be set if it may attempt to share 1135 */ 1136 if (capabilities & BDI_CAP_MAP_DIRECT) { 1137 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1138 if (ret == 0) { 1139 /* shouldn't return success if we're not sharing */ 1140 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1141 vma->vm_region->vm_top = vma->vm_region->vm_end; 1142 return 0; 1143 } 1144 if (ret != -ENOSYS) 1145 return ret; 1146 1147 /* getting an ENOSYS error indicates that direct mmap isn't 1148 * possible (as opposed to tried but failed) so we'll try to 1149 * make a private copy of the data and map that instead */ 1150 } 1151 1152 1153 /* allocate some memory to hold the mapping 1154 * - note that this may not return a page-aligned address if the object 1155 * we're allocating is smaller than a page 1156 */ 1157 order = get_order(len); 1158 kdebug("alloc order %d for %lx", order, len); 1159 1160 pages = alloc_pages(GFP_KERNEL, order); 1161 if (!pages) 1162 goto enomem; 1163 1164 total = 1 << order; 1165 atomic_long_add(total, &mmap_pages_allocated); 1166 1167 point = len >> PAGE_SHIFT; 1168 1169 /* we allocated a power-of-2 sized page set, so we may want to trim off 1170 * the excess */ 1171 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1172 while (total > point) { 1173 order = ilog2(total - point); 1174 n = 1 << order; 1175 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1176 atomic_long_sub(n, &mmap_pages_allocated); 1177 total -= n; 1178 set_page_refcounted(pages + total); 1179 __free_pages(pages + total, order); 1180 } 1181 } 1182 1183 for (point = 1; point < total; point++) 1184 set_page_refcounted(&pages[point]); 1185 1186 base = page_address(pages); 1187 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1188 region->vm_start = (unsigned long) base; 1189 region->vm_end = region->vm_start + len; 1190 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1191 1192 vma->vm_start = region->vm_start; 1193 vma->vm_end = region->vm_start + len; 1194 1195 if (vma->vm_file) { 1196 /* read the contents of a file into the copy */ 1197 mm_segment_t old_fs; 1198 loff_t fpos; 1199 1200 fpos = vma->vm_pgoff; 1201 fpos <<= PAGE_SHIFT; 1202 1203 old_fs = get_fs(); 1204 set_fs(KERNEL_DS); 1205 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); 1206 set_fs(old_fs); 1207 1208 if (ret < 0) 1209 goto error_free; 1210 1211 /* clear the last little bit */ 1212 if (ret < len) 1213 memset(base + ret, 0, len - ret); 1214 1215 } 1216 1217 return 0; 1218 1219 error_free: 1220 free_page_series(region->vm_start, region->vm_top); 1221 region->vm_start = vma->vm_start = 0; 1222 region->vm_end = vma->vm_end = 0; 1223 region->vm_top = 0; 1224 return ret; 1225 1226 enomem: 1227 printk("Allocation of length %lu from process %d (%s) failed\n", 1228 len, current->pid, current->comm); 1229 show_free_areas(0); 1230 return -ENOMEM; 1231 } 1232 1233 /* 1234 * handle mapping creation for uClinux 1235 */ 1236 unsigned long do_mmap_pgoff(struct file *file, 1237 unsigned long addr, 1238 unsigned long len, 1239 unsigned long prot, 1240 unsigned long flags, 1241 unsigned long pgoff) 1242 { 1243 struct vm_area_struct *vma; 1244 struct vm_region *region; 1245 struct rb_node *rb; 1246 unsigned long capabilities, vm_flags, result; 1247 int ret; 1248 1249 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1250 1251 /* decide whether we should attempt the mapping, and if so what sort of 1252 * mapping */ 1253 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1254 &capabilities); 1255 if (ret < 0) { 1256 kleave(" = %d [val]", ret); 1257 return ret; 1258 } 1259 1260 /* we ignore the address hint */ 1261 addr = 0; 1262 len = PAGE_ALIGN(len); 1263 1264 /* we've determined that we can make the mapping, now translate what we 1265 * now know into VMA flags */ 1266 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1267 1268 /* we're going to need to record the mapping */ 1269 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1270 if (!region) 1271 goto error_getting_region; 1272 1273 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1274 if (!vma) 1275 goto error_getting_vma; 1276 1277 region->vm_usage = 1; 1278 region->vm_flags = vm_flags; 1279 region->vm_pgoff = pgoff; 1280 1281 INIT_LIST_HEAD(&vma->anon_vma_chain); 1282 vma->vm_flags = vm_flags; 1283 vma->vm_pgoff = pgoff; 1284 1285 if (file) { 1286 region->vm_file = file; 1287 get_file(file); 1288 vma->vm_file = file; 1289 get_file(file); 1290 if (vm_flags & VM_EXECUTABLE) { 1291 added_exe_file_vma(current->mm); 1292 vma->vm_mm = current->mm; 1293 } 1294 } 1295 1296 down_write(&nommu_region_sem); 1297 1298 /* if we want to share, we need to check for regions created by other 1299 * mmap() calls that overlap with our proposed mapping 1300 * - we can only share with a superset match on most regular files 1301 * - shared mappings on character devices and memory backed files are 1302 * permitted to overlap inexactly as far as we are concerned for in 1303 * these cases, sharing is handled in the driver or filesystem rather 1304 * than here 1305 */ 1306 if (vm_flags & VM_MAYSHARE) { 1307 struct vm_region *pregion; 1308 unsigned long pglen, rpglen, pgend, rpgend, start; 1309 1310 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1311 pgend = pgoff + pglen; 1312 1313 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1314 pregion = rb_entry(rb, struct vm_region, vm_rb); 1315 1316 if (!(pregion->vm_flags & VM_MAYSHARE)) 1317 continue; 1318 1319 /* search for overlapping mappings on the same file */ 1320 if (pregion->vm_file->f_path.dentry->d_inode != 1321 file->f_path.dentry->d_inode) 1322 continue; 1323 1324 if (pregion->vm_pgoff >= pgend) 1325 continue; 1326 1327 rpglen = pregion->vm_end - pregion->vm_start; 1328 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1329 rpgend = pregion->vm_pgoff + rpglen; 1330 if (pgoff >= rpgend) 1331 continue; 1332 1333 /* handle inexactly overlapping matches between 1334 * mappings */ 1335 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1336 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1337 /* new mapping is not a subset of the region */ 1338 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1339 goto sharing_violation; 1340 continue; 1341 } 1342 1343 /* we've found a region we can share */ 1344 pregion->vm_usage++; 1345 vma->vm_region = pregion; 1346 start = pregion->vm_start; 1347 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1348 vma->vm_start = start; 1349 vma->vm_end = start + len; 1350 1351 if (pregion->vm_flags & VM_MAPPED_COPY) { 1352 kdebug("share copy"); 1353 vma->vm_flags |= VM_MAPPED_COPY; 1354 } else { 1355 kdebug("share mmap"); 1356 ret = do_mmap_shared_file(vma); 1357 if (ret < 0) { 1358 vma->vm_region = NULL; 1359 vma->vm_start = 0; 1360 vma->vm_end = 0; 1361 pregion->vm_usage--; 1362 pregion = NULL; 1363 goto error_just_free; 1364 } 1365 } 1366 fput(region->vm_file); 1367 kmem_cache_free(vm_region_jar, region); 1368 region = pregion; 1369 result = start; 1370 goto share; 1371 } 1372 1373 /* obtain the address at which to make a shared mapping 1374 * - this is the hook for quasi-memory character devices to 1375 * tell us the location of a shared mapping 1376 */ 1377 if (capabilities & BDI_CAP_MAP_DIRECT) { 1378 addr = file->f_op->get_unmapped_area(file, addr, len, 1379 pgoff, flags); 1380 if (IS_ERR_VALUE(addr)) { 1381 ret = addr; 1382 if (ret != -ENOSYS) 1383 goto error_just_free; 1384 1385 /* the driver refused to tell us where to site 1386 * the mapping so we'll have to attempt to copy 1387 * it */ 1388 ret = -ENODEV; 1389 if (!(capabilities & BDI_CAP_MAP_COPY)) 1390 goto error_just_free; 1391 1392 capabilities &= ~BDI_CAP_MAP_DIRECT; 1393 } else { 1394 vma->vm_start = region->vm_start = addr; 1395 vma->vm_end = region->vm_end = addr + len; 1396 } 1397 } 1398 } 1399 1400 vma->vm_region = region; 1401 1402 /* set up the mapping 1403 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1404 */ 1405 if (file && vma->vm_flags & VM_SHARED) 1406 ret = do_mmap_shared_file(vma); 1407 else 1408 ret = do_mmap_private(vma, region, len, capabilities); 1409 if (ret < 0) 1410 goto error_just_free; 1411 add_nommu_region(region); 1412 1413 /* clear anonymous mappings that don't ask for uninitialized data */ 1414 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1415 memset((void *)region->vm_start, 0, 1416 region->vm_end - region->vm_start); 1417 1418 /* okay... we have a mapping; now we have to register it */ 1419 result = vma->vm_start; 1420 1421 current->mm->total_vm += len >> PAGE_SHIFT; 1422 1423 share: 1424 add_vma_to_mm(current->mm, vma); 1425 1426 /* we flush the region from the icache only when the first executable 1427 * mapping of it is made */ 1428 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1429 flush_icache_range(region->vm_start, region->vm_end); 1430 region->vm_icache_flushed = true; 1431 } 1432 1433 up_write(&nommu_region_sem); 1434 1435 kleave(" = %lx", result); 1436 return result; 1437 1438 error_just_free: 1439 up_write(&nommu_region_sem); 1440 error: 1441 if (region->vm_file) 1442 fput(region->vm_file); 1443 kmem_cache_free(vm_region_jar, region); 1444 if (vma->vm_file) 1445 fput(vma->vm_file); 1446 if (vma->vm_flags & VM_EXECUTABLE) 1447 removed_exe_file_vma(vma->vm_mm); 1448 kmem_cache_free(vm_area_cachep, vma); 1449 kleave(" = %d", ret); 1450 return ret; 1451 1452 sharing_violation: 1453 up_write(&nommu_region_sem); 1454 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1455 ret = -EINVAL; 1456 goto error; 1457 1458 error_getting_vma: 1459 kmem_cache_free(vm_region_jar, region); 1460 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1461 " from process %d failed\n", 1462 len, current->pid); 1463 show_free_areas(0); 1464 return -ENOMEM; 1465 1466 error_getting_region: 1467 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1468 " from process %d failed\n", 1469 len, current->pid); 1470 show_free_areas(0); 1471 return -ENOMEM; 1472 } 1473 EXPORT_SYMBOL(do_mmap_pgoff); 1474 1475 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1476 unsigned long, prot, unsigned long, flags, 1477 unsigned long, fd, unsigned long, pgoff) 1478 { 1479 struct file *file = NULL; 1480 unsigned long retval = -EBADF; 1481 1482 audit_mmap_fd(fd, flags); 1483 if (!(flags & MAP_ANONYMOUS)) { 1484 file = fget(fd); 1485 if (!file) 1486 goto out; 1487 } 1488 1489 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1490 1491 down_write(¤t->mm->mmap_sem); 1492 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1493 up_write(¤t->mm->mmap_sem); 1494 1495 if (file) 1496 fput(file); 1497 out: 1498 return retval; 1499 } 1500 1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1502 struct mmap_arg_struct { 1503 unsigned long addr; 1504 unsigned long len; 1505 unsigned long prot; 1506 unsigned long flags; 1507 unsigned long fd; 1508 unsigned long offset; 1509 }; 1510 1511 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1512 { 1513 struct mmap_arg_struct a; 1514 1515 if (copy_from_user(&a, arg, sizeof(a))) 1516 return -EFAULT; 1517 if (a.offset & ~PAGE_MASK) 1518 return -EINVAL; 1519 1520 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1521 a.offset >> PAGE_SHIFT); 1522 } 1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1524 1525 /* 1526 * split a vma into two pieces at address 'addr', a new vma is allocated either 1527 * for the first part or the tail. 1528 */ 1529 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1530 unsigned long addr, int new_below) 1531 { 1532 struct vm_area_struct *new; 1533 struct vm_region *region; 1534 unsigned long npages; 1535 1536 kenter(""); 1537 1538 /* we're only permitted to split anonymous regions (these should have 1539 * only a single usage on the region) */ 1540 if (vma->vm_file) 1541 return -ENOMEM; 1542 1543 if (mm->map_count >= sysctl_max_map_count) 1544 return -ENOMEM; 1545 1546 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1547 if (!region) 1548 return -ENOMEM; 1549 1550 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1551 if (!new) { 1552 kmem_cache_free(vm_region_jar, region); 1553 return -ENOMEM; 1554 } 1555 1556 /* most fields are the same, copy all, and then fixup */ 1557 *new = *vma; 1558 *region = *vma->vm_region; 1559 new->vm_region = region; 1560 1561 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1562 1563 if (new_below) { 1564 region->vm_top = region->vm_end = new->vm_end = addr; 1565 } else { 1566 region->vm_start = new->vm_start = addr; 1567 region->vm_pgoff = new->vm_pgoff += npages; 1568 } 1569 1570 if (new->vm_ops && new->vm_ops->open) 1571 new->vm_ops->open(new); 1572 1573 delete_vma_from_mm(vma); 1574 down_write(&nommu_region_sem); 1575 delete_nommu_region(vma->vm_region); 1576 if (new_below) { 1577 vma->vm_region->vm_start = vma->vm_start = addr; 1578 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1579 } else { 1580 vma->vm_region->vm_end = vma->vm_end = addr; 1581 vma->vm_region->vm_top = addr; 1582 } 1583 add_nommu_region(vma->vm_region); 1584 add_nommu_region(new->vm_region); 1585 up_write(&nommu_region_sem); 1586 add_vma_to_mm(mm, vma); 1587 add_vma_to_mm(mm, new); 1588 return 0; 1589 } 1590 1591 /* 1592 * shrink a VMA by removing the specified chunk from either the beginning or 1593 * the end 1594 */ 1595 static int shrink_vma(struct mm_struct *mm, 1596 struct vm_area_struct *vma, 1597 unsigned long from, unsigned long to) 1598 { 1599 struct vm_region *region; 1600 1601 kenter(""); 1602 1603 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1604 * and list */ 1605 delete_vma_from_mm(vma); 1606 if (from > vma->vm_start) 1607 vma->vm_end = from; 1608 else 1609 vma->vm_start = to; 1610 add_vma_to_mm(mm, vma); 1611 1612 /* cut the backing region down to size */ 1613 region = vma->vm_region; 1614 BUG_ON(region->vm_usage != 1); 1615 1616 down_write(&nommu_region_sem); 1617 delete_nommu_region(region); 1618 if (from > region->vm_start) { 1619 to = region->vm_top; 1620 region->vm_top = region->vm_end = from; 1621 } else { 1622 region->vm_start = to; 1623 } 1624 add_nommu_region(region); 1625 up_write(&nommu_region_sem); 1626 1627 free_page_series(from, to); 1628 return 0; 1629 } 1630 1631 /* 1632 * release a mapping 1633 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1634 * VMA, though it need not cover the whole VMA 1635 */ 1636 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1637 { 1638 struct vm_area_struct *vma; 1639 unsigned long end; 1640 int ret; 1641 1642 kenter(",%lx,%zx", start, len); 1643 1644 len = PAGE_ALIGN(len); 1645 if (len == 0) 1646 return -EINVAL; 1647 1648 end = start + len; 1649 1650 /* find the first potentially overlapping VMA */ 1651 vma = find_vma(mm, start); 1652 if (!vma) { 1653 static int limit = 0; 1654 if (limit < 5) { 1655 printk(KERN_WARNING 1656 "munmap of memory not mmapped by process %d" 1657 " (%s): 0x%lx-0x%lx\n", 1658 current->pid, current->comm, 1659 start, start + len - 1); 1660 limit++; 1661 } 1662 return -EINVAL; 1663 } 1664 1665 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1666 if (vma->vm_file) { 1667 do { 1668 if (start > vma->vm_start) { 1669 kleave(" = -EINVAL [miss]"); 1670 return -EINVAL; 1671 } 1672 if (end == vma->vm_end) 1673 goto erase_whole_vma; 1674 vma = vma->vm_next; 1675 } while (vma); 1676 kleave(" = -EINVAL [split file]"); 1677 return -EINVAL; 1678 } else { 1679 /* the chunk must be a subset of the VMA found */ 1680 if (start == vma->vm_start && end == vma->vm_end) 1681 goto erase_whole_vma; 1682 if (start < vma->vm_start || end > vma->vm_end) { 1683 kleave(" = -EINVAL [superset]"); 1684 return -EINVAL; 1685 } 1686 if (start & ~PAGE_MASK) { 1687 kleave(" = -EINVAL [unaligned start]"); 1688 return -EINVAL; 1689 } 1690 if (end != vma->vm_end && end & ~PAGE_MASK) { 1691 kleave(" = -EINVAL [unaligned split]"); 1692 return -EINVAL; 1693 } 1694 if (start != vma->vm_start && end != vma->vm_end) { 1695 ret = split_vma(mm, vma, start, 1); 1696 if (ret < 0) { 1697 kleave(" = %d [split]", ret); 1698 return ret; 1699 } 1700 } 1701 return shrink_vma(mm, vma, start, end); 1702 } 1703 1704 erase_whole_vma: 1705 delete_vma_from_mm(vma); 1706 delete_vma(mm, vma); 1707 kleave(" = 0"); 1708 return 0; 1709 } 1710 EXPORT_SYMBOL(do_munmap); 1711 1712 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1713 { 1714 int ret; 1715 struct mm_struct *mm = current->mm; 1716 1717 down_write(&mm->mmap_sem); 1718 ret = do_munmap(mm, addr, len); 1719 up_write(&mm->mmap_sem); 1720 return ret; 1721 } 1722 1723 /* 1724 * release all the mappings made in a process's VM space 1725 */ 1726 void exit_mmap(struct mm_struct *mm) 1727 { 1728 struct vm_area_struct *vma; 1729 1730 if (!mm) 1731 return; 1732 1733 kenter(""); 1734 1735 mm->total_vm = 0; 1736 1737 while ((vma = mm->mmap)) { 1738 mm->mmap = vma->vm_next; 1739 delete_vma_from_mm(vma); 1740 delete_vma(mm, vma); 1741 cond_resched(); 1742 } 1743 1744 kleave(""); 1745 } 1746 1747 unsigned long do_brk(unsigned long addr, unsigned long len) 1748 { 1749 return -ENOMEM; 1750 } 1751 1752 /* 1753 * expand (or shrink) an existing mapping, potentially moving it at the same 1754 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1755 * 1756 * under NOMMU conditions, we only permit changing a mapping's size, and only 1757 * as long as it stays within the region allocated by do_mmap_private() and the 1758 * block is not shareable 1759 * 1760 * MREMAP_FIXED is not supported under NOMMU conditions 1761 */ 1762 unsigned long do_mremap(unsigned long addr, 1763 unsigned long old_len, unsigned long new_len, 1764 unsigned long flags, unsigned long new_addr) 1765 { 1766 struct vm_area_struct *vma; 1767 1768 /* insanity checks first */ 1769 old_len = PAGE_ALIGN(old_len); 1770 new_len = PAGE_ALIGN(new_len); 1771 if (old_len == 0 || new_len == 0) 1772 return (unsigned long) -EINVAL; 1773 1774 if (addr & ~PAGE_MASK) 1775 return -EINVAL; 1776 1777 if (flags & MREMAP_FIXED && new_addr != addr) 1778 return (unsigned long) -EINVAL; 1779 1780 vma = find_vma_exact(current->mm, addr, old_len); 1781 if (!vma) 1782 return (unsigned long) -EINVAL; 1783 1784 if (vma->vm_end != vma->vm_start + old_len) 1785 return (unsigned long) -EFAULT; 1786 1787 if (vma->vm_flags & VM_MAYSHARE) 1788 return (unsigned long) -EPERM; 1789 1790 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1791 return (unsigned long) -ENOMEM; 1792 1793 /* all checks complete - do it */ 1794 vma->vm_end = vma->vm_start + new_len; 1795 return vma->vm_start; 1796 } 1797 EXPORT_SYMBOL(do_mremap); 1798 1799 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1800 unsigned long, new_len, unsigned long, flags, 1801 unsigned long, new_addr) 1802 { 1803 unsigned long ret; 1804 1805 down_write(¤t->mm->mmap_sem); 1806 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1807 up_write(¤t->mm->mmap_sem); 1808 return ret; 1809 } 1810 1811 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1812 unsigned int foll_flags) 1813 { 1814 return NULL; 1815 } 1816 1817 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1818 unsigned long pfn, unsigned long size, pgprot_t prot) 1819 { 1820 if (addr != (pfn << PAGE_SHIFT)) 1821 return -EINVAL; 1822 1823 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1824 return 0; 1825 } 1826 EXPORT_SYMBOL(remap_pfn_range); 1827 1828 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1829 unsigned long pgoff) 1830 { 1831 unsigned int size = vma->vm_end - vma->vm_start; 1832 1833 if (!(vma->vm_flags & VM_USERMAP)) 1834 return -EINVAL; 1835 1836 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1837 vma->vm_end = vma->vm_start + size; 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL(remap_vmalloc_range); 1842 1843 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1844 unsigned long len, unsigned long pgoff, unsigned long flags) 1845 { 1846 return -ENOMEM; 1847 } 1848 1849 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1850 { 1851 } 1852 1853 void unmap_mapping_range(struct address_space *mapping, 1854 loff_t const holebegin, loff_t const holelen, 1855 int even_cows) 1856 { 1857 } 1858 EXPORT_SYMBOL(unmap_mapping_range); 1859 1860 /* 1861 * Check that a process has enough memory to allocate a new virtual 1862 * mapping. 0 means there is enough memory for the allocation to 1863 * succeed and -ENOMEM implies there is not. 1864 * 1865 * We currently support three overcommit policies, which are set via the 1866 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1867 * 1868 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1869 * Additional code 2002 Jul 20 by Robert Love. 1870 * 1871 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1872 * 1873 * Note this is a helper function intended to be used by LSMs which 1874 * wish to use this logic. 1875 */ 1876 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1877 { 1878 unsigned long free, allowed; 1879 1880 vm_acct_memory(pages); 1881 1882 /* 1883 * Sometimes we want to use more memory than we have 1884 */ 1885 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1886 return 0; 1887 1888 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1889 free = global_page_state(NR_FREE_PAGES); 1890 free += global_page_state(NR_FILE_PAGES); 1891 1892 /* 1893 * shmem pages shouldn't be counted as free in this 1894 * case, they can't be purged, only swapped out, and 1895 * that won't affect the overall amount of available 1896 * memory in the system. 1897 */ 1898 free -= global_page_state(NR_SHMEM); 1899 1900 free += nr_swap_pages; 1901 1902 /* 1903 * Any slabs which are created with the 1904 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1905 * which are reclaimable, under pressure. The dentry 1906 * cache and most inode caches should fall into this 1907 */ 1908 free += global_page_state(NR_SLAB_RECLAIMABLE); 1909 1910 /* 1911 * Leave reserved pages. The pages are not for anonymous pages. 1912 */ 1913 if (free <= totalreserve_pages) 1914 goto error; 1915 else 1916 free -= totalreserve_pages; 1917 1918 /* 1919 * Leave the last 3% for root 1920 */ 1921 if (!cap_sys_admin) 1922 free -= free / 32; 1923 1924 if (free > pages) 1925 return 0; 1926 1927 goto error; 1928 } 1929 1930 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1931 /* 1932 * Leave the last 3% for root 1933 */ 1934 if (!cap_sys_admin) 1935 allowed -= allowed / 32; 1936 allowed += total_swap_pages; 1937 1938 /* Don't let a single process grow too big: 1939 leave 3% of the size of this process for other processes */ 1940 if (mm) 1941 allowed -= mm->total_vm / 32; 1942 1943 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1944 return 0; 1945 1946 error: 1947 vm_unacct_memory(pages); 1948 1949 return -ENOMEM; 1950 } 1951 1952 int in_gate_area_no_mm(unsigned long addr) 1953 { 1954 return 0; 1955 } 1956 1957 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1958 { 1959 BUG(); 1960 return 0; 1961 } 1962 EXPORT_SYMBOL(filemap_fault); 1963 1964 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1965 unsigned long addr, void *buf, int len, int write) 1966 { 1967 struct vm_area_struct *vma; 1968 1969 down_read(&mm->mmap_sem); 1970 1971 /* the access must start within one of the target process's mappings */ 1972 vma = find_vma(mm, addr); 1973 if (vma) { 1974 /* don't overrun this mapping */ 1975 if (addr + len >= vma->vm_end) 1976 len = vma->vm_end - addr; 1977 1978 /* only read or write mappings where it is permitted */ 1979 if (write && vma->vm_flags & VM_MAYWRITE) 1980 copy_to_user_page(vma, NULL, addr, 1981 (void *) addr, buf, len); 1982 else if (!write && vma->vm_flags & VM_MAYREAD) 1983 copy_from_user_page(vma, NULL, addr, 1984 buf, (void *) addr, len); 1985 else 1986 len = 0; 1987 } else { 1988 len = 0; 1989 } 1990 1991 up_read(&mm->mmap_sem); 1992 1993 return len; 1994 } 1995 1996 /** 1997 * @access_remote_vm - access another process' address space 1998 * @mm: the mm_struct of the target address space 1999 * @addr: start address to access 2000 * @buf: source or destination buffer 2001 * @len: number of bytes to transfer 2002 * @write: whether the access is a write 2003 * 2004 * The caller must hold a reference on @mm. 2005 */ 2006 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2007 void *buf, int len, int write) 2008 { 2009 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2010 } 2011 2012 /* 2013 * Access another process' address space. 2014 * - source/target buffer must be kernel space 2015 */ 2016 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2017 { 2018 struct mm_struct *mm; 2019 2020 if (addr + len < addr) 2021 return 0; 2022 2023 mm = get_task_mm(tsk); 2024 if (!mm) 2025 return 0; 2026 2027 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2028 2029 mmput(mm); 2030 return len; 2031 } 2032 2033 /** 2034 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2035 * @inode: The inode to check 2036 * @size: The current filesize of the inode 2037 * @newsize: The proposed filesize of the inode 2038 * 2039 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2040 * make sure that that any outstanding VMAs aren't broken and then shrink the 2041 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2042 * automatically grant mappings that are too large. 2043 */ 2044 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2045 size_t newsize) 2046 { 2047 struct vm_area_struct *vma; 2048 struct prio_tree_iter iter; 2049 struct vm_region *region; 2050 pgoff_t low, high; 2051 size_t r_size, r_top; 2052 2053 low = newsize >> PAGE_SHIFT; 2054 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2055 2056 down_write(&nommu_region_sem); 2057 mutex_lock(&inode->i_mapping->i_mmap_mutex); 2058 2059 /* search for VMAs that fall within the dead zone */ 2060 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 2061 low, high) { 2062 /* found one - only interested if it's shared out of the page 2063 * cache */ 2064 if (vma->vm_flags & VM_SHARED) { 2065 mutex_unlock(&inode->i_mapping->i_mmap_mutex); 2066 up_write(&nommu_region_sem); 2067 return -ETXTBSY; /* not quite true, but near enough */ 2068 } 2069 } 2070 2071 /* reduce any regions that overlap the dead zone - if in existence, 2072 * these will be pointed to by VMAs that don't overlap the dead zone 2073 * 2074 * we don't check for any regions that start beyond the EOF as there 2075 * shouldn't be any 2076 */ 2077 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 2078 0, ULONG_MAX) { 2079 if (!(vma->vm_flags & VM_SHARED)) 2080 continue; 2081 2082 region = vma->vm_region; 2083 r_size = region->vm_top - region->vm_start; 2084 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2085 2086 if (r_top > newsize) { 2087 region->vm_top -= r_top - newsize; 2088 if (region->vm_end > region->vm_top) 2089 region->vm_end = region->vm_top; 2090 } 2091 } 2092 2093 mutex_unlock(&inode->i_mapping->i_mmap_mutex); 2094 up_write(&nommu_region_sem); 2095 return 0; 2096 } 2097