1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmacache.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/blkdev.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return PAGE_SIZE << compound_order(page); 111 } 112 113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 114 unsigned long start, unsigned long nr_pages, 115 unsigned int foll_flags, struct page **pages, 116 struct vm_area_struct **vmas, int *nonblocking) 117 { 118 struct vm_area_struct *vma; 119 unsigned long vm_flags; 120 int i; 121 122 /* calculate required read or write permissions. 123 * If FOLL_FORCE is set, we only require the "MAY" flags. 124 */ 125 vm_flags = (foll_flags & FOLL_WRITE) ? 126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 127 vm_flags &= (foll_flags & FOLL_FORCE) ? 128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 129 130 for (i = 0; i < nr_pages; i++) { 131 vma = find_vma(mm, start); 132 if (!vma) 133 goto finish_or_fault; 134 135 /* protect what we can, including chardevs */ 136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 137 !(vm_flags & vma->vm_flags)) 138 goto finish_or_fault; 139 140 if (pages) { 141 pages[i] = virt_to_page(start); 142 if (pages[i]) 143 get_page(pages[i]); 144 } 145 if (vmas) 146 vmas[i] = vma; 147 start = (start + PAGE_SIZE) & PAGE_MASK; 148 } 149 150 return i; 151 152 finish_or_fault: 153 return i ? : -EFAULT; 154 } 155 156 /* 157 * get a list of pages in an address range belonging to the specified process 158 * and indicate the VMA that covers each page 159 * - this is potentially dodgy as we may end incrementing the page count of a 160 * slab page or a secondary page from a compound page 161 * - don't permit access to VMAs that don't support it, such as I/O mappings 162 */ 163 long get_user_pages(unsigned long start, unsigned long nr_pages, 164 unsigned int gup_flags, struct page **pages, 165 struct vm_area_struct **vmas) 166 { 167 return __get_user_pages(current, current->mm, start, nr_pages, 168 gup_flags, pages, vmas, NULL); 169 } 170 EXPORT_SYMBOL(get_user_pages); 171 172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 173 unsigned int gup_flags, struct page **pages, 174 int *locked) 175 { 176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 177 } 178 EXPORT_SYMBOL(get_user_pages_locked); 179 180 static long __get_user_pages_unlocked(struct task_struct *tsk, 181 struct mm_struct *mm, unsigned long start, 182 unsigned long nr_pages, struct page **pages, 183 unsigned int gup_flags) 184 { 185 long ret; 186 down_read(&mm->mmap_sem); 187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 188 NULL, NULL); 189 up_read(&mm->mmap_sem); 190 return ret; 191 } 192 193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 194 struct page **pages, unsigned int gup_flags) 195 { 196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 197 pages, gup_flags); 198 } 199 EXPORT_SYMBOL(get_user_pages_unlocked); 200 201 /** 202 * follow_pfn - look up PFN at a user virtual address 203 * @vma: memory mapping 204 * @address: user virtual address 205 * @pfn: location to store found PFN 206 * 207 * Only IO mappings and raw PFN mappings are allowed. 208 * 209 * Returns zero and the pfn at @pfn on success, -ve otherwise. 210 */ 211 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 212 unsigned long *pfn) 213 { 214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 215 return -EINVAL; 216 217 *pfn = address >> PAGE_SHIFT; 218 return 0; 219 } 220 EXPORT_SYMBOL(follow_pfn); 221 222 LIST_HEAD(vmap_area_list); 223 224 void vfree(const void *addr) 225 { 226 kfree(addr); 227 } 228 EXPORT_SYMBOL(vfree); 229 230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 231 { 232 /* 233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 234 * returns only a logical address. 235 */ 236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(__vmalloc); 239 240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 241 { 242 return __vmalloc(size, flags, PAGE_KERNEL); 243 } 244 245 void *vmalloc_user(unsigned long size) 246 { 247 void *ret; 248 249 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 250 if (ret) { 251 struct vm_area_struct *vma; 252 253 down_write(¤t->mm->mmap_sem); 254 vma = find_vma(current->mm, (unsigned long)ret); 255 if (vma) 256 vma->vm_flags |= VM_USERMAP; 257 up_write(¤t->mm->mmap_sem); 258 } 259 260 return ret; 261 } 262 EXPORT_SYMBOL(vmalloc_user); 263 264 struct page *vmalloc_to_page(const void *addr) 265 { 266 return virt_to_page(addr); 267 } 268 EXPORT_SYMBOL(vmalloc_to_page); 269 270 unsigned long vmalloc_to_pfn(const void *addr) 271 { 272 return page_to_pfn(virt_to_page(addr)); 273 } 274 EXPORT_SYMBOL(vmalloc_to_pfn); 275 276 long vread(char *buf, char *addr, unsigned long count) 277 { 278 /* Don't allow overflow */ 279 if ((unsigned long) buf + count < count) 280 count = -(unsigned long) buf; 281 282 memcpy(buf, addr, count); 283 return count; 284 } 285 286 long vwrite(char *buf, char *addr, unsigned long count) 287 { 288 /* Don't allow overflow */ 289 if ((unsigned long) addr + count < count) 290 count = -(unsigned long) addr; 291 292 memcpy(addr, buf, count); 293 return count; 294 } 295 296 /* 297 * vmalloc - allocate virtually contiguous memory 298 * 299 * @size: allocation size 300 * 301 * Allocate enough pages to cover @size from the page level 302 * allocator and map them into contiguous kernel virtual space. 303 * 304 * For tight control over page level allocator and protection flags 305 * use __vmalloc() instead. 306 */ 307 void *vmalloc(unsigned long size) 308 { 309 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 310 } 311 EXPORT_SYMBOL(vmalloc); 312 313 /* 314 * vzalloc - allocate virtually contiguous memory with zero fill 315 * 316 * @size: allocation size 317 * 318 * Allocate enough pages to cover @size from the page level 319 * allocator and map them into contiguous kernel virtual space. 320 * The memory allocated is set to zero. 321 * 322 * For tight control over page level allocator and protection flags 323 * use __vmalloc() instead. 324 */ 325 void *vzalloc(unsigned long size) 326 { 327 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 328 PAGE_KERNEL); 329 } 330 EXPORT_SYMBOL(vzalloc); 331 332 /** 333 * vmalloc_node - allocate memory on a specific node 334 * @size: allocation size 335 * @node: numa node 336 * 337 * Allocate enough pages to cover @size from the page level 338 * allocator and map them into contiguous kernel virtual space. 339 * 340 * For tight control over page level allocator and protection flags 341 * use __vmalloc() instead. 342 */ 343 void *vmalloc_node(unsigned long size, int node) 344 { 345 return vmalloc(size); 346 } 347 EXPORT_SYMBOL(vmalloc_node); 348 349 /** 350 * vzalloc_node - allocate memory on a specific node with zero fill 351 * @size: allocation size 352 * @node: numa node 353 * 354 * Allocate enough pages to cover @size from the page level 355 * allocator and map them into contiguous kernel virtual space. 356 * The memory allocated is set to zero. 357 * 358 * For tight control over page level allocator and protection flags 359 * use __vmalloc() instead. 360 */ 361 void *vzalloc_node(unsigned long size, int node) 362 { 363 return vzalloc(size); 364 } 365 EXPORT_SYMBOL(vzalloc_node); 366 367 #ifndef PAGE_KERNEL_EXEC 368 # define PAGE_KERNEL_EXEC PAGE_KERNEL 369 #endif 370 371 /** 372 * vmalloc_exec - allocate virtually contiguous, executable memory 373 * @size: allocation size 374 * 375 * Kernel-internal function to allocate enough pages to cover @size 376 * the page level allocator and map them into contiguous and 377 * executable kernel virtual space. 378 * 379 * For tight control over page level allocator and protection flags 380 * use __vmalloc() instead. 381 */ 382 383 void *vmalloc_exec(unsigned long size) 384 { 385 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 386 } 387 388 /** 389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 390 * @size: allocation size 391 * 392 * Allocate enough 32bit PA addressable pages to cover @size from the 393 * page level allocator and map them into contiguous kernel virtual space. 394 */ 395 void *vmalloc_32(unsigned long size) 396 { 397 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 398 } 399 EXPORT_SYMBOL(vmalloc_32); 400 401 /** 402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 403 * @size: allocation size 404 * 405 * The resulting memory area is 32bit addressable and zeroed so it can be 406 * mapped to userspace without leaking data. 407 * 408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 409 * remap_vmalloc_range() are permissible. 410 */ 411 void *vmalloc_32_user(unsigned long size) 412 { 413 /* 414 * We'll have to sort out the ZONE_DMA bits for 64-bit, 415 * but for now this can simply use vmalloc_user() directly. 416 */ 417 return vmalloc_user(size); 418 } 419 EXPORT_SYMBOL(vmalloc_32_user); 420 421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 422 { 423 BUG(); 424 return NULL; 425 } 426 EXPORT_SYMBOL(vmap); 427 428 void vunmap(const void *addr) 429 { 430 BUG(); 431 } 432 EXPORT_SYMBOL(vunmap); 433 434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 435 { 436 BUG(); 437 return NULL; 438 } 439 EXPORT_SYMBOL(vm_map_ram); 440 441 void vm_unmap_ram(const void *mem, unsigned int count) 442 { 443 BUG(); 444 } 445 EXPORT_SYMBOL(vm_unmap_ram); 446 447 void vm_unmap_aliases(void) 448 { 449 } 450 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 451 452 /* 453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 454 * have one. 455 */ 456 void __weak vmalloc_sync_all(void) 457 { 458 } 459 460 /** 461 * alloc_vm_area - allocate a range of kernel address space 462 * @size: size of the area 463 * 464 * Returns: NULL on failure, vm_struct on success 465 * 466 * This function reserves a range of kernel address space, and 467 * allocates pagetables to map that range. No actual mappings 468 * are created. If the kernel address space is not shared 469 * between processes, it syncs the pagetable across all 470 * processes. 471 */ 472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 473 { 474 BUG(); 475 return NULL; 476 } 477 EXPORT_SYMBOL_GPL(alloc_vm_area); 478 479 void free_vm_area(struct vm_struct *area) 480 { 481 BUG(); 482 } 483 EXPORT_SYMBOL_GPL(free_vm_area); 484 485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 486 struct page *page) 487 { 488 return -EINVAL; 489 } 490 EXPORT_SYMBOL(vm_insert_page); 491 492 /* 493 * sys_brk() for the most part doesn't need the global kernel 494 * lock, except when an application is doing something nasty 495 * like trying to un-brk an area that has already been mapped 496 * to a regular file. in this case, the unmapping will need 497 * to invoke file system routines that need the global lock. 498 */ 499 SYSCALL_DEFINE1(brk, unsigned long, brk) 500 { 501 struct mm_struct *mm = current->mm; 502 503 if (brk < mm->start_brk || brk > mm->context.end_brk) 504 return mm->brk; 505 506 if (mm->brk == brk) 507 return mm->brk; 508 509 /* 510 * Always allow shrinking brk 511 */ 512 if (brk <= mm->brk) { 513 mm->brk = brk; 514 return brk; 515 } 516 517 /* 518 * Ok, looks good - let it rip. 519 */ 520 flush_icache_range(mm->brk, brk); 521 return mm->brk = brk; 522 } 523 524 /* 525 * initialise the percpu counter for VM and region record slabs 526 */ 527 void __init mmap_init(void) 528 { 529 int ret; 530 531 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 532 VM_BUG_ON(ret); 533 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 534 } 535 536 /* 537 * validate the region tree 538 * - the caller must hold the region lock 539 */ 540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 541 static noinline void validate_nommu_regions(void) 542 { 543 struct vm_region *region, *last; 544 struct rb_node *p, *lastp; 545 546 lastp = rb_first(&nommu_region_tree); 547 if (!lastp) 548 return; 549 550 last = rb_entry(lastp, struct vm_region, vm_rb); 551 BUG_ON(last->vm_end <= last->vm_start); 552 BUG_ON(last->vm_top < last->vm_end); 553 554 while ((p = rb_next(lastp))) { 555 region = rb_entry(p, struct vm_region, vm_rb); 556 last = rb_entry(lastp, struct vm_region, vm_rb); 557 558 BUG_ON(region->vm_end <= region->vm_start); 559 BUG_ON(region->vm_top < region->vm_end); 560 BUG_ON(region->vm_start < last->vm_top); 561 562 lastp = p; 563 } 564 } 565 #else 566 static void validate_nommu_regions(void) 567 { 568 } 569 #endif 570 571 /* 572 * add a region into the global tree 573 */ 574 static void add_nommu_region(struct vm_region *region) 575 { 576 struct vm_region *pregion; 577 struct rb_node **p, *parent; 578 579 validate_nommu_regions(); 580 581 parent = NULL; 582 p = &nommu_region_tree.rb_node; 583 while (*p) { 584 parent = *p; 585 pregion = rb_entry(parent, struct vm_region, vm_rb); 586 if (region->vm_start < pregion->vm_start) 587 p = &(*p)->rb_left; 588 else if (region->vm_start > pregion->vm_start) 589 p = &(*p)->rb_right; 590 else if (pregion == region) 591 return; 592 else 593 BUG(); 594 } 595 596 rb_link_node(®ion->vm_rb, parent, p); 597 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 598 599 validate_nommu_regions(); 600 } 601 602 /* 603 * delete a region from the global tree 604 */ 605 static void delete_nommu_region(struct vm_region *region) 606 { 607 BUG_ON(!nommu_region_tree.rb_node); 608 609 validate_nommu_regions(); 610 rb_erase(®ion->vm_rb, &nommu_region_tree); 611 validate_nommu_regions(); 612 } 613 614 /* 615 * free a contiguous series of pages 616 */ 617 static void free_page_series(unsigned long from, unsigned long to) 618 { 619 for (; from < to; from += PAGE_SIZE) { 620 struct page *page = virt_to_page(from); 621 622 atomic_long_dec(&mmap_pages_allocated); 623 put_page(page); 624 } 625 } 626 627 /* 628 * release a reference to a region 629 * - the caller must hold the region semaphore for writing, which this releases 630 * - the region may not have been added to the tree yet, in which case vm_top 631 * will equal vm_start 632 */ 633 static void __put_nommu_region(struct vm_region *region) 634 __releases(nommu_region_sem) 635 { 636 BUG_ON(!nommu_region_tree.rb_node); 637 638 if (--region->vm_usage == 0) { 639 if (region->vm_top > region->vm_start) 640 delete_nommu_region(region); 641 up_write(&nommu_region_sem); 642 643 if (region->vm_file) 644 fput(region->vm_file); 645 646 /* IO memory and memory shared directly out of the pagecache 647 * from ramfs/tmpfs mustn't be released here */ 648 if (region->vm_flags & VM_MAPPED_COPY) 649 free_page_series(region->vm_start, region->vm_top); 650 kmem_cache_free(vm_region_jar, region); 651 } else { 652 up_write(&nommu_region_sem); 653 } 654 } 655 656 /* 657 * release a reference to a region 658 */ 659 static void put_nommu_region(struct vm_region *region) 660 { 661 down_write(&nommu_region_sem); 662 __put_nommu_region(region); 663 } 664 665 /* 666 * add a VMA into a process's mm_struct in the appropriate place in the list 667 * and tree and add to the address space's page tree also if not an anonymous 668 * page 669 * - should be called with mm->mmap_sem held writelocked 670 */ 671 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 672 { 673 struct vm_area_struct *pvma, *prev; 674 struct address_space *mapping; 675 struct rb_node **p, *parent, *rb_prev; 676 677 BUG_ON(!vma->vm_region); 678 679 mm->map_count++; 680 vma->vm_mm = mm; 681 682 /* add the VMA to the mapping */ 683 if (vma->vm_file) { 684 mapping = vma->vm_file->f_mapping; 685 686 i_mmap_lock_write(mapping); 687 flush_dcache_mmap_lock(mapping); 688 vma_interval_tree_insert(vma, &mapping->i_mmap); 689 flush_dcache_mmap_unlock(mapping); 690 i_mmap_unlock_write(mapping); 691 } 692 693 /* add the VMA to the tree */ 694 parent = rb_prev = NULL; 695 p = &mm->mm_rb.rb_node; 696 while (*p) { 697 parent = *p; 698 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 699 700 /* sort by: start addr, end addr, VMA struct addr in that order 701 * (the latter is necessary as we may get identical VMAs) */ 702 if (vma->vm_start < pvma->vm_start) 703 p = &(*p)->rb_left; 704 else if (vma->vm_start > pvma->vm_start) { 705 rb_prev = parent; 706 p = &(*p)->rb_right; 707 } else if (vma->vm_end < pvma->vm_end) 708 p = &(*p)->rb_left; 709 else if (vma->vm_end > pvma->vm_end) { 710 rb_prev = parent; 711 p = &(*p)->rb_right; 712 } else if (vma < pvma) 713 p = &(*p)->rb_left; 714 else if (vma > pvma) { 715 rb_prev = parent; 716 p = &(*p)->rb_right; 717 } else 718 BUG(); 719 } 720 721 rb_link_node(&vma->vm_rb, parent, p); 722 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 723 724 /* add VMA to the VMA list also */ 725 prev = NULL; 726 if (rb_prev) 727 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 728 729 __vma_link_list(mm, vma, prev, parent); 730 } 731 732 /* 733 * delete a VMA from its owning mm_struct and address space 734 */ 735 static void delete_vma_from_mm(struct vm_area_struct *vma) 736 { 737 int i; 738 struct address_space *mapping; 739 struct mm_struct *mm = vma->vm_mm; 740 struct task_struct *curr = current; 741 742 mm->map_count--; 743 for (i = 0; i < VMACACHE_SIZE; i++) { 744 /* if the vma is cached, invalidate the entire cache */ 745 if (curr->vmacache.vmas[i] == vma) { 746 vmacache_invalidate(mm); 747 break; 748 } 749 } 750 751 /* remove the VMA from the mapping */ 752 if (vma->vm_file) { 753 mapping = vma->vm_file->f_mapping; 754 755 i_mmap_lock_write(mapping); 756 flush_dcache_mmap_lock(mapping); 757 vma_interval_tree_remove(vma, &mapping->i_mmap); 758 flush_dcache_mmap_unlock(mapping); 759 i_mmap_unlock_write(mapping); 760 } 761 762 /* remove from the MM's tree and list */ 763 rb_erase(&vma->vm_rb, &mm->mm_rb); 764 765 if (vma->vm_prev) 766 vma->vm_prev->vm_next = vma->vm_next; 767 else 768 mm->mmap = vma->vm_next; 769 770 if (vma->vm_next) 771 vma->vm_next->vm_prev = vma->vm_prev; 772 } 773 774 /* 775 * destroy a VMA record 776 */ 777 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 778 { 779 if (vma->vm_ops && vma->vm_ops->close) 780 vma->vm_ops->close(vma); 781 if (vma->vm_file) 782 fput(vma->vm_file); 783 put_nommu_region(vma->vm_region); 784 kmem_cache_free(vm_area_cachep, vma); 785 } 786 787 /* 788 * look up the first VMA in which addr resides, NULL if none 789 * - should be called with mm->mmap_sem at least held readlocked 790 */ 791 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 792 { 793 struct vm_area_struct *vma; 794 795 /* check the cache first */ 796 vma = vmacache_find(mm, addr); 797 if (likely(vma)) 798 return vma; 799 800 /* trawl the list (there may be multiple mappings in which addr 801 * resides) */ 802 for (vma = mm->mmap; vma; vma = vma->vm_next) { 803 if (vma->vm_start > addr) 804 return NULL; 805 if (vma->vm_end > addr) { 806 vmacache_update(addr, vma); 807 return vma; 808 } 809 } 810 811 return NULL; 812 } 813 EXPORT_SYMBOL(find_vma); 814 815 /* 816 * find a VMA 817 * - we don't extend stack VMAs under NOMMU conditions 818 */ 819 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 820 { 821 return find_vma(mm, addr); 822 } 823 824 /* 825 * expand a stack to a given address 826 * - not supported under NOMMU conditions 827 */ 828 int expand_stack(struct vm_area_struct *vma, unsigned long address) 829 { 830 return -ENOMEM; 831 } 832 833 /* 834 * look up the first VMA exactly that exactly matches addr 835 * - should be called with mm->mmap_sem at least held readlocked 836 */ 837 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 838 unsigned long addr, 839 unsigned long len) 840 { 841 struct vm_area_struct *vma; 842 unsigned long end = addr + len; 843 844 /* check the cache first */ 845 vma = vmacache_find_exact(mm, addr, end); 846 if (vma) 847 return vma; 848 849 /* trawl the list (there may be multiple mappings in which addr 850 * resides) */ 851 for (vma = mm->mmap; vma; vma = vma->vm_next) { 852 if (vma->vm_start < addr) 853 continue; 854 if (vma->vm_start > addr) 855 return NULL; 856 if (vma->vm_end == end) { 857 vmacache_update(addr, vma); 858 return vma; 859 } 860 } 861 862 return NULL; 863 } 864 865 /* 866 * determine whether a mapping should be permitted and, if so, what sort of 867 * mapping we're capable of supporting 868 */ 869 static int validate_mmap_request(struct file *file, 870 unsigned long addr, 871 unsigned long len, 872 unsigned long prot, 873 unsigned long flags, 874 unsigned long pgoff, 875 unsigned long *_capabilities) 876 { 877 unsigned long capabilities, rlen; 878 int ret; 879 880 /* do the simple checks first */ 881 if (flags & MAP_FIXED) 882 return -EINVAL; 883 884 if ((flags & MAP_TYPE) != MAP_PRIVATE && 885 (flags & MAP_TYPE) != MAP_SHARED) 886 return -EINVAL; 887 888 if (!len) 889 return -EINVAL; 890 891 /* Careful about overflows.. */ 892 rlen = PAGE_ALIGN(len); 893 if (!rlen || rlen > TASK_SIZE) 894 return -ENOMEM; 895 896 /* offset overflow? */ 897 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 898 return -EOVERFLOW; 899 900 if (file) { 901 /* files must support mmap */ 902 if (!file->f_op->mmap) 903 return -ENODEV; 904 905 /* work out if what we've got could possibly be shared 906 * - we support chardevs that provide their own "memory" 907 * - we support files/blockdevs that are memory backed 908 */ 909 if (file->f_op->mmap_capabilities) { 910 capabilities = file->f_op->mmap_capabilities(file); 911 } else { 912 /* no explicit capabilities set, so assume some 913 * defaults */ 914 switch (file_inode(file)->i_mode & S_IFMT) { 915 case S_IFREG: 916 case S_IFBLK: 917 capabilities = NOMMU_MAP_COPY; 918 break; 919 920 case S_IFCHR: 921 capabilities = 922 NOMMU_MAP_DIRECT | 923 NOMMU_MAP_READ | 924 NOMMU_MAP_WRITE; 925 break; 926 927 default: 928 return -EINVAL; 929 } 930 } 931 932 /* eliminate any capabilities that we can't support on this 933 * device */ 934 if (!file->f_op->get_unmapped_area) 935 capabilities &= ~NOMMU_MAP_DIRECT; 936 if (!(file->f_mode & FMODE_CAN_READ)) 937 capabilities &= ~NOMMU_MAP_COPY; 938 939 /* The file shall have been opened with read permission. */ 940 if (!(file->f_mode & FMODE_READ)) 941 return -EACCES; 942 943 if (flags & MAP_SHARED) { 944 /* do checks for writing, appending and locking */ 945 if ((prot & PROT_WRITE) && 946 !(file->f_mode & FMODE_WRITE)) 947 return -EACCES; 948 949 if (IS_APPEND(file_inode(file)) && 950 (file->f_mode & FMODE_WRITE)) 951 return -EACCES; 952 953 if (locks_verify_locked(file)) 954 return -EAGAIN; 955 956 if (!(capabilities & NOMMU_MAP_DIRECT)) 957 return -ENODEV; 958 959 /* we mustn't privatise shared mappings */ 960 capabilities &= ~NOMMU_MAP_COPY; 961 } else { 962 /* we're going to read the file into private memory we 963 * allocate */ 964 if (!(capabilities & NOMMU_MAP_COPY)) 965 return -ENODEV; 966 967 /* we don't permit a private writable mapping to be 968 * shared with the backing device */ 969 if (prot & PROT_WRITE) 970 capabilities &= ~NOMMU_MAP_DIRECT; 971 } 972 973 if (capabilities & NOMMU_MAP_DIRECT) { 974 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 975 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 976 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 977 ) { 978 capabilities &= ~NOMMU_MAP_DIRECT; 979 if (flags & MAP_SHARED) { 980 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 981 return -EINVAL; 982 } 983 } 984 } 985 986 /* handle executable mappings and implied executable 987 * mappings */ 988 if (path_noexec(&file->f_path)) { 989 if (prot & PROT_EXEC) 990 return -EPERM; 991 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 992 /* handle implication of PROT_EXEC by PROT_READ */ 993 if (current->personality & READ_IMPLIES_EXEC) { 994 if (capabilities & NOMMU_MAP_EXEC) 995 prot |= PROT_EXEC; 996 } 997 } else if ((prot & PROT_READ) && 998 (prot & PROT_EXEC) && 999 !(capabilities & NOMMU_MAP_EXEC) 1000 ) { 1001 /* backing file is not executable, try to copy */ 1002 capabilities &= ~NOMMU_MAP_DIRECT; 1003 } 1004 } else { 1005 /* anonymous mappings are always memory backed and can be 1006 * privately mapped 1007 */ 1008 capabilities = NOMMU_MAP_COPY; 1009 1010 /* handle PROT_EXEC implication by PROT_READ */ 1011 if ((prot & PROT_READ) && 1012 (current->personality & READ_IMPLIES_EXEC)) 1013 prot |= PROT_EXEC; 1014 } 1015 1016 /* allow the security API to have its say */ 1017 ret = security_mmap_addr(addr); 1018 if (ret < 0) 1019 return ret; 1020 1021 /* looks okay */ 1022 *_capabilities = capabilities; 1023 return 0; 1024 } 1025 1026 /* 1027 * we've determined that we can make the mapping, now translate what we 1028 * now know into VMA flags 1029 */ 1030 static unsigned long determine_vm_flags(struct file *file, 1031 unsigned long prot, 1032 unsigned long flags, 1033 unsigned long capabilities) 1034 { 1035 unsigned long vm_flags; 1036 1037 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1038 /* vm_flags |= mm->def_flags; */ 1039 1040 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1041 /* attempt to share read-only copies of mapped file chunks */ 1042 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1043 if (file && !(prot & PROT_WRITE)) 1044 vm_flags |= VM_MAYSHARE; 1045 } else { 1046 /* overlay a shareable mapping on the backing device or inode 1047 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1048 * romfs/cramfs */ 1049 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1050 if (flags & MAP_SHARED) 1051 vm_flags |= VM_SHARED; 1052 } 1053 1054 /* refuse to let anyone share private mappings with this process if 1055 * it's being traced - otherwise breakpoints set in it may interfere 1056 * with another untraced process 1057 */ 1058 if ((flags & MAP_PRIVATE) && current->ptrace) 1059 vm_flags &= ~VM_MAYSHARE; 1060 1061 return vm_flags; 1062 } 1063 1064 /* 1065 * set up a shared mapping on a file (the driver or filesystem provides and 1066 * pins the storage) 1067 */ 1068 static int do_mmap_shared_file(struct vm_area_struct *vma) 1069 { 1070 int ret; 1071 1072 ret = call_mmap(vma->vm_file, vma); 1073 if (ret == 0) { 1074 vma->vm_region->vm_top = vma->vm_region->vm_end; 1075 return 0; 1076 } 1077 if (ret != -ENOSYS) 1078 return ret; 1079 1080 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1081 * opposed to tried but failed) so we can only give a suitable error as 1082 * it's not possible to make a private copy if MAP_SHARED was given */ 1083 return -ENODEV; 1084 } 1085 1086 /* 1087 * set up a private mapping or an anonymous shared mapping 1088 */ 1089 static int do_mmap_private(struct vm_area_struct *vma, 1090 struct vm_region *region, 1091 unsigned long len, 1092 unsigned long capabilities) 1093 { 1094 unsigned long total, point; 1095 void *base; 1096 int ret, order; 1097 1098 /* invoke the file's mapping function so that it can keep track of 1099 * shared mappings on devices or memory 1100 * - VM_MAYSHARE will be set if it may attempt to share 1101 */ 1102 if (capabilities & NOMMU_MAP_DIRECT) { 1103 ret = call_mmap(vma->vm_file, vma); 1104 if (ret == 0) { 1105 /* shouldn't return success if we're not sharing */ 1106 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1107 vma->vm_region->vm_top = vma->vm_region->vm_end; 1108 return 0; 1109 } 1110 if (ret != -ENOSYS) 1111 return ret; 1112 1113 /* getting an ENOSYS error indicates that direct mmap isn't 1114 * possible (as opposed to tried but failed) so we'll try to 1115 * make a private copy of the data and map that instead */ 1116 } 1117 1118 1119 /* allocate some memory to hold the mapping 1120 * - note that this may not return a page-aligned address if the object 1121 * we're allocating is smaller than a page 1122 */ 1123 order = get_order(len); 1124 total = 1 << order; 1125 point = len >> PAGE_SHIFT; 1126 1127 /* we don't want to allocate a power-of-2 sized page set */ 1128 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1129 total = point; 1130 1131 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1132 if (!base) 1133 goto enomem; 1134 1135 atomic_long_add(total, &mmap_pages_allocated); 1136 1137 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1138 region->vm_start = (unsigned long) base; 1139 region->vm_end = region->vm_start + len; 1140 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1141 1142 vma->vm_start = region->vm_start; 1143 vma->vm_end = region->vm_start + len; 1144 1145 if (vma->vm_file) { 1146 /* read the contents of a file into the copy */ 1147 loff_t fpos; 1148 1149 fpos = vma->vm_pgoff; 1150 fpos <<= PAGE_SHIFT; 1151 1152 ret = kernel_read(vma->vm_file, base, len, &fpos); 1153 if (ret < 0) 1154 goto error_free; 1155 1156 /* clear the last little bit */ 1157 if (ret < len) 1158 memset(base + ret, 0, len - ret); 1159 1160 } 1161 1162 return 0; 1163 1164 error_free: 1165 free_page_series(region->vm_start, region->vm_top); 1166 region->vm_start = vma->vm_start = 0; 1167 region->vm_end = vma->vm_end = 0; 1168 region->vm_top = 0; 1169 return ret; 1170 1171 enomem: 1172 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1173 len, current->pid, current->comm); 1174 show_free_areas(0, NULL); 1175 return -ENOMEM; 1176 } 1177 1178 /* 1179 * handle mapping creation for uClinux 1180 */ 1181 unsigned long do_mmap(struct file *file, 1182 unsigned long addr, 1183 unsigned long len, 1184 unsigned long prot, 1185 unsigned long flags, 1186 vm_flags_t vm_flags, 1187 unsigned long pgoff, 1188 unsigned long *populate, 1189 struct list_head *uf) 1190 { 1191 struct vm_area_struct *vma; 1192 struct vm_region *region; 1193 struct rb_node *rb; 1194 unsigned long capabilities, result; 1195 int ret; 1196 1197 *populate = 0; 1198 1199 /* decide whether we should attempt the mapping, and if so what sort of 1200 * mapping */ 1201 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1202 &capabilities); 1203 if (ret < 0) 1204 return ret; 1205 1206 /* we ignore the address hint */ 1207 addr = 0; 1208 len = PAGE_ALIGN(len); 1209 1210 /* we've determined that we can make the mapping, now translate what we 1211 * now know into VMA flags */ 1212 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1213 1214 /* we're going to need to record the mapping */ 1215 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1216 if (!region) 1217 goto error_getting_region; 1218 1219 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1220 if (!vma) 1221 goto error_getting_vma; 1222 1223 region->vm_usage = 1; 1224 region->vm_flags = vm_flags; 1225 region->vm_pgoff = pgoff; 1226 1227 INIT_LIST_HEAD(&vma->anon_vma_chain); 1228 vma->vm_flags = vm_flags; 1229 vma->vm_pgoff = pgoff; 1230 1231 if (file) { 1232 region->vm_file = get_file(file); 1233 vma->vm_file = get_file(file); 1234 } 1235 1236 down_write(&nommu_region_sem); 1237 1238 /* if we want to share, we need to check for regions created by other 1239 * mmap() calls that overlap with our proposed mapping 1240 * - we can only share with a superset match on most regular files 1241 * - shared mappings on character devices and memory backed files are 1242 * permitted to overlap inexactly as far as we are concerned for in 1243 * these cases, sharing is handled in the driver or filesystem rather 1244 * than here 1245 */ 1246 if (vm_flags & VM_MAYSHARE) { 1247 struct vm_region *pregion; 1248 unsigned long pglen, rpglen, pgend, rpgend, start; 1249 1250 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1251 pgend = pgoff + pglen; 1252 1253 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1254 pregion = rb_entry(rb, struct vm_region, vm_rb); 1255 1256 if (!(pregion->vm_flags & VM_MAYSHARE)) 1257 continue; 1258 1259 /* search for overlapping mappings on the same file */ 1260 if (file_inode(pregion->vm_file) != 1261 file_inode(file)) 1262 continue; 1263 1264 if (pregion->vm_pgoff >= pgend) 1265 continue; 1266 1267 rpglen = pregion->vm_end - pregion->vm_start; 1268 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1269 rpgend = pregion->vm_pgoff + rpglen; 1270 if (pgoff >= rpgend) 1271 continue; 1272 1273 /* handle inexactly overlapping matches between 1274 * mappings */ 1275 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1276 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1277 /* new mapping is not a subset of the region */ 1278 if (!(capabilities & NOMMU_MAP_DIRECT)) 1279 goto sharing_violation; 1280 continue; 1281 } 1282 1283 /* we've found a region we can share */ 1284 pregion->vm_usage++; 1285 vma->vm_region = pregion; 1286 start = pregion->vm_start; 1287 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1288 vma->vm_start = start; 1289 vma->vm_end = start + len; 1290 1291 if (pregion->vm_flags & VM_MAPPED_COPY) 1292 vma->vm_flags |= VM_MAPPED_COPY; 1293 else { 1294 ret = do_mmap_shared_file(vma); 1295 if (ret < 0) { 1296 vma->vm_region = NULL; 1297 vma->vm_start = 0; 1298 vma->vm_end = 0; 1299 pregion->vm_usage--; 1300 pregion = NULL; 1301 goto error_just_free; 1302 } 1303 } 1304 fput(region->vm_file); 1305 kmem_cache_free(vm_region_jar, region); 1306 region = pregion; 1307 result = start; 1308 goto share; 1309 } 1310 1311 /* obtain the address at which to make a shared mapping 1312 * - this is the hook for quasi-memory character devices to 1313 * tell us the location of a shared mapping 1314 */ 1315 if (capabilities & NOMMU_MAP_DIRECT) { 1316 addr = file->f_op->get_unmapped_area(file, addr, len, 1317 pgoff, flags); 1318 if (IS_ERR_VALUE(addr)) { 1319 ret = addr; 1320 if (ret != -ENOSYS) 1321 goto error_just_free; 1322 1323 /* the driver refused to tell us where to site 1324 * the mapping so we'll have to attempt to copy 1325 * it */ 1326 ret = -ENODEV; 1327 if (!(capabilities & NOMMU_MAP_COPY)) 1328 goto error_just_free; 1329 1330 capabilities &= ~NOMMU_MAP_DIRECT; 1331 } else { 1332 vma->vm_start = region->vm_start = addr; 1333 vma->vm_end = region->vm_end = addr + len; 1334 } 1335 } 1336 } 1337 1338 vma->vm_region = region; 1339 1340 /* set up the mapping 1341 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1342 */ 1343 if (file && vma->vm_flags & VM_SHARED) 1344 ret = do_mmap_shared_file(vma); 1345 else 1346 ret = do_mmap_private(vma, region, len, capabilities); 1347 if (ret < 0) 1348 goto error_just_free; 1349 add_nommu_region(region); 1350 1351 /* clear anonymous mappings that don't ask for uninitialized data */ 1352 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1353 memset((void *)region->vm_start, 0, 1354 region->vm_end - region->vm_start); 1355 1356 /* okay... we have a mapping; now we have to register it */ 1357 result = vma->vm_start; 1358 1359 current->mm->total_vm += len >> PAGE_SHIFT; 1360 1361 share: 1362 add_vma_to_mm(current->mm, vma); 1363 1364 /* we flush the region from the icache only when the first executable 1365 * mapping of it is made */ 1366 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1367 flush_icache_range(region->vm_start, region->vm_end); 1368 region->vm_icache_flushed = true; 1369 } 1370 1371 up_write(&nommu_region_sem); 1372 1373 return result; 1374 1375 error_just_free: 1376 up_write(&nommu_region_sem); 1377 error: 1378 if (region->vm_file) 1379 fput(region->vm_file); 1380 kmem_cache_free(vm_region_jar, region); 1381 if (vma->vm_file) 1382 fput(vma->vm_file); 1383 kmem_cache_free(vm_area_cachep, vma); 1384 return ret; 1385 1386 sharing_violation: 1387 up_write(&nommu_region_sem); 1388 pr_warn("Attempt to share mismatched mappings\n"); 1389 ret = -EINVAL; 1390 goto error; 1391 1392 error_getting_vma: 1393 kmem_cache_free(vm_region_jar, region); 1394 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1395 len, current->pid); 1396 show_free_areas(0, NULL); 1397 return -ENOMEM; 1398 1399 error_getting_region: 1400 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1401 len, current->pid); 1402 show_free_areas(0, NULL); 1403 return -ENOMEM; 1404 } 1405 1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1407 unsigned long prot, unsigned long flags, 1408 unsigned long fd, unsigned long pgoff) 1409 { 1410 struct file *file = NULL; 1411 unsigned long retval = -EBADF; 1412 1413 audit_mmap_fd(fd, flags); 1414 if (!(flags & MAP_ANONYMOUS)) { 1415 file = fget(fd); 1416 if (!file) 1417 goto out; 1418 } 1419 1420 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1421 1422 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1423 1424 if (file) 1425 fput(file); 1426 out: 1427 return retval; 1428 } 1429 1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1431 unsigned long, prot, unsigned long, flags, 1432 unsigned long, fd, unsigned long, pgoff) 1433 { 1434 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1435 } 1436 1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1438 struct mmap_arg_struct { 1439 unsigned long addr; 1440 unsigned long len; 1441 unsigned long prot; 1442 unsigned long flags; 1443 unsigned long fd; 1444 unsigned long offset; 1445 }; 1446 1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1448 { 1449 struct mmap_arg_struct a; 1450 1451 if (copy_from_user(&a, arg, sizeof(a))) 1452 return -EFAULT; 1453 if (offset_in_page(a.offset)) 1454 return -EINVAL; 1455 1456 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1457 a.offset >> PAGE_SHIFT); 1458 } 1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1460 1461 /* 1462 * split a vma into two pieces at address 'addr', a new vma is allocated either 1463 * for the first part or the tail. 1464 */ 1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1466 unsigned long addr, int new_below) 1467 { 1468 struct vm_area_struct *new; 1469 struct vm_region *region; 1470 unsigned long npages; 1471 1472 /* we're only permitted to split anonymous regions (these should have 1473 * only a single usage on the region) */ 1474 if (vma->vm_file) 1475 return -ENOMEM; 1476 1477 if (mm->map_count >= sysctl_max_map_count) 1478 return -ENOMEM; 1479 1480 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1481 if (!region) 1482 return -ENOMEM; 1483 1484 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1485 if (!new) { 1486 kmem_cache_free(vm_region_jar, region); 1487 return -ENOMEM; 1488 } 1489 1490 /* most fields are the same, copy all, and then fixup */ 1491 *new = *vma; 1492 *region = *vma->vm_region; 1493 new->vm_region = region; 1494 1495 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1496 1497 if (new_below) { 1498 region->vm_top = region->vm_end = new->vm_end = addr; 1499 } else { 1500 region->vm_start = new->vm_start = addr; 1501 region->vm_pgoff = new->vm_pgoff += npages; 1502 } 1503 1504 if (new->vm_ops && new->vm_ops->open) 1505 new->vm_ops->open(new); 1506 1507 delete_vma_from_mm(vma); 1508 down_write(&nommu_region_sem); 1509 delete_nommu_region(vma->vm_region); 1510 if (new_below) { 1511 vma->vm_region->vm_start = vma->vm_start = addr; 1512 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1513 } else { 1514 vma->vm_region->vm_end = vma->vm_end = addr; 1515 vma->vm_region->vm_top = addr; 1516 } 1517 add_nommu_region(vma->vm_region); 1518 add_nommu_region(new->vm_region); 1519 up_write(&nommu_region_sem); 1520 add_vma_to_mm(mm, vma); 1521 add_vma_to_mm(mm, new); 1522 return 0; 1523 } 1524 1525 /* 1526 * shrink a VMA by removing the specified chunk from either the beginning or 1527 * the end 1528 */ 1529 static int shrink_vma(struct mm_struct *mm, 1530 struct vm_area_struct *vma, 1531 unsigned long from, unsigned long to) 1532 { 1533 struct vm_region *region; 1534 1535 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1536 * and list */ 1537 delete_vma_from_mm(vma); 1538 if (from > vma->vm_start) 1539 vma->vm_end = from; 1540 else 1541 vma->vm_start = to; 1542 add_vma_to_mm(mm, vma); 1543 1544 /* cut the backing region down to size */ 1545 region = vma->vm_region; 1546 BUG_ON(region->vm_usage != 1); 1547 1548 down_write(&nommu_region_sem); 1549 delete_nommu_region(region); 1550 if (from > region->vm_start) { 1551 to = region->vm_top; 1552 region->vm_top = region->vm_end = from; 1553 } else { 1554 region->vm_start = to; 1555 } 1556 add_nommu_region(region); 1557 up_write(&nommu_region_sem); 1558 1559 free_page_series(from, to); 1560 return 0; 1561 } 1562 1563 /* 1564 * release a mapping 1565 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1566 * VMA, though it need not cover the whole VMA 1567 */ 1568 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1569 { 1570 struct vm_area_struct *vma; 1571 unsigned long end; 1572 int ret; 1573 1574 len = PAGE_ALIGN(len); 1575 if (len == 0) 1576 return -EINVAL; 1577 1578 end = start + len; 1579 1580 /* find the first potentially overlapping VMA */ 1581 vma = find_vma(mm, start); 1582 if (!vma) { 1583 static int limit; 1584 if (limit < 5) { 1585 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1586 current->pid, current->comm, 1587 start, start + len - 1); 1588 limit++; 1589 } 1590 return -EINVAL; 1591 } 1592 1593 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1594 if (vma->vm_file) { 1595 do { 1596 if (start > vma->vm_start) 1597 return -EINVAL; 1598 if (end == vma->vm_end) 1599 goto erase_whole_vma; 1600 vma = vma->vm_next; 1601 } while (vma); 1602 return -EINVAL; 1603 } else { 1604 /* the chunk must be a subset of the VMA found */ 1605 if (start == vma->vm_start && end == vma->vm_end) 1606 goto erase_whole_vma; 1607 if (start < vma->vm_start || end > vma->vm_end) 1608 return -EINVAL; 1609 if (offset_in_page(start)) 1610 return -EINVAL; 1611 if (end != vma->vm_end && offset_in_page(end)) 1612 return -EINVAL; 1613 if (start != vma->vm_start && end != vma->vm_end) { 1614 ret = split_vma(mm, vma, start, 1); 1615 if (ret < 0) 1616 return ret; 1617 } 1618 return shrink_vma(mm, vma, start, end); 1619 } 1620 1621 erase_whole_vma: 1622 delete_vma_from_mm(vma); 1623 delete_vma(mm, vma); 1624 return 0; 1625 } 1626 EXPORT_SYMBOL(do_munmap); 1627 1628 int vm_munmap(unsigned long addr, size_t len) 1629 { 1630 struct mm_struct *mm = current->mm; 1631 int ret; 1632 1633 down_write(&mm->mmap_sem); 1634 ret = do_munmap(mm, addr, len, NULL); 1635 up_write(&mm->mmap_sem); 1636 return ret; 1637 } 1638 EXPORT_SYMBOL(vm_munmap); 1639 1640 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1641 { 1642 return vm_munmap(addr, len); 1643 } 1644 1645 /* 1646 * release all the mappings made in a process's VM space 1647 */ 1648 void exit_mmap(struct mm_struct *mm) 1649 { 1650 struct vm_area_struct *vma; 1651 1652 if (!mm) 1653 return; 1654 1655 mm->total_vm = 0; 1656 1657 while ((vma = mm->mmap)) { 1658 mm->mmap = vma->vm_next; 1659 delete_vma_from_mm(vma); 1660 delete_vma(mm, vma); 1661 cond_resched(); 1662 } 1663 } 1664 1665 int vm_brk(unsigned long addr, unsigned long len) 1666 { 1667 return -ENOMEM; 1668 } 1669 1670 /* 1671 * expand (or shrink) an existing mapping, potentially moving it at the same 1672 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1673 * 1674 * under NOMMU conditions, we only permit changing a mapping's size, and only 1675 * as long as it stays within the region allocated by do_mmap_private() and the 1676 * block is not shareable 1677 * 1678 * MREMAP_FIXED is not supported under NOMMU conditions 1679 */ 1680 static unsigned long do_mremap(unsigned long addr, 1681 unsigned long old_len, unsigned long new_len, 1682 unsigned long flags, unsigned long new_addr) 1683 { 1684 struct vm_area_struct *vma; 1685 1686 /* insanity checks first */ 1687 old_len = PAGE_ALIGN(old_len); 1688 new_len = PAGE_ALIGN(new_len); 1689 if (old_len == 0 || new_len == 0) 1690 return (unsigned long) -EINVAL; 1691 1692 if (offset_in_page(addr)) 1693 return -EINVAL; 1694 1695 if (flags & MREMAP_FIXED && new_addr != addr) 1696 return (unsigned long) -EINVAL; 1697 1698 vma = find_vma_exact(current->mm, addr, old_len); 1699 if (!vma) 1700 return (unsigned long) -EINVAL; 1701 1702 if (vma->vm_end != vma->vm_start + old_len) 1703 return (unsigned long) -EFAULT; 1704 1705 if (vma->vm_flags & VM_MAYSHARE) 1706 return (unsigned long) -EPERM; 1707 1708 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1709 return (unsigned long) -ENOMEM; 1710 1711 /* all checks complete - do it */ 1712 vma->vm_end = vma->vm_start + new_len; 1713 return vma->vm_start; 1714 } 1715 1716 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1717 unsigned long, new_len, unsigned long, flags, 1718 unsigned long, new_addr) 1719 { 1720 unsigned long ret; 1721 1722 down_write(¤t->mm->mmap_sem); 1723 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1724 up_write(¤t->mm->mmap_sem); 1725 return ret; 1726 } 1727 1728 struct page *follow_page_mask(struct vm_area_struct *vma, 1729 unsigned long address, unsigned int flags, 1730 unsigned int *page_mask) 1731 { 1732 *page_mask = 0; 1733 return NULL; 1734 } 1735 1736 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1737 unsigned long pfn, unsigned long size, pgprot_t prot) 1738 { 1739 if (addr != (pfn << PAGE_SHIFT)) 1740 return -EINVAL; 1741 1742 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1743 return 0; 1744 } 1745 EXPORT_SYMBOL(remap_pfn_range); 1746 1747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1748 { 1749 unsigned long pfn = start >> PAGE_SHIFT; 1750 unsigned long vm_len = vma->vm_end - vma->vm_start; 1751 1752 pfn += vma->vm_pgoff; 1753 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1754 } 1755 EXPORT_SYMBOL(vm_iomap_memory); 1756 1757 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1758 unsigned long pgoff) 1759 { 1760 unsigned int size = vma->vm_end - vma->vm_start; 1761 1762 if (!(vma->vm_flags & VM_USERMAP)) 1763 return -EINVAL; 1764 1765 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1766 vma->vm_end = vma->vm_start + size; 1767 1768 return 0; 1769 } 1770 EXPORT_SYMBOL(remap_vmalloc_range); 1771 1772 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1773 unsigned long len, unsigned long pgoff, unsigned long flags) 1774 { 1775 return -ENOMEM; 1776 } 1777 1778 int filemap_fault(struct vm_fault *vmf) 1779 { 1780 BUG(); 1781 return 0; 1782 } 1783 EXPORT_SYMBOL(filemap_fault); 1784 1785 void filemap_map_pages(struct vm_fault *vmf, 1786 pgoff_t start_pgoff, pgoff_t end_pgoff) 1787 { 1788 BUG(); 1789 } 1790 EXPORT_SYMBOL(filemap_map_pages); 1791 1792 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1793 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1794 { 1795 struct vm_area_struct *vma; 1796 int write = gup_flags & FOLL_WRITE; 1797 1798 down_read(&mm->mmap_sem); 1799 1800 /* the access must start within one of the target process's mappings */ 1801 vma = find_vma(mm, addr); 1802 if (vma) { 1803 /* don't overrun this mapping */ 1804 if (addr + len >= vma->vm_end) 1805 len = vma->vm_end - addr; 1806 1807 /* only read or write mappings where it is permitted */ 1808 if (write && vma->vm_flags & VM_MAYWRITE) 1809 copy_to_user_page(vma, NULL, addr, 1810 (void *) addr, buf, len); 1811 else if (!write && vma->vm_flags & VM_MAYREAD) 1812 copy_from_user_page(vma, NULL, addr, 1813 buf, (void *) addr, len); 1814 else 1815 len = 0; 1816 } else { 1817 len = 0; 1818 } 1819 1820 up_read(&mm->mmap_sem); 1821 1822 return len; 1823 } 1824 1825 /** 1826 * access_remote_vm - access another process' address space 1827 * @mm: the mm_struct of the target address space 1828 * @addr: start address to access 1829 * @buf: source or destination buffer 1830 * @len: number of bytes to transfer 1831 * @gup_flags: flags modifying lookup behaviour 1832 * 1833 * The caller must hold a reference on @mm. 1834 */ 1835 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1836 void *buf, int len, unsigned int gup_flags) 1837 { 1838 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1839 } 1840 1841 /* 1842 * Access another process' address space. 1843 * - source/target buffer must be kernel space 1844 */ 1845 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1846 unsigned int gup_flags) 1847 { 1848 struct mm_struct *mm; 1849 1850 if (addr + len < addr) 1851 return 0; 1852 1853 mm = get_task_mm(tsk); 1854 if (!mm) 1855 return 0; 1856 1857 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1858 1859 mmput(mm); 1860 return len; 1861 } 1862 EXPORT_SYMBOL_GPL(access_process_vm); 1863 1864 /** 1865 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1866 * @inode: The inode to check 1867 * @size: The current filesize of the inode 1868 * @newsize: The proposed filesize of the inode 1869 * 1870 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1871 * make sure that that any outstanding VMAs aren't broken and then shrink the 1872 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1873 * automatically grant mappings that are too large. 1874 */ 1875 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1876 size_t newsize) 1877 { 1878 struct vm_area_struct *vma; 1879 struct vm_region *region; 1880 pgoff_t low, high; 1881 size_t r_size, r_top; 1882 1883 low = newsize >> PAGE_SHIFT; 1884 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1885 1886 down_write(&nommu_region_sem); 1887 i_mmap_lock_read(inode->i_mapping); 1888 1889 /* search for VMAs that fall within the dead zone */ 1890 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1891 /* found one - only interested if it's shared out of the page 1892 * cache */ 1893 if (vma->vm_flags & VM_SHARED) { 1894 i_mmap_unlock_read(inode->i_mapping); 1895 up_write(&nommu_region_sem); 1896 return -ETXTBSY; /* not quite true, but near enough */ 1897 } 1898 } 1899 1900 /* reduce any regions that overlap the dead zone - if in existence, 1901 * these will be pointed to by VMAs that don't overlap the dead zone 1902 * 1903 * we don't check for any regions that start beyond the EOF as there 1904 * shouldn't be any 1905 */ 1906 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1907 if (!(vma->vm_flags & VM_SHARED)) 1908 continue; 1909 1910 region = vma->vm_region; 1911 r_size = region->vm_top - region->vm_start; 1912 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1913 1914 if (r_top > newsize) { 1915 region->vm_top -= r_top - newsize; 1916 if (region->vm_end > region->vm_top) 1917 region->vm_end = region->vm_top; 1918 } 1919 } 1920 1921 i_mmap_unlock_read(inode->i_mapping); 1922 up_write(&nommu_region_sem); 1923 return 0; 1924 } 1925 1926 /* 1927 * Initialise sysctl_user_reserve_kbytes. 1928 * 1929 * This is intended to prevent a user from starting a single memory hogging 1930 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1931 * mode. 1932 * 1933 * The default value is min(3% of free memory, 128MB) 1934 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1935 */ 1936 static int __meminit init_user_reserve(void) 1937 { 1938 unsigned long free_kbytes; 1939 1940 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1941 1942 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1943 return 0; 1944 } 1945 subsys_initcall(init_user_reserve); 1946 1947 /* 1948 * Initialise sysctl_admin_reserve_kbytes. 1949 * 1950 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1951 * to log in and kill a memory hogging process. 1952 * 1953 * Systems with more than 256MB will reserve 8MB, enough to recover 1954 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1955 * only reserve 3% of free pages by default. 1956 */ 1957 static int __meminit init_admin_reserve(void) 1958 { 1959 unsigned long free_kbytes; 1960 1961 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1962 1963 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1964 return 0; 1965 } 1966 subsys_initcall(init_admin_reserve); 1967