xref: /linux/mm/nommu.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return PAGE_SIZE << compound_order(page);
111 }
112 
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 		      unsigned long start, unsigned long nr_pages,
115 		      unsigned int foll_flags, struct page **pages,
116 		      struct vm_area_struct **vmas, int *nonblocking)
117 {
118 	struct vm_area_struct *vma;
119 	unsigned long vm_flags;
120 	int i;
121 
122 	/* calculate required read or write permissions.
123 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 	 */
125 	vm_flags  = (foll_flags & FOLL_WRITE) ?
126 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 	vm_flags &= (foll_flags & FOLL_FORCE) ?
128 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129 
130 	for (i = 0; i < nr_pages; i++) {
131 		vma = find_vma(mm, start);
132 		if (!vma)
133 			goto finish_or_fault;
134 
135 		/* protect what we can, including chardevs */
136 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 		    !(vm_flags & vma->vm_flags))
138 			goto finish_or_fault;
139 
140 		if (pages) {
141 			pages[i] = virt_to_page(start);
142 			if (pages[i])
143 				get_page(pages[i]);
144 		}
145 		if (vmas)
146 			vmas[i] = vma;
147 		start = (start + PAGE_SIZE) & PAGE_MASK;
148 	}
149 
150 	return i;
151 
152 finish_or_fault:
153 	return i ? : -EFAULT;
154 }
155 
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 		    unsigned int gup_flags, struct page **pages,
165 		    struct vm_area_struct **vmas)
166 {
167 	return __get_user_pages(current, current->mm, start, nr_pages,
168 				gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171 
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 			    unsigned int gup_flags, struct page **pages,
174 			    int *locked)
175 {
176 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179 
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 			struct mm_struct *mm, unsigned long start,
182 			unsigned long nr_pages, struct page **pages,
183 			unsigned int gup_flags)
184 {
185 	long ret;
186 	down_read(&mm->mmap_sem);
187 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 				NULL, NULL);
189 	up_read(&mm->mmap_sem);
190 	return ret;
191 }
192 
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 			     struct page **pages, unsigned int gup_flags)
195 {
196 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 					 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200 
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 	unsigned long *pfn)
213 {
214 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 		return -EINVAL;
216 
217 	*pfn = address >> PAGE_SHIFT;
218 	return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221 
222 LIST_HEAD(vmap_area_list);
223 
224 void vfree(const void *addr)
225 {
226 	kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229 
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 	/*
233 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 	 * returns only a logical address.
235 	 */
236 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239 
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 	return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244 
245 void *vmalloc_user(unsigned long size)
246 {
247 	void *ret;
248 
249 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 	if (ret) {
251 		struct vm_area_struct *vma;
252 
253 		down_write(&current->mm->mmap_sem);
254 		vma = find_vma(current->mm, (unsigned long)ret);
255 		if (vma)
256 			vma->vm_flags |= VM_USERMAP;
257 		up_write(&current->mm->mmap_sem);
258 	}
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263 
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 	return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269 
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 	return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275 
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 	/* Don't allow overflow */
279 	if ((unsigned long) buf + count < count)
280 		count = -(unsigned long) buf;
281 
282 	memcpy(buf, addr, count);
283 	return count;
284 }
285 
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 	/* Don't allow overflow */
289 	if ((unsigned long) addr + count < count)
290 		count = -(unsigned long) addr;
291 
292 	memcpy(addr, buf, count);
293 	return count;
294 }
295 
296 /*
297  *	vmalloc  -  allocate virtually contiguous memory
298  *
299  *	@size:		allocation size
300  *
301  *	Allocate enough pages to cover @size from the page level
302  *	allocator and map them into contiguous kernel virtual space.
303  *
304  *	For tight control over page level allocator and protection flags
305  *	use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312 
313 /*
314  *	vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *	@size:		allocation size
317  *
318  *	Allocate enough pages to cover @size from the page level
319  *	allocator and map them into contiguous kernel virtual space.
320  *	The memory allocated is set to zero.
321  *
322  *	For tight control over page level allocator and protection flags
323  *	use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 			PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331 
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:	allocation size
352  * @node:	numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 	return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366 
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370 
371 /**
372  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *	@size:		allocation size
374  *
375  *	Kernel-internal function to allocate enough pages to cover @size
376  *	the page level allocator and map them into contiguous and
377  *	executable kernel virtual space.
378  *
379  *	For tight control over page level allocator and protection flags
380  *	use __vmalloc() instead.
381  */
382 
383 void *vmalloc_exec(unsigned long size)
384 {
385 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387 
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *	@size:		allocation size
391  *
392  *	Allocate enough 32bit PA addressable pages to cover @size from the
393  *	page level allocator and map them into contiguous kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400 
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *	@size:		allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413 	/*
414 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 	 * but for now this can simply use vmalloc_user() directly.
416 	 */
417 	return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420 
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423 	BUG();
424 	return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427 
428 void vunmap(const void *addr)
429 {
430 	BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433 
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436 	BUG();
437 	return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440 
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443 	BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446 
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451 
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void __weak vmalloc_sync_all(void)
457 {
458 }
459 
460 /**
461  *	alloc_vm_area - allocate a range of kernel address space
462  *	@size:		size of the area
463  *
464  *	Returns:	NULL on failure, vm_struct on success
465  *
466  *	This function reserves a range of kernel address space, and
467  *	allocates pagetables to map that range.  No actual mappings
468  *	are created.  If the kernel address space is not shared
469  *	between processes, it syncs the pagetable across all
470  *	processes.
471  */
472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
473 {
474 	BUG();
475 	return NULL;
476 }
477 EXPORT_SYMBOL_GPL(alloc_vm_area);
478 
479 void free_vm_area(struct vm_struct *area)
480 {
481 	BUG();
482 }
483 EXPORT_SYMBOL_GPL(free_vm_area);
484 
485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
486 		   struct page *page)
487 {
488 	return -EINVAL;
489 }
490 EXPORT_SYMBOL(vm_insert_page);
491 
492 /*
493  *  sys_brk() for the most part doesn't need the global kernel
494  *  lock, except when an application is doing something nasty
495  *  like trying to un-brk an area that has already been mapped
496  *  to a regular file.  in this case, the unmapping will need
497  *  to invoke file system routines that need the global lock.
498  */
499 SYSCALL_DEFINE1(brk, unsigned long, brk)
500 {
501 	struct mm_struct *mm = current->mm;
502 
503 	if (brk < mm->start_brk || brk > mm->context.end_brk)
504 		return mm->brk;
505 
506 	if (mm->brk == brk)
507 		return mm->brk;
508 
509 	/*
510 	 * Always allow shrinking brk
511 	 */
512 	if (brk <= mm->brk) {
513 		mm->brk = brk;
514 		return brk;
515 	}
516 
517 	/*
518 	 * Ok, looks good - let it rip.
519 	 */
520 	flush_icache_range(mm->brk, brk);
521 	return mm->brk = brk;
522 }
523 
524 /*
525  * initialise the percpu counter for VM and region record slabs
526  */
527 void __init mmap_init(void)
528 {
529 	int ret;
530 
531 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
532 	VM_BUG_ON(ret);
533 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
534 }
535 
536 /*
537  * validate the region tree
538  * - the caller must hold the region lock
539  */
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline void validate_nommu_regions(void)
542 {
543 	struct vm_region *region, *last;
544 	struct rb_node *p, *lastp;
545 
546 	lastp = rb_first(&nommu_region_tree);
547 	if (!lastp)
548 		return;
549 
550 	last = rb_entry(lastp, struct vm_region, vm_rb);
551 	BUG_ON(last->vm_end <= last->vm_start);
552 	BUG_ON(last->vm_top < last->vm_end);
553 
554 	while ((p = rb_next(lastp))) {
555 		region = rb_entry(p, struct vm_region, vm_rb);
556 		last = rb_entry(lastp, struct vm_region, vm_rb);
557 
558 		BUG_ON(region->vm_end <= region->vm_start);
559 		BUG_ON(region->vm_top < region->vm_end);
560 		BUG_ON(region->vm_start < last->vm_top);
561 
562 		lastp = p;
563 	}
564 }
565 #else
566 static void validate_nommu_regions(void)
567 {
568 }
569 #endif
570 
571 /*
572  * add a region into the global tree
573  */
574 static void add_nommu_region(struct vm_region *region)
575 {
576 	struct vm_region *pregion;
577 	struct rb_node **p, *parent;
578 
579 	validate_nommu_regions();
580 
581 	parent = NULL;
582 	p = &nommu_region_tree.rb_node;
583 	while (*p) {
584 		parent = *p;
585 		pregion = rb_entry(parent, struct vm_region, vm_rb);
586 		if (region->vm_start < pregion->vm_start)
587 			p = &(*p)->rb_left;
588 		else if (region->vm_start > pregion->vm_start)
589 			p = &(*p)->rb_right;
590 		else if (pregion == region)
591 			return;
592 		else
593 			BUG();
594 	}
595 
596 	rb_link_node(&region->vm_rb, parent, p);
597 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
598 
599 	validate_nommu_regions();
600 }
601 
602 /*
603  * delete a region from the global tree
604  */
605 static void delete_nommu_region(struct vm_region *region)
606 {
607 	BUG_ON(!nommu_region_tree.rb_node);
608 
609 	validate_nommu_regions();
610 	rb_erase(&region->vm_rb, &nommu_region_tree);
611 	validate_nommu_regions();
612 }
613 
614 /*
615  * free a contiguous series of pages
616  */
617 static void free_page_series(unsigned long from, unsigned long to)
618 {
619 	for (; from < to; from += PAGE_SIZE) {
620 		struct page *page = virt_to_page(from);
621 
622 		atomic_long_dec(&mmap_pages_allocated);
623 		put_page(page);
624 	}
625 }
626 
627 /*
628  * release a reference to a region
629  * - the caller must hold the region semaphore for writing, which this releases
630  * - the region may not have been added to the tree yet, in which case vm_top
631  *   will equal vm_start
632  */
633 static void __put_nommu_region(struct vm_region *region)
634 	__releases(nommu_region_sem)
635 {
636 	BUG_ON(!nommu_region_tree.rb_node);
637 
638 	if (--region->vm_usage == 0) {
639 		if (region->vm_top > region->vm_start)
640 			delete_nommu_region(region);
641 		up_write(&nommu_region_sem);
642 
643 		if (region->vm_file)
644 			fput(region->vm_file);
645 
646 		/* IO memory and memory shared directly out of the pagecache
647 		 * from ramfs/tmpfs mustn't be released here */
648 		if (region->vm_flags & VM_MAPPED_COPY)
649 			free_page_series(region->vm_start, region->vm_top);
650 		kmem_cache_free(vm_region_jar, region);
651 	} else {
652 		up_write(&nommu_region_sem);
653 	}
654 }
655 
656 /*
657  * release a reference to a region
658  */
659 static void put_nommu_region(struct vm_region *region)
660 {
661 	down_write(&nommu_region_sem);
662 	__put_nommu_region(region);
663 }
664 
665 /*
666  * add a VMA into a process's mm_struct in the appropriate place in the list
667  * and tree and add to the address space's page tree also if not an anonymous
668  * page
669  * - should be called with mm->mmap_sem held writelocked
670  */
671 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
672 {
673 	struct vm_area_struct *pvma, *prev;
674 	struct address_space *mapping;
675 	struct rb_node **p, *parent, *rb_prev;
676 
677 	BUG_ON(!vma->vm_region);
678 
679 	mm->map_count++;
680 	vma->vm_mm = mm;
681 
682 	/* add the VMA to the mapping */
683 	if (vma->vm_file) {
684 		mapping = vma->vm_file->f_mapping;
685 
686 		i_mmap_lock_write(mapping);
687 		flush_dcache_mmap_lock(mapping);
688 		vma_interval_tree_insert(vma, &mapping->i_mmap);
689 		flush_dcache_mmap_unlock(mapping);
690 		i_mmap_unlock_write(mapping);
691 	}
692 
693 	/* add the VMA to the tree */
694 	parent = rb_prev = NULL;
695 	p = &mm->mm_rb.rb_node;
696 	while (*p) {
697 		parent = *p;
698 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
699 
700 		/* sort by: start addr, end addr, VMA struct addr in that order
701 		 * (the latter is necessary as we may get identical VMAs) */
702 		if (vma->vm_start < pvma->vm_start)
703 			p = &(*p)->rb_left;
704 		else if (vma->vm_start > pvma->vm_start) {
705 			rb_prev = parent;
706 			p = &(*p)->rb_right;
707 		} else if (vma->vm_end < pvma->vm_end)
708 			p = &(*p)->rb_left;
709 		else if (vma->vm_end > pvma->vm_end) {
710 			rb_prev = parent;
711 			p = &(*p)->rb_right;
712 		} else if (vma < pvma)
713 			p = &(*p)->rb_left;
714 		else if (vma > pvma) {
715 			rb_prev = parent;
716 			p = &(*p)->rb_right;
717 		} else
718 			BUG();
719 	}
720 
721 	rb_link_node(&vma->vm_rb, parent, p);
722 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
723 
724 	/* add VMA to the VMA list also */
725 	prev = NULL;
726 	if (rb_prev)
727 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
728 
729 	__vma_link_list(mm, vma, prev, parent);
730 }
731 
732 /*
733  * delete a VMA from its owning mm_struct and address space
734  */
735 static void delete_vma_from_mm(struct vm_area_struct *vma)
736 {
737 	int i;
738 	struct address_space *mapping;
739 	struct mm_struct *mm = vma->vm_mm;
740 	struct task_struct *curr = current;
741 
742 	mm->map_count--;
743 	for (i = 0; i < VMACACHE_SIZE; i++) {
744 		/* if the vma is cached, invalidate the entire cache */
745 		if (curr->vmacache.vmas[i] == vma) {
746 			vmacache_invalidate(mm);
747 			break;
748 		}
749 	}
750 
751 	/* remove the VMA from the mapping */
752 	if (vma->vm_file) {
753 		mapping = vma->vm_file->f_mapping;
754 
755 		i_mmap_lock_write(mapping);
756 		flush_dcache_mmap_lock(mapping);
757 		vma_interval_tree_remove(vma, &mapping->i_mmap);
758 		flush_dcache_mmap_unlock(mapping);
759 		i_mmap_unlock_write(mapping);
760 	}
761 
762 	/* remove from the MM's tree and list */
763 	rb_erase(&vma->vm_rb, &mm->mm_rb);
764 
765 	if (vma->vm_prev)
766 		vma->vm_prev->vm_next = vma->vm_next;
767 	else
768 		mm->mmap = vma->vm_next;
769 
770 	if (vma->vm_next)
771 		vma->vm_next->vm_prev = vma->vm_prev;
772 }
773 
774 /*
775  * destroy a VMA record
776  */
777 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
778 {
779 	if (vma->vm_ops && vma->vm_ops->close)
780 		vma->vm_ops->close(vma);
781 	if (vma->vm_file)
782 		fput(vma->vm_file);
783 	put_nommu_region(vma->vm_region);
784 	kmem_cache_free(vm_area_cachep, vma);
785 }
786 
787 /*
788  * look up the first VMA in which addr resides, NULL if none
789  * - should be called with mm->mmap_sem at least held readlocked
790  */
791 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
792 {
793 	struct vm_area_struct *vma;
794 
795 	/* check the cache first */
796 	vma = vmacache_find(mm, addr);
797 	if (likely(vma))
798 		return vma;
799 
800 	/* trawl the list (there may be multiple mappings in which addr
801 	 * resides) */
802 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
803 		if (vma->vm_start > addr)
804 			return NULL;
805 		if (vma->vm_end > addr) {
806 			vmacache_update(addr, vma);
807 			return vma;
808 		}
809 	}
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(find_vma);
814 
815 /*
816  * find a VMA
817  * - we don't extend stack VMAs under NOMMU conditions
818  */
819 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
820 {
821 	return find_vma(mm, addr);
822 }
823 
824 /*
825  * expand a stack to a given address
826  * - not supported under NOMMU conditions
827  */
828 int expand_stack(struct vm_area_struct *vma, unsigned long address)
829 {
830 	return -ENOMEM;
831 }
832 
833 /*
834  * look up the first VMA exactly that exactly matches addr
835  * - should be called with mm->mmap_sem at least held readlocked
836  */
837 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
838 					     unsigned long addr,
839 					     unsigned long len)
840 {
841 	struct vm_area_struct *vma;
842 	unsigned long end = addr + len;
843 
844 	/* check the cache first */
845 	vma = vmacache_find_exact(mm, addr, end);
846 	if (vma)
847 		return vma;
848 
849 	/* trawl the list (there may be multiple mappings in which addr
850 	 * resides) */
851 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
852 		if (vma->vm_start < addr)
853 			continue;
854 		if (vma->vm_start > addr)
855 			return NULL;
856 		if (vma->vm_end == end) {
857 			vmacache_update(addr, vma);
858 			return vma;
859 		}
860 	}
861 
862 	return NULL;
863 }
864 
865 /*
866  * determine whether a mapping should be permitted and, if so, what sort of
867  * mapping we're capable of supporting
868  */
869 static int validate_mmap_request(struct file *file,
870 				 unsigned long addr,
871 				 unsigned long len,
872 				 unsigned long prot,
873 				 unsigned long flags,
874 				 unsigned long pgoff,
875 				 unsigned long *_capabilities)
876 {
877 	unsigned long capabilities, rlen;
878 	int ret;
879 
880 	/* do the simple checks first */
881 	if (flags & MAP_FIXED)
882 		return -EINVAL;
883 
884 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
885 	    (flags & MAP_TYPE) != MAP_SHARED)
886 		return -EINVAL;
887 
888 	if (!len)
889 		return -EINVAL;
890 
891 	/* Careful about overflows.. */
892 	rlen = PAGE_ALIGN(len);
893 	if (!rlen || rlen > TASK_SIZE)
894 		return -ENOMEM;
895 
896 	/* offset overflow? */
897 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
898 		return -EOVERFLOW;
899 
900 	if (file) {
901 		/* files must support mmap */
902 		if (!file->f_op->mmap)
903 			return -ENODEV;
904 
905 		/* work out if what we've got could possibly be shared
906 		 * - we support chardevs that provide their own "memory"
907 		 * - we support files/blockdevs that are memory backed
908 		 */
909 		if (file->f_op->mmap_capabilities) {
910 			capabilities = file->f_op->mmap_capabilities(file);
911 		} else {
912 			/* no explicit capabilities set, so assume some
913 			 * defaults */
914 			switch (file_inode(file)->i_mode & S_IFMT) {
915 			case S_IFREG:
916 			case S_IFBLK:
917 				capabilities = NOMMU_MAP_COPY;
918 				break;
919 
920 			case S_IFCHR:
921 				capabilities =
922 					NOMMU_MAP_DIRECT |
923 					NOMMU_MAP_READ |
924 					NOMMU_MAP_WRITE;
925 				break;
926 
927 			default:
928 				return -EINVAL;
929 			}
930 		}
931 
932 		/* eliminate any capabilities that we can't support on this
933 		 * device */
934 		if (!file->f_op->get_unmapped_area)
935 			capabilities &= ~NOMMU_MAP_DIRECT;
936 		if (!(file->f_mode & FMODE_CAN_READ))
937 			capabilities &= ~NOMMU_MAP_COPY;
938 
939 		/* The file shall have been opened with read permission. */
940 		if (!(file->f_mode & FMODE_READ))
941 			return -EACCES;
942 
943 		if (flags & MAP_SHARED) {
944 			/* do checks for writing, appending and locking */
945 			if ((prot & PROT_WRITE) &&
946 			    !(file->f_mode & FMODE_WRITE))
947 				return -EACCES;
948 
949 			if (IS_APPEND(file_inode(file)) &&
950 			    (file->f_mode & FMODE_WRITE))
951 				return -EACCES;
952 
953 			if (locks_verify_locked(file))
954 				return -EAGAIN;
955 
956 			if (!(capabilities & NOMMU_MAP_DIRECT))
957 				return -ENODEV;
958 
959 			/* we mustn't privatise shared mappings */
960 			capabilities &= ~NOMMU_MAP_COPY;
961 		} else {
962 			/* we're going to read the file into private memory we
963 			 * allocate */
964 			if (!(capabilities & NOMMU_MAP_COPY))
965 				return -ENODEV;
966 
967 			/* we don't permit a private writable mapping to be
968 			 * shared with the backing device */
969 			if (prot & PROT_WRITE)
970 				capabilities &= ~NOMMU_MAP_DIRECT;
971 		}
972 
973 		if (capabilities & NOMMU_MAP_DIRECT) {
974 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
975 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
976 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
977 			    ) {
978 				capabilities &= ~NOMMU_MAP_DIRECT;
979 				if (flags & MAP_SHARED) {
980 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
981 					return -EINVAL;
982 				}
983 			}
984 		}
985 
986 		/* handle executable mappings and implied executable
987 		 * mappings */
988 		if (path_noexec(&file->f_path)) {
989 			if (prot & PROT_EXEC)
990 				return -EPERM;
991 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
992 			/* handle implication of PROT_EXEC by PROT_READ */
993 			if (current->personality & READ_IMPLIES_EXEC) {
994 				if (capabilities & NOMMU_MAP_EXEC)
995 					prot |= PROT_EXEC;
996 			}
997 		} else if ((prot & PROT_READ) &&
998 			 (prot & PROT_EXEC) &&
999 			 !(capabilities & NOMMU_MAP_EXEC)
1000 			 ) {
1001 			/* backing file is not executable, try to copy */
1002 			capabilities &= ~NOMMU_MAP_DIRECT;
1003 		}
1004 	} else {
1005 		/* anonymous mappings are always memory backed and can be
1006 		 * privately mapped
1007 		 */
1008 		capabilities = NOMMU_MAP_COPY;
1009 
1010 		/* handle PROT_EXEC implication by PROT_READ */
1011 		if ((prot & PROT_READ) &&
1012 		    (current->personality & READ_IMPLIES_EXEC))
1013 			prot |= PROT_EXEC;
1014 	}
1015 
1016 	/* allow the security API to have its say */
1017 	ret = security_mmap_addr(addr);
1018 	if (ret < 0)
1019 		return ret;
1020 
1021 	/* looks okay */
1022 	*_capabilities = capabilities;
1023 	return 0;
1024 }
1025 
1026 /*
1027  * we've determined that we can make the mapping, now translate what we
1028  * now know into VMA flags
1029  */
1030 static unsigned long determine_vm_flags(struct file *file,
1031 					unsigned long prot,
1032 					unsigned long flags,
1033 					unsigned long capabilities)
1034 {
1035 	unsigned long vm_flags;
1036 
1037 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1038 	/* vm_flags |= mm->def_flags; */
1039 
1040 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1041 		/* attempt to share read-only copies of mapped file chunks */
1042 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1043 		if (file && !(prot & PROT_WRITE))
1044 			vm_flags |= VM_MAYSHARE;
1045 	} else {
1046 		/* overlay a shareable mapping on the backing device or inode
1047 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1048 		 * romfs/cramfs */
1049 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1050 		if (flags & MAP_SHARED)
1051 			vm_flags |= VM_SHARED;
1052 	}
1053 
1054 	/* refuse to let anyone share private mappings with this process if
1055 	 * it's being traced - otherwise breakpoints set in it may interfere
1056 	 * with another untraced process
1057 	 */
1058 	if ((flags & MAP_PRIVATE) && current->ptrace)
1059 		vm_flags &= ~VM_MAYSHARE;
1060 
1061 	return vm_flags;
1062 }
1063 
1064 /*
1065  * set up a shared mapping on a file (the driver or filesystem provides and
1066  * pins the storage)
1067  */
1068 static int do_mmap_shared_file(struct vm_area_struct *vma)
1069 {
1070 	int ret;
1071 
1072 	ret = call_mmap(vma->vm_file, vma);
1073 	if (ret == 0) {
1074 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1075 		return 0;
1076 	}
1077 	if (ret != -ENOSYS)
1078 		return ret;
1079 
1080 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1081 	 * opposed to tried but failed) so we can only give a suitable error as
1082 	 * it's not possible to make a private copy if MAP_SHARED was given */
1083 	return -ENODEV;
1084 }
1085 
1086 /*
1087  * set up a private mapping or an anonymous shared mapping
1088  */
1089 static int do_mmap_private(struct vm_area_struct *vma,
1090 			   struct vm_region *region,
1091 			   unsigned long len,
1092 			   unsigned long capabilities)
1093 {
1094 	unsigned long total, point;
1095 	void *base;
1096 	int ret, order;
1097 
1098 	/* invoke the file's mapping function so that it can keep track of
1099 	 * shared mappings on devices or memory
1100 	 * - VM_MAYSHARE will be set if it may attempt to share
1101 	 */
1102 	if (capabilities & NOMMU_MAP_DIRECT) {
1103 		ret = call_mmap(vma->vm_file, vma);
1104 		if (ret == 0) {
1105 			/* shouldn't return success if we're not sharing */
1106 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1107 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1108 			return 0;
1109 		}
1110 		if (ret != -ENOSYS)
1111 			return ret;
1112 
1113 		/* getting an ENOSYS error indicates that direct mmap isn't
1114 		 * possible (as opposed to tried but failed) so we'll try to
1115 		 * make a private copy of the data and map that instead */
1116 	}
1117 
1118 
1119 	/* allocate some memory to hold the mapping
1120 	 * - note that this may not return a page-aligned address if the object
1121 	 *   we're allocating is smaller than a page
1122 	 */
1123 	order = get_order(len);
1124 	total = 1 << order;
1125 	point = len >> PAGE_SHIFT;
1126 
1127 	/* we don't want to allocate a power-of-2 sized page set */
1128 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1129 		total = point;
1130 
1131 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1132 	if (!base)
1133 		goto enomem;
1134 
1135 	atomic_long_add(total, &mmap_pages_allocated);
1136 
1137 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1138 	region->vm_start = (unsigned long) base;
1139 	region->vm_end   = region->vm_start + len;
1140 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1141 
1142 	vma->vm_start = region->vm_start;
1143 	vma->vm_end   = region->vm_start + len;
1144 
1145 	if (vma->vm_file) {
1146 		/* read the contents of a file into the copy */
1147 		loff_t fpos;
1148 
1149 		fpos = vma->vm_pgoff;
1150 		fpos <<= PAGE_SHIFT;
1151 
1152 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1153 		if (ret < 0)
1154 			goto error_free;
1155 
1156 		/* clear the last little bit */
1157 		if (ret < len)
1158 			memset(base + ret, 0, len - ret);
1159 
1160 	}
1161 
1162 	return 0;
1163 
1164 error_free:
1165 	free_page_series(region->vm_start, region->vm_top);
1166 	region->vm_start = vma->vm_start = 0;
1167 	region->vm_end   = vma->vm_end = 0;
1168 	region->vm_top   = 0;
1169 	return ret;
1170 
1171 enomem:
1172 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173 	       len, current->pid, current->comm);
1174 	show_free_areas(0, NULL);
1175 	return -ENOMEM;
1176 }
1177 
1178 /*
1179  * handle mapping creation for uClinux
1180  */
1181 unsigned long do_mmap(struct file *file,
1182 			unsigned long addr,
1183 			unsigned long len,
1184 			unsigned long prot,
1185 			unsigned long flags,
1186 			vm_flags_t vm_flags,
1187 			unsigned long pgoff,
1188 			unsigned long *populate,
1189 			struct list_head *uf)
1190 {
1191 	struct vm_area_struct *vma;
1192 	struct vm_region *region;
1193 	struct rb_node *rb;
1194 	unsigned long capabilities, result;
1195 	int ret;
1196 
1197 	*populate = 0;
1198 
1199 	/* decide whether we should attempt the mapping, and if so what sort of
1200 	 * mapping */
1201 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202 				    &capabilities);
1203 	if (ret < 0)
1204 		return ret;
1205 
1206 	/* we ignore the address hint */
1207 	addr = 0;
1208 	len = PAGE_ALIGN(len);
1209 
1210 	/* we've determined that we can make the mapping, now translate what we
1211 	 * now know into VMA flags */
1212 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213 
1214 	/* we're going to need to record the mapping */
1215 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216 	if (!region)
1217 		goto error_getting_region;
1218 
1219 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1220 	if (!vma)
1221 		goto error_getting_vma;
1222 
1223 	region->vm_usage = 1;
1224 	region->vm_flags = vm_flags;
1225 	region->vm_pgoff = pgoff;
1226 
1227 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1228 	vma->vm_flags = vm_flags;
1229 	vma->vm_pgoff = pgoff;
1230 
1231 	if (file) {
1232 		region->vm_file = get_file(file);
1233 		vma->vm_file = get_file(file);
1234 	}
1235 
1236 	down_write(&nommu_region_sem);
1237 
1238 	/* if we want to share, we need to check for regions created by other
1239 	 * mmap() calls that overlap with our proposed mapping
1240 	 * - we can only share with a superset match on most regular files
1241 	 * - shared mappings on character devices and memory backed files are
1242 	 *   permitted to overlap inexactly as far as we are concerned for in
1243 	 *   these cases, sharing is handled in the driver or filesystem rather
1244 	 *   than here
1245 	 */
1246 	if (vm_flags & VM_MAYSHARE) {
1247 		struct vm_region *pregion;
1248 		unsigned long pglen, rpglen, pgend, rpgend, start;
1249 
1250 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251 		pgend = pgoff + pglen;
1252 
1253 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1255 
1256 			if (!(pregion->vm_flags & VM_MAYSHARE))
1257 				continue;
1258 
1259 			/* search for overlapping mappings on the same file */
1260 			if (file_inode(pregion->vm_file) !=
1261 			    file_inode(file))
1262 				continue;
1263 
1264 			if (pregion->vm_pgoff >= pgend)
1265 				continue;
1266 
1267 			rpglen = pregion->vm_end - pregion->vm_start;
1268 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269 			rpgend = pregion->vm_pgoff + rpglen;
1270 			if (pgoff >= rpgend)
1271 				continue;
1272 
1273 			/* handle inexactly overlapping matches between
1274 			 * mappings */
1275 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277 				/* new mapping is not a subset of the region */
1278 				if (!(capabilities & NOMMU_MAP_DIRECT))
1279 					goto sharing_violation;
1280 				continue;
1281 			}
1282 
1283 			/* we've found a region we can share */
1284 			pregion->vm_usage++;
1285 			vma->vm_region = pregion;
1286 			start = pregion->vm_start;
1287 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288 			vma->vm_start = start;
1289 			vma->vm_end = start + len;
1290 
1291 			if (pregion->vm_flags & VM_MAPPED_COPY)
1292 				vma->vm_flags |= VM_MAPPED_COPY;
1293 			else {
1294 				ret = do_mmap_shared_file(vma);
1295 				if (ret < 0) {
1296 					vma->vm_region = NULL;
1297 					vma->vm_start = 0;
1298 					vma->vm_end = 0;
1299 					pregion->vm_usage--;
1300 					pregion = NULL;
1301 					goto error_just_free;
1302 				}
1303 			}
1304 			fput(region->vm_file);
1305 			kmem_cache_free(vm_region_jar, region);
1306 			region = pregion;
1307 			result = start;
1308 			goto share;
1309 		}
1310 
1311 		/* obtain the address at which to make a shared mapping
1312 		 * - this is the hook for quasi-memory character devices to
1313 		 *   tell us the location of a shared mapping
1314 		 */
1315 		if (capabilities & NOMMU_MAP_DIRECT) {
1316 			addr = file->f_op->get_unmapped_area(file, addr, len,
1317 							     pgoff, flags);
1318 			if (IS_ERR_VALUE(addr)) {
1319 				ret = addr;
1320 				if (ret != -ENOSYS)
1321 					goto error_just_free;
1322 
1323 				/* the driver refused to tell us where to site
1324 				 * the mapping so we'll have to attempt to copy
1325 				 * it */
1326 				ret = -ENODEV;
1327 				if (!(capabilities & NOMMU_MAP_COPY))
1328 					goto error_just_free;
1329 
1330 				capabilities &= ~NOMMU_MAP_DIRECT;
1331 			} else {
1332 				vma->vm_start = region->vm_start = addr;
1333 				vma->vm_end = region->vm_end = addr + len;
1334 			}
1335 		}
1336 	}
1337 
1338 	vma->vm_region = region;
1339 
1340 	/* set up the mapping
1341 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1342 	 */
1343 	if (file && vma->vm_flags & VM_SHARED)
1344 		ret = do_mmap_shared_file(vma);
1345 	else
1346 		ret = do_mmap_private(vma, region, len, capabilities);
1347 	if (ret < 0)
1348 		goto error_just_free;
1349 	add_nommu_region(region);
1350 
1351 	/* clear anonymous mappings that don't ask for uninitialized data */
1352 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1353 		memset((void *)region->vm_start, 0,
1354 		       region->vm_end - region->vm_start);
1355 
1356 	/* okay... we have a mapping; now we have to register it */
1357 	result = vma->vm_start;
1358 
1359 	current->mm->total_vm += len >> PAGE_SHIFT;
1360 
1361 share:
1362 	add_vma_to_mm(current->mm, vma);
1363 
1364 	/* we flush the region from the icache only when the first executable
1365 	 * mapping of it is made  */
1366 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1367 		flush_icache_range(region->vm_start, region->vm_end);
1368 		region->vm_icache_flushed = true;
1369 	}
1370 
1371 	up_write(&nommu_region_sem);
1372 
1373 	return result;
1374 
1375 error_just_free:
1376 	up_write(&nommu_region_sem);
1377 error:
1378 	if (region->vm_file)
1379 		fput(region->vm_file);
1380 	kmem_cache_free(vm_region_jar, region);
1381 	if (vma->vm_file)
1382 		fput(vma->vm_file);
1383 	kmem_cache_free(vm_area_cachep, vma);
1384 	return ret;
1385 
1386 sharing_violation:
1387 	up_write(&nommu_region_sem);
1388 	pr_warn("Attempt to share mismatched mappings\n");
1389 	ret = -EINVAL;
1390 	goto error;
1391 
1392 error_getting_vma:
1393 	kmem_cache_free(vm_region_jar, region);
1394 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1395 			len, current->pid);
1396 	show_free_areas(0, NULL);
1397 	return -ENOMEM;
1398 
1399 error_getting_region:
1400 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1401 			len, current->pid);
1402 	show_free_areas(0, NULL);
1403 	return -ENOMEM;
1404 }
1405 
1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1407 			      unsigned long prot, unsigned long flags,
1408 			      unsigned long fd, unsigned long pgoff)
1409 {
1410 	struct file *file = NULL;
1411 	unsigned long retval = -EBADF;
1412 
1413 	audit_mmap_fd(fd, flags);
1414 	if (!(flags & MAP_ANONYMOUS)) {
1415 		file = fget(fd);
1416 		if (!file)
1417 			goto out;
1418 	}
1419 
1420 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421 
1422 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423 
1424 	if (file)
1425 		fput(file);
1426 out:
1427 	return retval;
1428 }
1429 
1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431 		unsigned long, prot, unsigned long, flags,
1432 		unsigned long, fd, unsigned long, pgoff)
1433 {
1434 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1435 }
1436 
1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1438 struct mmap_arg_struct {
1439 	unsigned long addr;
1440 	unsigned long len;
1441 	unsigned long prot;
1442 	unsigned long flags;
1443 	unsigned long fd;
1444 	unsigned long offset;
1445 };
1446 
1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1448 {
1449 	struct mmap_arg_struct a;
1450 
1451 	if (copy_from_user(&a, arg, sizeof(a)))
1452 		return -EFAULT;
1453 	if (offset_in_page(a.offset))
1454 		return -EINVAL;
1455 
1456 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1457 			       a.offset >> PAGE_SHIFT);
1458 }
1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1460 
1461 /*
1462  * split a vma into two pieces at address 'addr', a new vma is allocated either
1463  * for the first part or the tail.
1464  */
1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1466 	      unsigned long addr, int new_below)
1467 {
1468 	struct vm_area_struct *new;
1469 	struct vm_region *region;
1470 	unsigned long npages;
1471 
1472 	/* we're only permitted to split anonymous regions (these should have
1473 	 * only a single usage on the region) */
1474 	if (vma->vm_file)
1475 		return -ENOMEM;
1476 
1477 	if (mm->map_count >= sysctl_max_map_count)
1478 		return -ENOMEM;
1479 
1480 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1481 	if (!region)
1482 		return -ENOMEM;
1483 
1484 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1485 	if (!new) {
1486 		kmem_cache_free(vm_region_jar, region);
1487 		return -ENOMEM;
1488 	}
1489 
1490 	/* most fields are the same, copy all, and then fixup */
1491 	*new = *vma;
1492 	*region = *vma->vm_region;
1493 	new->vm_region = region;
1494 
1495 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1496 
1497 	if (new_below) {
1498 		region->vm_top = region->vm_end = new->vm_end = addr;
1499 	} else {
1500 		region->vm_start = new->vm_start = addr;
1501 		region->vm_pgoff = new->vm_pgoff += npages;
1502 	}
1503 
1504 	if (new->vm_ops && new->vm_ops->open)
1505 		new->vm_ops->open(new);
1506 
1507 	delete_vma_from_mm(vma);
1508 	down_write(&nommu_region_sem);
1509 	delete_nommu_region(vma->vm_region);
1510 	if (new_below) {
1511 		vma->vm_region->vm_start = vma->vm_start = addr;
1512 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1513 	} else {
1514 		vma->vm_region->vm_end = vma->vm_end = addr;
1515 		vma->vm_region->vm_top = addr;
1516 	}
1517 	add_nommu_region(vma->vm_region);
1518 	add_nommu_region(new->vm_region);
1519 	up_write(&nommu_region_sem);
1520 	add_vma_to_mm(mm, vma);
1521 	add_vma_to_mm(mm, new);
1522 	return 0;
1523 }
1524 
1525 /*
1526  * shrink a VMA by removing the specified chunk from either the beginning or
1527  * the end
1528  */
1529 static int shrink_vma(struct mm_struct *mm,
1530 		      struct vm_area_struct *vma,
1531 		      unsigned long from, unsigned long to)
1532 {
1533 	struct vm_region *region;
1534 
1535 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1536 	 * and list */
1537 	delete_vma_from_mm(vma);
1538 	if (from > vma->vm_start)
1539 		vma->vm_end = from;
1540 	else
1541 		vma->vm_start = to;
1542 	add_vma_to_mm(mm, vma);
1543 
1544 	/* cut the backing region down to size */
1545 	region = vma->vm_region;
1546 	BUG_ON(region->vm_usage != 1);
1547 
1548 	down_write(&nommu_region_sem);
1549 	delete_nommu_region(region);
1550 	if (from > region->vm_start) {
1551 		to = region->vm_top;
1552 		region->vm_top = region->vm_end = from;
1553 	} else {
1554 		region->vm_start = to;
1555 	}
1556 	add_nommu_region(region);
1557 	up_write(&nommu_region_sem);
1558 
1559 	free_page_series(from, to);
1560 	return 0;
1561 }
1562 
1563 /*
1564  * release a mapping
1565  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1566  *   VMA, though it need not cover the whole VMA
1567  */
1568 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1569 {
1570 	struct vm_area_struct *vma;
1571 	unsigned long end;
1572 	int ret;
1573 
1574 	len = PAGE_ALIGN(len);
1575 	if (len == 0)
1576 		return -EINVAL;
1577 
1578 	end = start + len;
1579 
1580 	/* find the first potentially overlapping VMA */
1581 	vma = find_vma(mm, start);
1582 	if (!vma) {
1583 		static int limit;
1584 		if (limit < 5) {
1585 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1586 					current->pid, current->comm,
1587 					start, start + len - 1);
1588 			limit++;
1589 		}
1590 		return -EINVAL;
1591 	}
1592 
1593 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1594 	if (vma->vm_file) {
1595 		do {
1596 			if (start > vma->vm_start)
1597 				return -EINVAL;
1598 			if (end == vma->vm_end)
1599 				goto erase_whole_vma;
1600 			vma = vma->vm_next;
1601 		} while (vma);
1602 		return -EINVAL;
1603 	} else {
1604 		/* the chunk must be a subset of the VMA found */
1605 		if (start == vma->vm_start && end == vma->vm_end)
1606 			goto erase_whole_vma;
1607 		if (start < vma->vm_start || end > vma->vm_end)
1608 			return -EINVAL;
1609 		if (offset_in_page(start))
1610 			return -EINVAL;
1611 		if (end != vma->vm_end && offset_in_page(end))
1612 			return -EINVAL;
1613 		if (start != vma->vm_start && end != vma->vm_end) {
1614 			ret = split_vma(mm, vma, start, 1);
1615 			if (ret < 0)
1616 				return ret;
1617 		}
1618 		return shrink_vma(mm, vma, start, end);
1619 	}
1620 
1621 erase_whole_vma:
1622 	delete_vma_from_mm(vma);
1623 	delete_vma(mm, vma);
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL(do_munmap);
1627 
1628 int vm_munmap(unsigned long addr, size_t len)
1629 {
1630 	struct mm_struct *mm = current->mm;
1631 	int ret;
1632 
1633 	down_write(&mm->mmap_sem);
1634 	ret = do_munmap(mm, addr, len, NULL);
1635 	up_write(&mm->mmap_sem);
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL(vm_munmap);
1639 
1640 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1641 {
1642 	return vm_munmap(addr, len);
1643 }
1644 
1645 /*
1646  * release all the mappings made in a process's VM space
1647  */
1648 void exit_mmap(struct mm_struct *mm)
1649 {
1650 	struct vm_area_struct *vma;
1651 
1652 	if (!mm)
1653 		return;
1654 
1655 	mm->total_vm = 0;
1656 
1657 	while ((vma = mm->mmap)) {
1658 		mm->mmap = vma->vm_next;
1659 		delete_vma_from_mm(vma);
1660 		delete_vma(mm, vma);
1661 		cond_resched();
1662 	}
1663 }
1664 
1665 int vm_brk(unsigned long addr, unsigned long len)
1666 {
1667 	return -ENOMEM;
1668 }
1669 
1670 /*
1671  * expand (or shrink) an existing mapping, potentially moving it at the same
1672  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1673  *
1674  * under NOMMU conditions, we only permit changing a mapping's size, and only
1675  * as long as it stays within the region allocated by do_mmap_private() and the
1676  * block is not shareable
1677  *
1678  * MREMAP_FIXED is not supported under NOMMU conditions
1679  */
1680 static unsigned long do_mremap(unsigned long addr,
1681 			unsigned long old_len, unsigned long new_len,
1682 			unsigned long flags, unsigned long new_addr)
1683 {
1684 	struct vm_area_struct *vma;
1685 
1686 	/* insanity checks first */
1687 	old_len = PAGE_ALIGN(old_len);
1688 	new_len = PAGE_ALIGN(new_len);
1689 	if (old_len == 0 || new_len == 0)
1690 		return (unsigned long) -EINVAL;
1691 
1692 	if (offset_in_page(addr))
1693 		return -EINVAL;
1694 
1695 	if (flags & MREMAP_FIXED && new_addr != addr)
1696 		return (unsigned long) -EINVAL;
1697 
1698 	vma = find_vma_exact(current->mm, addr, old_len);
1699 	if (!vma)
1700 		return (unsigned long) -EINVAL;
1701 
1702 	if (vma->vm_end != vma->vm_start + old_len)
1703 		return (unsigned long) -EFAULT;
1704 
1705 	if (vma->vm_flags & VM_MAYSHARE)
1706 		return (unsigned long) -EPERM;
1707 
1708 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1709 		return (unsigned long) -ENOMEM;
1710 
1711 	/* all checks complete - do it */
1712 	vma->vm_end = vma->vm_start + new_len;
1713 	return vma->vm_start;
1714 }
1715 
1716 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1717 		unsigned long, new_len, unsigned long, flags,
1718 		unsigned long, new_addr)
1719 {
1720 	unsigned long ret;
1721 
1722 	down_write(&current->mm->mmap_sem);
1723 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1724 	up_write(&current->mm->mmap_sem);
1725 	return ret;
1726 }
1727 
1728 struct page *follow_page_mask(struct vm_area_struct *vma,
1729 			      unsigned long address, unsigned int flags,
1730 			      unsigned int *page_mask)
1731 {
1732 	*page_mask = 0;
1733 	return NULL;
1734 }
1735 
1736 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1737 		unsigned long pfn, unsigned long size, pgprot_t prot)
1738 {
1739 	if (addr != (pfn << PAGE_SHIFT))
1740 		return -EINVAL;
1741 
1742 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1743 	return 0;
1744 }
1745 EXPORT_SYMBOL(remap_pfn_range);
1746 
1747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1748 {
1749 	unsigned long pfn = start >> PAGE_SHIFT;
1750 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1751 
1752 	pfn += vma->vm_pgoff;
1753 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1754 }
1755 EXPORT_SYMBOL(vm_iomap_memory);
1756 
1757 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1758 			unsigned long pgoff)
1759 {
1760 	unsigned int size = vma->vm_end - vma->vm_start;
1761 
1762 	if (!(vma->vm_flags & VM_USERMAP))
1763 		return -EINVAL;
1764 
1765 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1766 	vma->vm_end = vma->vm_start + size;
1767 
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(remap_vmalloc_range);
1771 
1772 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1773 	unsigned long len, unsigned long pgoff, unsigned long flags)
1774 {
1775 	return -ENOMEM;
1776 }
1777 
1778 int filemap_fault(struct vm_fault *vmf)
1779 {
1780 	BUG();
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL(filemap_fault);
1784 
1785 void filemap_map_pages(struct vm_fault *vmf,
1786 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1787 {
1788 	BUG();
1789 }
1790 EXPORT_SYMBOL(filemap_map_pages);
1791 
1792 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1793 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1794 {
1795 	struct vm_area_struct *vma;
1796 	int write = gup_flags & FOLL_WRITE;
1797 
1798 	down_read(&mm->mmap_sem);
1799 
1800 	/* the access must start within one of the target process's mappings */
1801 	vma = find_vma(mm, addr);
1802 	if (vma) {
1803 		/* don't overrun this mapping */
1804 		if (addr + len >= vma->vm_end)
1805 			len = vma->vm_end - addr;
1806 
1807 		/* only read or write mappings where it is permitted */
1808 		if (write && vma->vm_flags & VM_MAYWRITE)
1809 			copy_to_user_page(vma, NULL, addr,
1810 					 (void *) addr, buf, len);
1811 		else if (!write && vma->vm_flags & VM_MAYREAD)
1812 			copy_from_user_page(vma, NULL, addr,
1813 					    buf, (void *) addr, len);
1814 		else
1815 			len = 0;
1816 	} else {
1817 		len = 0;
1818 	}
1819 
1820 	up_read(&mm->mmap_sem);
1821 
1822 	return len;
1823 }
1824 
1825 /**
1826  * access_remote_vm - access another process' address space
1827  * @mm:		the mm_struct of the target address space
1828  * @addr:	start address to access
1829  * @buf:	source or destination buffer
1830  * @len:	number of bytes to transfer
1831  * @gup_flags:	flags modifying lookup behaviour
1832  *
1833  * The caller must hold a reference on @mm.
1834  */
1835 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1836 		void *buf, int len, unsigned int gup_flags)
1837 {
1838 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1839 }
1840 
1841 /*
1842  * Access another process' address space.
1843  * - source/target buffer must be kernel space
1844  */
1845 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1846 		unsigned int gup_flags)
1847 {
1848 	struct mm_struct *mm;
1849 
1850 	if (addr + len < addr)
1851 		return 0;
1852 
1853 	mm = get_task_mm(tsk);
1854 	if (!mm)
1855 		return 0;
1856 
1857 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1858 
1859 	mmput(mm);
1860 	return len;
1861 }
1862 EXPORT_SYMBOL_GPL(access_process_vm);
1863 
1864 /**
1865  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1866  * @inode: The inode to check
1867  * @size: The current filesize of the inode
1868  * @newsize: The proposed filesize of the inode
1869  *
1870  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1871  * make sure that that any outstanding VMAs aren't broken and then shrink the
1872  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1873  * automatically grant mappings that are too large.
1874  */
1875 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1876 				size_t newsize)
1877 {
1878 	struct vm_area_struct *vma;
1879 	struct vm_region *region;
1880 	pgoff_t low, high;
1881 	size_t r_size, r_top;
1882 
1883 	low = newsize >> PAGE_SHIFT;
1884 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1885 
1886 	down_write(&nommu_region_sem);
1887 	i_mmap_lock_read(inode->i_mapping);
1888 
1889 	/* search for VMAs that fall within the dead zone */
1890 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1891 		/* found one - only interested if it's shared out of the page
1892 		 * cache */
1893 		if (vma->vm_flags & VM_SHARED) {
1894 			i_mmap_unlock_read(inode->i_mapping);
1895 			up_write(&nommu_region_sem);
1896 			return -ETXTBSY; /* not quite true, but near enough */
1897 		}
1898 	}
1899 
1900 	/* reduce any regions that overlap the dead zone - if in existence,
1901 	 * these will be pointed to by VMAs that don't overlap the dead zone
1902 	 *
1903 	 * we don't check for any regions that start beyond the EOF as there
1904 	 * shouldn't be any
1905 	 */
1906 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1907 		if (!(vma->vm_flags & VM_SHARED))
1908 			continue;
1909 
1910 		region = vma->vm_region;
1911 		r_size = region->vm_top - region->vm_start;
1912 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1913 
1914 		if (r_top > newsize) {
1915 			region->vm_top -= r_top - newsize;
1916 			if (region->vm_end > region->vm_top)
1917 				region->vm_end = region->vm_top;
1918 		}
1919 	}
1920 
1921 	i_mmap_unlock_read(inode->i_mapping);
1922 	up_write(&nommu_region_sem);
1923 	return 0;
1924 }
1925 
1926 /*
1927  * Initialise sysctl_user_reserve_kbytes.
1928  *
1929  * This is intended to prevent a user from starting a single memory hogging
1930  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1931  * mode.
1932  *
1933  * The default value is min(3% of free memory, 128MB)
1934  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1935  */
1936 static int __meminit init_user_reserve(void)
1937 {
1938 	unsigned long free_kbytes;
1939 
1940 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1941 
1942 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1943 	return 0;
1944 }
1945 subsys_initcall(init_user_reserve);
1946 
1947 /*
1948  * Initialise sysctl_admin_reserve_kbytes.
1949  *
1950  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1951  * to log in and kill a memory hogging process.
1952  *
1953  * Systems with more than 256MB will reserve 8MB, enough to recover
1954  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1955  * only reserve 3% of free pages by default.
1956  */
1957 static int __meminit init_admin_reserve(void)
1958 {
1959 	unsigned long free_kbytes;
1960 
1961 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1962 
1963 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1964 	return 0;
1965 }
1966 subsys_initcall(init_admin_reserve);
1967