xref: /linux/mm/nommu.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return PAGE_SIZE << compound_order(page);
111 }
112 
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 		      unsigned long start, unsigned long nr_pages,
115 		      unsigned int foll_flags, struct page **pages,
116 		      struct vm_area_struct **vmas, int *nonblocking)
117 {
118 	struct vm_area_struct *vma;
119 	unsigned long vm_flags;
120 	int i;
121 
122 	/* calculate required read or write permissions.
123 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 	 */
125 	vm_flags  = (foll_flags & FOLL_WRITE) ?
126 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 	vm_flags &= (foll_flags & FOLL_FORCE) ?
128 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129 
130 	for (i = 0; i < nr_pages; i++) {
131 		vma = find_vma(mm, start);
132 		if (!vma)
133 			goto finish_or_fault;
134 
135 		/* protect what we can, including chardevs */
136 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 		    !(vm_flags & vma->vm_flags))
138 			goto finish_or_fault;
139 
140 		if (pages) {
141 			pages[i] = virt_to_page(start);
142 			if (pages[i])
143 				get_page(pages[i]);
144 		}
145 		if (vmas)
146 			vmas[i] = vma;
147 		start = (start + PAGE_SIZE) & PAGE_MASK;
148 	}
149 
150 	return i;
151 
152 finish_or_fault:
153 	return i ? : -EFAULT;
154 }
155 
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 		    unsigned int gup_flags, struct page **pages,
165 		    struct vm_area_struct **vmas)
166 {
167 	return __get_user_pages(current, current->mm, start, nr_pages,
168 				gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171 
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 			    unsigned int gup_flags, struct page **pages,
174 			    int *locked)
175 {
176 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179 
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 			struct mm_struct *mm, unsigned long start,
182 			unsigned long nr_pages, struct page **pages,
183 			unsigned int gup_flags)
184 {
185 	long ret;
186 	down_read(&mm->mmap_sem);
187 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 				NULL, NULL);
189 	up_read(&mm->mmap_sem);
190 	return ret;
191 }
192 
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 			     struct page **pages, unsigned int gup_flags)
195 {
196 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 					 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200 
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 	unsigned long *pfn)
213 {
214 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 		return -EINVAL;
216 
217 	*pfn = address >> PAGE_SHIFT;
218 	return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221 
222 LIST_HEAD(vmap_area_list);
223 
224 void vfree(const void *addr)
225 {
226 	kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229 
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 	/*
233 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 	 * returns only a logical address.
235 	 */
236 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239 
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 	return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244 
245 void *vmalloc_user(unsigned long size)
246 {
247 	void *ret;
248 
249 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 	if (ret) {
251 		struct vm_area_struct *vma;
252 
253 		down_write(&current->mm->mmap_sem);
254 		vma = find_vma(current->mm, (unsigned long)ret);
255 		if (vma)
256 			vma->vm_flags |= VM_USERMAP;
257 		up_write(&current->mm->mmap_sem);
258 	}
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263 
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 	return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269 
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 	return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275 
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 	/* Don't allow overflow */
279 	if ((unsigned long) buf + count < count)
280 		count = -(unsigned long) buf;
281 
282 	memcpy(buf, addr, count);
283 	return count;
284 }
285 
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 	/* Don't allow overflow */
289 	if ((unsigned long) addr + count < count)
290 		count = -(unsigned long) addr;
291 
292 	memcpy(addr, buf, count);
293 	return count;
294 }
295 
296 /*
297  *	vmalloc  -  allocate virtually contiguous memory
298  *
299  *	@size:		allocation size
300  *
301  *	Allocate enough pages to cover @size from the page level
302  *	allocator and map them into contiguous kernel virtual space.
303  *
304  *	For tight control over page level allocator and protection flags
305  *	use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312 
313 /*
314  *	vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *	@size:		allocation size
317  *
318  *	Allocate enough pages to cover @size from the page level
319  *	allocator and map them into contiguous kernel virtual space.
320  *	The memory allocated is set to zero.
321  *
322  *	For tight control over page level allocator and protection flags
323  *	use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 			PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331 
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:	allocation size
352  * @node:	numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 	return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366 
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370 
371 /**
372  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *	@size:		allocation size
374  *
375  *	Kernel-internal function to allocate enough pages to cover @size
376  *	the page level allocator and map them into contiguous and
377  *	executable kernel virtual space.
378  *
379  *	For tight control over page level allocator and protection flags
380  *	use __vmalloc() instead.
381  */
382 
383 void *vmalloc_exec(unsigned long size)
384 {
385 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387 
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *	@size:		allocation size
391  *
392  *	Allocate enough 32bit PA addressable pages to cover @size from the
393  *	page level allocator and map them into contiguous kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400 
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *	@size:		allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413 	/*
414 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 	 * but for now this can simply use vmalloc_user() directly.
416 	 */
417 	return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420 
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423 	BUG();
424 	return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427 
428 void vunmap(const void *addr)
429 {
430 	BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433 
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436 	BUG();
437 	return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440 
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443 	BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446 
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451 
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void __weak vmalloc_sync_all(void)
457 {
458 }
459 
460 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
461 {
462 	BUG();
463 	return NULL;
464 }
465 EXPORT_SYMBOL_GPL(alloc_vm_area);
466 
467 void free_vm_area(struct vm_struct *area)
468 {
469 	BUG();
470 }
471 EXPORT_SYMBOL_GPL(free_vm_area);
472 
473 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
474 		   struct page *page)
475 {
476 	return -EINVAL;
477 }
478 EXPORT_SYMBOL(vm_insert_page);
479 
480 /*
481  *  sys_brk() for the most part doesn't need the global kernel
482  *  lock, except when an application is doing something nasty
483  *  like trying to un-brk an area that has already been mapped
484  *  to a regular file.  in this case, the unmapping will need
485  *  to invoke file system routines that need the global lock.
486  */
487 SYSCALL_DEFINE1(brk, unsigned long, brk)
488 {
489 	struct mm_struct *mm = current->mm;
490 
491 	if (brk < mm->start_brk || brk > mm->context.end_brk)
492 		return mm->brk;
493 
494 	if (mm->brk == brk)
495 		return mm->brk;
496 
497 	/*
498 	 * Always allow shrinking brk
499 	 */
500 	if (brk <= mm->brk) {
501 		mm->brk = brk;
502 		return brk;
503 	}
504 
505 	/*
506 	 * Ok, looks good - let it rip.
507 	 */
508 	flush_icache_range(mm->brk, brk);
509 	return mm->brk = brk;
510 }
511 
512 /*
513  * initialise the percpu counter for VM and region record slabs
514  */
515 void __init mmap_init(void)
516 {
517 	int ret;
518 
519 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
520 	VM_BUG_ON(ret);
521 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
522 }
523 
524 /*
525  * validate the region tree
526  * - the caller must hold the region lock
527  */
528 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
529 static noinline void validate_nommu_regions(void)
530 {
531 	struct vm_region *region, *last;
532 	struct rb_node *p, *lastp;
533 
534 	lastp = rb_first(&nommu_region_tree);
535 	if (!lastp)
536 		return;
537 
538 	last = rb_entry(lastp, struct vm_region, vm_rb);
539 	BUG_ON(last->vm_end <= last->vm_start);
540 	BUG_ON(last->vm_top < last->vm_end);
541 
542 	while ((p = rb_next(lastp))) {
543 		region = rb_entry(p, struct vm_region, vm_rb);
544 		last = rb_entry(lastp, struct vm_region, vm_rb);
545 
546 		BUG_ON(region->vm_end <= region->vm_start);
547 		BUG_ON(region->vm_top < region->vm_end);
548 		BUG_ON(region->vm_start < last->vm_top);
549 
550 		lastp = p;
551 	}
552 }
553 #else
554 static void validate_nommu_regions(void)
555 {
556 }
557 #endif
558 
559 /*
560  * add a region into the global tree
561  */
562 static void add_nommu_region(struct vm_region *region)
563 {
564 	struct vm_region *pregion;
565 	struct rb_node **p, *parent;
566 
567 	validate_nommu_regions();
568 
569 	parent = NULL;
570 	p = &nommu_region_tree.rb_node;
571 	while (*p) {
572 		parent = *p;
573 		pregion = rb_entry(parent, struct vm_region, vm_rb);
574 		if (region->vm_start < pregion->vm_start)
575 			p = &(*p)->rb_left;
576 		else if (region->vm_start > pregion->vm_start)
577 			p = &(*p)->rb_right;
578 		else if (pregion == region)
579 			return;
580 		else
581 			BUG();
582 	}
583 
584 	rb_link_node(&region->vm_rb, parent, p);
585 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
586 
587 	validate_nommu_regions();
588 }
589 
590 /*
591  * delete a region from the global tree
592  */
593 static void delete_nommu_region(struct vm_region *region)
594 {
595 	BUG_ON(!nommu_region_tree.rb_node);
596 
597 	validate_nommu_regions();
598 	rb_erase(&region->vm_rb, &nommu_region_tree);
599 	validate_nommu_regions();
600 }
601 
602 /*
603  * free a contiguous series of pages
604  */
605 static void free_page_series(unsigned long from, unsigned long to)
606 {
607 	for (; from < to; from += PAGE_SIZE) {
608 		struct page *page = virt_to_page(from);
609 
610 		atomic_long_dec(&mmap_pages_allocated);
611 		put_page(page);
612 	}
613 }
614 
615 /*
616  * release a reference to a region
617  * - the caller must hold the region semaphore for writing, which this releases
618  * - the region may not have been added to the tree yet, in which case vm_top
619  *   will equal vm_start
620  */
621 static void __put_nommu_region(struct vm_region *region)
622 	__releases(nommu_region_sem)
623 {
624 	BUG_ON(!nommu_region_tree.rb_node);
625 
626 	if (--region->vm_usage == 0) {
627 		if (region->vm_top > region->vm_start)
628 			delete_nommu_region(region);
629 		up_write(&nommu_region_sem);
630 
631 		if (region->vm_file)
632 			fput(region->vm_file);
633 
634 		/* IO memory and memory shared directly out of the pagecache
635 		 * from ramfs/tmpfs mustn't be released here */
636 		if (region->vm_flags & VM_MAPPED_COPY)
637 			free_page_series(region->vm_start, region->vm_top);
638 		kmem_cache_free(vm_region_jar, region);
639 	} else {
640 		up_write(&nommu_region_sem);
641 	}
642 }
643 
644 /*
645  * release a reference to a region
646  */
647 static void put_nommu_region(struct vm_region *region)
648 {
649 	down_write(&nommu_region_sem);
650 	__put_nommu_region(region);
651 }
652 
653 /*
654  * add a VMA into a process's mm_struct in the appropriate place in the list
655  * and tree and add to the address space's page tree also if not an anonymous
656  * page
657  * - should be called with mm->mmap_sem held writelocked
658  */
659 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
660 {
661 	struct vm_area_struct *pvma, *prev;
662 	struct address_space *mapping;
663 	struct rb_node **p, *parent, *rb_prev;
664 
665 	BUG_ON(!vma->vm_region);
666 
667 	mm->map_count++;
668 	vma->vm_mm = mm;
669 
670 	/* add the VMA to the mapping */
671 	if (vma->vm_file) {
672 		mapping = vma->vm_file->f_mapping;
673 
674 		i_mmap_lock_write(mapping);
675 		flush_dcache_mmap_lock(mapping);
676 		vma_interval_tree_insert(vma, &mapping->i_mmap);
677 		flush_dcache_mmap_unlock(mapping);
678 		i_mmap_unlock_write(mapping);
679 	}
680 
681 	/* add the VMA to the tree */
682 	parent = rb_prev = NULL;
683 	p = &mm->mm_rb.rb_node;
684 	while (*p) {
685 		parent = *p;
686 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
687 
688 		/* sort by: start addr, end addr, VMA struct addr in that order
689 		 * (the latter is necessary as we may get identical VMAs) */
690 		if (vma->vm_start < pvma->vm_start)
691 			p = &(*p)->rb_left;
692 		else if (vma->vm_start > pvma->vm_start) {
693 			rb_prev = parent;
694 			p = &(*p)->rb_right;
695 		} else if (vma->vm_end < pvma->vm_end)
696 			p = &(*p)->rb_left;
697 		else if (vma->vm_end > pvma->vm_end) {
698 			rb_prev = parent;
699 			p = &(*p)->rb_right;
700 		} else if (vma < pvma)
701 			p = &(*p)->rb_left;
702 		else if (vma > pvma) {
703 			rb_prev = parent;
704 			p = &(*p)->rb_right;
705 		} else
706 			BUG();
707 	}
708 
709 	rb_link_node(&vma->vm_rb, parent, p);
710 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
711 
712 	/* add VMA to the VMA list also */
713 	prev = NULL;
714 	if (rb_prev)
715 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
716 
717 	__vma_link_list(mm, vma, prev, parent);
718 }
719 
720 /*
721  * delete a VMA from its owning mm_struct and address space
722  */
723 static void delete_vma_from_mm(struct vm_area_struct *vma)
724 {
725 	int i;
726 	struct address_space *mapping;
727 	struct mm_struct *mm = vma->vm_mm;
728 	struct task_struct *curr = current;
729 
730 	mm->map_count--;
731 	for (i = 0; i < VMACACHE_SIZE; i++) {
732 		/* if the vma is cached, invalidate the entire cache */
733 		if (curr->vmacache.vmas[i] == vma) {
734 			vmacache_invalidate(mm);
735 			break;
736 		}
737 	}
738 
739 	/* remove the VMA from the mapping */
740 	if (vma->vm_file) {
741 		mapping = vma->vm_file->f_mapping;
742 
743 		i_mmap_lock_write(mapping);
744 		flush_dcache_mmap_lock(mapping);
745 		vma_interval_tree_remove(vma, &mapping->i_mmap);
746 		flush_dcache_mmap_unlock(mapping);
747 		i_mmap_unlock_write(mapping);
748 	}
749 
750 	/* remove from the MM's tree and list */
751 	rb_erase(&vma->vm_rb, &mm->mm_rb);
752 
753 	if (vma->vm_prev)
754 		vma->vm_prev->vm_next = vma->vm_next;
755 	else
756 		mm->mmap = vma->vm_next;
757 
758 	if (vma->vm_next)
759 		vma->vm_next->vm_prev = vma->vm_prev;
760 }
761 
762 /*
763  * destroy a VMA record
764  */
765 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
766 {
767 	if (vma->vm_ops && vma->vm_ops->close)
768 		vma->vm_ops->close(vma);
769 	if (vma->vm_file)
770 		fput(vma->vm_file);
771 	put_nommu_region(vma->vm_region);
772 	kmem_cache_free(vm_area_cachep, vma);
773 }
774 
775 /*
776  * look up the first VMA in which addr resides, NULL if none
777  * - should be called with mm->mmap_sem at least held readlocked
778  */
779 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
780 {
781 	struct vm_area_struct *vma;
782 
783 	/* check the cache first */
784 	vma = vmacache_find(mm, addr);
785 	if (likely(vma))
786 		return vma;
787 
788 	/* trawl the list (there may be multiple mappings in which addr
789 	 * resides) */
790 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
791 		if (vma->vm_start > addr)
792 			return NULL;
793 		if (vma->vm_end > addr) {
794 			vmacache_update(addr, vma);
795 			return vma;
796 		}
797 	}
798 
799 	return NULL;
800 }
801 EXPORT_SYMBOL(find_vma);
802 
803 /*
804  * find a VMA
805  * - we don't extend stack VMAs under NOMMU conditions
806  */
807 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
808 {
809 	return find_vma(mm, addr);
810 }
811 
812 /*
813  * expand a stack to a given address
814  * - not supported under NOMMU conditions
815  */
816 int expand_stack(struct vm_area_struct *vma, unsigned long address)
817 {
818 	return -ENOMEM;
819 }
820 
821 /*
822  * look up the first VMA exactly that exactly matches addr
823  * - should be called with mm->mmap_sem at least held readlocked
824  */
825 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
826 					     unsigned long addr,
827 					     unsigned long len)
828 {
829 	struct vm_area_struct *vma;
830 	unsigned long end = addr + len;
831 
832 	/* check the cache first */
833 	vma = vmacache_find_exact(mm, addr, end);
834 	if (vma)
835 		return vma;
836 
837 	/* trawl the list (there may be multiple mappings in which addr
838 	 * resides) */
839 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
840 		if (vma->vm_start < addr)
841 			continue;
842 		if (vma->vm_start > addr)
843 			return NULL;
844 		if (vma->vm_end == end) {
845 			vmacache_update(addr, vma);
846 			return vma;
847 		}
848 	}
849 
850 	return NULL;
851 }
852 
853 /*
854  * determine whether a mapping should be permitted and, if so, what sort of
855  * mapping we're capable of supporting
856  */
857 static int validate_mmap_request(struct file *file,
858 				 unsigned long addr,
859 				 unsigned long len,
860 				 unsigned long prot,
861 				 unsigned long flags,
862 				 unsigned long pgoff,
863 				 unsigned long *_capabilities)
864 {
865 	unsigned long capabilities, rlen;
866 	int ret;
867 
868 	/* do the simple checks first */
869 	if (flags & MAP_FIXED)
870 		return -EINVAL;
871 
872 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
873 	    (flags & MAP_TYPE) != MAP_SHARED)
874 		return -EINVAL;
875 
876 	if (!len)
877 		return -EINVAL;
878 
879 	/* Careful about overflows.. */
880 	rlen = PAGE_ALIGN(len);
881 	if (!rlen || rlen > TASK_SIZE)
882 		return -ENOMEM;
883 
884 	/* offset overflow? */
885 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
886 		return -EOVERFLOW;
887 
888 	if (file) {
889 		/* files must support mmap */
890 		if (!file->f_op->mmap)
891 			return -ENODEV;
892 
893 		/* work out if what we've got could possibly be shared
894 		 * - we support chardevs that provide their own "memory"
895 		 * - we support files/blockdevs that are memory backed
896 		 */
897 		if (file->f_op->mmap_capabilities) {
898 			capabilities = file->f_op->mmap_capabilities(file);
899 		} else {
900 			/* no explicit capabilities set, so assume some
901 			 * defaults */
902 			switch (file_inode(file)->i_mode & S_IFMT) {
903 			case S_IFREG:
904 			case S_IFBLK:
905 				capabilities = NOMMU_MAP_COPY;
906 				break;
907 
908 			case S_IFCHR:
909 				capabilities =
910 					NOMMU_MAP_DIRECT |
911 					NOMMU_MAP_READ |
912 					NOMMU_MAP_WRITE;
913 				break;
914 
915 			default:
916 				return -EINVAL;
917 			}
918 		}
919 
920 		/* eliminate any capabilities that we can't support on this
921 		 * device */
922 		if (!file->f_op->get_unmapped_area)
923 			capabilities &= ~NOMMU_MAP_DIRECT;
924 		if (!(file->f_mode & FMODE_CAN_READ))
925 			capabilities &= ~NOMMU_MAP_COPY;
926 
927 		/* The file shall have been opened with read permission. */
928 		if (!(file->f_mode & FMODE_READ))
929 			return -EACCES;
930 
931 		if (flags & MAP_SHARED) {
932 			/* do checks for writing, appending and locking */
933 			if ((prot & PROT_WRITE) &&
934 			    !(file->f_mode & FMODE_WRITE))
935 				return -EACCES;
936 
937 			if (IS_APPEND(file_inode(file)) &&
938 			    (file->f_mode & FMODE_WRITE))
939 				return -EACCES;
940 
941 			if (locks_verify_locked(file))
942 				return -EAGAIN;
943 
944 			if (!(capabilities & NOMMU_MAP_DIRECT))
945 				return -ENODEV;
946 
947 			/* we mustn't privatise shared mappings */
948 			capabilities &= ~NOMMU_MAP_COPY;
949 		} else {
950 			/* we're going to read the file into private memory we
951 			 * allocate */
952 			if (!(capabilities & NOMMU_MAP_COPY))
953 				return -ENODEV;
954 
955 			/* we don't permit a private writable mapping to be
956 			 * shared with the backing device */
957 			if (prot & PROT_WRITE)
958 				capabilities &= ~NOMMU_MAP_DIRECT;
959 		}
960 
961 		if (capabilities & NOMMU_MAP_DIRECT) {
962 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
963 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
964 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
965 			    ) {
966 				capabilities &= ~NOMMU_MAP_DIRECT;
967 				if (flags & MAP_SHARED) {
968 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
969 					return -EINVAL;
970 				}
971 			}
972 		}
973 
974 		/* handle executable mappings and implied executable
975 		 * mappings */
976 		if (path_noexec(&file->f_path)) {
977 			if (prot & PROT_EXEC)
978 				return -EPERM;
979 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
980 			/* handle implication of PROT_EXEC by PROT_READ */
981 			if (current->personality & READ_IMPLIES_EXEC) {
982 				if (capabilities & NOMMU_MAP_EXEC)
983 					prot |= PROT_EXEC;
984 			}
985 		} else if ((prot & PROT_READ) &&
986 			 (prot & PROT_EXEC) &&
987 			 !(capabilities & NOMMU_MAP_EXEC)
988 			 ) {
989 			/* backing file is not executable, try to copy */
990 			capabilities &= ~NOMMU_MAP_DIRECT;
991 		}
992 	} else {
993 		/* anonymous mappings are always memory backed and can be
994 		 * privately mapped
995 		 */
996 		capabilities = NOMMU_MAP_COPY;
997 
998 		/* handle PROT_EXEC implication by PROT_READ */
999 		if ((prot & PROT_READ) &&
1000 		    (current->personality & READ_IMPLIES_EXEC))
1001 			prot |= PROT_EXEC;
1002 	}
1003 
1004 	/* allow the security API to have its say */
1005 	ret = security_mmap_addr(addr);
1006 	if (ret < 0)
1007 		return ret;
1008 
1009 	/* looks okay */
1010 	*_capabilities = capabilities;
1011 	return 0;
1012 }
1013 
1014 /*
1015  * we've determined that we can make the mapping, now translate what we
1016  * now know into VMA flags
1017  */
1018 static unsigned long determine_vm_flags(struct file *file,
1019 					unsigned long prot,
1020 					unsigned long flags,
1021 					unsigned long capabilities)
1022 {
1023 	unsigned long vm_flags;
1024 
1025 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1026 	/* vm_flags |= mm->def_flags; */
1027 
1028 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1029 		/* attempt to share read-only copies of mapped file chunks */
1030 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1031 		if (file && !(prot & PROT_WRITE))
1032 			vm_flags |= VM_MAYSHARE;
1033 	} else {
1034 		/* overlay a shareable mapping on the backing device or inode
1035 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1036 		 * romfs/cramfs */
1037 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1038 		if (flags & MAP_SHARED)
1039 			vm_flags |= VM_SHARED;
1040 	}
1041 
1042 	/* refuse to let anyone share private mappings with this process if
1043 	 * it's being traced - otherwise breakpoints set in it may interfere
1044 	 * with another untraced process
1045 	 */
1046 	if ((flags & MAP_PRIVATE) && current->ptrace)
1047 		vm_flags &= ~VM_MAYSHARE;
1048 
1049 	return vm_flags;
1050 }
1051 
1052 /*
1053  * set up a shared mapping on a file (the driver or filesystem provides and
1054  * pins the storage)
1055  */
1056 static int do_mmap_shared_file(struct vm_area_struct *vma)
1057 {
1058 	int ret;
1059 
1060 	ret = call_mmap(vma->vm_file, vma);
1061 	if (ret == 0) {
1062 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1063 		return 0;
1064 	}
1065 	if (ret != -ENOSYS)
1066 		return ret;
1067 
1068 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1069 	 * opposed to tried but failed) so we can only give a suitable error as
1070 	 * it's not possible to make a private copy if MAP_SHARED was given */
1071 	return -ENODEV;
1072 }
1073 
1074 /*
1075  * set up a private mapping or an anonymous shared mapping
1076  */
1077 static int do_mmap_private(struct vm_area_struct *vma,
1078 			   struct vm_region *region,
1079 			   unsigned long len,
1080 			   unsigned long capabilities)
1081 {
1082 	unsigned long total, point;
1083 	void *base;
1084 	int ret, order;
1085 
1086 	/* invoke the file's mapping function so that it can keep track of
1087 	 * shared mappings on devices or memory
1088 	 * - VM_MAYSHARE will be set if it may attempt to share
1089 	 */
1090 	if (capabilities & NOMMU_MAP_DIRECT) {
1091 		ret = call_mmap(vma->vm_file, vma);
1092 		if (ret == 0) {
1093 			/* shouldn't return success if we're not sharing */
1094 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1095 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1096 			return 0;
1097 		}
1098 		if (ret != -ENOSYS)
1099 			return ret;
1100 
1101 		/* getting an ENOSYS error indicates that direct mmap isn't
1102 		 * possible (as opposed to tried but failed) so we'll try to
1103 		 * make a private copy of the data and map that instead */
1104 	}
1105 
1106 
1107 	/* allocate some memory to hold the mapping
1108 	 * - note that this may not return a page-aligned address if the object
1109 	 *   we're allocating is smaller than a page
1110 	 */
1111 	order = get_order(len);
1112 	total = 1 << order;
1113 	point = len >> PAGE_SHIFT;
1114 
1115 	/* we don't want to allocate a power-of-2 sized page set */
1116 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1117 		total = point;
1118 
1119 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1120 	if (!base)
1121 		goto enomem;
1122 
1123 	atomic_long_add(total, &mmap_pages_allocated);
1124 
1125 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1126 	region->vm_start = (unsigned long) base;
1127 	region->vm_end   = region->vm_start + len;
1128 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1129 
1130 	vma->vm_start = region->vm_start;
1131 	vma->vm_end   = region->vm_start + len;
1132 
1133 	if (vma->vm_file) {
1134 		/* read the contents of a file into the copy */
1135 		loff_t fpos;
1136 
1137 		fpos = vma->vm_pgoff;
1138 		fpos <<= PAGE_SHIFT;
1139 
1140 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1141 		if (ret < 0)
1142 			goto error_free;
1143 
1144 		/* clear the last little bit */
1145 		if (ret < len)
1146 			memset(base + ret, 0, len - ret);
1147 
1148 	}
1149 
1150 	return 0;
1151 
1152 error_free:
1153 	free_page_series(region->vm_start, region->vm_top);
1154 	region->vm_start = vma->vm_start = 0;
1155 	region->vm_end   = vma->vm_end = 0;
1156 	region->vm_top   = 0;
1157 	return ret;
1158 
1159 enomem:
1160 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1161 	       len, current->pid, current->comm);
1162 	show_free_areas(0, NULL);
1163 	return -ENOMEM;
1164 }
1165 
1166 /*
1167  * handle mapping creation for uClinux
1168  */
1169 unsigned long do_mmap(struct file *file,
1170 			unsigned long addr,
1171 			unsigned long len,
1172 			unsigned long prot,
1173 			unsigned long flags,
1174 			vm_flags_t vm_flags,
1175 			unsigned long pgoff,
1176 			unsigned long *populate,
1177 			struct list_head *uf)
1178 {
1179 	struct vm_area_struct *vma;
1180 	struct vm_region *region;
1181 	struct rb_node *rb;
1182 	unsigned long capabilities, result;
1183 	int ret;
1184 
1185 	*populate = 0;
1186 
1187 	/* decide whether we should attempt the mapping, and if so what sort of
1188 	 * mapping */
1189 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1190 				    &capabilities);
1191 	if (ret < 0)
1192 		return ret;
1193 
1194 	/* we ignore the address hint */
1195 	addr = 0;
1196 	len = PAGE_ALIGN(len);
1197 
1198 	/* we've determined that we can make the mapping, now translate what we
1199 	 * now know into VMA flags */
1200 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1201 
1202 	/* we're going to need to record the mapping */
1203 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204 	if (!region)
1205 		goto error_getting_region;
1206 
1207 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208 	if (!vma)
1209 		goto error_getting_vma;
1210 
1211 	region->vm_usage = 1;
1212 	region->vm_flags = vm_flags;
1213 	region->vm_pgoff = pgoff;
1214 
1215 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1216 	vma->vm_flags = vm_flags;
1217 	vma->vm_pgoff = pgoff;
1218 
1219 	if (file) {
1220 		region->vm_file = get_file(file);
1221 		vma->vm_file = get_file(file);
1222 	}
1223 
1224 	down_write(&nommu_region_sem);
1225 
1226 	/* if we want to share, we need to check for regions created by other
1227 	 * mmap() calls that overlap with our proposed mapping
1228 	 * - we can only share with a superset match on most regular files
1229 	 * - shared mappings on character devices and memory backed files are
1230 	 *   permitted to overlap inexactly as far as we are concerned for in
1231 	 *   these cases, sharing is handled in the driver or filesystem rather
1232 	 *   than here
1233 	 */
1234 	if (vm_flags & VM_MAYSHARE) {
1235 		struct vm_region *pregion;
1236 		unsigned long pglen, rpglen, pgend, rpgend, start;
1237 
1238 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239 		pgend = pgoff + pglen;
1240 
1241 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1242 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1243 
1244 			if (!(pregion->vm_flags & VM_MAYSHARE))
1245 				continue;
1246 
1247 			/* search for overlapping mappings on the same file */
1248 			if (file_inode(pregion->vm_file) !=
1249 			    file_inode(file))
1250 				continue;
1251 
1252 			if (pregion->vm_pgoff >= pgend)
1253 				continue;
1254 
1255 			rpglen = pregion->vm_end - pregion->vm_start;
1256 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257 			rpgend = pregion->vm_pgoff + rpglen;
1258 			if (pgoff >= rpgend)
1259 				continue;
1260 
1261 			/* handle inexactly overlapping matches between
1262 			 * mappings */
1263 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1264 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1265 				/* new mapping is not a subset of the region */
1266 				if (!(capabilities & NOMMU_MAP_DIRECT))
1267 					goto sharing_violation;
1268 				continue;
1269 			}
1270 
1271 			/* we've found a region we can share */
1272 			pregion->vm_usage++;
1273 			vma->vm_region = pregion;
1274 			start = pregion->vm_start;
1275 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1276 			vma->vm_start = start;
1277 			vma->vm_end = start + len;
1278 
1279 			if (pregion->vm_flags & VM_MAPPED_COPY)
1280 				vma->vm_flags |= VM_MAPPED_COPY;
1281 			else {
1282 				ret = do_mmap_shared_file(vma);
1283 				if (ret < 0) {
1284 					vma->vm_region = NULL;
1285 					vma->vm_start = 0;
1286 					vma->vm_end = 0;
1287 					pregion->vm_usage--;
1288 					pregion = NULL;
1289 					goto error_just_free;
1290 				}
1291 			}
1292 			fput(region->vm_file);
1293 			kmem_cache_free(vm_region_jar, region);
1294 			region = pregion;
1295 			result = start;
1296 			goto share;
1297 		}
1298 
1299 		/* obtain the address at which to make a shared mapping
1300 		 * - this is the hook for quasi-memory character devices to
1301 		 *   tell us the location of a shared mapping
1302 		 */
1303 		if (capabilities & NOMMU_MAP_DIRECT) {
1304 			addr = file->f_op->get_unmapped_area(file, addr, len,
1305 							     pgoff, flags);
1306 			if (IS_ERR_VALUE(addr)) {
1307 				ret = addr;
1308 				if (ret != -ENOSYS)
1309 					goto error_just_free;
1310 
1311 				/* the driver refused to tell us where to site
1312 				 * the mapping so we'll have to attempt to copy
1313 				 * it */
1314 				ret = -ENODEV;
1315 				if (!(capabilities & NOMMU_MAP_COPY))
1316 					goto error_just_free;
1317 
1318 				capabilities &= ~NOMMU_MAP_DIRECT;
1319 			} else {
1320 				vma->vm_start = region->vm_start = addr;
1321 				vma->vm_end = region->vm_end = addr + len;
1322 			}
1323 		}
1324 	}
1325 
1326 	vma->vm_region = region;
1327 
1328 	/* set up the mapping
1329 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1330 	 */
1331 	if (file && vma->vm_flags & VM_SHARED)
1332 		ret = do_mmap_shared_file(vma);
1333 	else
1334 		ret = do_mmap_private(vma, region, len, capabilities);
1335 	if (ret < 0)
1336 		goto error_just_free;
1337 	add_nommu_region(region);
1338 
1339 	/* clear anonymous mappings that don't ask for uninitialized data */
1340 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1341 		memset((void *)region->vm_start, 0,
1342 		       region->vm_end - region->vm_start);
1343 
1344 	/* okay... we have a mapping; now we have to register it */
1345 	result = vma->vm_start;
1346 
1347 	current->mm->total_vm += len >> PAGE_SHIFT;
1348 
1349 share:
1350 	add_vma_to_mm(current->mm, vma);
1351 
1352 	/* we flush the region from the icache only when the first executable
1353 	 * mapping of it is made  */
1354 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1355 		flush_icache_range(region->vm_start, region->vm_end);
1356 		region->vm_icache_flushed = true;
1357 	}
1358 
1359 	up_write(&nommu_region_sem);
1360 
1361 	return result;
1362 
1363 error_just_free:
1364 	up_write(&nommu_region_sem);
1365 error:
1366 	if (region->vm_file)
1367 		fput(region->vm_file);
1368 	kmem_cache_free(vm_region_jar, region);
1369 	if (vma->vm_file)
1370 		fput(vma->vm_file);
1371 	kmem_cache_free(vm_area_cachep, vma);
1372 	return ret;
1373 
1374 sharing_violation:
1375 	up_write(&nommu_region_sem);
1376 	pr_warn("Attempt to share mismatched mappings\n");
1377 	ret = -EINVAL;
1378 	goto error;
1379 
1380 error_getting_vma:
1381 	kmem_cache_free(vm_region_jar, region);
1382 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1383 			len, current->pid);
1384 	show_free_areas(0, NULL);
1385 	return -ENOMEM;
1386 
1387 error_getting_region:
1388 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1389 			len, current->pid);
1390 	show_free_areas(0, NULL);
1391 	return -ENOMEM;
1392 }
1393 
1394 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1395 			      unsigned long prot, unsigned long flags,
1396 			      unsigned long fd, unsigned long pgoff)
1397 {
1398 	struct file *file = NULL;
1399 	unsigned long retval = -EBADF;
1400 
1401 	audit_mmap_fd(fd, flags);
1402 	if (!(flags & MAP_ANONYMOUS)) {
1403 		file = fget(fd);
1404 		if (!file)
1405 			goto out;
1406 	}
1407 
1408 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1409 
1410 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411 
1412 	if (file)
1413 		fput(file);
1414 out:
1415 	return retval;
1416 }
1417 
1418 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1419 		unsigned long, prot, unsigned long, flags,
1420 		unsigned long, fd, unsigned long, pgoff)
1421 {
1422 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1423 }
1424 
1425 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1426 struct mmap_arg_struct {
1427 	unsigned long addr;
1428 	unsigned long len;
1429 	unsigned long prot;
1430 	unsigned long flags;
1431 	unsigned long fd;
1432 	unsigned long offset;
1433 };
1434 
1435 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1436 {
1437 	struct mmap_arg_struct a;
1438 
1439 	if (copy_from_user(&a, arg, sizeof(a)))
1440 		return -EFAULT;
1441 	if (offset_in_page(a.offset))
1442 		return -EINVAL;
1443 
1444 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1445 			       a.offset >> PAGE_SHIFT);
1446 }
1447 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1448 
1449 /*
1450  * split a vma into two pieces at address 'addr', a new vma is allocated either
1451  * for the first part or the tail.
1452  */
1453 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1454 	      unsigned long addr, int new_below)
1455 {
1456 	struct vm_area_struct *new;
1457 	struct vm_region *region;
1458 	unsigned long npages;
1459 
1460 	/* we're only permitted to split anonymous regions (these should have
1461 	 * only a single usage on the region) */
1462 	if (vma->vm_file)
1463 		return -ENOMEM;
1464 
1465 	if (mm->map_count >= sysctl_max_map_count)
1466 		return -ENOMEM;
1467 
1468 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1469 	if (!region)
1470 		return -ENOMEM;
1471 
1472 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1473 	if (!new) {
1474 		kmem_cache_free(vm_region_jar, region);
1475 		return -ENOMEM;
1476 	}
1477 
1478 	/* most fields are the same, copy all, and then fixup */
1479 	*new = *vma;
1480 	*region = *vma->vm_region;
1481 	new->vm_region = region;
1482 
1483 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1484 
1485 	if (new_below) {
1486 		region->vm_top = region->vm_end = new->vm_end = addr;
1487 	} else {
1488 		region->vm_start = new->vm_start = addr;
1489 		region->vm_pgoff = new->vm_pgoff += npages;
1490 	}
1491 
1492 	if (new->vm_ops && new->vm_ops->open)
1493 		new->vm_ops->open(new);
1494 
1495 	delete_vma_from_mm(vma);
1496 	down_write(&nommu_region_sem);
1497 	delete_nommu_region(vma->vm_region);
1498 	if (new_below) {
1499 		vma->vm_region->vm_start = vma->vm_start = addr;
1500 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1501 	} else {
1502 		vma->vm_region->vm_end = vma->vm_end = addr;
1503 		vma->vm_region->vm_top = addr;
1504 	}
1505 	add_nommu_region(vma->vm_region);
1506 	add_nommu_region(new->vm_region);
1507 	up_write(&nommu_region_sem);
1508 	add_vma_to_mm(mm, vma);
1509 	add_vma_to_mm(mm, new);
1510 	return 0;
1511 }
1512 
1513 /*
1514  * shrink a VMA by removing the specified chunk from either the beginning or
1515  * the end
1516  */
1517 static int shrink_vma(struct mm_struct *mm,
1518 		      struct vm_area_struct *vma,
1519 		      unsigned long from, unsigned long to)
1520 {
1521 	struct vm_region *region;
1522 
1523 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1524 	 * and list */
1525 	delete_vma_from_mm(vma);
1526 	if (from > vma->vm_start)
1527 		vma->vm_end = from;
1528 	else
1529 		vma->vm_start = to;
1530 	add_vma_to_mm(mm, vma);
1531 
1532 	/* cut the backing region down to size */
1533 	region = vma->vm_region;
1534 	BUG_ON(region->vm_usage != 1);
1535 
1536 	down_write(&nommu_region_sem);
1537 	delete_nommu_region(region);
1538 	if (from > region->vm_start) {
1539 		to = region->vm_top;
1540 		region->vm_top = region->vm_end = from;
1541 	} else {
1542 		region->vm_start = to;
1543 	}
1544 	add_nommu_region(region);
1545 	up_write(&nommu_region_sem);
1546 
1547 	free_page_series(from, to);
1548 	return 0;
1549 }
1550 
1551 /*
1552  * release a mapping
1553  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1554  *   VMA, though it need not cover the whole VMA
1555  */
1556 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1557 {
1558 	struct vm_area_struct *vma;
1559 	unsigned long end;
1560 	int ret;
1561 
1562 	len = PAGE_ALIGN(len);
1563 	if (len == 0)
1564 		return -EINVAL;
1565 
1566 	end = start + len;
1567 
1568 	/* find the first potentially overlapping VMA */
1569 	vma = find_vma(mm, start);
1570 	if (!vma) {
1571 		static int limit;
1572 		if (limit < 5) {
1573 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1574 					current->pid, current->comm,
1575 					start, start + len - 1);
1576 			limit++;
1577 		}
1578 		return -EINVAL;
1579 	}
1580 
1581 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1582 	if (vma->vm_file) {
1583 		do {
1584 			if (start > vma->vm_start)
1585 				return -EINVAL;
1586 			if (end == vma->vm_end)
1587 				goto erase_whole_vma;
1588 			vma = vma->vm_next;
1589 		} while (vma);
1590 		return -EINVAL;
1591 	} else {
1592 		/* the chunk must be a subset of the VMA found */
1593 		if (start == vma->vm_start && end == vma->vm_end)
1594 			goto erase_whole_vma;
1595 		if (start < vma->vm_start || end > vma->vm_end)
1596 			return -EINVAL;
1597 		if (offset_in_page(start))
1598 			return -EINVAL;
1599 		if (end != vma->vm_end && offset_in_page(end))
1600 			return -EINVAL;
1601 		if (start != vma->vm_start && end != vma->vm_end) {
1602 			ret = split_vma(mm, vma, start, 1);
1603 			if (ret < 0)
1604 				return ret;
1605 		}
1606 		return shrink_vma(mm, vma, start, end);
1607 	}
1608 
1609 erase_whole_vma:
1610 	delete_vma_from_mm(vma);
1611 	delete_vma(mm, vma);
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(do_munmap);
1615 
1616 int vm_munmap(unsigned long addr, size_t len)
1617 {
1618 	struct mm_struct *mm = current->mm;
1619 	int ret;
1620 
1621 	down_write(&mm->mmap_sem);
1622 	ret = do_munmap(mm, addr, len, NULL);
1623 	up_write(&mm->mmap_sem);
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL(vm_munmap);
1627 
1628 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1629 {
1630 	return vm_munmap(addr, len);
1631 }
1632 
1633 /*
1634  * release all the mappings made in a process's VM space
1635  */
1636 void exit_mmap(struct mm_struct *mm)
1637 {
1638 	struct vm_area_struct *vma;
1639 
1640 	if (!mm)
1641 		return;
1642 
1643 	mm->total_vm = 0;
1644 
1645 	while ((vma = mm->mmap)) {
1646 		mm->mmap = vma->vm_next;
1647 		delete_vma_from_mm(vma);
1648 		delete_vma(mm, vma);
1649 		cond_resched();
1650 	}
1651 }
1652 
1653 int vm_brk(unsigned long addr, unsigned long len)
1654 {
1655 	return -ENOMEM;
1656 }
1657 
1658 /*
1659  * expand (or shrink) an existing mapping, potentially moving it at the same
1660  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1661  *
1662  * under NOMMU conditions, we only permit changing a mapping's size, and only
1663  * as long as it stays within the region allocated by do_mmap_private() and the
1664  * block is not shareable
1665  *
1666  * MREMAP_FIXED is not supported under NOMMU conditions
1667  */
1668 static unsigned long do_mremap(unsigned long addr,
1669 			unsigned long old_len, unsigned long new_len,
1670 			unsigned long flags, unsigned long new_addr)
1671 {
1672 	struct vm_area_struct *vma;
1673 
1674 	/* insanity checks first */
1675 	old_len = PAGE_ALIGN(old_len);
1676 	new_len = PAGE_ALIGN(new_len);
1677 	if (old_len == 0 || new_len == 0)
1678 		return (unsigned long) -EINVAL;
1679 
1680 	if (offset_in_page(addr))
1681 		return -EINVAL;
1682 
1683 	if (flags & MREMAP_FIXED && new_addr != addr)
1684 		return (unsigned long) -EINVAL;
1685 
1686 	vma = find_vma_exact(current->mm, addr, old_len);
1687 	if (!vma)
1688 		return (unsigned long) -EINVAL;
1689 
1690 	if (vma->vm_end != vma->vm_start + old_len)
1691 		return (unsigned long) -EFAULT;
1692 
1693 	if (vma->vm_flags & VM_MAYSHARE)
1694 		return (unsigned long) -EPERM;
1695 
1696 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1697 		return (unsigned long) -ENOMEM;
1698 
1699 	/* all checks complete - do it */
1700 	vma->vm_end = vma->vm_start + new_len;
1701 	return vma->vm_start;
1702 }
1703 
1704 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1705 		unsigned long, new_len, unsigned long, flags,
1706 		unsigned long, new_addr)
1707 {
1708 	unsigned long ret;
1709 
1710 	down_write(&current->mm->mmap_sem);
1711 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1712 	up_write(&current->mm->mmap_sem);
1713 	return ret;
1714 }
1715 
1716 struct page *follow_page_mask(struct vm_area_struct *vma,
1717 			      unsigned long address, unsigned int flags,
1718 			      unsigned int *page_mask)
1719 {
1720 	*page_mask = 0;
1721 	return NULL;
1722 }
1723 
1724 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1725 		unsigned long pfn, unsigned long size, pgprot_t prot)
1726 {
1727 	if (addr != (pfn << PAGE_SHIFT))
1728 		return -EINVAL;
1729 
1730 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL(remap_pfn_range);
1734 
1735 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1736 {
1737 	unsigned long pfn = start >> PAGE_SHIFT;
1738 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1739 
1740 	pfn += vma->vm_pgoff;
1741 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1742 }
1743 EXPORT_SYMBOL(vm_iomap_memory);
1744 
1745 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1746 			unsigned long pgoff)
1747 {
1748 	unsigned int size = vma->vm_end - vma->vm_start;
1749 
1750 	if (!(vma->vm_flags & VM_USERMAP))
1751 		return -EINVAL;
1752 
1753 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1754 	vma->vm_end = vma->vm_start + size;
1755 
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL(remap_vmalloc_range);
1759 
1760 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1761 	unsigned long len, unsigned long pgoff, unsigned long flags)
1762 {
1763 	return -ENOMEM;
1764 }
1765 
1766 int filemap_fault(struct vm_fault *vmf)
1767 {
1768 	BUG();
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(filemap_fault);
1772 
1773 void filemap_map_pages(struct vm_fault *vmf,
1774 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1775 {
1776 	BUG();
1777 }
1778 EXPORT_SYMBOL(filemap_map_pages);
1779 
1780 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1781 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1782 {
1783 	struct vm_area_struct *vma;
1784 	int write = gup_flags & FOLL_WRITE;
1785 
1786 	down_read(&mm->mmap_sem);
1787 
1788 	/* the access must start within one of the target process's mappings */
1789 	vma = find_vma(mm, addr);
1790 	if (vma) {
1791 		/* don't overrun this mapping */
1792 		if (addr + len >= vma->vm_end)
1793 			len = vma->vm_end - addr;
1794 
1795 		/* only read or write mappings where it is permitted */
1796 		if (write && vma->vm_flags & VM_MAYWRITE)
1797 			copy_to_user_page(vma, NULL, addr,
1798 					 (void *) addr, buf, len);
1799 		else if (!write && vma->vm_flags & VM_MAYREAD)
1800 			copy_from_user_page(vma, NULL, addr,
1801 					    buf, (void *) addr, len);
1802 		else
1803 			len = 0;
1804 	} else {
1805 		len = 0;
1806 	}
1807 
1808 	up_read(&mm->mmap_sem);
1809 
1810 	return len;
1811 }
1812 
1813 /**
1814  * access_remote_vm - access another process' address space
1815  * @mm:		the mm_struct of the target address space
1816  * @addr:	start address to access
1817  * @buf:	source or destination buffer
1818  * @len:	number of bytes to transfer
1819  * @gup_flags:	flags modifying lookup behaviour
1820  *
1821  * The caller must hold a reference on @mm.
1822  */
1823 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1824 		void *buf, int len, unsigned int gup_flags)
1825 {
1826 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1827 }
1828 
1829 /*
1830  * Access another process' address space.
1831  * - source/target buffer must be kernel space
1832  */
1833 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1834 		unsigned int gup_flags)
1835 {
1836 	struct mm_struct *mm;
1837 
1838 	if (addr + len < addr)
1839 		return 0;
1840 
1841 	mm = get_task_mm(tsk);
1842 	if (!mm)
1843 		return 0;
1844 
1845 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1846 
1847 	mmput(mm);
1848 	return len;
1849 }
1850 EXPORT_SYMBOL_GPL(access_process_vm);
1851 
1852 /**
1853  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1854  * @inode: The inode to check
1855  * @size: The current filesize of the inode
1856  * @newsize: The proposed filesize of the inode
1857  *
1858  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1859  * make sure that that any outstanding VMAs aren't broken and then shrink the
1860  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1861  * automatically grant mappings that are too large.
1862  */
1863 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1864 				size_t newsize)
1865 {
1866 	struct vm_area_struct *vma;
1867 	struct vm_region *region;
1868 	pgoff_t low, high;
1869 	size_t r_size, r_top;
1870 
1871 	low = newsize >> PAGE_SHIFT;
1872 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1873 
1874 	down_write(&nommu_region_sem);
1875 	i_mmap_lock_read(inode->i_mapping);
1876 
1877 	/* search for VMAs that fall within the dead zone */
1878 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1879 		/* found one - only interested if it's shared out of the page
1880 		 * cache */
1881 		if (vma->vm_flags & VM_SHARED) {
1882 			i_mmap_unlock_read(inode->i_mapping);
1883 			up_write(&nommu_region_sem);
1884 			return -ETXTBSY; /* not quite true, but near enough */
1885 		}
1886 	}
1887 
1888 	/* reduce any regions that overlap the dead zone - if in existence,
1889 	 * these will be pointed to by VMAs that don't overlap the dead zone
1890 	 *
1891 	 * we don't check for any regions that start beyond the EOF as there
1892 	 * shouldn't be any
1893 	 */
1894 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1895 		if (!(vma->vm_flags & VM_SHARED))
1896 			continue;
1897 
1898 		region = vma->vm_region;
1899 		r_size = region->vm_top - region->vm_start;
1900 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1901 
1902 		if (r_top > newsize) {
1903 			region->vm_top -= r_top - newsize;
1904 			if (region->vm_end > region->vm_top)
1905 				region->vm_end = region->vm_top;
1906 		}
1907 	}
1908 
1909 	i_mmap_unlock_read(inode->i_mapping);
1910 	up_write(&nommu_region_sem);
1911 	return 0;
1912 }
1913 
1914 /*
1915  * Initialise sysctl_user_reserve_kbytes.
1916  *
1917  * This is intended to prevent a user from starting a single memory hogging
1918  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1919  * mode.
1920  *
1921  * The default value is min(3% of free memory, 128MB)
1922  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1923  */
1924 static int __meminit init_user_reserve(void)
1925 {
1926 	unsigned long free_kbytes;
1927 
1928 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1929 
1930 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1931 	return 0;
1932 }
1933 subsys_initcall(init_user_reserve);
1934 
1935 /*
1936  * Initialise sysctl_admin_reserve_kbytes.
1937  *
1938  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1939  * to log in and kill a memory hogging process.
1940  *
1941  * Systems with more than 256MB will reserve 8MB, enough to recover
1942  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1943  * only reserve 3% of free pages by default.
1944  */
1945 static int __meminit init_admin_reserve(void)
1946 {
1947 	unsigned long free_kbytes;
1948 
1949 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1950 
1951 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1952 	return 0;
1953 }
1954 subsys_initcall(init_admin_reserve);
1955