xref: /linux/mm/nommu.c (revision 9208c05f9fdfd927ea160b97dfef3c379049fff2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return page_size(page);
111 }
112 
113 void vfree(const void *addr)
114 {
115 	kfree(addr);
116 }
117 EXPORT_SYMBOL(vfree);
118 
119 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
120 {
121 	/*
122 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
123 	 * returns only a logical address.
124 	 */
125 	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
126 }
127 EXPORT_SYMBOL(__vmalloc_noprof);
128 
129 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
130 {
131 	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
132 }
133 
134 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
135 		unsigned long start, unsigned long end, gfp_t gfp_mask,
136 		pgprot_t prot, unsigned long vm_flags, int node,
137 		const void *caller)
138 {
139 	return __vmalloc_noprof(size, gfp_mask);
140 }
141 
142 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
143 		int node, const void *caller)
144 {
145 	return __vmalloc_noprof(size, gfp_mask);
146 }
147 
148 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
149 {
150 	void *ret;
151 
152 	ret = __vmalloc(size, flags);
153 	if (ret) {
154 		struct vm_area_struct *vma;
155 
156 		mmap_write_lock(current->mm);
157 		vma = find_vma(current->mm, (unsigned long)ret);
158 		if (vma)
159 			vm_flags_set(vma, VM_USERMAP);
160 		mmap_write_unlock(current->mm);
161 	}
162 
163 	return ret;
164 }
165 
166 void *vmalloc_user_noprof(unsigned long size)
167 {
168 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
169 }
170 EXPORT_SYMBOL(vmalloc_user_noprof);
171 
172 struct page *vmalloc_to_page(const void *addr)
173 {
174 	return virt_to_page(addr);
175 }
176 EXPORT_SYMBOL(vmalloc_to_page);
177 
178 unsigned long vmalloc_to_pfn(const void *addr)
179 {
180 	return page_to_pfn(virt_to_page(addr));
181 }
182 EXPORT_SYMBOL(vmalloc_to_pfn);
183 
184 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
185 {
186 	/* Don't allow overflow */
187 	if ((unsigned long) addr + count < count)
188 		count = -(unsigned long) addr;
189 
190 	return copy_to_iter(addr, count, iter);
191 }
192 
193 /*
194  *	vmalloc  -  allocate virtually contiguous memory
195  *
196  *	@size:		allocation size
197  *
198  *	Allocate enough pages to cover @size from the page level
199  *	allocator and map them into contiguous kernel virtual space.
200  *
201  *	For tight control over page level allocator and protection flags
202  *	use __vmalloc() instead.
203  */
204 void *vmalloc_noprof(unsigned long size)
205 {
206 	return __vmalloc_noprof(size, GFP_KERNEL);
207 }
208 EXPORT_SYMBOL(vmalloc_noprof);
209 
210 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof);
211 
212 /*
213  *	vzalloc - allocate virtually contiguous memory with zero fill
214  *
215  *	@size:		allocation size
216  *
217  *	Allocate enough pages to cover @size from the page level
218  *	allocator and map them into contiguous kernel virtual space.
219  *	The memory allocated is set to zero.
220  *
221  *	For tight control over page level allocator and protection flags
222  *	use __vmalloc() instead.
223  */
224 void *vzalloc_noprof(unsigned long size)
225 {
226 	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
227 }
228 EXPORT_SYMBOL(vzalloc_noprof);
229 
230 /**
231  * vmalloc_node - allocate memory on a specific node
232  * @size:	allocation size
233  * @node:	numa node
234  *
235  * Allocate enough pages to cover @size from the page level
236  * allocator and map them into contiguous kernel virtual space.
237  *
238  * For tight control over page level allocator and protection flags
239  * use __vmalloc() instead.
240  */
241 void *vmalloc_node_noprof(unsigned long size, int node)
242 {
243 	return vmalloc_noprof(size);
244 }
245 EXPORT_SYMBOL(vmalloc_node_noprof);
246 
247 /**
248  * vzalloc_node - allocate memory on a specific node with zero fill
249  * @size:	allocation size
250  * @node:	numa node
251  *
252  * Allocate enough pages to cover @size from the page level
253  * allocator and map them into contiguous kernel virtual space.
254  * The memory allocated is set to zero.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vzalloc_node_noprof(unsigned long size, int node)
260 {
261 	return vzalloc_noprof(size);
262 }
263 EXPORT_SYMBOL(vzalloc_node_noprof);
264 
265 /**
266  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
267  *	@size:		allocation size
268  *
269  *	Allocate enough 32bit PA addressable pages to cover @size from the
270  *	page level allocator and map them into contiguous kernel virtual space.
271  */
272 void *vmalloc_32_noprof(unsigned long size)
273 {
274 	return __vmalloc_noprof(size, GFP_KERNEL);
275 }
276 EXPORT_SYMBOL(vmalloc_32_noprof);
277 
278 /**
279  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
280  *	@size:		allocation size
281  *
282  * The resulting memory area is 32bit addressable and zeroed so it can be
283  * mapped to userspace without leaking data.
284  *
285  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
286  * remap_vmalloc_range() are permissible.
287  */
288 void *vmalloc_32_user_noprof(unsigned long size)
289 {
290 	/*
291 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
292 	 * but for now this can simply use vmalloc_user() directly.
293 	 */
294 	return vmalloc_user_noprof(size);
295 }
296 EXPORT_SYMBOL(vmalloc_32_user_noprof);
297 
298 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
299 {
300 	BUG();
301 	return NULL;
302 }
303 EXPORT_SYMBOL(vmap);
304 
305 void vunmap(const void *addr)
306 {
307 	BUG();
308 }
309 EXPORT_SYMBOL(vunmap);
310 
311 void *vm_map_ram(struct page **pages, unsigned int count, int node)
312 {
313 	BUG();
314 	return NULL;
315 }
316 EXPORT_SYMBOL(vm_map_ram);
317 
318 void vm_unmap_ram(const void *mem, unsigned int count)
319 {
320 	BUG();
321 }
322 EXPORT_SYMBOL(vm_unmap_ram);
323 
324 void vm_unmap_aliases(void)
325 {
326 }
327 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
328 
329 void free_vm_area(struct vm_struct *area)
330 {
331 	BUG();
332 }
333 EXPORT_SYMBOL_GPL(free_vm_area);
334 
335 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
336 		   struct page *page)
337 {
338 	return -EINVAL;
339 }
340 EXPORT_SYMBOL(vm_insert_page);
341 
342 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
343 			struct page **pages, unsigned long *num)
344 {
345 	return -EINVAL;
346 }
347 EXPORT_SYMBOL(vm_insert_pages);
348 
349 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
350 			unsigned long num)
351 {
352 	return -EINVAL;
353 }
354 EXPORT_SYMBOL(vm_map_pages);
355 
356 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
357 				unsigned long num)
358 {
359 	return -EINVAL;
360 }
361 EXPORT_SYMBOL(vm_map_pages_zero);
362 
363 /*
364  *  sys_brk() for the most part doesn't need the global kernel
365  *  lock, except when an application is doing something nasty
366  *  like trying to un-brk an area that has already been mapped
367  *  to a regular file.  in this case, the unmapping will need
368  *  to invoke file system routines that need the global lock.
369  */
370 SYSCALL_DEFINE1(brk, unsigned long, brk)
371 {
372 	struct mm_struct *mm = current->mm;
373 
374 	if (brk < mm->start_brk || brk > mm->context.end_brk)
375 		return mm->brk;
376 
377 	if (mm->brk == brk)
378 		return mm->brk;
379 
380 	/*
381 	 * Always allow shrinking brk
382 	 */
383 	if (brk <= mm->brk) {
384 		mm->brk = brk;
385 		return brk;
386 	}
387 
388 	/*
389 	 * Ok, looks good - let it rip.
390 	 */
391 	flush_icache_user_range(mm->brk, brk);
392 	return mm->brk = brk;
393 }
394 
395 /*
396  * initialise the percpu counter for VM and region record slabs
397  */
398 void __init mmap_init(void)
399 {
400 	int ret;
401 
402 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
403 	VM_BUG_ON(ret);
404 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
405 }
406 
407 /*
408  * validate the region tree
409  * - the caller must hold the region lock
410  */
411 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
412 static noinline void validate_nommu_regions(void)
413 {
414 	struct vm_region *region, *last;
415 	struct rb_node *p, *lastp;
416 
417 	lastp = rb_first(&nommu_region_tree);
418 	if (!lastp)
419 		return;
420 
421 	last = rb_entry(lastp, struct vm_region, vm_rb);
422 	BUG_ON(last->vm_end <= last->vm_start);
423 	BUG_ON(last->vm_top < last->vm_end);
424 
425 	while ((p = rb_next(lastp))) {
426 		region = rb_entry(p, struct vm_region, vm_rb);
427 		last = rb_entry(lastp, struct vm_region, vm_rb);
428 
429 		BUG_ON(region->vm_end <= region->vm_start);
430 		BUG_ON(region->vm_top < region->vm_end);
431 		BUG_ON(region->vm_start < last->vm_top);
432 
433 		lastp = p;
434 	}
435 }
436 #else
437 static void validate_nommu_regions(void)
438 {
439 }
440 #endif
441 
442 /*
443  * add a region into the global tree
444  */
445 static void add_nommu_region(struct vm_region *region)
446 {
447 	struct vm_region *pregion;
448 	struct rb_node **p, *parent;
449 
450 	validate_nommu_regions();
451 
452 	parent = NULL;
453 	p = &nommu_region_tree.rb_node;
454 	while (*p) {
455 		parent = *p;
456 		pregion = rb_entry(parent, struct vm_region, vm_rb);
457 		if (region->vm_start < pregion->vm_start)
458 			p = &(*p)->rb_left;
459 		else if (region->vm_start > pregion->vm_start)
460 			p = &(*p)->rb_right;
461 		else if (pregion == region)
462 			return;
463 		else
464 			BUG();
465 	}
466 
467 	rb_link_node(&region->vm_rb, parent, p);
468 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
469 
470 	validate_nommu_regions();
471 }
472 
473 /*
474  * delete a region from the global tree
475  */
476 static void delete_nommu_region(struct vm_region *region)
477 {
478 	BUG_ON(!nommu_region_tree.rb_node);
479 
480 	validate_nommu_regions();
481 	rb_erase(&region->vm_rb, &nommu_region_tree);
482 	validate_nommu_regions();
483 }
484 
485 /*
486  * free a contiguous series of pages
487  */
488 static void free_page_series(unsigned long from, unsigned long to)
489 {
490 	for (; from < to; from += PAGE_SIZE) {
491 		struct page *page = virt_to_page((void *)from);
492 
493 		atomic_long_dec(&mmap_pages_allocated);
494 		put_page(page);
495 	}
496 }
497 
498 /*
499  * release a reference to a region
500  * - the caller must hold the region semaphore for writing, which this releases
501  * - the region may not have been added to the tree yet, in which case vm_top
502  *   will equal vm_start
503  */
504 static void __put_nommu_region(struct vm_region *region)
505 	__releases(nommu_region_sem)
506 {
507 	BUG_ON(!nommu_region_tree.rb_node);
508 
509 	if (--region->vm_usage == 0) {
510 		if (region->vm_top > region->vm_start)
511 			delete_nommu_region(region);
512 		up_write(&nommu_region_sem);
513 
514 		if (region->vm_file)
515 			fput(region->vm_file);
516 
517 		/* IO memory and memory shared directly out of the pagecache
518 		 * from ramfs/tmpfs mustn't be released here */
519 		if (region->vm_flags & VM_MAPPED_COPY)
520 			free_page_series(region->vm_start, region->vm_top);
521 		kmem_cache_free(vm_region_jar, region);
522 	} else {
523 		up_write(&nommu_region_sem);
524 	}
525 }
526 
527 /*
528  * release a reference to a region
529  */
530 static void put_nommu_region(struct vm_region *region)
531 {
532 	down_write(&nommu_region_sem);
533 	__put_nommu_region(region);
534 }
535 
536 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
537 {
538 	vma->vm_mm = mm;
539 
540 	/* add the VMA to the mapping */
541 	if (vma->vm_file) {
542 		struct address_space *mapping = vma->vm_file->f_mapping;
543 
544 		i_mmap_lock_write(mapping);
545 		flush_dcache_mmap_lock(mapping);
546 		vma_interval_tree_insert(vma, &mapping->i_mmap);
547 		flush_dcache_mmap_unlock(mapping);
548 		i_mmap_unlock_write(mapping);
549 	}
550 }
551 
552 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
553 {
554 	vma->vm_mm->map_count--;
555 	/* remove the VMA from the mapping */
556 	if (vma->vm_file) {
557 		struct address_space *mapping;
558 		mapping = vma->vm_file->f_mapping;
559 
560 		i_mmap_lock_write(mapping);
561 		flush_dcache_mmap_lock(mapping);
562 		vma_interval_tree_remove(vma, &mapping->i_mmap);
563 		flush_dcache_mmap_unlock(mapping);
564 		i_mmap_unlock_write(mapping);
565 	}
566 }
567 
568 /*
569  * delete a VMA from its owning mm_struct and address space
570  */
571 static int delete_vma_from_mm(struct vm_area_struct *vma)
572 {
573 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
574 
575 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
576 	if (vma_iter_prealloc(&vmi, NULL)) {
577 		pr_warn("Allocation of vma tree for process %d failed\n",
578 		       current->pid);
579 		return -ENOMEM;
580 	}
581 	cleanup_vma_from_mm(vma);
582 
583 	/* remove from the MM's tree and list */
584 	vma_iter_clear(&vmi);
585 	return 0;
586 }
587 /*
588  * destroy a VMA record
589  */
590 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
591 {
592 	vma_close(vma);
593 	if (vma->vm_file)
594 		fput(vma->vm_file);
595 	put_nommu_region(vma->vm_region);
596 	vm_area_free(vma);
597 }
598 
599 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
600 					     unsigned long start_addr,
601 					     unsigned long end_addr)
602 {
603 	unsigned long index = start_addr;
604 
605 	mmap_assert_locked(mm);
606 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
607 }
608 EXPORT_SYMBOL(find_vma_intersection);
609 
610 /*
611  * look up the first VMA in which addr resides, NULL if none
612  * - should be called with mm->mmap_lock at least held readlocked
613  */
614 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
615 {
616 	VMA_ITERATOR(vmi, mm, addr);
617 
618 	return vma_iter_load(&vmi);
619 }
620 EXPORT_SYMBOL(find_vma);
621 
622 /*
623  * At least xtensa ends up having protection faults even with no
624  * MMU.. No stack expansion, at least.
625  */
626 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
627 			unsigned long addr, struct pt_regs *regs)
628 {
629 	struct vm_area_struct *vma;
630 
631 	mmap_read_lock(mm);
632 	vma = vma_lookup(mm, addr);
633 	if (!vma)
634 		mmap_read_unlock(mm);
635 	return vma;
636 }
637 
638 /*
639  * expand a stack to a given address
640  * - not supported under NOMMU conditions
641  */
642 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
643 {
644 	return -ENOMEM;
645 }
646 
647 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
648 {
649 	mmap_read_unlock(mm);
650 	return NULL;
651 }
652 
653 /*
654  * look up the first VMA exactly that exactly matches addr
655  * - should be called with mm->mmap_lock at least held readlocked
656  */
657 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
658 					     unsigned long addr,
659 					     unsigned long len)
660 {
661 	struct vm_area_struct *vma;
662 	unsigned long end = addr + len;
663 	VMA_ITERATOR(vmi, mm, addr);
664 
665 	vma = vma_iter_load(&vmi);
666 	if (!vma)
667 		return NULL;
668 	if (vma->vm_start != addr)
669 		return NULL;
670 	if (vma->vm_end != end)
671 		return NULL;
672 
673 	return vma;
674 }
675 
676 /*
677  * determine whether a mapping should be permitted and, if so, what sort of
678  * mapping we're capable of supporting
679  */
680 static int validate_mmap_request(struct file *file,
681 				 unsigned long addr,
682 				 unsigned long len,
683 				 unsigned long prot,
684 				 unsigned long flags,
685 				 unsigned long pgoff,
686 				 unsigned long *_capabilities)
687 {
688 	unsigned long capabilities, rlen;
689 	int ret;
690 
691 	/* do the simple checks first */
692 	if (flags & MAP_FIXED)
693 		return -EINVAL;
694 
695 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
696 	    (flags & MAP_TYPE) != MAP_SHARED)
697 		return -EINVAL;
698 
699 	if (!len)
700 		return -EINVAL;
701 
702 	/* Careful about overflows.. */
703 	rlen = PAGE_ALIGN(len);
704 	if (!rlen || rlen > TASK_SIZE)
705 		return -ENOMEM;
706 
707 	/* offset overflow? */
708 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
709 		return -EOVERFLOW;
710 
711 	if (file) {
712 		/* files must support mmap */
713 		if (!file->f_op->mmap)
714 			return -ENODEV;
715 
716 		/* work out if what we've got could possibly be shared
717 		 * - we support chardevs that provide their own "memory"
718 		 * - we support files/blockdevs that are memory backed
719 		 */
720 		if (file->f_op->mmap_capabilities) {
721 			capabilities = file->f_op->mmap_capabilities(file);
722 		} else {
723 			/* no explicit capabilities set, so assume some
724 			 * defaults */
725 			switch (file_inode(file)->i_mode & S_IFMT) {
726 			case S_IFREG:
727 			case S_IFBLK:
728 				capabilities = NOMMU_MAP_COPY;
729 				break;
730 
731 			case S_IFCHR:
732 				capabilities =
733 					NOMMU_MAP_DIRECT |
734 					NOMMU_MAP_READ |
735 					NOMMU_MAP_WRITE;
736 				break;
737 
738 			default:
739 				return -EINVAL;
740 			}
741 		}
742 
743 		/* eliminate any capabilities that we can't support on this
744 		 * device */
745 		if (!file->f_op->get_unmapped_area)
746 			capabilities &= ~NOMMU_MAP_DIRECT;
747 		if (!(file->f_mode & FMODE_CAN_READ))
748 			capabilities &= ~NOMMU_MAP_COPY;
749 
750 		/* The file shall have been opened with read permission. */
751 		if (!(file->f_mode & FMODE_READ))
752 			return -EACCES;
753 
754 		if (flags & MAP_SHARED) {
755 			/* do checks for writing, appending and locking */
756 			if ((prot & PROT_WRITE) &&
757 			    !(file->f_mode & FMODE_WRITE))
758 				return -EACCES;
759 
760 			if (IS_APPEND(file_inode(file)) &&
761 			    (file->f_mode & FMODE_WRITE))
762 				return -EACCES;
763 
764 			if (!(capabilities & NOMMU_MAP_DIRECT))
765 				return -ENODEV;
766 
767 			/* we mustn't privatise shared mappings */
768 			capabilities &= ~NOMMU_MAP_COPY;
769 		} else {
770 			/* we're going to read the file into private memory we
771 			 * allocate */
772 			if (!(capabilities & NOMMU_MAP_COPY))
773 				return -ENODEV;
774 
775 			/* we don't permit a private writable mapping to be
776 			 * shared with the backing device */
777 			if (prot & PROT_WRITE)
778 				capabilities &= ~NOMMU_MAP_DIRECT;
779 		}
780 
781 		if (capabilities & NOMMU_MAP_DIRECT) {
782 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
783 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
784 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
785 			    ) {
786 				capabilities &= ~NOMMU_MAP_DIRECT;
787 				if (flags & MAP_SHARED) {
788 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
789 					return -EINVAL;
790 				}
791 			}
792 		}
793 
794 		/* handle executable mappings and implied executable
795 		 * mappings */
796 		if (path_noexec(&file->f_path)) {
797 			if (prot & PROT_EXEC)
798 				return -EPERM;
799 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
800 			/* handle implication of PROT_EXEC by PROT_READ */
801 			if (current->personality & READ_IMPLIES_EXEC) {
802 				if (capabilities & NOMMU_MAP_EXEC)
803 					prot |= PROT_EXEC;
804 			}
805 		} else if ((prot & PROT_READ) &&
806 			 (prot & PROT_EXEC) &&
807 			 !(capabilities & NOMMU_MAP_EXEC)
808 			 ) {
809 			/* backing file is not executable, try to copy */
810 			capabilities &= ~NOMMU_MAP_DIRECT;
811 		}
812 	} else {
813 		/* anonymous mappings are always memory backed and can be
814 		 * privately mapped
815 		 */
816 		capabilities = NOMMU_MAP_COPY;
817 
818 		/* handle PROT_EXEC implication by PROT_READ */
819 		if ((prot & PROT_READ) &&
820 		    (current->personality & READ_IMPLIES_EXEC))
821 			prot |= PROT_EXEC;
822 	}
823 
824 	/* allow the security API to have its say */
825 	ret = security_mmap_addr(addr);
826 	if (ret < 0)
827 		return ret;
828 
829 	/* looks okay */
830 	*_capabilities = capabilities;
831 	return 0;
832 }
833 
834 /*
835  * we've determined that we can make the mapping, now translate what we
836  * now know into VMA flags
837  */
838 static unsigned long determine_vm_flags(struct file *file,
839 					unsigned long prot,
840 					unsigned long flags,
841 					unsigned long capabilities)
842 {
843 	unsigned long vm_flags;
844 
845 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
846 
847 	if (!file) {
848 		/*
849 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
850 		 * there is no fork().
851 		 */
852 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
853 	} else if (flags & MAP_PRIVATE) {
854 		/* MAP_PRIVATE file mapping */
855 		if (capabilities & NOMMU_MAP_DIRECT)
856 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
857 		else
858 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
859 
860 		if (!(prot & PROT_WRITE) && !current->ptrace)
861 			/*
862 			 * R/O private file mapping which cannot be used to
863 			 * modify memory, especially also not via active ptrace
864 			 * (e.g., set breakpoints) or later by upgrading
865 			 * permissions (no mprotect()). We can try overlaying
866 			 * the file mapping, which will work e.g., on chardevs,
867 			 * ramfs/tmpfs/shmfs and romfs/cramf.
868 			 */
869 			vm_flags |= VM_MAYOVERLAY;
870 	} else {
871 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
872 		vm_flags |= VM_SHARED | VM_MAYSHARE |
873 			    (capabilities & NOMMU_VMFLAGS);
874 	}
875 
876 	return vm_flags;
877 }
878 
879 /*
880  * set up a shared mapping on a file (the driver or filesystem provides and
881  * pins the storage)
882  */
883 static int do_mmap_shared_file(struct vm_area_struct *vma)
884 {
885 	int ret;
886 
887 	ret = mmap_file(vma->vm_file, vma);
888 	if (ret == 0) {
889 		vma->vm_region->vm_top = vma->vm_region->vm_end;
890 		return 0;
891 	}
892 	if (ret != -ENOSYS)
893 		return ret;
894 
895 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
896 	 * opposed to tried but failed) so we can only give a suitable error as
897 	 * it's not possible to make a private copy if MAP_SHARED was given */
898 	return -ENODEV;
899 }
900 
901 /*
902  * set up a private mapping or an anonymous shared mapping
903  */
904 static int do_mmap_private(struct vm_area_struct *vma,
905 			   struct vm_region *region,
906 			   unsigned long len,
907 			   unsigned long capabilities)
908 {
909 	unsigned long total, point;
910 	void *base;
911 	int ret, order;
912 
913 	/*
914 	 * Invoke the file's mapping function so that it can keep track of
915 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
916 	 * it may attempt to share, which will make is_nommu_shared_mapping()
917 	 * happy.
918 	 */
919 	if (capabilities & NOMMU_MAP_DIRECT) {
920 		ret = mmap_file(vma->vm_file, vma);
921 		/* shouldn't return success if we're not sharing */
922 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
923 			ret = -ENOSYS;
924 		if (ret == 0) {
925 			vma->vm_region->vm_top = vma->vm_region->vm_end;
926 			return 0;
927 		}
928 		if (ret != -ENOSYS)
929 			return ret;
930 
931 		/* getting an ENOSYS error indicates that direct mmap isn't
932 		 * possible (as opposed to tried but failed) so we'll try to
933 		 * make a private copy of the data and map that instead */
934 	}
935 
936 
937 	/* allocate some memory to hold the mapping
938 	 * - note that this may not return a page-aligned address if the object
939 	 *   we're allocating is smaller than a page
940 	 */
941 	order = get_order(len);
942 	total = 1 << order;
943 	point = len >> PAGE_SHIFT;
944 
945 	/* we don't want to allocate a power-of-2 sized page set */
946 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
947 		total = point;
948 
949 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
950 	if (!base)
951 		goto enomem;
952 
953 	atomic_long_add(total, &mmap_pages_allocated);
954 
955 	vm_flags_set(vma, VM_MAPPED_COPY);
956 	region->vm_flags = vma->vm_flags;
957 	region->vm_start = (unsigned long) base;
958 	region->vm_end   = region->vm_start + len;
959 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
960 
961 	vma->vm_start = region->vm_start;
962 	vma->vm_end   = region->vm_start + len;
963 
964 	if (vma->vm_file) {
965 		/* read the contents of a file into the copy */
966 		loff_t fpos;
967 
968 		fpos = vma->vm_pgoff;
969 		fpos <<= PAGE_SHIFT;
970 
971 		ret = kernel_read(vma->vm_file, base, len, &fpos);
972 		if (ret < 0)
973 			goto error_free;
974 
975 		/* clear the last little bit */
976 		if (ret < len)
977 			memset(base + ret, 0, len - ret);
978 
979 	} else {
980 		vma_set_anonymous(vma);
981 	}
982 
983 	return 0;
984 
985 error_free:
986 	free_page_series(region->vm_start, region->vm_top);
987 	region->vm_start = vma->vm_start = 0;
988 	region->vm_end   = vma->vm_end = 0;
989 	region->vm_top   = 0;
990 	return ret;
991 
992 enomem:
993 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
994 	       len, current->pid, current->comm);
995 	show_mem();
996 	return -ENOMEM;
997 }
998 
999 /*
1000  * handle mapping creation for uClinux
1001  */
1002 unsigned long do_mmap(struct file *file,
1003 			unsigned long addr,
1004 			unsigned long len,
1005 			unsigned long prot,
1006 			unsigned long flags,
1007 			vm_flags_t vm_flags,
1008 			unsigned long pgoff,
1009 			unsigned long *populate,
1010 			struct list_head *uf)
1011 {
1012 	struct vm_area_struct *vma;
1013 	struct vm_region *region;
1014 	struct rb_node *rb;
1015 	unsigned long capabilities, result;
1016 	int ret;
1017 	VMA_ITERATOR(vmi, current->mm, 0);
1018 
1019 	*populate = 0;
1020 
1021 	/* decide whether we should attempt the mapping, and if so what sort of
1022 	 * mapping */
1023 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1024 				    &capabilities);
1025 	if (ret < 0)
1026 		return ret;
1027 
1028 	/* we ignore the address hint */
1029 	addr = 0;
1030 	len = PAGE_ALIGN(len);
1031 
1032 	/* we've determined that we can make the mapping, now translate what we
1033 	 * now know into VMA flags */
1034 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1035 
1036 
1037 	/* we're going to need to record the mapping */
1038 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1039 	if (!region)
1040 		goto error_getting_region;
1041 
1042 	vma = vm_area_alloc(current->mm);
1043 	if (!vma)
1044 		goto error_getting_vma;
1045 
1046 	region->vm_usage = 1;
1047 	region->vm_flags = vm_flags;
1048 	region->vm_pgoff = pgoff;
1049 
1050 	vm_flags_init(vma, vm_flags);
1051 	vma->vm_pgoff = pgoff;
1052 
1053 	if (file) {
1054 		region->vm_file = get_file(file);
1055 		vma->vm_file = get_file(file);
1056 	}
1057 
1058 	down_write(&nommu_region_sem);
1059 
1060 	/* if we want to share, we need to check for regions created by other
1061 	 * mmap() calls that overlap with our proposed mapping
1062 	 * - we can only share with a superset match on most regular files
1063 	 * - shared mappings on character devices and memory backed files are
1064 	 *   permitted to overlap inexactly as far as we are concerned for in
1065 	 *   these cases, sharing is handled in the driver or filesystem rather
1066 	 *   than here
1067 	 */
1068 	if (is_nommu_shared_mapping(vm_flags)) {
1069 		struct vm_region *pregion;
1070 		unsigned long pglen, rpglen, pgend, rpgend, start;
1071 
1072 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1073 		pgend = pgoff + pglen;
1074 
1075 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1076 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1077 
1078 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1079 				continue;
1080 
1081 			/* search for overlapping mappings on the same file */
1082 			if (file_inode(pregion->vm_file) !=
1083 			    file_inode(file))
1084 				continue;
1085 
1086 			if (pregion->vm_pgoff >= pgend)
1087 				continue;
1088 
1089 			rpglen = pregion->vm_end - pregion->vm_start;
1090 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1091 			rpgend = pregion->vm_pgoff + rpglen;
1092 			if (pgoff >= rpgend)
1093 				continue;
1094 
1095 			/* handle inexactly overlapping matches between
1096 			 * mappings */
1097 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1098 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1099 				/* new mapping is not a subset of the region */
1100 				if (!(capabilities & NOMMU_MAP_DIRECT))
1101 					goto sharing_violation;
1102 				continue;
1103 			}
1104 
1105 			/* we've found a region we can share */
1106 			pregion->vm_usage++;
1107 			vma->vm_region = pregion;
1108 			start = pregion->vm_start;
1109 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1110 			vma->vm_start = start;
1111 			vma->vm_end = start + len;
1112 
1113 			if (pregion->vm_flags & VM_MAPPED_COPY)
1114 				vm_flags_set(vma, VM_MAPPED_COPY);
1115 			else {
1116 				ret = do_mmap_shared_file(vma);
1117 				if (ret < 0) {
1118 					vma->vm_region = NULL;
1119 					vma->vm_start = 0;
1120 					vma->vm_end = 0;
1121 					pregion->vm_usage--;
1122 					pregion = NULL;
1123 					goto error_just_free;
1124 				}
1125 			}
1126 			fput(region->vm_file);
1127 			kmem_cache_free(vm_region_jar, region);
1128 			region = pregion;
1129 			result = start;
1130 			goto share;
1131 		}
1132 
1133 		/* obtain the address at which to make a shared mapping
1134 		 * - this is the hook for quasi-memory character devices to
1135 		 *   tell us the location of a shared mapping
1136 		 */
1137 		if (capabilities & NOMMU_MAP_DIRECT) {
1138 			addr = file->f_op->get_unmapped_area(file, addr, len,
1139 							     pgoff, flags);
1140 			if (IS_ERR_VALUE(addr)) {
1141 				ret = addr;
1142 				if (ret != -ENOSYS)
1143 					goto error_just_free;
1144 
1145 				/* the driver refused to tell us where to site
1146 				 * the mapping so we'll have to attempt to copy
1147 				 * it */
1148 				ret = -ENODEV;
1149 				if (!(capabilities & NOMMU_MAP_COPY))
1150 					goto error_just_free;
1151 
1152 				capabilities &= ~NOMMU_MAP_DIRECT;
1153 			} else {
1154 				vma->vm_start = region->vm_start = addr;
1155 				vma->vm_end = region->vm_end = addr + len;
1156 			}
1157 		}
1158 	}
1159 
1160 	vma->vm_region = region;
1161 
1162 	/* set up the mapping
1163 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1164 	 */
1165 	if (file && vma->vm_flags & VM_SHARED)
1166 		ret = do_mmap_shared_file(vma);
1167 	else
1168 		ret = do_mmap_private(vma, region, len, capabilities);
1169 	if (ret < 0)
1170 		goto error_just_free;
1171 	add_nommu_region(region);
1172 
1173 	/* clear anonymous mappings that don't ask for uninitialized data */
1174 	if (!vma->vm_file &&
1175 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1176 	     !(flags & MAP_UNINITIALIZED)))
1177 		memset((void *)region->vm_start, 0,
1178 		       region->vm_end - region->vm_start);
1179 
1180 	/* okay... we have a mapping; now we have to register it */
1181 	result = vma->vm_start;
1182 
1183 	current->mm->total_vm += len >> PAGE_SHIFT;
1184 
1185 share:
1186 	BUG_ON(!vma->vm_region);
1187 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1188 	if (vma_iter_prealloc(&vmi, vma))
1189 		goto error_just_free;
1190 
1191 	setup_vma_to_mm(vma, current->mm);
1192 	current->mm->map_count++;
1193 	/* add the VMA to the tree */
1194 	vma_iter_store(&vmi, vma);
1195 
1196 	/* we flush the region from the icache only when the first executable
1197 	 * mapping of it is made  */
1198 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1199 		flush_icache_user_range(region->vm_start, region->vm_end);
1200 		region->vm_icache_flushed = true;
1201 	}
1202 
1203 	up_write(&nommu_region_sem);
1204 
1205 	return result;
1206 
1207 error_just_free:
1208 	up_write(&nommu_region_sem);
1209 error:
1210 	vma_iter_free(&vmi);
1211 	if (region->vm_file)
1212 		fput(region->vm_file);
1213 	kmem_cache_free(vm_region_jar, region);
1214 	if (vma->vm_file)
1215 		fput(vma->vm_file);
1216 	vm_area_free(vma);
1217 	return ret;
1218 
1219 sharing_violation:
1220 	up_write(&nommu_region_sem);
1221 	pr_warn("Attempt to share mismatched mappings\n");
1222 	ret = -EINVAL;
1223 	goto error;
1224 
1225 error_getting_vma:
1226 	kmem_cache_free(vm_region_jar, region);
1227 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1228 			len, current->pid);
1229 	show_mem();
1230 	return -ENOMEM;
1231 
1232 error_getting_region:
1233 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1234 			len, current->pid);
1235 	show_mem();
1236 	return -ENOMEM;
1237 }
1238 
1239 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1240 			      unsigned long prot, unsigned long flags,
1241 			      unsigned long fd, unsigned long pgoff)
1242 {
1243 	struct file *file = NULL;
1244 	unsigned long retval = -EBADF;
1245 
1246 	audit_mmap_fd(fd, flags);
1247 	if (!(flags & MAP_ANONYMOUS)) {
1248 		file = fget(fd);
1249 		if (!file)
1250 			goto out;
1251 	}
1252 
1253 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1254 
1255 	if (file)
1256 		fput(file);
1257 out:
1258 	return retval;
1259 }
1260 
1261 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1262 		unsigned long, prot, unsigned long, flags,
1263 		unsigned long, fd, unsigned long, pgoff)
1264 {
1265 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1266 }
1267 
1268 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1269 struct mmap_arg_struct {
1270 	unsigned long addr;
1271 	unsigned long len;
1272 	unsigned long prot;
1273 	unsigned long flags;
1274 	unsigned long fd;
1275 	unsigned long offset;
1276 };
1277 
1278 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1279 {
1280 	struct mmap_arg_struct a;
1281 
1282 	if (copy_from_user(&a, arg, sizeof(a)))
1283 		return -EFAULT;
1284 	if (offset_in_page(a.offset))
1285 		return -EINVAL;
1286 
1287 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1288 			       a.offset >> PAGE_SHIFT);
1289 }
1290 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1291 
1292 /*
1293  * split a vma into two pieces at address 'addr', a new vma is allocated either
1294  * for the first part or the tail.
1295  */
1296 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1297 		     unsigned long addr, int new_below)
1298 {
1299 	struct vm_area_struct *new;
1300 	struct vm_region *region;
1301 	unsigned long npages;
1302 	struct mm_struct *mm;
1303 
1304 	/* we're only permitted to split anonymous regions (these should have
1305 	 * only a single usage on the region) */
1306 	if (vma->vm_file)
1307 		return -ENOMEM;
1308 
1309 	mm = vma->vm_mm;
1310 	if (mm->map_count >= sysctl_max_map_count)
1311 		return -ENOMEM;
1312 
1313 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1314 	if (!region)
1315 		return -ENOMEM;
1316 
1317 	new = vm_area_dup(vma);
1318 	if (!new)
1319 		goto err_vma_dup;
1320 
1321 	/* most fields are the same, copy all, and then fixup */
1322 	*region = *vma->vm_region;
1323 	new->vm_region = region;
1324 
1325 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1326 
1327 	if (new_below) {
1328 		region->vm_top = region->vm_end = new->vm_end = addr;
1329 	} else {
1330 		region->vm_start = new->vm_start = addr;
1331 		region->vm_pgoff = new->vm_pgoff += npages;
1332 	}
1333 
1334 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1335 	if (vma_iter_prealloc(vmi, vma)) {
1336 		pr_warn("Allocation of vma tree for process %d failed\n",
1337 			current->pid);
1338 		goto err_vmi_preallocate;
1339 	}
1340 
1341 	if (new->vm_ops && new->vm_ops->open)
1342 		new->vm_ops->open(new);
1343 
1344 	down_write(&nommu_region_sem);
1345 	delete_nommu_region(vma->vm_region);
1346 	if (new_below) {
1347 		vma->vm_region->vm_start = vma->vm_start = addr;
1348 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1349 	} else {
1350 		vma->vm_region->vm_end = vma->vm_end = addr;
1351 		vma->vm_region->vm_top = addr;
1352 	}
1353 	add_nommu_region(vma->vm_region);
1354 	add_nommu_region(new->vm_region);
1355 	up_write(&nommu_region_sem);
1356 
1357 	setup_vma_to_mm(vma, mm);
1358 	setup_vma_to_mm(new, mm);
1359 	vma_iter_store(vmi, new);
1360 	mm->map_count++;
1361 	return 0;
1362 
1363 err_vmi_preallocate:
1364 	vm_area_free(new);
1365 err_vma_dup:
1366 	kmem_cache_free(vm_region_jar, region);
1367 	return -ENOMEM;
1368 }
1369 
1370 /*
1371  * shrink a VMA by removing the specified chunk from either the beginning or
1372  * the end
1373  */
1374 static int vmi_shrink_vma(struct vma_iterator *vmi,
1375 		      struct vm_area_struct *vma,
1376 		      unsigned long from, unsigned long to)
1377 {
1378 	struct vm_region *region;
1379 
1380 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1381 	 * and list */
1382 	if (from > vma->vm_start) {
1383 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1384 			return -ENOMEM;
1385 		vma->vm_end = from;
1386 	} else {
1387 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1388 			return -ENOMEM;
1389 		vma->vm_start = to;
1390 	}
1391 
1392 	/* cut the backing region down to size */
1393 	region = vma->vm_region;
1394 	BUG_ON(region->vm_usage != 1);
1395 
1396 	down_write(&nommu_region_sem);
1397 	delete_nommu_region(region);
1398 	if (from > region->vm_start) {
1399 		to = region->vm_top;
1400 		region->vm_top = region->vm_end = from;
1401 	} else {
1402 		region->vm_start = to;
1403 	}
1404 	add_nommu_region(region);
1405 	up_write(&nommu_region_sem);
1406 
1407 	free_page_series(from, to);
1408 	return 0;
1409 }
1410 
1411 /*
1412  * release a mapping
1413  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1414  *   VMA, though it need not cover the whole VMA
1415  */
1416 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1417 {
1418 	VMA_ITERATOR(vmi, mm, start);
1419 	struct vm_area_struct *vma;
1420 	unsigned long end;
1421 	int ret = 0;
1422 
1423 	len = PAGE_ALIGN(len);
1424 	if (len == 0)
1425 		return -EINVAL;
1426 
1427 	end = start + len;
1428 
1429 	/* find the first potentially overlapping VMA */
1430 	vma = vma_find(&vmi, end);
1431 	if (!vma) {
1432 		static int limit;
1433 		if (limit < 5) {
1434 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1435 					current->pid, current->comm,
1436 					start, start + len - 1);
1437 			limit++;
1438 		}
1439 		return -EINVAL;
1440 	}
1441 
1442 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1443 	if (vma->vm_file) {
1444 		do {
1445 			if (start > vma->vm_start)
1446 				return -EINVAL;
1447 			if (end == vma->vm_end)
1448 				goto erase_whole_vma;
1449 			vma = vma_find(&vmi, end);
1450 		} while (vma);
1451 		return -EINVAL;
1452 	} else {
1453 		/* the chunk must be a subset of the VMA found */
1454 		if (start == vma->vm_start && end == vma->vm_end)
1455 			goto erase_whole_vma;
1456 		if (start < vma->vm_start || end > vma->vm_end)
1457 			return -EINVAL;
1458 		if (offset_in_page(start))
1459 			return -EINVAL;
1460 		if (end != vma->vm_end && offset_in_page(end))
1461 			return -EINVAL;
1462 		if (start != vma->vm_start && end != vma->vm_end) {
1463 			ret = split_vma(&vmi, vma, start, 1);
1464 			if (ret < 0)
1465 				return ret;
1466 		}
1467 		return vmi_shrink_vma(&vmi, vma, start, end);
1468 	}
1469 
1470 erase_whole_vma:
1471 	if (delete_vma_from_mm(vma))
1472 		ret = -ENOMEM;
1473 	else
1474 		delete_vma(mm, vma);
1475 	return ret;
1476 }
1477 
1478 int vm_munmap(unsigned long addr, size_t len)
1479 {
1480 	struct mm_struct *mm = current->mm;
1481 	int ret;
1482 
1483 	mmap_write_lock(mm);
1484 	ret = do_munmap(mm, addr, len, NULL);
1485 	mmap_write_unlock(mm);
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(vm_munmap);
1489 
1490 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1491 {
1492 	return vm_munmap(addr, len);
1493 }
1494 
1495 /*
1496  * release all the mappings made in a process's VM space
1497  */
1498 void exit_mmap(struct mm_struct *mm)
1499 {
1500 	VMA_ITERATOR(vmi, mm, 0);
1501 	struct vm_area_struct *vma;
1502 
1503 	if (!mm)
1504 		return;
1505 
1506 	mm->total_vm = 0;
1507 
1508 	/*
1509 	 * Lock the mm to avoid assert complaining even though this is the only
1510 	 * user of the mm
1511 	 */
1512 	mmap_write_lock(mm);
1513 	for_each_vma(vmi, vma) {
1514 		cleanup_vma_from_mm(vma);
1515 		delete_vma(mm, vma);
1516 		cond_resched();
1517 	}
1518 	__mt_destroy(&mm->mm_mt);
1519 	mmap_write_unlock(mm);
1520 }
1521 
1522 /*
1523  * expand (or shrink) an existing mapping, potentially moving it at the same
1524  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1525  *
1526  * under NOMMU conditions, we only permit changing a mapping's size, and only
1527  * as long as it stays within the region allocated by do_mmap_private() and the
1528  * block is not shareable
1529  *
1530  * MREMAP_FIXED is not supported under NOMMU conditions
1531  */
1532 static unsigned long do_mremap(unsigned long addr,
1533 			unsigned long old_len, unsigned long new_len,
1534 			unsigned long flags, unsigned long new_addr)
1535 {
1536 	struct vm_area_struct *vma;
1537 
1538 	/* insanity checks first */
1539 	old_len = PAGE_ALIGN(old_len);
1540 	new_len = PAGE_ALIGN(new_len);
1541 	if (old_len == 0 || new_len == 0)
1542 		return (unsigned long) -EINVAL;
1543 
1544 	if (offset_in_page(addr))
1545 		return -EINVAL;
1546 
1547 	if (flags & MREMAP_FIXED && new_addr != addr)
1548 		return (unsigned long) -EINVAL;
1549 
1550 	vma = find_vma_exact(current->mm, addr, old_len);
1551 	if (!vma)
1552 		return (unsigned long) -EINVAL;
1553 
1554 	if (vma->vm_end != vma->vm_start + old_len)
1555 		return (unsigned long) -EFAULT;
1556 
1557 	if (is_nommu_shared_mapping(vma->vm_flags))
1558 		return (unsigned long) -EPERM;
1559 
1560 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1561 		return (unsigned long) -ENOMEM;
1562 
1563 	/* all checks complete - do it */
1564 	vma->vm_end = vma->vm_start + new_len;
1565 	return vma->vm_start;
1566 }
1567 
1568 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1569 		unsigned long, new_len, unsigned long, flags,
1570 		unsigned long, new_addr)
1571 {
1572 	unsigned long ret;
1573 
1574 	mmap_write_lock(current->mm);
1575 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1576 	mmap_write_unlock(current->mm);
1577 	return ret;
1578 }
1579 
1580 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1581 		unsigned long pfn, unsigned long size, pgprot_t prot)
1582 {
1583 	if (addr != (pfn << PAGE_SHIFT))
1584 		return -EINVAL;
1585 
1586 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL(remap_pfn_range);
1590 
1591 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1592 {
1593 	unsigned long pfn = start >> PAGE_SHIFT;
1594 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1595 
1596 	pfn += vma->vm_pgoff;
1597 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1598 }
1599 EXPORT_SYMBOL(vm_iomap_memory);
1600 
1601 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1602 			unsigned long pgoff)
1603 {
1604 	unsigned int size = vma->vm_end - vma->vm_start;
1605 
1606 	if (!(vma->vm_flags & VM_USERMAP))
1607 		return -EINVAL;
1608 
1609 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1610 	vma->vm_end = vma->vm_start + size;
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(remap_vmalloc_range);
1615 
1616 vm_fault_t filemap_fault(struct vm_fault *vmf)
1617 {
1618 	BUG();
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL(filemap_fault);
1622 
1623 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1624 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1625 {
1626 	BUG();
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL(filemap_map_pages);
1630 
1631 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1632 			      void *buf, int len, unsigned int gup_flags)
1633 {
1634 	struct vm_area_struct *vma;
1635 	int write = gup_flags & FOLL_WRITE;
1636 
1637 	if (mmap_read_lock_killable(mm))
1638 		return 0;
1639 
1640 	/* the access must start within one of the target process's mappings */
1641 	vma = find_vma(mm, addr);
1642 	if (vma) {
1643 		/* don't overrun this mapping */
1644 		if (addr + len >= vma->vm_end)
1645 			len = vma->vm_end - addr;
1646 
1647 		/* only read or write mappings where it is permitted */
1648 		if (write && vma->vm_flags & VM_MAYWRITE)
1649 			copy_to_user_page(vma, NULL, addr,
1650 					 (void *) addr, buf, len);
1651 		else if (!write && vma->vm_flags & VM_MAYREAD)
1652 			copy_from_user_page(vma, NULL, addr,
1653 					    buf, (void *) addr, len);
1654 		else
1655 			len = 0;
1656 	} else {
1657 		len = 0;
1658 	}
1659 
1660 	mmap_read_unlock(mm);
1661 
1662 	return len;
1663 }
1664 
1665 /**
1666  * access_remote_vm - access another process' address space
1667  * @mm:		the mm_struct of the target address space
1668  * @addr:	start address to access
1669  * @buf:	source or destination buffer
1670  * @len:	number of bytes to transfer
1671  * @gup_flags:	flags modifying lookup behaviour
1672  *
1673  * The caller must hold a reference on @mm.
1674  */
1675 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1676 		void *buf, int len, unsigned int gup_flags)
1677 {
1678 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1679 }
1680 
1681 /*
1682  * Access another process' address space.
1683  * - source/target buffer must be kernel space
1684  */
1685 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1686 		unsigned int gup_flags)
1687 {
1688 	struct mm_struct *mm;
1689 
1690 	if (addr + len < addr)
1691 		return 0;
1692 
1693 	mm = get_task_mm(tsk);
1694 	if (!mm)
1695 		return 0;
1696 
1697 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1698 
1699 	mmput(mm);
1700 	return len;
1701 }
1702 EXPORT_SYMBOL_GPL(access_process_vm);
1703 
1704 /**
1705  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1706  * @inode: The inode to check
1707  * @size: The current filesize of the inode
1708  * @newsize: The proposed filesize of the inode
1709  *
1710  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1711  * make sure that any outstanding VMAs aren't broken and then shrink the
1712  * vm_regions that extend beyond so that do_mmap() doesn't
1713  * automatically grant mappings that are too large.
1714  */
1715 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1716 				size_t newsize)
1717 {
1718 	struct vm_area_struct *vma;
1719 	struct vm_region *region;
1720 	pgoff_t low, high;
1721 	size_t r_size, r_top;
1722 
1723 	low = newsize >> PAGE_SHIFT;
1724 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1725 
1726 	down_write(&nommu_region_sem);
1727 	i_mmap_lock_read(inode->i_mapping);
1728 
1729 	/* search for VMAs that fall within the dead zone */
1730 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1731 		/* found one - only interested if it's shared out of the page
1732 		 * cache */
1733 		if (vma->vm_flags & VM_SHARED) {
1734 			i_mmap_unlock_read(inode->i_mapping);
1735 			up_write(&nommu_region_sem);
1736 			return -ETXTBSY; /* not quite true, but near enough */
1737 		}
1738 	}
1739 
1740 	/* reduce any regions that overlap the dead zone - if in existence,
1741 	 * these will be pointed to by VMAs that don't overlap the dead zone
1742 	 *
1743 	 * we don't check for any regions that start beyond the EOF as there
1744 	 * shouldn't be any
1745 	 */
1746 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1747 		if (!(vma->vm_flags & VM_SHARED))
1748 			continue;
1749 
1750 		region = vma->vm_region;
1751 		r_size = region->vm_top - region->vm_start;
1752 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1753 
1754 		if (r_top > newsize) {
1755 			region->vm_top -= r_top - newsize;
1756 			if (region->vm_end > region->vm_top)
1757 				region->vm_end = region->vm_top;
1758 		}
1759 	}
1760 
1761 	i_mmap_unlock_read(inode->i_mapping);
1762 	up_write(&nommu_region_sem);
1763 	return 0;
1764 }
1765 
1766 /*
1767  * Initialise sysctl_user_reserve_kbytes.
1768  *
1769  * This is intended to prevent a user from starting a single memory hogging
1770  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1771  * mode.
1772  *
1773  * The default value is min(3% of free memory, 128MB)
1774  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1775  */
1776 static int __meminit init_user_reserve(void)
1777 {
1778 	unsigned long free_kbytes;
1779 
1780 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1781 
1782 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1783 	return 0;
1784 }
1785 subsys_initcall(init_user_reserve);
1786 
1787 /*
1788  * Initialise sysctl_admin_reserve_kbytes.
1789  *
1790  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1791  * to log in and kill a memory hogging process.
1792  *
1793  * Systems with more than 256MB will reserve 8MB, enough to recover
1794  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1795  * only reserve 3% of free pages by default.
1796  */
1797 static int __meminit init_admin_reserve(void)
1798 {
1799 	unsigned long free_kbytes;
1800 
1801 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1802 
1803 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1804 	return 0;
1805 }
1806 subsys_initcall(init_admin_reserve);
1807