xref: /linux/mm/nommu.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return page_size(page);
111 }
112 
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 	unsigned long *pfn)
125 {
126 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 		return -EINVAL;
128 
129 	*pfn = address >> PAGE_SHIFT;
130 	return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133 
134 void vfree(const void *addr)
135 {
136 	kfree(addr);
137 }
138 EXPORT_SYMBOL(vfree);
139 
140 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
141 {
142 	/*
143 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
144 	 * returns only a logical address.
145 	 */
146 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
147 }
148 EXPORT_SYMBOL(__vmalloc);
149 
150 void *__vmalloc_node_range(unsigned long size, unsigned long align,
151 		unsigned long start, unsigned long end, gfp_t gfp_mask,
152 		pgprot_t prot, unsigned long vm_flags, int node,
153 		const void *caller)
154 {
155 	return __vmalloc(size, gfp_mask);
156 }
157 
158 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
159 		int node, const void *caller)
160 {
161 	return __vmalloc(size, gfp_mask);
162 }
163 
164 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
165 {
166 	void *ret;
167 
168 	ret = __vmalloc(size, flags);
169 	if (ret) {
170 		struct vm_area_struct *vma;
171 
172 		mmap_write_lock(current->mm);
173 		vma = find_vma(current->mm, (unsigned long)ret);
174 		if (vma)
175 			vm_flags_set(vma, VM_USERMAP);
176 		mmap_write_unlock(current->mm);
177 	}
178 
179 	return ret;
180 }
181 
182 void *vmalloc_user(unsigned long size)
183 {
184 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user);
187 
188 struct page *vmalloc_to_page(const void *addr)
189 {
190 	return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193 
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196 	return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199 
200 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
201 {
202 	/* Don't allow overflow */
203 	if ((unsigned long) addr + count < count)
204 		count = -(unsigned long) addr;
205 
206 	return copy_to_iter(addr, count, iter);
207 }
208 
209 /*
210  *	vmalloc  -  allocate virtually contiguous memory
211  *
212  *	@size:		allocation size
213  *
214  *	Allocate enough pages to cover @size from the page level
215  *	allocator and map them into contiguous kernel virtual space.
216  *
217  *	For tight control over page level allocator and protection flags
218  *	use __vmalloc() instead.
219  */
220 void *vmalloc(unsigned long size)
221 {
222 	return __vmalloc(size, GFP_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225 
226 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
227 
228 /*
229  *	vzalloc - allocate virtually contiguous memory with zero fill
230  *
231  *	@size:		allocation size
232  *
233  *	Allocate enough pages to cover @size from the page level
234  *	allocator and map them into contiguous kernel virtual space.
235  *	The memory allocated is set to zero.
236  *
237  *	For tight control over page level allocator and protection flags
238  *	use __vmalloc() instead.
239  */
240 void *vzalloc(unsigned long size)
241 {
242 	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
243 }
244 EXPORT_SYMBOL(vzalloc);
245 
246 /**
247  * vmalloc_node - allocate memory on a specific node
248  * @size:	allocation size
249  * @node:	numa node
250  *
251  * Allocate enough pages to cover @size from the page level
252  * allocator and map them into contiguous kernel virtual space.
253  *
254  * For tight control over page level allocator and protection flags
255  * use __vmalloc() instead.
256  */
257 void *vmalloc_node(unsigned long size, int node)
258 {
259 	return vmalloc(size);
260 }
261 EXPORT_SYMBOL(vmalloc_node);
262 
263 /**
264  * vzalloc_node - allocate memory on a specific node with zero fill
265  * @size:	allocation size
266  * @node:	numa node
267  *
268  * Allocate enough pages to cover @size from the page level
269  * allocator and map them into contiguous kernel virtual space.
270  * The memory allocated is set to zero.
271  *
272  * For tight control over page level allocator and protection flags
273  * use __vmalloc() instead.
274  */
275 void *vzalloc_node(unsigned long size, int node)
276 {
277 	return vzalloc(size);
278 }
279 EXPORT_SYMBOL(vzalloc_node);
280 
281 /**
282  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
283  *	@size:		allocation size
284  *
285  *	Allocate enough 32bit PA addressable pages to cover @size from the
286  *	page level allocator and map them into contiguous kernel virtual space.
287  */
288 void *vmalloc_32(unsigned long size)
289 {
290 	return __vmalloc(size, GFP_KERNEL);
291 }
292 EXPORT_SYMBOL(vmalloc_32);
293 
294 /**
295  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
296  *	@size:		allocation size
297  *
298  * The resulting memory area is 32bit addressable and zeroed so it can be
299  * mapped to userspace without leaking data.
300  *
301  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
302  * remap_vmalloc_range() are permissible.
303  */
304 void *vmalloc_32_user(unsigned long size)
305 {
306 	/*
307 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
308 	 * but for now this can simply use vmalloc_user() directly.
309 	 */
310 	return vmalloc_user(size);
311 }
312 EXPORT_SYMBOL(vmalloc_32_user);
313 
314 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
315 {
316 	BUG();
317 	return NULL;
318 }
319 EXPORT_SYMBOL(vmap);
320 
321 void vunmap(const void *addr)
322 {
323 	BUG();
324 }
325 EXPORT_SYMBOL(vunmap);
326 
327 void *vm_map_ram(struct page **pages, unsigned int count, int node)
328 {
329 	BUG();
330 	return NULL;
331 }
332 EXPORT_SYMBOL(vm_map_ram);
333 
334 void vm_unmap_ram(const void *mem, unsigned int count)
335 {
336 	BUG();
337 }
338 EXPORT_SYMBOL(vm_unmap_ram);
339 
340 void vm_unmap_aliases(void)
341 {
342 }
343 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
344 
345 void free_vm_area(struct vm_struct *area)
346 {
347 	BUG();
348 }
349 EXPORT_SYMBOL_GPL(free_vm_area);
350 
351 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
352 		   struct page *page)
353 {
354 	return -EINVAL;
355 }
356 EXPORT_SYMBOL(vm_insert_page);
357 
358 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
359 			struct page **pages, unsigned long *num)
360 {
361 	return -EINVAL;
362 }
363 EXPORT_SYMBOL(vm_insert_pages);
364 
365 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
366 			unsigned long num)
367 {
368 	return -EINVAL;
369 }
370 EXPORT_SYMBOL(vm_map_pages);
371 
372 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
373 				unsigned long num)
374 {
375 	return -EINVAL;
376 }
377 EXPORT_SYMBOL(vm_map_pages_zero);
378 
379 /*
380  *  sys_brk() for the most part doesn't need the global kernel
381  *  lock, except when an application is doing something nasty
382  *  like trying to un-brk an area that has already been mapped
383  *  to a regular file.  in this case, the unmapping will need
384  *  to invoke file system routines that need the global lock.
385  */
386 SYSCALL_DEFINE1(brk, unsigned long, brk)
387 {
388 	struct mm_struct *mm = current->mm;
389 
390 	if (brk < mm->start_brk || brk > mm->context.end_brk)
391 		return mm->brk;
392 
393 	if (mm->brk == brk)
394 		return mm->brk;
395 
396 	/*
397 	 * Always allow shrinking brk
398 	 */
399 	if (brk <= mm->brk) {
400 		mm->brk = brk;
401 		return brk;
402 	}
403 
404 	/*
405 	 * Ok, looks good - let it rip.
406 	 */
407 	flush_icache_user_range(mm->brk, brk);
408 	return mm->brk = brk;
409 }
410 
411 /*
412  * initialise the percpu counter for VM and region record slabs
413  */
414 void __init mmap_init(void)
415 {
416 	int ret;
417 
418 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
419 	VM_BUG_ON(ret);
420 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
421 }
422 
423 /*
424  * validate the region tree
425  * - the caller must hold the region lock
426  */
427 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
428 static noinline void validate_nommu_regions(void)
429 {
430 	struct vm_region *region, *last;
431 	struct rb_node *p, *lastp;
432 
433 	lastp = rb_first(&nommu_region_tree);
434 	if (!lastp)
435 		return;
436 
437 	last = rb_entry(lastp, struct vm_region, vm_rb);
438 	BUG_ON(last->vm_end <= last->vm_start);
439 	BUG_ON(last->vm_top < last->vm_end);
440 
441 	while ((p = rb_next(lastp))) {
442 		region = rb_entry(p, struct vm_region, vm_rb);
443 		last = rb_entry(lastp, struct vm_region, vm_rb);
444 
445 		BUG_ON(region->vm_end <= region->vm_start);
446 		BUG_ON(region->vm_top < region->vm_end);
447 		BUG_ON(region->vm_start < last->vm_top);
448 
449 		lastp = p;
450 	}
451 }
452 #else
453 static void validate_nommu_regions(void)
454 {
455 }
456 #endif
457 
458 /*
459  * add a region into the global tree
460  */
461 static void add_nommu_region(struct vm_region *region)
462 {
463 	struct vm_region *pregion;
464 	struct rb_node **p, *parent;
465 
466 	validate_nommu_regions();
467 
468 	parent = NULL;
469 	p = &nommu_region_tree.rb_node;
470 	while (*p) {
471 		parent = *p;
472 		pregion = rb_entry(parent, struct vm_region, vm_rb);
473 		if (region->vm_start < pregion->vm_start)
474 			p = &(*p)->rb_left;
475 		else if (region->vm_start > pregion->vm_start)
476 			p = &(*p)->rb_right;
477 		else if (pregion == region)
478 			return;
479 		else
480 			BUG();
481 	}
482 
483 	rb_link_node(&region->vm_rb, parent, p);
484 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
485 
486 	validate_nommu_regions();
487 }
488 
489 /*
490  * delete a region from the global tree
491  */
492 static void delete_nommu_region(struct vm_region *region)
493 {
494 	BUG_ON(!nommu_region_tree.rb_node);
495 
496 	validate_nommu_regions();
497 	rb_erase(&region->vm_rb, &nommu_region_tree);
498 	validate_nommu_regions();
499 }
500 
501 /*
502  * free a contiguous series of pages
503  */
504 static void free_page_series(unsigned long from, unsigned long to)
505 {
506 	for (; from < to; from += PAGE_SIZE) {
507 		struct page *page = virt_to_page((void *)from);
508 
509 		atomic_long_dec(&mmap_pages_allocated);
510 		put_page(page);
511 	}
512 }
513 
514 /*
515  * release a reference to a region
516  * - the caller must hold the region semaphore for writing, which this releases
517  * - the region may not have been added to the tree yet, in which case vm_top
518  *   will equal vm_start
519  */
520 static void __put_nommu_region(struct vm_region *region)
521 	__releases(nommu_region_sem)
522 {
523 	BUG_ON(!nommu_region_tree.rb_node);
524 
525 	if (--region->vm_usage == 0) {
526 		if (region->vm_top > region->vm_start)
527 			delete_nommu_region(region);
528 		up_write(&nommu_region_sem);
529 
530 		if (region->vm_file)
531 			fput(region->vm_file);
532 
533 		/* IO memory and memory shared directly out of the pagecache
534 		 * from ramfs/tmpfs mustn't be released here */
535 		if (region->vm_flags & VM_MAPPED_COPY)
536 			free_page_series(region->vm_start, region->vm_top);
537 		kmem_cache_free(vm_region_jar, region);
538 	} else {
539 		up_write(&nommu_region_sem);
540 	}
541 }
542 
543 /*
544  * release a reference to a region
545  */
546 static void put_nommu_region(struct vm_region *region)
547 {
548 	down_write(&nommu_region_sem);
549 	__put_nommu_region(region);
550 }
551 
552 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
553 {
554 	vma->vm_mm = mm;
555 
556 	/* add the VMA to the mapping */
557 	if (vma->vm_file) {
558 		struct address_space *mapping = vma->vm_file->f_mapping;
559 
560 		i_mmap_lock_write(mapping);
561 		flush_dcache_mmap_lock(mapping);
562 		vma_interval_tree_insert(vma, &mapping->i_mmap);
563 		flush_dcache_mmap_unlock(mapping);
564 		i_mmap_unlock_write(mapping);
565 	}
566 }
567 
568 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
569 {
570 	vma->vm_mm->map_count--;
571 	/* remove the VMA from the mapping */
572 	if (vma->vm_file) {
573 		struct address_space *mapping;
574 		mapping = vma->vm_file->f_mapping;
575 
576 		i_mmap_lock_write(mapping);
577 		flush_dcache_mmap_lock(mapping);
578 		vma_interval_tree_remove(vma, &mapping->i_mmap);
579 		flush_dcache_mmap_unlock(mapping);
580 		i_mmap_unlock_write(mapping);
581 	}
582 }
583 
584 /*
585  * delete a VMA from its owning mm_struct and address space
586  */
587 static int delete_vma_from_mm(struct vm_area_struct *vma)
588 {
589 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
590 
591 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
592 	if (vma_iter_prealloc(&vmi, vma)) {
593 		pr_warn("Allocation of vma tree for process %d failed\n",
594 		       current->pid);
595 		return -ENOMEM;
596 	}
597 	cleanup_vma_from_mm(vma);
598 
599 	/* remove from the MM's tree and list */
600 	vma_iter_clear(&vmi);
601 	return 0;
602 }
603 /*
604  * destroy a VMA record
605  */
606 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
607 {
608 	if (vma->vm_ops && vma->vm_ops->close)
609 		vma->vm_ops->close(vma);
610 	if (vma->vm_file)
611 		fput(vma->vm_file);
612 	put_nommu_region(vma->vm_region);
613 	vm_area_free(vma);
614 }
615 
616 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
617 					     unsigned long start_addr,
618 					     unsigned long end_addr)
619 {
620 	unsigned long index = start_addr;
621 
622 	mmap_assert_locked(mm);
623 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
624 }
625 EXPORT_SYMBOL(find_vma_intersection);
626 
627 /*
628  * look up the first VMA in which addr resides, NULL if none
629  * - should be called with mm->mmap_lock at least held readlocked
630  */
631 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
632 {
633 	VMA_ITERATOR(vmi, mm, addr);
634 
635 	return vma_iter_load(&vmi);
636 }
637 EXPORT_SYMBOL(find_vma);
638 
639 /*
640  * At least xtensa ends up having protection faults even with no
641  * MMU.. No stack expansion, at least.
642  */
643 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
644 			unsigned long addr, struct pt_regs *regs)
645 {
646 	struct vm_area_struct *vma;
647 
648 	mmap_read_lock(mm);
649 	vma = vma_lookup(mm, addr);
650 	if (!vma)
651 		mmap_read_unlock(mm);
652 	return vma;
653 }
654 
655 /*
656  * expand a stack to a given address
657  * - not supported under NOMMU conditions
658  */
659 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
660 {
661 	return -ENOMEM;
662 }
663 
664 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
665 {
666 	mmap_read_unlock(mm);
667 	return NULL;
668 }
669 
670 /*
671  * look up the first VMA exactly that exactly matches addr
672  * - should be called with mm->mmap_lock at least held readlocked
673  */
674 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
675 					     unsigned long addr,
676 					     unsigned long len)
677 {
678 	struct vm_area_struct *vma;
679 	unsigned long end = addr + len;
680 	VMA_ITERATOR(vmi, mm, addr);
681 
682 	vma = vma_iter_load(&vmi);
683 	if (!vma)
684 		return NULL;
685 	if (vma->vm_start != addr)
686 		return NULL;
687 	if (vma->vm_end != end)
688 		return NULL;
689 
690 	return vma;
691 }
692 
693 /*
694  * determine whether a mapping should be permitted and, if so, what sort of
695  * mapping we're capable of supporting
696  */
697 static int validate_mmap_request(struct file *file,
698 				 unsigned long addr,
699 				 unsigned long len,
700 				 unsigned long prot,
701 				 unsigned long flags,
702 				 unsigned long pgoff,
703 				 unsigned long *_capabilities)
704 {
705 	unsigned long capabilities, rlen;
706 	int ret;
707 
708 	/* do the simple checks first */
709 	if (flags & MAP_FIXED)
710 		return -EINVAL;
711 
712 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
713 	    (flags & MAP_TYPE) != MAP_SHARED)
714 		return -EINVAL;
715 
716 	if (!len)
717 		return -EINVAL;
718 
719 	/* Careful about overflows.. */
720 	rlen = PAGE_ALIGN(len);
721 	if (!rlen || rlen > TASK_SIZE)
722 		return -ENOMEM;
723 
724 	/* offset overflow? */
725 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
726 		return -EOVERFLOW;
727 
728 	if (file) {
729 		/* files must support mmap */
730 		if (!file->f_op->mmap)
731 			return -ENODEV;
732 
733 		/* work out if what we've got could possibly be shared
734 		 * - we support chardevs that provide their own "memory"
735 		 * - we support files/blockdevs that are memory backed
736 		 */
737 		if (file->f_op->mmap_capabilities) {
738 			capabilities = file->f_op->mmap_capabilities(file);
739 		} else {
740 			/* no explicit capabilities set, so assume some
741 			 * defaults */
742 			switch (file_inode(file)->i_mode & S_IFMT) {
743 			case S_IFREG:
744 			case S_IFBLK:
745 				capabilities = NOMMU_MAP_COPY;
746 				break;
747 
748 			case S_IFCHR:
749 				capabilities =
750 					NOMMU_MAP_DIRECT |
751 					NOMMU_MAP_READ |
752 					NOMMU_MAP_WRITE;
753 				break;
754 
755 			default:
756 				return -EINVAL;
757 			}
758 		}
759 
760 		/* eliminate any capabilities that we can't support on this
761 		 * device */
762 		if (!file->f_op->get_unmapped_area)
763 			capabilities &= ~NOMMU_MAP_DIRECT;
764 		if (!(file->f_mode & FMODE_CAN_READ))
765 			capabilities &= ~NOMMU_MAP_COPY;
766 
767 		/* The file shall have been opened with read permission. */
768 		if (!(file->f_mode & FMODE_READ))
769 			return -EACCES;
770 
771 		if (flags & MAP_SHARED) {
772 			/* do checks for writing, appending and locking */
773 			if ((prot & PROT_WRITE) &&
774 			    !(file->f_mode & FMODE_WRITE))
775 				return -EACCES;
776 
777 			if (IS_APPEND(file_inode(file)) &&
778 			    (file->f_mode & FMODE_WRITE))
779 				return -EACCES;
780 
781 			if (!(capabilities & NOMMU_MAP_DIRECT))
782 				return -ENODEV;
783 
784 			/* we mustn't privatise shared mappings */
785 			capabilities &= ~NOMMU_MAP_COPY;
786 		} else {
787 			/* we're going to read the file into private memory we
788 			 * allocate */
789 			if (!(capabilities & NOMMU_MAP_COPY))
790 				return -ENODEV;
791 
792 			/* we don't permit a private writable mapping to be
793 			 * shared with the backing device */
794 			if (prot & PROT_WRITE)
795 				capabilities &= ~NOMMU_MAP_DIRECT;
796 		}
797 
798 		if (capabilities & NOMMU_MAP_DIRECT) {
799 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
800 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
801 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
802 			    ) {
803 				capabilities &= ~NOMMU_MAP_DIRECT;
804 				if (flags & MAP_SHARED) {
805 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
806 					return -EINVAL;
807 				}
808 			}
809 		}
810 
811 		/* handle executable mappings and implied executable
812 		 * mappings */
813 		if (path_noexec(&file->f_path)) {
814 			if (prot & PROT_EXEC)
815 				return -EPERM;
816 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
817 			/* handle implication of PROT_EXEC by PROT_READ */
818 			if (current->personality & READ_IMPLIES_EXEC) {
819 				if (capabilities & NOMMU_MAP_EXEC)
820 					prot |= PROT_EXEC;
821 			}
822 		} else if ((prot & PROT_READ) &&
823 			 (prot & PROT_EXEC) &&
824 			 !(capabilities & NOMMU_MAP_EXEC)
825 			 ) {
826 			/* backing file is not executable, try to copy */
827 			capabilities &= ~NOMMU_MAP_DIRECT;
828 		}
829 	} else {
830 		/* anonymous mappings are always memory backed and can be
831 		 * privately mapped
832 		 */
833 		capabilities = NOMMU_MAP_COPY;
834 
835 		/* handle PROT_EXEC implication by PROT_READ */
836 		if ((prot & PROT_READ) &&
837 		    (current->personality & READ_IMPLIES_EXEC))
838 			prot |= PROT_EXEC;
839 	}
840 
841 	/* allow the security API to have its say */
842 	ret = security_mmap_addr(addr);
843 	if (ret < 0)
844 		return ret;
845 
846 	/* looks okay */
847 	*_capabilities = capabilities;
848 	return 0;
849 }
850 
851 /*
852  * we've determined that we can make the mapping, now translate what we
853  * now know into VMA flags
854  */
855 static unsigned long determine_vm_flags(struct file *file,
856 					unsigned long prot,
857 					unsigned long flags,
858 					unsigned long capabilities)
859 {
860 	unsigned long vm_flags;
861 
862 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
863 
864 	if (!file) {
865 		/*
866 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
867 		 * there is no fork().
868 		 */
869 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
870 	} else if (flags & MAP_PRIVATE) {
871 		/* MAP_PRIVATE file mapping */
872 		if (capabilities & NOMMU_MAP_DIRECT)
873 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
874 		else
875 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
876 
877 		if (!(prot & PROT_WRITE) && !current->ptrace)
878 			/*
879 			 * R/O private file mapping which cannot be used to
880 			 * modify memory, especially also not via active ptrace
881 			 * (e.g., set breakpoints) or later by upgrading
882 			 * permissions (no mprotect()). We can try overlaying
883 			 * the file mapping, which will work e.g., on chardevs,
884 			 * ramfs/tmpfs/shmfs and romfs/cramf.
885 			 */
886 			vm_flags |= VM_MAYOVERLAY;
887 	} else {
888 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
889 		vm_flags |= VM_SHARED | VM_MAYSHARE |
890 			    (capabilities & NOMMU_VMFLAGS);
891 	}
892 
893 	return vm_flags;
894 }
895 
896 /*
897  * set up a shared mapping on a file (the driver or filesystem provides and
898  * pins the storage)
899  */
900 static int do_mmap_shared_file(struct vm_area_struct *vma)
901 {
902 	int ret;
903 
904 	ret = call_mmap(vma->vm_file, vma);
905 	if (ret == 0) {
906 		vma->vm_region->vm_top = vma->vm_region->vm_end;
907 		return 0;
908 	}
909 	if (ret != -ENOSYS)
910 		return ret;
911 
912 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
913 	 * opposed to tried but failed) so we can only give a suitable error as
914 	 * it's not possible to make a private copy if MAP_SHARED was given */
915 	return -ENODEV;
916 }
917 
918 /*
919  * set up a private mapping or an anonymous shared mapping
920  */
921 static int do_mmap_private(struct vm_area_struct *vma,
922 			   struct vm_region *region,
923 			   unsigned long len,
924 			   unsigned long capabilities)
925 {
926 	unsigned long total, point;
927 	void *base;
928 	int ret, order;
929 
930 	/*
931 	 * Invoke the file's mapping function so that it can keep track of
932 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
933 	 * it may attempt to share, which will make is_nommu_shared_mapping()
934 	 * happy.
935 	 */
936 	if (capabilities & NOMMU_MAP_DIRECT) {
937 		ret = call_mmap(vma->vm_file, vma);
938 		/* shouldn't return success if we're not sharing */
939 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
940 			ret = -ENOSYS;
941 		if (ret == 0) {
942 			vma->vm_region->vm_top = vma->vm_region->vm_end;
943 			return 0;
944 		}
945 		if (ret != -ENOSYS)
946 			return ret;
947 
948 		/* getting an ENOSYS error indicates that direct mmap isn't
949 		 * possible (as opposed to tried but failed) so we'll try to
950 		 * make a private copy of the data and map that instead */
951 	}
952 
953 
954 	/* allocate some memory to hold the mapping
955 	 * - note that this may not return a page-aligned address if the object
956 	 *   we're allocating is smaller than a page
957 	 */
958 	order = get_order(len);
959 	total = 1 << order;
960 	point = len >> PAGE_SHIFT;
961 
962 	/* we don't want to allocate a power-of-2 sized page set */
963 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
964 		total = point;
965 
966 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
967 	if (!base)
968 		goto enomem;
969 
970 	atomic_long_add(total, &mmap_pages_allocated);
971 
972 	vm_flags_set(vma, VM_MAPPED_COPY);
973 	region->vm_flags = vma->vm_flags;
974 	region->vm_start = (unsigned long) base;
975 	region->vm_end   = region->vm_start + len;
976 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
977 
978 	vma->vm_start = region->vm_start;
979 	vma->vm_end   = region->vm_start + len;
980 
981 	if (vma->vm_file) {
982 		/* read the contents of a file into the copy */
983 		loff_t fpos;
984 
985 		fpos = vma->vm_pgoff;
986 		fpos <<= PAGE_SHIFT;
987 
988 		ret = kernel_read(vma->vm_file, base, len, &fpos);
989 		if (ret < 0)
990 			goto error_free;
991 
992 		/* clear the last little bit */
993 		if (ret < len)
994 			memset(base + ret, 0, len - ret);
995 
996 	} else {
997 		vma_set_anonymous(vma);
998 	}
999 
1000 	return 0;
1001 
1002 error_free:
1003 	free_page_series(region->vm_start, region->vm_top);
1004 	region->vm_start = vma->vm_start = 0;
1005 	region->vm_end   = vma->vm_end = 0;
1006 	region->vm_top   = 0;
1007 	return ret;
1008 
1009 enomem:
1010 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1011 	       len, current->pid, current->comm);
1012 	show_mem();
1013 	return -ENOMEM;
1014 }
1015 
1016 /*
1017  * handle mapping creation for uClinux
1018  */
1019 unsigned long do_mmap(struct file *file,
1020 			unsigned long addr,
1021 			unsigned long len,
1022 			unsigned long prot,
1023 			unsigned long flags,
1024 			vm_flags_t vm_flags,
1025 			unsigned long pgoff,
1026 			unsigned long *populate,
1027 			struct list_head *uf)
1028 {
1029 	struct vm_area_struct *vma;
1030 	struct vm_region *region;
1031 	struct rb_node *rb;
1032 	unsigned long capabilities, result;
1033 	int ret;
1034 	VMA_ITERATOR(vmi, current->mm, 0);
1035 
1036 	*populate = 0;
1037 
1038 	/* decide whether we should attempt the mapping, and if so what sort of
1039 	 * mapping */
1040 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1041 				    &capabilities);
1042 	if (ret < 0)
1043 		return ret;
1044 
1045 	/* we ignore the address hint */
1046 	addr = 0;
1047 	len = PAGE_ALIGN(len);
1048 
1049 	/* we've determined that we can make the mapping, now translate what we
1050 	 * now know into VMA flags */
1051 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1052 
1053 
1054 	/* we're going to need to record the mapping */
1055 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1056 	if (!region)
1057 		goto error_getting_region;
1058 
1059 	vma = vm_area_alloc(current->mm);
1060 	if (!vma)
1061 		goto error_getting_vma;
1062 
1063 	region->vm_usage = 1;
1064 	region->vm_flags = vm_flags;
1065 	region->vm_pgoff = pgoff;
1066 
1067 	vm_flags_init(vma, vm_flags);
1068 	vma->vm_pgoff = pgoff;
1069 
1070 	if (file) {
1071 		region->vm_file = get_file(file);
1072 		vma->vm_file = get_file(file);
1073 	}
1074 
1075 	down_write(&nommu_region_sem);
1076 
1077 	/* if we want to share, we need to check for regions created by other
1078 	 * mmap() calls that overlap with our proposed mapping
1079 	 * - we can only share with a superset match on most regular files
1080 	 * - shared mappings on character devices and memory backed files are
1081 	 *   permitted to overlap inexactly as far as we are concerned for in
1082 	 *   these cases, sharing is handled in the driver or filesystem rather
1083 	 *   than here
1084 	 */
1085 	if (is_nommu_shared_mapping(vm_flags)) {
1086 		struct vm_region *pregion;
1087 		unsigned long pglen, rpglen, pgend, rpgend, start;
1088 
1089 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090 		pgend = pgoff + pglen;
1091 
1092 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1093 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1094 
1095 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1096 				continue;
1097 
1098 			/* search for overlapping mappings on the same file */
1099 			if (file_inode(pregion->vm_file) !=
1100 			    file_inode(file))
1101 				continue;
1102 
1103 			if (pregion->vm_pgoff >= pgend)
1104 				continue;
1105 
1106 			rpglen = pregion->vm_end - pregion->vm_start;
1107 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1108 			rpgend = pregion->vm_pgoff + rpglen;
1109 			if (pgoff >= rpgend)
1110 				continue;
1111 
1112 			/* handle inexactly overlapping matches between
1113 			 * mappings */
1114 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1115 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1116 				/* new mapping is not a subset of the region */
1117 				if (!(capabilities & NOMMU_MAP_DIRECT))
1118 					goto sharing_violation;
1119 				continue;
1120 			}
1121 
1122 			/* we've found a region we can share */
1123 			pregion->vm_usage++;
1124 			vma->vm_region = pregion;
1125 			start = pregion->vm_start;
1126 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1127 			vma->vm_start = start;
1128 			vma->vm_end = start + len;
1129 
1130 			if (pregion->vm_flags & VM_MAPPED_COPY)
1131 				vm_flags_set(vma, VM_MAPPED_COPY);
1132 			else {
1133 				ret = do_mmap_shared_file(vma);
1134 				if (ret < 0) {
1135 					vma->vm_region = NULL;
1136 					vma->vm_start = 0;
1137 					vma->vm_end = 0;
1138 					pregion->vm_usage--;
1139 					pregion = NULL;
1140 					goto error_just_free;
1141 				}
1142 			}
1143 			fput(region->vm_file);
1144 			kmem_cache_free(vm_region_jar, region);
1145 			region = pregion;
1146 			result = start;
1147 			goto share;
1148 		}
1149 
1150 		/* obtain the address at which to make a shared mapping
1151 		 * - this is the hook for quasi-memory character devices to
1152 		 *   tell us the location of a shared mapping
1153 		 */
1154 		if (capabilities & NOMMU_MAP_DIRECT) {
1155 			addr = file->f_op->get_unmapped_area(file, addr, len,
1156 							     pgoff, flags);
1157 			if (IS_ERR_VALUE(addr)) {
1158 				ret = addr;
1159 				if (ret != -ENOSYS)
1160 					goto error_just_free;
1161 
1162 				/* the driver refused to tell us where to site
1163 				 * the mapping so we'll have to attempt to copy
1164 				 * it */
1165 				ret = -ENODEV;
1166 				if (!(capabilities & NOMMU_MAP_COPY))
1167 					goto error_just_free;
1168 
1169 				capabilities &= ~NOMMU_MAP_DIRECT;
1170 			} else {
1171 				vma->vm_start = region->vm_start = addr;
1172 				vma->vm_end = region->vm_end = addr + len;
1173 			}
1174 		}
1175 	}
1176 
1177 	vma->vm_region = region;
1178 
1179 	/* set up the mapping
1180 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1181 	 */
1182 	if (file && vma->vm_flags & VM_SHARED)
1183 		ret = do_mmap_shared_file(vma);
1184 	else
1185 		ret = do_mmap_private(vma, region, len, capabilities);
1186 	if (ret < 0)
1187 		goto error_just_free;
1188 	add_nommu_region(region);
1189 
1190 	/* clear anonymous mappings that don't ask for uninitialized data */
1191 	if (!vma->vm_file &&
1192 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1193 	     !(flags & MAP_UNINITIALIZED)))
1194 		memset((void *)region->vm_start, 0,
1195 		       region->vm_end - region->vm_start);
1196 
1197 	/* okay... we have a mapping; now we have to register it */
1198 	result = vma->vm_start;
1199 
1200 	current->mm->total_vm += len >> PAGE_SHIFT;
1201 
1202 share:
1203 	BUG_ON(!vma->vm_region);
1204 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1205 	if (vma_iter_prealloc(&vmi, vma))
1206 		goto error_just_free;
1207 
1208 	setup_vma_to_mm(vma, current->mm);
1209 	current->mm->map_count++;
1210 	/* add the VMA to the tree */
1211 	vma_iter_store(&vmi, vma);
1212 
1213 	/* we flush the region from the icache only when the first executable
1214 	 * mapping of it is made  */
1215 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1216 		flush_icache_user_range(region->vm_start, region->vm_end);
1217 		region->vm_icache_flushed = true;
1218 	}
1219 
1220 	up_write(&nommu_region_sem);
1221 
1222 	return result;
1223 
1224 error_just_free:
1225 	up_write(&nommu_region_sem);
1226 error:
1227 	vma_iter_free(&vmi);
1228 	if (region->vm_file)
1229 		fput(region->vm_file);
1230 	kmem_cache_free(vm_region_jar, region);
1231 	if (vma->vm_file)
1232 		fput(vma->vm_file);
1233 	vm_area_free(vma);
1234 	return ret;
1235 
1236 sharing_violation:
1237 	up_write(&nommu_region_sem);
1238 	pr_warn("Attempt to share mismatched mappings\n");
1239 	ret = -EINVAL;
1240 	goto error;
1241 
1242 error_getting_vma:
1243 	kmem_cache_free(vm_region_jar, region);
1244 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1245 			len, current->pid);
1246 	show_mem();
1247 	return -ENOMEM;
1248 
1249 error_getting_region:
1250 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1251 			len, current->pid);
1252 	show_mem();
1253 	return -ENOMEM;
1254 }
1255 
1256 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1257 			      unsigned long prot, unsigned long flags,
1258 			      unsigned long fd, unsigned long pgoff)
1259 {
1260 	struct file *file = NULL;
1261 	unsigned long retval = -EBADF;
1262 
1263 	audit_mmap_fd(fd, flags);
1264 	if (!(flags & MAP_ANONYMOUS)) {
1265 		file = fget(fd);
1266 		if (!file)
1267 			goto out;
1268 	}
1269 
1270 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1271 
1272 	if (file)
1273 		fput(file);
1274 out:
1275 	return retval;
1276 }
1277 
1278 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1279 		unsigned long, prot, unsigned long, flags,
1280 		unsigned long, fd, unsigned long, pgoff)
1281 {
1282 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1283 }
1284 
1285 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1286 struct mmap_arg_struct {
1287 	unsigned long addr;
1288 	unsigned long len;
1289 	unsigned long prot;
1290 	unsigned long flags;
1291 	unsigned long fd;
1292 	unsigned long offset;
1293 };
1294 
1295 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1296 {
1297 	struct mmap_arg_struct a;
1298 
1299 	if (copy_from_user(&a, arg, sizeof(a)))
1300 		return -EFAULT;
1301 	if (offset_in_page(a.offset))
1302 		return -EINVAL;
1303 
1304 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1305 			       a.offset >> PAGE_SHIFT);
1306 }
1307 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1308 
1309 /*
1310  * split a vma into two pieces at address 'addr', a new vma is allocated either
1311  * for the first part or the tail.
1312  */
1313 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1314 		     unsigned long addr, int new_below)
1315 {
1316 	struct vm_area_struct *new;
1317 	struct vm_region *region;
1318 	unsigned long npages;
1319 	struct mm_struct *mm;
1320 
1321 	/* we're only permitted to split anonymous regions (these should have
1322 	 * only a single usage on the region) */
1323 	if (vma->vm_file)
1324 		return -ENOMEM;
1325 
1326 	mm = vma->vm_mm;
1327 	if (mm->map_count >= sysctl_max_map_count)
1328 		return -ENOMEM;
1329 
1330 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1331 	if (!region)
1332 		return -ENOMEM;
1333 
1334 	new = vm_area_dup(vma);
1335 	if (!new)
1336 		goto err_vma_dup;
1337 
1338 	/* most fields are the same, copy all, and then fixup */
1339 	*region = *vma->vm_region;
1340 	new->vm_region = region;
1341 
1342 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1343 
1344 	if (new_below) {
1345 		region->vm_top = region->vm_end = new->vm_end = addr;
1346 	} else {
1347 		region->vm_start = new->vm_start = addr;
1348 		region->vm_pgoff = new->vm_pgoff += npages;
1349 	}
1350 
1351 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1352 	if (vma_iter_prealloc(vmi, vma)) {
1353 		pr_warn("Allocation of vma tree for process %d failed\n",
1354 			current->pid);
1355 		goto err_vmi_preallocate;
1356 	}
1357 
1358 	if (new->vm_ops && new->vm_ops->open)
1359 		new->vm_ops->open(new);
1360 
1361 	down_write(&nommu_region_sem);
1362 	delete_nommu_region(vma->vm_region);
1363 	if (new_below) {
1364 		vma->vm_region->vm_start = vma->vm_start = addr;
1365 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1366 	} else {
1367 		vma->vm_region->vm_end = vma->vm_end = addr;
1368 		vma->vm_region->vm_top = addr;
1369 	}
1370 	add_nommu_region(vma->vm_region);
1371 	add_nommu_region(new->vm_region);
1372 	up_write(&nommu_region_sem);
1373 
1374 	setup_vma_to_mm(vma, mm);
1375 	setup_vma_to_mm(new, mm);
1376 	vma_iter_store(vmi, new);
1377 	mm->map_count++;
1378 	return 0;
1379 
1380 err_vmi_preallocate:
1381 	vm_area_free(new);
1382 err_vma_dup:
1383 	kmem_cache_free(vm_region_jar, region);
1384 	return -ENOMEM;
1385 }
1386 
1387 /*
1388  * shrink a VMA by removing the specified chunk from either the beginning or
1389  * the end
1390  */
1391 static int vmi_shrink_vma(struct vma_iterator *vmi,
1392 		      struct vm_area_struct *vma,
1393 		      unsigned long from, unsigned long to)
1394 {
1395 	struct vm_region *region;
1396 
1397 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1398 	 * and list */
1399 	if (from > vma->vm_start) {
1400 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1401 			return -ENOMEM;
1402 		vma->vm_end = from;
1403 	} else {
1404 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1405 			return -ENOMEM;
1406 		vma->vm_start = to;
1407 	}
1408 
1409 	/* cut the backing region down to size */
1410 	region = vma->vm_region;
1411 	BUG_ON(region->vm_usage != 1);
1412 
1413 	down_write(&nommu_region_sem);
1414 	delete_nommu_region(region);
1415 	if (from > region->vm_start) {
1416 		to = region->vm_top;
1417 		region->vm_top = region->vm_end = from;
1418 	} else {
1419 		region->vm_start = to;
1420 	}
1421 	add_nommu_region(region);
1422 	up_write(&nommu_region_sem);
1423 
1424 	free_page_series(from, to);
1425 	return 0;
1426 }
1427 
1428 /*
1429  * release a mapping
1430  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1431  *   VMA, though it need not cover the whole VMA
1432  */
1433 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1434 {
1435 	VMA_ITERATOR(vmi, mm, start);
1436 	struct vm_area_struct *vma;
1437 	unsigned long end;
1438 	int ret = 0;
1439 
1440 	len = PAGE_ALIGN(len);
1441 	if (len == 0)
1442 		return -EINVAL;
1443 
1444 	end = start + len;
1445 
1446 	/* find the first potentially overlapping VMA */
1447 	vma = vma_find(&vmi, end);
1448 	if (!vma) {
1449 		static int limit;
1450 		if (limit < 5) {
1451 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1452 					current->pid, current->comm,
1453 					start, start + len - 1);
1454 			limit++;
1455 		}
1456 		return -EINVAL;
1457 	}
1458 
1459 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1460 	if (vma->vm_file) {
1461 		do {
1462 			if (start > vma->vm_start)
1463 				return -EINVAL;
1464 			if (end == vma->vm_end)
1465 				goto erase_whole_vma;
1466 			vma = vma_find(&vmi, end);
1467 		} while (vma);
1468 		return -EINVAL;
1469 	} else {
1470 		/* the chunk must be a subset of the VMA found */
1471 		if (start == vma->vm_start && end == vma->vm_end)
1472 			goto erase_whole_vma;
1473 		if (start < vma->vm_start || end > vma->vm_end)
1474 			return -EINVAL;
1475 		if (offset_in_page(start))
1476 			return -EINVAL;
1477 		if (end != vma->vm_end && offset_in_page(end))
1478 			return -EINVAL;
1479 		if (start != vma->vm_start && end != vma->vm_end) {
1480 			ret = split_vma(&vmi, vma, start, 1);
1481 			if (ret < 0)
1482 				return ret;
1483 		}
1484 		return vmi_shrink_vma(&vmi, vma, start, end);
1485 	}
1486 
1487 erase_whole_vma:
1488 	if (delete_vma_from_mm(vma))
1489 		ret = -ENOMEM;
1490 	else
1491 		delete_vma(mm, vma);
1492 	return ret;
1493 }
1494 
1495 int vm_munmap(unsigned long addr, size_t len)
1496 {
1497 	struct mm_struct *mm = current->mm;
1498 	int ret;
1499 
1500 	mmap_write_lock(mm);
1501 	ret = do_munmap(mm, addr, len, NULL);
1502 	mmap_write_unlock(mm);
1503 	return ret;
1504 }
1505 EXPORT_SYMBOL(vm_munmap);
1506 
1507 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1508 {
1509 	return vm_munmap(addr, len);
1510 }
1511 
1512 /*
1513  * release all the mappings made in a process's VM space
1514  */
1515 void exit_mmap(struct mm_struct *mm)
1516 {
1517 	VMA_ITERATOR(vmi, mm, 0);
1518 	struct vm_area_struct *vma;
1519 
1520 	if (!mm)
1521 		return;
1522 
1523 	mm->total_vm = 0;
1524 
1525 	/*
1526 	 * Lock the mm to avoid assert complaining even though this is the only
1527 	 * user of the mm
1528 	 */
1529 	mmap_write_lock(mm);
1530 	for_each_vma(vmi, vma) {
1531 		cleanup_vma_from_mm(vma);
1532 		delete_vma(mm, vma);
1533 		cond_resched();
1534 	}
1535 	__mt_destroy(&mm->mm_mt);
1536 	mmap_write_unlock(mm);
1537 }
1538 
1539 /*
1540  * expand (or shrink) an existing mapping, potentially moving it at the same
1541  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1542  *
1543  * under NOMMU conditions, we only permit changing a mapping's size, and only
1544  * as long as it stays within the region allocated by do_mmap_private() and the
1545  * block is not shareable
1546  *
1547  * MREMAP_FIXED is not supported under NOMMU conditions
1548  */
1549 static unsigned long do_mremap(unsigned long addr,
1550 			unsigned long old_len, unsigned long new_len,
1551 			unsigned long flags, unsigned long new_addr)
1552 {
1553 	struct vm_area_struct *vma;
1554 
1555 	/* insanity checks first */
1556 	old_len = PAGE_ALIGN(old_len);
1557 	new_len = PAGE_ALIGN(new_len);
1558 	if (old_len == 0 || new_len == 0)
1559 		return (unsigned long) -EINVAL;
1560 
1561 	if (offset_in_page(addr))
1562 		return -EINVAL;
1563 
1564 	if (flags & MREMAP_FIXED && new_addr != addr)
1565 		return (unsigned long) -EINVAL;
1566 
1567 	vma = find_vma_exact(current->mm, addr, old_len);
1568 	if (!vma)
1569 		return (unsigned long) -EINVAL;
1570 
1571 	if (vma->vm_end != vma->vm_start + old_len)
1572 		return (unsigned long) -EFAULT;
1573 
1574 	if (is_nommu_shared_mapping(vma->vm_flags))
1575 		return (unsigned long) -EPERM;
1576 
1577 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1578 		return (unsigned long) -ENOMEM;
1579 
1580 	/* all checks complete - do it */
1581 	vma->vm_end = vma->vm_start + new_len;
1582 	return vma->vm_start;
1583 }
1584 
1585 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1586 		unsigned long, new_len, unsigned long, flags,
1587 		unsigned long, new_addr)
1588 {
1589 	unsigned long ret;
1590 
1591 	mmap_write_lock(current->mm);
1592 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1593 	mmap_write_unlock(current->mm);
1594 	return ret;
1595 }
1596 
1597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1598 			 unsigned int foll_flags)
1599 {
1600 	return NULL;
1601 }
1602 
1603 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1604 		unsigned long pfn, unsigned long size, pgprot_t prot)
1605 {
1606 	if (addr != (pfn << PAGE_SHIFT))
1607 		return -EINVAL;
1608 
1609 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(remap_pfn_range);
1613 
1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1615 {
1616 	unsigned long pfn = start >> PAGE_SHIFT;
1617 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1618 
1619 	pfn += vma->vm_pgoff;
1620 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1621 }
1622 EXPORT_SYMBOL(vm_iomap_memory);
1623 
1624 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1625 			unsigned long pgoff)
1626 {
1627 	unsigned int size = vma->vm_end - vma->vm_start;
1628 
1629 	if (!(vma->vm_flags & VM_USERMAP))
1630 		return -EINVAL;
1631 
1632 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1633 	vma->vm_end = vma->vm_start + size;
1634 
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(remap_vmalloc_range);
1638 
1639 vm_fault_t filemap_fault(struct vm_fault *vmf)
1640 {
1641 	BUG();
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL(filemap_fault);
1645 
1646 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1647 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1648 {
1649 	BUG();
1650 	return 0;
1651 }
1652 EXPORT_SYMBOL(filemap_map_pages);
1653 
1654 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1655 			      void *buf, int len, unsigned int gup_flags)
1656 {
1657 	struct vm_area_struct *vma;
1658 	int write = gup_flags & FOLL_WRITE;
1659 
1660 	if (mmap_read_lock_killable(mm))
1661 		return 0;
1662 
1663 	/* the access must start within one of the target process's mappings */
1664 	vma = find_vma(mm, addr);
1665 	if (vma) {
1666 		/* don't overrun this mapping */
1667 		if (addr + len >= vma->vm_end)
1668 			len = vma->vm_end - addr;
1669 
1670 		/* only read or write mappings where it is permitted */
1671 		if (write && vma->vm_flags & VM_MAYWRITE)
1672 			copy_to_user_page(vma, NULL, addr,
1673 					 (void *) addr, buf, len);
1674 		else if (!write && vma->vm_flags & VM_MAYREAD)
1675 			copy_from_user_page(vma, NULL, addr,
1676 					    buf, (void *) addr, len);
1677 		else
1678 			len = 0;
1679 	} else {
1680 		len = 0;
1681 	}
1682 
1683 	mmap_read_unlock(mm);
1684 
1685 	return len;
1686 }
1687 
1688 /**
1689  * access_remote_vm - access another process' address space
1690  * @mm:		the mm_struct of the target address space
1691  * @addr:	start address to access
1692  * @buf:	source or destination buffer
1693  * @len:	number of bytes to transfer
1694  * @gup_flags:	flags modifying lookup behaviour
1695  *
1696  * The caller must hold a reference on @mm.
1697  */
1698 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1699 		void *buf, int len, unsigned int gup_flags)
1700 {
1701 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1702 }
1703 
1704 /*
1705  * Access another process' address space.
1706  * - source/target buffer must be kernel space
1707  */
1708 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1709 		unsigned int gup_flags)
1710 {
1711 	struct mm_struct *mm;
1712 
1713 	if (addr + len < addr)
1714 		return 0;
1715 
1716 	mm = get_task_mm(tsk);
1717 	if (!mm)
1718 		return 0;
1719 
1720 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1721 
1722 	mmput(mm);
1723 	return len;
1724 }
1725 EXPORT_SYMBOL_GPL(access_process_vm);
1726 
1727 /**
1728  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1729  * @inode: The inode to check
1730  * @size: The current filesize of the inode
1731  * @newsize: The proposed filesize of the inode
1732  *
1733  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1734  * make sure that any outstanding VMAs aren't broken and then shrink the
1735  * vm_regions that extend beyond so that do_mmap() doesn't
1736  * automatically grant mappings that are too large.
1737  */
1738 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1739 				size_t newsize)
1740 {
1741 	struct vm_area_struct *vma;
1742 	struct vm_region *region;
1743 	pgoff_t low, high;
1744 	size_t r_size, r_top;
1745 
1746 	low = newsize >> PAGE_SHIFT;
1747 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1748 
1749 	down_write(&nommu_region_sem);
1750 	i_mmap_lock_read(inode->i_mapping);
1751 
1752 	/* search for VMAs that fall within the dead zone */
1753 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1754 		/* found one - only interested if it's shared out of the page
1755 		 * cache */
1756 		if (vma->vm_flags & VM_SHARED) {
1757 			i_mmap_unlock_read(inode->i_mapping);
1758 			up_write(&nommu_region_sem);
1759 			return -ETXTBSY; /* not quite true, but near enough */
1760 		}
1761 	}
1762 
1763 	/* reduce any regions that overlap the dead zone - if in existence,
1764 	 * these will be pointed to by VMAs that don't overlap the dead zone
1765 	 *
1766 	 * we don't check for any regions that start beyond the EOF as there
1767 	 * shouldn't be any
1768 	 */
1769 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1770 		if (!(vma->vm_flags & VM_SHARED))
1771 			continue;
1772 
1773 		region = vma->vm_region;
1774 		r_size = region->vm_top - region->vm_start;
1775 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1776 
1777 		if (r_top > newsize) {
1778 			region->vm_top -= r_top - newsize;
1779 			if (region->vm_end > region->vm_top)
1780 				region->vm_end = region->vm_top;
1781 		}
1782 	}
1783 
1784 	i_mmap_unlock_read(inode->i_mapping);
1785 	up_write(&nommu_region_sem);
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Initialise sysctl_user_reserve_kbytes.
1791  *
1792  * This is intended to prevent a user from starting a single memory hogging
1793  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1794  * mode.
1795  *
1796  * The default value is min(3% of free memory, 128MB)
1797  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1798  */
1799 static int __meminit init_user_reserve(void)
1800 {
1801 	unsigned long free_kbytes;
1802 
1803 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1804 
1805 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1806 	return 0;
1807 }
1808 subsys_initcall(init_user_reserve);
1809 
1810 /*
1811  * Initialise sysctl_admin_reserve_kbytes.
1812  *
1813  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1814  * to log in and kill a memory hogging process.
1815  *
1816  * Systems with more than 256MB will reserve 8MB, enough to recover
1817  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1818  * only reserve 3% of free pages by default.
1819  */
1820 static int __meminit init_admin_reserve(void)
1821 {
1822 	unsigned long free_kbytes;
1823 
1824 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1825 
1826 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1827 	return 0;
1828 }
1829 subsys_initcall(init_admin_reserve);
1830