1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 void vfree(const void *addr) 135 { 136 kfree(addr); 137 } 138 EXPORT_SYMBOL(vfree); 139 140 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 141 { 142 /* 143 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 144 * returns only a logical address. 145 */ 146 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 147 } 148 EXPORT_SYMBOL(__vmalloc); 149 150 void *__vmalloc_node_range(unsigned long size, unsigned long align, 151 unsigned long start, unsigned long end, gfp_t gfp_mask, 152 pgprot_t prot, unsigned long vm_flags, int node, 153 const void *caller) 154 { 155 return __vmalloc(size, gfp_mask); 156 } 157 158 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 159 int node, const void *caller) 160 { 161 return __vmalloc(size, gfp_mask); 162 } 163 164 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 165 { 166 void *ret; 167 168 ret = __vmalloc(size, flags); 169 if (ret) { 170 struct vm_area_struct *vma; 171 172 mmap_write_lock(current->mm); 173 vma = find_vma(current->mm, (unsigned long)ret); 174 if (vma) 175 vm_flags_set(vma, VM_USERMAP); 176 mmap_write_unlock(current->mm); 177 } 178 179 return ret; 180 } 181 182 void *vmalloc_user(unsigned long size) 183 { 184 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 185 } 186 EXPORT_SYMBOL(vmalloc_user); 187 188 struct page *vmalloc_to_page(const void *addr) 189 { 190 return virt_to_page(addr); 191 } 192 EXPORT_SYMBOL(vmalloc_to_page); 193 194 unsigned long vmalloc_to_pfn(const void *addr) 195 { 196 return page_to_pfn(virt_to_page(addr)); 197 } 198 EXPORT_SYMBOL(vmalloc_to_pfn); 199 200 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 201 { 202 /* Don't allow overflow */ 203 if ((unsigned long) addr + count < count) 204 count = -(unsigned long) addr; 205 206 return copy_to_iter(addr, count, iter); 207 } 208 209 /* 210 * vmalloc - allocate virtually contiguous memory 211 * 212 * @size: allocation size 213 * 214 * Allocate enough pages to cover @size from the page level 215 * allocator and map them into contiguous kernel virtual space. 216 * 217 * For tight control over page level allocator and protection flags 218 * use __vmalloc() instead. 219 */ 220 void *vmalloc(unsigned long size) 221 { 222 return __vmalloc(size, GFP_KERNEL); 223 } 224 EXPORT_SYMBOL(vmalloc); 225 226 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 227 228 /* 229 * vzalloc - allocate virtually contiguous memory with zero fill 230 * 231 * @size: allocation size 232 * 233 * Allocate enough pages to cover @size from the page level 234 * allocator and map them into contiguous kernel virtual space. 235 * The memory allocated is set to zero. 236 * 237 * For tight control over page level allocator and protection flags 238 * use __vmalloc() instead. 239 */ 240 void *vzalloc(unsigned long size) 241 { 242 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 243 } 244 EXPORT_SYMBOL(vzalloc); 245 246 /** 247 * vmalloc_node - allocate memory on a specific node 248 * @size: allocation size 249 * @node: numa node 250 * 251 * Allocate enough pages to cover @size from the page level 252 * allocator and map them into contiguous kernel virtual space. 253 * 254 * For tight control over page level allocator and protection flags 255 * use __vmalloc() instead. 256 */ 257 void *vmalloc_node(unsigned long size, int node) 258 { 259 return vmalloc(size); 260 } 261 EXPORT_SYMBOL(vmalloc_node); 262 263 /** 264 * vzalloc_node - allocate memory on a specific node with zero fill 265 * @size: allocation size 266 * @node: numa node 267 * 268 * Allocate enough pages to cover @size from the page level 269 * allocator and map them into contiguous kernel virtual space. 270 * The memory allocated is set to zero. 271 * 272 * For tight control over page level allocator and protection flags 273 * use __vmalloc() instead. 274 */ 275 void *vzalloc_node(unsigned long size, int node) 276 { 277 return vzalloc(size); 278 } 279 EXPORT_SYMBOL(vzalloc_node); 280 281 /** 282 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 283 * @size: allocation size 284 * 285 * Allocate enough 32bit PA addressable pages to cover @size from the 286 * page level allocator and map them into contiguous kernel virtual space. 287 */ 288 void *vmalloc_32(unsigned long size) 289 { 290 return __vmalloc(size, GFP_KERNEL); 291 } 292 EXPORT_SYMBOL(vmalloc_32); 293 294 /** 295 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 296 * @size: allocation size 297 * 298 * The resulting memory area is 32bit addressable and zeroed so it can be 299 * mapped to userspace without leaking data. 300 * 301 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 302 * remap_vmalloc_range() are permissible. 303 */ 304 void *vmalloc_32_user(unsigned long size) 305 { 306 /* 307 * We'll have to sort out the ZONE_DMA bits for 64-bit, 308 * but for now this can simply use vmalloc_user() directly. 309 */ 310 return vmalloc_user(size); 311 } 312 EXPORT_SYMBOL(vmalloc_32_user); 313 314 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 315 { 316 BUG(); 317 return NULL; 318 } 319 EXPORT_SYMBOL(vmap); 320 321 void vunmap(const void *addr) 322 { 323 BUG(); 324 } 325 EXPORT_SYMBOL(vunmap); 326 327 void *vm_map_ram(struct page **pages, unsigned int count, int node) 328 { 329 BUG(); 330 return NULL; 331 } 332 EXPORT_SYMBOL(vm_map_ram); 333 334 void vm_unmap_ram(const void *mem, unsigned int count) 335 { 336 BUG(); 337 } 338 EXPORT_SYMBOL(vm_unmap_ram); 339 340 void vm_unmap_aliases(void) 341 { 342 } 343 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 344 345 void free_vm_area(struct vm_struct *area) 346 { 347 BUG(); 348 } 349 EXPORT_SYMBOL_GPL(free_vm_area); 350 351 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 352 struct page *page) 353 { 354 return -EINVAL; 355 } 356 EXPORT_SYMBOL(vm_insert_page); 357 358 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 359 struct page **pages, unsigned long *num) 360 { 361 return -EINVAL; 362 } 363 EXPORT_SYMBOL(vm_insert_pages); 364 365 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 366 unsigned long num) 367 { 368 return -EINVAL; 369 } 370 EXPORT_SYMBOL(vm_map_pages); 371 372 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 373 unsigned long num) 374 { 375 return -EINVAL; 376 } 377 EXPORT_SYMBOL(vm_map_pages_zero); 378 379 /* 380 * sys_brk() for the most part doesn't need the global kernel 381 * lock, except when an application is doing something nasty 382 * like trying to un-brk an area that has already been mapped 383 * to a regular file. in this case, the unmapping will need 384 * to invoke file system routines that need the global lock. 385 */ 386 SYSCALL_DEFINE1(brk, unsigned long, brk) 387 { 388 struct mm_struct *mm = current->mm; 389 390 if (brk < mm->start_brk || brk > mm->context.end_brk) 391 return mm->brk; 392 393 if (mm->brk == brk) 394 return mm->brk; 395 396 /* 397 * Always allow shrinking brk 398 */ 399 if (brk <= mm->brk) { 400 mm->brk = brk; 401 return brk; 402 } 403 404 /* 405 * Ok, looks good - let it rip. 406 */ 407 flush_icache_user_range(mm->brk, brk); 408 return mm->brk = brk; 409 } 410 411 /* 412 * initialise the percpu counter for VM and region record slabs 413 */ 414 void __init mmap_init(void) 415 { 416 int ret; 417 418 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 419 VM_BUG_ON(ret); 420 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 421 } 422 423 /* 424 * validate the region tree 425 * - the caller must hold the region lock 426 */ 427 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 428 static noinline void validate_nommu_regions(void) 429 { 430 struct vm_region *region, *last; 431 struct rb_node *p, *lastp; 432 433 lastp = rb_first(&nommu_region_tree); 434 if (!lastp) 435 return; 436 437 last = rb_entry(lastp, struct vm_region, vm_rb); 438 BUG_ON(last->vm_end <= last->vm_start); 439 BUG_ON(last->vm_top < last->vm_end); 440 441 while ((p = rb_next(lastp))) { 442 region = rb_entry(p, struct vm_region, vm_rb); 443 last = rb_entry(lastp, struct vm_region, vm_rb); 444 445 BUG_ON(region->vm_end <= region->vm_start); 446 BUG_ON(region->vm_top < region->vm_end); 447 BUG_ON(region->vm_start < last->vm_top); 448 449 lastp = p; 450 } 451 } 452 #else 453 static void validate_nommu_regions(void) 454 { 455 } 456 #endif 457 458 /* 459 * add a region into the global tree 460 */ 461 static void add_nommu_region(struct vm_region *region) 462 { 463 struct vm_region *pregion; 464 struct rb_node **p, *parent; 465 466 validate_nommu_regions(); 467 468 parent = NULL; 469 p = &nommu_region_tree.rb_node; 470 while (*p) { 471 parent = *p; 472 pregion = rb_entry(parent, struct vm_region, vm_rb); 473 if (region->vm_start < pregion->vm_start) 474 p = &(*p)->rb_left; 475 else if (region->vm_start > pregion->vm_start) 476 p = &(*p)->rb_right; 477 else if (pregion == region) 478 return; 479 else 480 BUG(); 481 } 482 483 rb_link_node(®ion->vm_rb, parent, p); 484 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 485 486 validate_nommu_regions(); 487 } 488 489 /* 490 * delete a region from the global tree 491 */ 492 static void delete_nommu_region(struct vm_region *region) 493 { 494 BUG_ON(!nommu_region_tree.rb_node); 495 496 validate_nommu_regions(); 497 rb_erase(®ion->vm_rb, &nommu_region_tree); 498 validate_nommu_regions(); 499 } 500 501 /* 502 * free a contiguous series of pages 503 */ 504 static void free_page_series(unsigned long from, unsigned long to) 505 { 506 for (; from < to; from += PAGE_SIZE) { 507 struct page *page = virt_to_page((void *)from); 508 509 atomic_long_dec(&mmap_pages_allocated); 510 put_page(page); 511 } 512 } 513 514 /* 515 * release a reference to a region 516 * - the caller must hold the region semaphore for writing, which this releases 517 * - the region may not have been added to the tree yet, in which case vm_top 518 * will equal vm_start 519 */ 520 static void __put_nommu_region(struct vm_region *region) 521 __releases(nommu_region_sem) 522 { 523 BUG_ON(!nommu_region_tree.rb_node); 524 525 if (--region->vm_usage == 0) { 526 if (region->vm_top > region->vm_start) 527 delete_nommu_region(region); 528 up_write(&nommu_region_sem); 529 530 if (region->vm_file) 531 fput(region->vm_file); 532 533 /* IO memory and memory shared directly out of the pagecache 534 * from ramfs/tmpfs mustn't be released here */ 535 if (region->vm_flags & VM_MAPPED_COPY) 536 free_page_series(region->vm_start, region->vm_top); 537 kmem_cache_free(vm_region_jar, region); 538 } else { 539 up_write(&nommu_region_sem); 540 } 541 } 542 543 /* 544 * release a reference to a region 545 */ 546 static void put_nommu_region(struct vm_region *region) 547 { 548 down_write(&nommu_region_sem); 549 __put_nommu_region(region); 550 } 551 552 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 553 { 554 vma->vm_mm = mm; 555 556 /* add the VMA to the mapping */ 557 if (vma->vm_file) { 558 struct address_space *mapping = vma->vm_file->f_mapping; 559 560 i_mmap_lock_write(mapping); 561 flush_dcache_mmap_lock(mapping); 562 vma_interval_tree_insert(vma, &mapping->i_mmap); 563 flush_dcache_mmap_unlock(mapping); 564 i_mmap_unlock_write(mapping); 565 } 566 } 567 568 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 569 { 570 vma->vm_mm->map_count--; 571 /* remove the VMA from the mapping */ 572 if (vma->vm_file) { 573 struct address_space *mapping; 574 mapping = vma->vm_file->f_mapping; 575 576 i_mmap_lock_write(mapping); 577 flush_dcache_mmap_lock(mapping); 578 vma_interval_tree_remove(vma, &mapping->i_mmap); 579 flush_dcache_mmap_unlock(mapping); 580 i_mmap_unlock_write(mapping); 581 } 582 } 583 584 /* 585 * delete a VMA from its owning mm_struct and address space 586 */ 587 static int delete_vma_from_mm(struct vm_area_struct *vma) 588 { 589 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 590 591 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 592 if (vma_iter_prealloc(&vmi, vma)) { 593 pr_warn("Allocation of vma tree for process %d failed\n", 594 current->pid); 595 return -ENOMEM; 596 } 597 cleanup_vma_from_mm(vma); 598 599 /* remove from the MM's tree and list */ 600 vma_iter_clear(&vmi); 601 return 0; 602 } 603 /* 604 * destroy a VMA record 605 */ 606 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 607 { 608 if (vma->vm_ops && vma->vm_ops->close) 609 vma->vm_ops->close(vma); 610 if (vma->vm_file) 611 fput(vma->vm_file); 612 put_nommu_region(vma->vm_region); 613 vm_area_free(vma); 614 } 615 616 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 617 unsigned long start_addr, 618 unsigned long end_addr) 619 { 620 unsigned long index = start_addr; 621 622 mmap_assert_locked(mm); 623 return mt_find(&mm->mm_mt, &index, end_addr - 1); 624 } 625 EXPORT_SYMBOL(find_vma_intersection); 626 627 /* 628 * look up the first VMA in which addr resides, NULL if none 629 * - should be called with mm->mmap_lock at least held readlocked 630 */ 631 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 632 { 633 VMA_ITERATOR(vmi, mm, addr); 634 635 return vma_iter_load(&vmi); 636 } 637 EXPORT_SYMBOL(find_vma); 638 639 /* 640 * At least xtensa ends up having protection faults even with no 641 * MMU.. No stack expansion, at least. 642 */ 643 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 644 unsigned long addr, struct pt_regs *regs) 645 { 646 struct vm_area_struct *vma; 647 648 mmap_read_lock(mm); 649 vma = vma_lookup(mm, addr); 650 if (!vma) 651 mmap_read_unlock(mm); 652 return vma; 653 } 654 655 /* 656 * expand a stack to a given address 657 * - not supported under NOMMU conditions 658 */ 659 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 660 { 661 return -ENOMEM; 662 } 663 664 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 665 { 666 mmap_read_unlock(mm); 667 return NULL; 668 } 669 670 /* 671 * look up the first VMA exactly that exactly matches addr 672 * - should be called with mm->mmap_lock at least held readlocked 673 */ 674 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 675 unsigned long addr, 676 unsigned long len) 677 { 678 struct vm_area_struct *vma; 679 unsigned long end = addr + len; 680 VMA_ITERATOR(vmi, mm, addr); 681 682 vma = vma_iter_load(&vmi); 683 if (!vma) 684 return NULL; 685 if (vma->vm_start != addr) 686 return NULL; 687 if (vma->vm_end != end) 688 return NULL; 689 690 return vma; 691 } 692 693 /* 694 * determine whether a mapping should be permitted and, if so, what sort of 695 * mapping we're capable of supporting 696 */ 697 static int validate_mmap_request(struct file *file, 698 unsigned long addr, 699 unsigned long len, 700 unsigned long prot, 701 unsigned long flags, 702 unsigned long pgoff, 703 unsigned long *_capabilities) 704 { 705 unsigned long capabilities, rlen; 706 int ret; 707 708 /* do the simple checks first */ 709 if (flags & MAP_FIXED) 710 return -EINVAL; 711 712 if ((flags & MAP_TYPE) != MAP_PRIVATE && 713 (flags & MAP_TYPE) != MAP_SHARED) 714 return -EINVAL; 715 716 if (!len) 717 return -EINVAL; 718 719 /* Careful about overflows.. */ 720 rlen = PAGE_ALIGN(len); 721 if (!rlen || rlen > TASK_SIZE) 722 return -ENOMEM; 723 724 /* offset overflow? */ 725 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 726 return -EOVERFLOW; 727 728 if (file) { 729 /* files must support mmap */ 730 if (!file->f_op->mmap) 731 return -ENODEV; 732 733 /* work out if what we've got could possibly be shared 734 * - we support chardevs that provide their own "memory" 735 * - we support files/blockdevs that are memory backed 736 */ 737 if (file->f_op->mmap_capabilities) { 738 capabilities = file->f_op->mmap_capabilities(file); 739 } else { 740 /* no explicit capabilities set, so assume some 741 * defaults */ 742 switch (file_inode(file)->i_mode & S_IFMT) { 743 case S_IFREG: 744 case S_IFBLK: 745 capabilities = NOMMU_MAP_COPY; 746 break; 747 748 case S_IFCHR: 749 capabilities = 750 NOMMU_MAP_DIRECT | 751 NOMMU_MAP_READ | 752 NOMMU_MAP_WRITE; 753 break; 754 755 default: 756 return -EINVAL; 757 } 758 } 759 760 /* eliminate any capabilities that we can't support on this 761 * device */ 762 if (!file->f_op->get_unmapped_area) 763 capabilities &= ~NOMMU_MAP_DIRECT; 764 if (!(file->f_mode & FMODE_CAN_READ)) 765 capabilities &= ~NOMMU_MAP_COPY; 766 767 /* The file shall have been opened with read permission. */ 768 if (!(file->f_mode & FMODE_READ)) 769 return -EACCES; 770 771 if (flags & MAP_SHARED) { 772 /* do checks for writing, appending and locking */ 773 if ((prot & PROT_WRITE) && 774 !(file->f_mode & FMODE_WRITE)) 775 return -EACCES; 776 777 if (IS_APPEND(file_inode(file)) && 778 (file->f_mode & FMODE_WRITE)) 779 return -EACCES; 780 781 if (!(capabilities & NOMMU_MAP_DIRECT)) 782 return -ENODEV; 783 784 /* we mustn't privatise shared mappings */ 785 capabilities &= ~NOMMU_MAP_COPY; 786 } else { 787 /* we're going to read the file into private memory we 788 * allocate */ 789 if (!(capabilities & NOMMU_MAP_COPY)) 790 return -ENODEV; 791 792 /* we don't permit a private writable mapping to be 793 * shared with the backing device */ 794 if (prot & PROT_WRITE) 795 capabilities &= ~NOMMU_MAP_DIRECT; 796 } 797 798 if (capabilities & NOMMU_MAP_DIRECT) { 799 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 800 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 801 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 802 ) { 803 capabilities &= ~NOMMU_MAP_DIRECT; 804 if (flags & MAP_SHARED) { 805 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 806 return -EINVAL; 807 } 808 } 809 } 810 811 /* handle executable mappings and implied executable 812 * mappings */ 813 if (path_noexec(&file->f_path)) { 814 if (prot & PROT_EXEC) 815 return -EPERM; 816 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 817 /* handle implication of PROT_EXEC by PROT_READ */ 818 if (current->personality & READ_IMPLIES_EXEC) { 819 if (capabilities & NOMMU_MAP_EXEC) 820 prot |= PROT_EXEC; 821 } 822 } else if ((prot & PROT_READ) && 823 (prot & PROT_EXEC) && 824 !(capabilities & NOMMU_MAP_EXEC) 825 ) { 826 /* backing file is not executable, try to copy */ 827 capabilities &= ~NOMMU_MAP_DIRECT; 828 } 829 } else { 830 /* anonymous mappings are always memory backed and can be 831 * privately mapped 832 */ 833 capabilities = NOMMU_MAP_COPY; 834 835 /* handle PROT_EXEC implication by PROT_READ */ 836 if ((prot & PROT_READ) && 837 (current->personality & READ_IMPLIES_EXEC)) 838 prot |= PROT_EXEC; 839 } 840 841 /* allow the security API to have its say */ 842 ret = security_mmap_addr(addr); 843 if (ret < 0) 844 return ret; 845 846 /* looks okay */ 847 *_capabilities = capabilities; 848 return 0; 849 } 850 851 /* 852 * we've determined that we can make the mapping, now translate what we 853 * now know into VMA flags 854 */ 855 static unsigned long determine_vm_flags(struct file *file, 856 unsigned long prot, 857 unsigned long flags, 858 unsigned long capabilities) 859 { 860 unsigned long vm_flags; 861 862 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 863 864 if (!file) { 865 /* 866 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 867 * there is no fork(). 868 */ 869 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 870 } else if (flags & MAP_PRIVATE) { 871 /* MAP_PRIVATE file mapping */ 872 if (capabilities & NOMMU_MAP_DIRECT) 873 vm_flags |= (capabilities & NOMMU_VMFLAGS); 874 else 875 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 876 877 if (!(prot & PROT_WRITE) && !current->ptrace) 878 /* 879 * R/O private file mapping which cannot be used to 880 * modify memory, especially also not via active ptrace 881 * (e.g., set breakpoints) or later by upgrading 882 * permissions (no mprotect()). We can try overlaying 883 * the file mapping, which will work e.g., on chardevs, 884 * ramfs/tmpfs/shmfs and romfs/cramf. 885 */ 886 vm_flags |= VM_MAYOVERLAY; 887 } else { 888 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 889 vm_flags |= VM_SHARED | VM_MAYSHARE | 890 (capabilities & NOMMU_VMFLAGS); 891 } 892 893 return vm_flags; 894 } 895 896 /* 897 * set up a shared mapping on a file (the driver or filesystem provides and 898 * pins the storage) 899 */ 900 static int do_mmap_shared_file(struct vm_area_struct *vma) 901 { 902 int ret; 903 904 ret = call_mmap(vma->vm_file, vma); 905 if (ret == 0) { 906 vma->vm_region->vm_top = vma->vm_region->vm_end; 907 return 0; 908 } 909 if (ret != -ENOSYS) 910 return ret; 911 912 /* getting -ENOSYS indicates that direct mmap isn't possible (as 913 * opposed to tried but failed) so we can only give a suitable error as 914 * it's not possible to make a private copy if MAP_SHARED was given */ 915 return -ENODEV; 916 } 917 918 /* 919 * set up a private mapping or an anonymous shared mapping 920 */ 921 static int do_mmap_private(struct vm_area_struct *vma, 922 struct vm_region *region, 923 unsigned long len, 924 unsigned long capabilities) 925 { 926 unsigned long total, point; 927 void *base; 928 int ret, order; 929 930 /* 931 * Invoke the file's mapping function so that it can keep track of 932 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 933 * it may attempt to share, which will make is_nommu_shared_mapping() 934 * happy. 935 */ 936 if (capabilities & NOMMU_MAP_DIRECT) { 937 ret = call_mmap(vma->vm_file, vma); 938 /* shouldn't return success if we're not sharing */ 939 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 940 ret = -ENOSYS; 941 if (ret == 0) { 942 vma->vm_region->vm_top = vma->vm_region->vm_end; 943 return 0; 944 } 945 if (ret != -ENOSYS) 946 return ret; 947 948 /* getting an ENOSYS error indicates that direct mmap isn't 949 * possible (as opposed to tried but failed) so we'll try to 950 * make a private copy of the data and map that instead */ 951 } 952 953 954 /* allocate some memory to hold the mapping 955 * - note that this may not return a page-aligned address if the object 956 * we're allocating is smaller than a page 957 */ 958 order = get_order(len); 959 total = 1 << order; 960 point = len >> PAGE_SHIFT; 961 962 /* we don't want to allocate a power-of-2 sized page set */ 963 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 964 total = point; 965 966 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 967 if (!base) 968 goto enomem; 969 970 atomic_long_add(total, &mmap_pages_allocated); 971 972 vm_flags_set(vma, VM_MAPPED_COPY); 973 region->vm_flags = vma->vm_flags; 974 region->vm_start = (unsigned long) base; 975 region->vm_end = region->vm_start + len; 976 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 977 978 vma->vm_start = region->vm_start; 979 vma->vm_end = region->vm_start + len; 980 981 if (vma->vm_file) { 982 /* read the contents of a file into the copy */ 983 loff_t fpos; 984 985 fpos = vma->vm_pgoff; 986 fpos <<= PAGE_SHIFT; 987 988 ret = kernel_read(vma->vm_file, base, len, &fpos); 989 if (ret < 0) 990 goto error_free; 991 992 /* clear the last little bit */ 993 if (ret < len) 994 memset(base + ret, 0, len - ret); 995 996 } else { 997 vma_set_anonymous(vma); 998 } 999 1000 return 0; 1001 1002 error_free: 1003 free_page_series(region->vm_start, region->vm_top); 1004 region->vm_start = vma->vm_start = 0; 1005 region->vm_end = vma->vm_end = 0; 1006 region->vm_top = 0; 1007 return ret; 1008 1009 enomem: 1010 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1011 len, current->pid, current->comm); 1012 show_mem(); 1013 return -ENOMEM; 1014 } 1015 1016 /* 1017 * handle mapping creation for uClinux 1018 */ 1019 unsigned long do_mmap(struct file *file, 1020 unsigned long addr, 1021 unsigned long len, 1022 unsigned long prot, 1023 unsigned long flags, 1024 vm_flags_t vm_flags, 1025 unsigned long pgoff, 1026 unsigned long *populate, 1027 struct list_head *uf) 1028 { 1029 struct vm_area_struct *vma; 1030 struct vm_region *region; 1031 struct rb_node *rb; 1032 unsigned long capabilities, result; 1033 int ret; 1034 VMA_ITERATOR(vmi, current->mm, 0); 1035 1036 *populate = 0; 1037 1038 /* decide whether we should attempt the mapping, and if so what sort of 1039 * mapping */ 1040 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1041 &capabilities); 1042 if (ret < 0) 1043 return ret; 1044 1045 /* we ignore the address hint */ 1046 addr = 0; 1047 len = PAGE_ALIGN(len); 1048 1049 /* we've determined that we can make the mapping, now translate what we 1050 * now know into VMA flags */ 1051 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1052 1053 1054 /* we're going to need to record the mapping */ 1055 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1056 if (!region) 1057 goto error_getting_region; 1058 1059 vma = vm_area_alloc(current->mm); 1060 if (!vma) 1061 goto error_getting_vma; 1062 1063 region->vm_usage = 1; 1064 region->vm_flags = vm_flags; 1065 region->vm_pgoff = pgoff; 1066 1067 vm_flags_init(vma, vm_flags); 1068 vma->vm_pgoff = pgoff; 1069 1070 if (file) { 1071 region->vm_file = get_file(file); 1072 vma->vm_file = get_file(file); 1073 } 1074 1075 down_write(&nommu_region_sem); 1076 1077 /* if we want to share, we need to check for regions created by other 1078 * mmap() calls that overlap with our proposed mapping 1079 * - we can only share with a superset match on most regular files 1080 * - shared mappings on character devices and memory backed files are 1081 * permitted to overlap inexactly as far as we are concerned for in 1082 * these cases, sharing is handled in the driver or filesystem rather 1083 * than here 1084 */ 1085 if (is_nommu_shared_mapping(vm_flags)) { 1086 struct vm_region *pregion; 1087 unsigned long pglen, rpglen, pgend, rpgend, start; 1088 1089 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1090 pgend = pgoff + pglen; 1091 1092 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1093 pregion = rb_entry(rb, struct vm_region, vm_rb); 1094 1095 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1096 continue; 1097 1098 /* search for overlapping mappings on the same file */ 1099 if (file_inode(pregion->vm_file) != 1100 file_inode(file)) 1101 continue; 1102 1103 if (pregion->vm_pgoff >= pgend) 1104 continue; 1105 1106 rpglen = pregion->vm_end - pregion->vm_start; 1107 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1108 rpgend = pregion->vm_pgoff + rpglen; 1109 if (pgoff >= rpgend) 1110 continue; 1111 1112 /* handle inexactly overlapping matches between 1113 * mappings */ 1114 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1115 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1116 /* new mapping is not a subset of the region */ 1117 if (!(capabilities & NOMMU_MAP_DIRECT)) 1118 goto sharing_violation; 1119 continue; 1120 } 1121 1122 /* we've found a region we can share */ 1123 pregion->vm_usage++; 1124 vma->vm_region = pregion; 1125 start = pregion->vm_start; 1126 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1127 vma->vm_start = start; 1128 vma->vm_end = start + len; 1129 1130 if (pregion->vm_flags & VM_MAPPED_COPY) 1131 vm_flags_set(vma, VM_MAPPED_COPY); 1132 else { 1133 ret = do_mmap_shared_file(vma); 1134 if (ret < 0) { 1135 vma->vm_region = NULL; 1136 vma->vm_start = 0; 1137 vma->vm_end = 0; 1138 pregion->vm_usage--; 1139 pregion = NULL; 1140 goto error_just_free; 1141 } 1142 } 1143 fput(region->vm_file); 1144 kmem_cache_free(vm_region_jar, region); 1145 region = pregion; 1146 result = start; 1147 goto share; 1148 } 1149 1150 /* obtain the address at which to make a shared mapping 1151 * - this is the hook for quasi-memory character devices to 1152 * tell us the location of a shared mapping 1153 */ 1154 if (capabilities & NOMMU_MAP_DIRECT) { 1155 addr = file->f_op->get_unmapped_area(file, addr, len, 1156 pgoff, flags); 1157 if (IS_ERR_VALUE(addr)) { 1158 ret = addr; 1159 if (ret != -ENOSYS) 1160 goto error_just_free; 1161 1162 /* the driver refused to tell us where to site 1163 * the mapping so we'll have to attempt to copy 1164 * it */ 1165 ret = -ENODEV; 1166 if (!(capabilities & NOMMU_MAP_COPY)) 1167 goto error_just_free; 1168 1169 capabilities &= ~NOMMU_MAP_DIRECT; 1170 } else { 1171 vma->vm_start = region->vm_start = addr; 1172 vma->vm_end = region->vm_end = addr + len; 1173 } 1174 } 1175 } 1176 1177 vma->vm_region = region; 1178 1179 /* set up the mapping 1180 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1181 */ 1182 if (file && vma->vm_flags & VM_SHARED) 1183 ret = do_mmap_shared_file(vma); 1184 else 1185 ret = do_mmap_private(vma, region, len, capabilities); 1186 if (ret < 0) 1187 goto error_just_free; 1188 add_nommu_region(region); 1189 1190 /* clear anonymous mappings that don't ask for uninitialized data */ 1191 if (!vma->vm_file && 1192 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1193 !(flags & MAP_UNINITIALIZED))) 1194 memset((void *)region->vm_start, 0, 1195 region->vm_end - region->vm_start); 1196 1197 /* okay... we have a mapping; now we have to register it */ 1198 result = vma->vm_start; 1199 1200 current->mm->total_vm += len >> PAGE_SHIFT; 1201 1202 share: 1203 BUG_ON(!vma->vm_region); 1204 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1205 if (vma_iter_prealloc(&vmi, vma)) 1206 goto error_just_free; 1207 1208 setup_vma_to_mm(vma, current->mm); 1209 current->mm->map_count++; 1210 /* add the VMA to the tree */ 1211 vma_iter_store(&vmi, vma); 1212 1213 /* we flush the region from the icache only when the first executable 1214 * mapping of it is made */ 1215 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1216 flush_icache_user_range(region->vm_start, region->vm_end); 1217 region->vm_icache_flushed = true; 1218 } 1219 1220 up_write(&nommu_region_sem); 1221 1222 return result; 1223 1224 error_just_free: 1225 up_write(&nommu_region_sem); 1226 error: 1227 vma_iter_free(&vmi); 1228 if (region->vm_file) 1229 fput(region->vm_file); 1230 kmem_cache_free(vm_region_jar, region); 1231 if (vma->vm_file) 1232 fput(vma->vm_file); 1233 vm_area_free(vma); 1234 return ret; 1235 1236 sharing_violation: 1237 up_write(&nommu_region_sem); 1238 pr_warn("Attempt to share mismatched mappings\n"); 1239 ret = -EINVAL; 1240 goto error; 1241 1242 error_getting_vma: 1243 kmem_cache_free(vm_region_jar, region); 1244 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1245 len, current->pid); 1246 show_mem(); 1247 return -ENOMEM; 1248 1249 error_getting_region: 1250 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1251 len, current->pid); 1252 show_mem(); 1253 return -ENOMEM; 1254 } 1255 1256 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1257 unsigned long prot, unsigned long flags, 1258 unsigned long fd, unsigned long pgoff) 1259 { 1260 struct file *file = NULL; 1261 unsigned long retval = -EBADF; 1262 1263 audit_mmap_fd(fd, flags); 1264 if (!(flags & MAP_ANONYMOUS)) { 1265 file = fget(fd); 1266 if (!file) 1267 goto out; 1268 } 1269 1270 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1271 1272 if (file) 1273 fput(file); 1274 out: 1275 return retval; 1276 } 1277 1278 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1279 unsigned long, prot, unsigned long, flags, 1280 unsigned long, fd, unsigned long, pgoff) 1281 { 1282 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1283 } 1284 1285 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1286 struct mmap_arg_struct { 1287 unsigned long addr; 1288 unsigned long len; 1289 unsigned long prot; 1290 unsigned long flags; 1291 unsigned long fd; 1292 unsigned long offset; 1293 }; 1294 1295 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1296 { 1297 struct mmap_arg_struct a; 1298 1299 if (copy_from_user(&a, arg, sizeof(a))) 1300 return -EFAULT; 1301 if (offset_in_page(a.offset)) 1302 return -EINVAL; 1303 1304 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1305 a.offset >> PAGE_SHIFT); 1306 } 1307 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1308 1309 /* 1310 * split a vma into two pieces at address 'addr', a new vma is allocated either 1311 * for the first part or the tail. 1312 */ 1313 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1314 unsigned long addr, int new_below) 1315 { 1316 struct vm_area_struct *new; 1317 struct vm_region *region; 1318 unsigned long npages; 1319 struct mm_struct *mm; 1320 1321 /* we're only permitted to split anonymous regions (these should have 1322 * only a single usage on the region) */ 1323 if (vma->vm_file) 1324 return -ENOMEM; 1325 1326 mm = vma->vm_mm; 1327 if (mm->map_count >= sysctl_max_map_count) 1328 return -ENOMEM; 1329 1330 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1331 if (!region) 1332 return -ENOMEM; 1333 1334 new = vm_area_dup(vma); 1335 if (!new) 1336 goto err_vma_dup; 1337 1338 /* most fields are the same, copy all, and then fixup */ 1339 *region = *vma->vm_region; 1340 new->vm_region = region; 1341 1342 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1343 1344 if (new_below) { 1345 region->vm_top = region->vm_end = new->vm_end = addr; 1346 } else { 1347 region->vm_start = new->vm_start = addr; 1348 region->vm_pgoff = new->vm_pgoff += npages; 1349 } 1350 1351 vma_iter_config(vmi, new->vm_start, new->vm_end); 1352 if (vma_iter_prealloc(vmi, vma)) { 1353 pr_warn("Allocation of vma tree for process %d failed\n", 1354 current->pid); 1355 goto err_vmi_preallocate; 1356 } 1357 1358 if (new->vm_ops && new->vm_ops->open) 1359 new->vm_ops->open(new); 1360 1361 down_write(&nommu_region_sem); 1362 delete_nommu_region(vma->vm_region); 1363 if (new_below) { 1364 vma->vm_region->vm_start = vma->vm_start = addr; 1365 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1366 } else { 1367 vma->vm_region->vm_end = vma->vm_end = addr; 1368 vma->vm_region->vm_top = addr; 1369 } 1370 add_nommu_region(vma->vm_region); 1371 add_nommu_region(new->vm_region); 1372 up_write(&nommu_region_sem); 1373 1374 setup_vma_to_mm(vma, mm); 1375 setup_vma_to_mm(new, mm); 1376 vma_iter_store(vmi, new); 1377 mm->map_count++; 1378 return 0; 1379 1380 err_vmi_preallocate: 1381 vm_area_free(new); 1382 err_vma_dup: 1383 kmem_cache_free(vm_region_jar, region); 1384 return -ENOMEM; 1385 } 1386 1387 /* 1388 * shrink a VMA by removing the specified chunk from either the beginning or 1389 * the end 1390 */ 1391 static int vmi_shrink_vma(struct vma_iterator *vmi, 1392 struct vm_area_struct *vma, 1393 unsigned long from, unsigned long to) 1394 { 1395 struct vm_region *region; 1396 1397 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1398 * and list */ 1399 if (from > vma->vm_start) { 1400 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1401 return -ENOMEM; 1402 vma->vm_end = from; 1403 } else { 1404 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1405 return -ENOMEM; 1406 vma->vm_start = to; 1407 } 1408 1409 /* cut the backing region down to size */ 1410 region = vma->vm_region; 1411 BUG_ON(region->vm_usage != 1); 1412 1413 down_write(&nommu_region_sem); 1414 delete_nommu_region(region); 1415 if (from > region->vm_start) { 1416 to = region->vm_top; 1417 region->vm_top = region->vm_end = from; 1418 } else { 1419 region->vm_start = to; 1420 } 1421 add_nommu_region(region); 1422 up_write(&nommu_region_sem); 1423 1424 free_page_series(from, to); 1425 return 0; 1426 } 1427 1428 /* 1429 * release a mapping 1430 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1431 * VMA, though it need not cover the whole VMA 1432 */ 1433 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1434 { 1435 VMA_ITERATOR(vmi, mm, start); 1436 struct vm_area_struct *vma; 1437 unsigned long end; 1438 int ret = 0; 1439 1440 len = PAGE_ALIGN(len); 1441 if (len == 0) 1442 return -EINVAL; 1443 1444 end = start + len; 1445 1446 /* find the first potentially overlapping VMA */ 1447 vma = vma_find(&vmi, end); 1448 if (!vma) { 1449 static int limit; 1450 if (limit < 5) { 1451 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1452 current->pid, current->comm, 1453 start, start + len - 1); 1454 limit++; 1455 } 1456 return -EINVAL; 1457 } 1458 1459 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1460 if (vma->vm_file) { 1461 do { 1462 if (start > vma->vm_start) 1463 return -EINVAL; 1464 if (end == vma->vm_end) 1465 goto erase_whole_vma; 1466 vma = vma_find(&vmi, end); 1467 } while (vma); 1468 return -EINVAL; 1469 } else { 1470 /* the chunk must be a subset of the VMA found */ 1471 if (start == vma->vm_start && end == vma->vm_end) 1472 goto erase_whole_vma; 1473 if (start < vma->vm_start || end > vma->vm_end) 1474 return -EINVAL; 1475 if (offset_in_page(start)) 1476 return -EINVAL; 1477 if (end != vma->vm_end && offset_in_page(end)) 1478 return -EINVAL; 1479 if (start != vma->vm_start && end != vma->vm_end) { 1480 ret = split_vma(&vmi, vma, start, 1); 1481 if (ret < 0) 1482 return ret; 1483 } 1484 return vmi_shrink_vma(&vmi, vma, start, end); 1485 } 1486 1487 erase_whole_vma: 1488 if (delete_vma_from_mm(vma)) 1489 ret = -ENOMEM; 1490 else 1491 delete_vma(mm, vma); 1492 return ret; 1493 } 1494 1495 int vm_munmap(unsigned long addr, size_t len) 1496 { 1497 struct mm_struct *mm = current->mm; 1498 int ret; 1499 1500 mmap_write_lock(mm); 1501 ret = do_munmap(mm, addr, len, NULL); 1502 mmap_write_unlock(mm); 1503 return ret; 1504 } 1505 EXPORT_SYMBOL(vm_munmap); 1506 1507 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1508 { 1509 return vm_munmap(addr, len); 1510 } 1511 1512 /* 1513 * release all the mappings made in a process's VM space 1514 */ 1515 void exit_mmap(struct mm_struct *mm) 1516 { 1517 VMA_ITERATOR(vmi, mm, 0); 1518 struct vm_area_struct *vma; 1519 1520 if (!mm) 1521 return; 1522 1523 mm->total_vm = 0; 1524 1525 /* 1526 * Lock the mm to avoid assert complaining even though this is the only 1527 * user of the mm 1528 */ 1529 mmap_write_lock(mm); 1530 for_each_vma(vmi, vma) { 1531 cleanup_vma_from_mm(vma); 1532 delete_vma(mm, vma); 1533 cond_resched(); 1534 } 1535 __mt_destroy(&mm->mm_mt); 1536 mmap_write_unlock(mm); 1537 } 1538 1539 /* 1540 * expand (or shrink) an existing mapping, potentially moving it at the same 1541 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1542 * 1543 * under NOMMU conditions, we only permit changing a mapping's size, and only 1544 * as long as it stays within the region allocated by do_mmap_private() and the 1545 * block is not shareable 1546 * 1547 * MREMAP_FIXED is not supported under NOMMU conditions 1548 */ 1549 static unsigned long do_mremap(unsigned long addr, 1550 unsigned long old_len, unsigned long new_len, 1551 unsigned long flags, unsigned long new_addr) 1552 { 1553 struct vm_area_struct *vma; 1554 1555 /* insanity checks first */ 1556 old_len = PAGE_ALIGN(old_len); 1557 new_len = PAGE_ALIGN(new_len); 1558 if (old_len == 0 || new_len == 0) 1559 return (unsigned long) -EINVAL; 1560 1561 if (offset_in_page(addr)) 1562 return -EINVAL; 1563 1564 if (flags & MREMAP_FIXED && new_addr != addr) 1565 return (unsigned long) -EINVAL; 1566 1567 vma = find_vma_exact(current->mm, addr, old_len); 1568 if (!vma) 1569 return (unsigned long) -EINVAL; 1570 1571 if (vma->vm_end != vma->vm_start + old_len) 1572 return (unsigned long) -EFAULT; 1573 1574 if (is_nommu_shared_mapping(vma->vm_flags)) 1575 return (unsigned long) -EPERM; 1576 1577 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1578 return (unsigned long) -ENOMEM; 1579 1580 /* all checks complete - do it */ 1581 vma->vm_end = vma->vm_start + new_len; 1582 return vma->vm_start; 1583 } 1584 1585 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1586 unsigned long, new_len, unsigned long, flags, 1587 unsigned long, new_addr) 1588 { 1589 unsigned long ret; 1590 1591 mmap_write_lock(current->mm); 1592 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1593 mmap_write_unlock(current->mm); 1594 return ret; 1595 } 1596 1597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1598 unsigned int foll_flags) 1599 { 1600 return NULL; 1601 } 1602 1603 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1604 unsigned long pfn, unsigned long size, pgprot_t prot) 1605 { 1606 if (addr != (pfn << PAGE_SHIFT)) 1607 return -EINVAL; 1608 1609 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1610 return 0; 1611 } 1612 EXPORT_SYMBOL(remap_pfn_range); 1613 1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1615 { 1616 unsigned long pfn = start >> PAGE_SHIFT; 1617 unsigned long vm_len = vma->vm_end - vma->vm_start; 1618 1619 pfn += vma->vm_pgoff; 1620 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1621 } 1622 EXPORT_SYMBOL(vm_iomap_memory); 1623 1624 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1625 unsigned long pgoff) 1626 { 1627 unsigned int size = vma->vm_end - vma->vm_start; 1628 1629 if (!(vma->vm_flags & VM_USERMAP)) 1630 return -EINVAL; 1631 1632 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1633 vma->vm_end = vma->vm_start + size; 1634 1635 return 0; 1636 } 1637 EXPORT_SYMBOL(remap_vmalloc_range); 1638 1639 vm_fault_t filemap_fault(struct vm_fault *vmf) 1640 { 1641 BUG(); 1642 return 0; 1643 } 1644 EXPORT_SYMBOL(filemap_fault); 1645 1646 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1647 pgoff_t start_pgoff, pgoff_t end_pgoff) 1648 { 1649 BUG(); 1650 return 0; 1651 } 1652 EXPORT_SYMBOL(filemap_map_pages); 1653 1654 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1655 void *buf, int len, unsigned int gup_flags) 1656 { 1657 struct vm_area_struct *vma; 1658 int write = gup_flags & FOLL_WRITE; 1659 1660 if (mmap_read_lock_killable(mm)) 1661 return 0; 1662 1663 /* the access must start within one of the target process's mappings */ 1664 vma = find_vma(mm, addr); 1665 if (vma) { 1666 /* don't overrun this mapping */ 1667 if (addr + len >= vma->vm_end) 1668 len = vma->vm_end - addr; 1669 1670 /* only read or write mappings where it is permitted */ 1671 if (write && vma->vm_flags & VM_MAYWRITE) 1672 copy_to_user_page(vma, NULL, addr, 1673 (void *) addr, buf, len); 1674 else if (!write && vma->vm_flags & VM_MAYREAD) 1675 copy_from_user_page(vma, NULL, addr, 1676 buf, (void *) addr, len); 1677 else 1678 len = 0; 1679 } else { 1680 len = 0; 1681 } 1682 1683 mmap_read_unlock(mm); 1684 1685 return len; 1686 } 1687 1688 /** 1689 * access_remote_vm - access another process' address space 1690 * @mm: the mm_struct of the target address space 1691 * @addr: start address to access 1692 * @buf: source or destination buffer 1693 * @len: number of bytes to transfer 1694 * @gup_flags: flags modifying lookup behaviour 1695 * 1696 * The caller must hold a reference on @mm. 1697 */ 1698 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1699 void *buf, int len, unsigned int gup_flags) 1700 { 1701 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1702 } 1703 1704 /* 1705 * Access another process' address space. 1706 * - source/target buffer must be kernel space 1707 */ 1708 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1709 unsigned int gup_flags) 1710 { 1711 struct mm_struct *mm; 1712 1713 if (addr + len < addr) 1714 return 0; 1715 1716 mm = get_task_mm(tsk); 1717 if (!mm) 1718 return 0; 1719 1720 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1721 1722 mmput(mm); 1723 return len; 1724 } 1725 EXPORT_SYMBOL_GPL(access_process_vm); 1726 1727 /** 1728 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1729 * @inode: The inode to check 1730 * @size: The current filesize of the inode 1731 * @newsize: The proposed filesize of the inode 1732 * 1733 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1734 * make sure that any outstanding VMAs aren't broken and then shrink the 1735 * vm_regions that extend beyond so that do_mmap() doesn't 1736 * automatically grant mappings that are too large. 1737 */ 1738 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1739 size_t newsize) 1740 { 1741 struct vm_area_struct *vma; 1742 struct vm_region *region; 1743 pgoff_t low, high; 1744 size_t r_size, r_top; 1745 1746 low = newsize >> PAGE_SHIFT; 1747 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1748 1749 down_write(&nommu_region_sem); 1750 i_mmap_lock_read(inode->i_mapping); 1751 1752 /* search for VMAs that fall within the dead zone */ 1753 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1754 /* found one - only interested if it's shared out of the page 1755 * cache */ 1756 if (vma->vm_flags & VM_SHARED) { 1757 i_mmap_unlock_read(inode->i_mapping); 1758 up_write(&nommu_region_sem); 1759 return -ETXTBSY; /* not quite true, but near enough */ 1760 } 1761 } 1762 1763 /* reduce any regions that overlap the dead zone - if in existence, 1764 * these will be pointed to by VMAs that don't overlap the dead zone 1765 * 1766 * we don't check for any regions that start beyond the EOF as there 1767 * shouldn't be any 1768 */ 1769 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1770 if (!(vma->vm_flags & VM_SHARED)) 1771 continue; 1772 1773 region = vma->vm_region; 1774 r_size = region->vm_top - region->vm_start; 1775 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1776 1777 if (r_top > newsize) { 1778 region->vm_top -= r_top - newsize; 1779 if (region->vm_end > region->vm_top) 1780 region->vm_end = region->vm_top; 1781 } 1782 } 1783 1784 i_mmap_unlock_read(inode->i_mapping); 1785 up_write(&nommu_region_sem); 1786 return 0; 1787 } 1788 1789 /* 1790 * Initialise sysctl_user_reserve_kbytes. 1791 * 1792 * This is intended to prevent a user from starting a single memory hogging 1793 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1794 * mode. 1795 * 1796 * The default value is min(3% of free memory, 128MB) 1797 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1798 */ 1799 static int __meminit init_user_reserve(void) 1800 { 1801 unsigned long free_kbytes; 1802 1803 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1804 1805 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1806 return 0; 1807 } 1808 subsys_initcall(init_user_reserve); 1809 1810 /* 1811 * Initialise sysctl_admin_reserve_kbytes. 1812 * 1813 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1814 * to log in and kill a memory hogging process. 1815 * 1816 * Systems with more than 256MB will reserve 8MB, enough to recover 1817 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1818 * only reserve 3% of free pages by default. 1819 */ 1820 static int __meminit init_admin_reserve(void) 1821 { 1822 unsigned long free_kbytes; 1823 1824 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1825 1826 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1827 return 0; 1828 } 1829 subsys_initcall(init_admin_reserve); 1830