xref: /linux/mm/nommu.c (revision 861e10be08c69808065d755d3e3cab5d520a2d32)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39 
40 #if 0
41 #define kenter(FMT, ...) \
42 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55 
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
67 
68 atomic_long_t mmap_pages_allocated;
69 
70 /*
71  * The global memory commitment made in the system can be a metric
72  * that can be used to drive ballooning decisions when Linux is hosted
73  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
74  * balancing memory across competing virtual machines that are hosted.
75  * Several metrics drive this policy engine including the guest reported
76  * memory commitment.
77  */
78 unsigned long vm_memory_committed(void)
79 {
80 	return percpu_counter_read_positive(&vm_committed_as);
81 }
82 
83 EXPORT_SYMBOL_GPL(vm_memory_committed);
84 
85 EXPORT_SYMBOL(mem_map);
86 EXPORT_SYMBOL(num_physpages);
87 
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache *vm_region_jar;
90 struct rb_root nommu_region_tree = RB_ROOT;
91 DECLARE_RWSEM(nommu_region_sem);
92 
93 const struct vm_operations_struct generic_file_vm_ops = {
94 };
95 
96 /*
97  * Return the total memory allocated for this pointer, not
98  * just what the caller asked for.
99  *
100  * Doesn't have to be accurate, i.e. may have races.
101  */
102 unsigned int kobjsize(const void *objp)
103 {
104 	struct page *page;
105 
106 	/*
107 	 * If the object we have should not have ksize performed on it,
108 	 * return size of 0
109 	 */
110 	if (!objp || !virt_addr_valid(objp))
111 		return 0;
112 
113 	page = virt_to_head_page(objp);
114 
115 	/*
116 	 * If the allocator sets PageSlab, we know the pointer came from
117 	 * kmalloc().
118 	 */
119 	if (PageSlab(page))
120 		return ksize(objp);
121 
122 	/*
123 	 * If it's not a compound page, see if we have a matching VMA
124 	 * region. This test is intentionally done in reverse order,
125 	 * so if there's no VMA, we still fall through and hand back
126 	 * PAGE_SIZE for 0-order pages.
127 	 */
128 	if (!PageCompound(page)) {
129 		struct vm_area_struct *vma;
130 
131 		vma = find_vma(current->mm, (unsigned long)objp);
132 		if (vma)
133 			return vma->vm_end - vma->vm_start;
134 	}
135 
136 	/*
137 	 * The ksize() function is only guaranteed to work for pointers
138 	 * returned by kmalloc(). So handle arbitrary pointers here.
139 	 */
140 	return PAGE_SIZE << compound_order(page);
141 }
142 
143 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
144 		     unsigned long start, int nr_pages, unsigned int foll_flags,
145 		     struct page **pages, struct vm_area_struct **vmas,
146 		     int *retry)
147 {
148 	struct vm_area_struct *vma;
149 	unsigned long vm_flags;
150 	int i;
151 
152 	/* calculate required read or write permissions.
153 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
154 	 */
155 	vm_flags  = (foll_flags & FOLL_WRITE) ?
156 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
157 	vm_flags &= (foll_flags & FOLL_FORCE) ?
158 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
159 
160 	for (i = 0; i < nr_pages; i++) {
161 		vma = find_vma(mm, start);
162 		if (!vma)
163 			goto finish_or_fault;
164 
165 		/* protect what we can, including chardevs */
166 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
167 		    !(vm_flags & vma->vm_flags))
168 			goto finish_or_fault;
169 
170 		if (pages) {
171 			pages[i] = virt_to_page(start);
172 			if (pages[i])
173 				page_cache_get(pages[i]);
174 		}
175 		if (vmas)
176 			vmas[i] = vma;
177 		start = (start + PAGE_SIZE) & PAGE_MASK;
178 	}
179 
180 	return i;
181 
182 finish_or_fault:
183 	return i ? : -EFAULT;
184 }
185 
186 /*
187  * get a list of pages in an address range belonging to the specified process
188  * and indicate the VMA that covers each page
189  * - this is potentially dodgy as we may end incrementing the page count of a
190  *   slab page or a secondary page from a compound page
191  * - don't permit access to VMAs that don't support it, such as I/O mappings
192  */
193 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
194 	unsigned long start, int nr_pages, int write, int force,
195 	struct page **pages, struct vm_area_struct **vmas)
196 {
197 	int flags = 0;
198 
199 	if (write)
200 		flags |= FOLL_WRITE;
201 	if (force)
202 		flags |= FOLL_FORCE;
203 
204 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
205 				NULL);
206 }
207 EXPORT_SYMBOL(get_user_pages);
208 
209 /**
210  * follow_pfn - look up PFN at a user virtual address
211  * @vma: memory mapping
212  * @address: user virtual address
213  * @pfn: location to store found PFN
214  *
215  * Only IO mappings and raw PFN mappings are allowed.
216  *
217  * Returns zero and the pfn at @pfn on success, -ve otherwise.
218  */
219 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
220 	unsigned long *pfn)
221 {
222 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
223 		return -EINVAL;
224 
225 	*pfn = address >> PAGE_SHIFT;
226 	return 0;
227 }
228 EXPORT_SYMBOL(follow_pfn);
229 
230 DEFINE_RWLOCK(vmlist_lock);
231 struct vm_struct *vmlist;
232 
233 void vfree(const void *addr)
234 {
235 	kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238 
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241 	/*
242 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 	 * returns only a logical address.
244 	 */
245 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248 
249 void *vmalloc_user(unsigned long size)
250 {
251 	void *ret;
252 
253 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254 			PAGE_KERNEL);
255 	if (ret) {
256 		struct vm_area_struct *vma;
257 
258 		down_write(&current->mm->mmap_sem);
259 		vma = find_vma(current->mm, (unsigned long)ret);
260 		if (vma)
261 			vma->vm_flags |= VM_USERMAP;
262 		up_write(&current->mm->mmap_sem);
263 	}
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268 
269 struct page *vmalloc_to_page(const void *addr)
270 {
271 	return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274 
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277 	return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280 
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283 	memcpy(buf, addr, count);
284 	return count;
285 }
286 
287 long vwrite(char *buf, char *addr, unsigned long count)
288 {
289 	/* Don't allow overflow */
290 	if ((unsigned long) addr + count < count)
291 		count = -(unsigned long) addr;
292 
293 	memcpy(addr, buf, count);
294 	return(count);
295 }
296 
297 /*
298  *	vmalloc  -  allocate virtually continguos memory
299  *
300  *	@size:		allocation size
301  *
302  *	Allocate enough pages to cover @size from the page level
303  *	allocator and map them into continguos kernel virtual space.
304  *
305  *	For tight control over page level allocator and protection flags
306  *	use __vmalloc() instead.
307  */
308 void *vmalloc(unsigned long size)
309 {
310        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
311 }
312 EXPORT_SYMBOL(vmalloc);
313 
314 /*
315  *	vzalloc - allocate virtually continguos memory with zero fill
316  *
317  *	@size:		allocation size
318  *
319  *	Allocate enough pages to cover @size from the page level
320  *	allocator and map them into continguos kernel virtual space.
321  *	The memory allocated is set to zero.
322  *
323  *	For tight control over page level allocator and protection flags
324  *	use __vmalloc() instead.
325  */
326 void *vzalloc(unsigned long size)
327 {
328 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
329 			PAGE_KERNEL);
330 }
331 EXPORT_SYMBOL(vzalloc);
332 
333 /**
334  * vmalloc_node - allocate memory on a specific node
335  * @size:	allocation size
336  * @node:	numa node
337  *
338  * Allocate enough pages to cover @size from the page level
339  * allocator and map them into contiguous kernel virtual space.
340  *
341  * For tight control over page level allocator and protection flags
342  * use __vmalloc() instead.
343  */
344 void *vmalloc_node(unsigned long size, int node)
345 {
346 	return vmalloc(size);
347 }
348 EXPORT_SYMBOL(vmalloc_node);
349 
350 /**
351  * vzalloc_node - allocate memory on a specific node with zero fill
352  * @size:	allocation size
353  * @node:	numa node
354  *
355  * Allocate enough pages to cover @size from the page level
356  * allocator and map them into contiguous kernel virtual space.
357  * The memory allocated is set to zero.
358  *
359  * For tight control over page level allocator and protection flags
360  * use __vmalloc() instead.
361  */
362 void *vzalloc_node(unsigned long size, int node)
363 {
364 	return vzalloc(size);
365 }
366 EXPORT_SYMBOL(vzalloc_node);
367 
368 #ifndef PAGE_KERNEL_EXEC
369 # define PAGE_KERNEL_EXEC PAGE_KERNEL
370 #endif
371 
372 /**
373  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
374  *	@size:		allocation size
375  *
376  *	Kernel-internal function to allocate enough pages to cover @size
377  *	the page level allocator and map them into contiguous and
378  *	executable kernel virtual space.
379  *
380  *	For tight control over page level allocator and protection flags
381  *	use __vmalloc() instead.
382  */
383 
384 void *vmalloc_exec(unsigned long size)
385 {
386 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
387 }
388 
389 /**
390  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
391  *	@size:		allocation size
392  *
393  *	Allocate enough 32bit PA addressable pages to cover @size from the
394  *	page level allocator and map them into continguos kernel virtual space.
395  */
396 void *vmalloc_32(unsigned long size)
397 {
398 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
399 }
400 EXPORT_SYMBOL(vmalloc_32);
401 
402 /**
403  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
404  *	@size:		allocation size
405  *
406  * The resulting memory area is 32bit addressable and zeroed so it can be
407  * mapped to userspace without leaking data.
408  *
409  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
410  * remap_vmalloc_range() are permissible.
411  */
412 void *vmalloc_32_user(unsigned long size)
413 {
414 	/*
415 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
416 	 * but for now this can simply use vmalloc_user() directly.
417 	 */
418 	return vmalloc_user(size);
419 }
420 EXPORT_SYMBOL(vmalloc_32_user);
421 
422 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
423 {
424 	BUG();
425 	return NULL;
426 }
427 EXPORT_SYMBOL(vmap);
428 
429 void vunmap(const void *addr)
430 {
431 	BUG();
432 }
433 EXPORT_SYMBOL(vunmap);
434 
435 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
436 {
437 	BUG();
438 	return NULL;
439 }
440 EXPORT_SYMBOL(vm_map_ram);
441 
442 void vm_unmap_ram(const void *mem, unsigned int count)
443 {
444 	BUG();
445 }
446 EXPORT_SYMBOL(vm_unmap_ram);
447 
448 void vm_unmap_aliases(void)
449 {
450 }
451 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
452 
453 /*
454  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
455  * have one.
456  */
457 void  __attribute__((weak)) vmalloc_sync_all(void)
458 {
459 }
460 
461 /**
462  *	alloc_vm_area - allocate a range of kernel address space
463  *	@size:		size of the area
464  *
465  *	Returns:	NULL on failure, vm_struct on success
466  *
467  *	This function reserves a range of kernel address space, and
468  *	allocates pagetables to map that range.  No actual mappings
469  *	are created.  If the kernel address space is not shared
470  *	between processes, it syncs the pagetable across all
471  *	processes.
472  */
473 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
474 {
475 	BUG();
476 	return NULL;
477 }
478 EXPORT_SYMBOL_GPL(alloc_vm_area);
479 
480 void free_vm_area(struct vm_struct *area)
481 {
482 	BUG();
483 }
484 EXPORT_SYMBOL_GPL(free_vm_area);
485 
486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
487 		   struct page *page)
488 {
489 	return -EINVAL;
490 }
491 EXPORT_SYMBOL(vm_insert_page);
492 
493 /*
494  *  sys_brk() for the most part doesn't need the global kernel
495  *  lock, except when an application is doing something nasty
496  *  like trying to un-brk an area that has already been mapped
497  *  to a regular file.  in this case, the unmapping will need
498  *  to invoke file system routines that need the global lock.
499  */
500 SYSCALL_DEFINE1(brk, unsigned long, brk)
501 {
502 	struct mm_struct *mm = current->mm;
503 
504 	if (brk < mm->start_brk || brk > mm->context.end_brk)
505 		return mm->brk;
506 
507 	if (mm->brk == brk)
508 		return mm->brk;
509 
510 	/*
511 	 * Always allow shrinking brk
512 	 */
513 	if (brk <= mm->brk) {
514 		mm->brk = brk;
515 		return brk;
516 	}
517 
518 	/*
519 	 * Ok, looks good - let it rip.
520 	 */
521 	flush_icache_range(mm->brk, brk);
522 	return mm->brk = brk;
523 }
524 
525 /*
526  * initialise the VMA and region record slabs
527  */
528 void __init mmap_init(void)
529 {
530 	int ret;
531 
532 	ret = percpu_counter_init(&vm_committed_as, 0);
533 	VM_BUG_ON(ret);
534 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
535 }
536 
537 /*
538  * validate the region tree
539  * - the caller must hold the region lock
540  */
541 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
542 static noinline void validate_nommu_regions(void)
543 {
544 	struct vm_region *region, *last;
545 	struct rb_node *p, *lastp;
546 
547 	lastp = rb_first(&nommu_region_tree);
548 	if (!lastp)
549 		return;
550 
551 	last = rb_entry(lastp, struct vm_region, vm_rb);
552 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
553 	BUG_ON(unlikely(last->vm_top < last->vm_end));
554 
555 	while ((p = rb_next(lastp))) {
556 		region = rb_entry(p, struct vm_region, vm_rb);
557 		last = rb_entry(lastp, struct vm_region, vm_rb);
558 
559 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
560 		BUG_ON(unlikely(region->vm_top < region->vm_end));
561 		BUG_ON(unlikely(region->vm_start < last->vm_top));
562 
563 		lastp = p;
564 	}
565 }
566 #else
567 static void validate_nommu_regions(void)
568 {
569 }
570 #endif
571 
572 /*
573  * add a region into the global tree
574  */
575 static void add_nommu_region(struct vm_region *region)
576 {
577 	struct vm_region *pregion;
578 	struct rb_node **p, *parent;
579 
580 	validate_nommu_regions();
581 
582 	parent = NULL;
583 	p = &nommu_region_tree.rb_node;
584 	while (*p) {
585 		parent = *p;
586 		pregion = rb_entry(parent, struct vm_region, vm_rb);
587 		if (region->vm_start < pregion->vm_start)
588 			p = &(*p)->rb_left;
589 		else if (region->vm_start > pregion->vm_start)
590 			p = &(*p)->rb_right;
591 		else if (pregion == region)
592 			return;
593 		else
594 			BUG();
595 	}
596 
597 	rb_link_node(&region->vm_rb, parent, p);
598 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
599 
600 	validate_nommu_regions();
601 }
602 
603 /*
604  * delete a region from the global tree
605  */
606 static void delete_nommu_region(struct vm_region *region)
607 {
608 	BUG_ON(!nommu_region_tree.rb_node);
609 
610 	validate_nommu_regions();
611 	rb_erase(&region->vm_rb, &nommu_region_tree);
612 	validate_nommu_regions();
613 }
614 
615 /*
616  * free a contiguous series of pages
617  */
618 static void free_page_series(unsigned long from, unsigned long to)
619 {
620 	for (; from < to; from += PAGE_SIZE) {
621 		struct page *page = virt_to_page(from);
622 
623 		kdebug("- free %lx", from);
624 		atomic_long_dec(&mmap_pages_allocated);
625 		if (page_count(page) != 1)
626 			kdebug("free page %p: refcount not one: %d",
627 			       page, page_count(page));
628 		put_page(page);
629 	}
630 }
631 
632 /*
633  * release a reference to a region
634  * - the caller must hold the region semaphore for writing, which this releases
635  * - the region may not have been added to the tree yet, in which case vm_top
636  *   will equal vm_start
637  */
638 static void __put_nommu_region(struct vm_region *region)
639 	__releases(nommu_region_sem)
640 {
641 	kenter("%p{%d}", region, region->vm_usage);
642 
643 	BUG_ON(!nommu_region_tree.rb_node);
644 
645 	if (--region->vm_usage == 0) {
646 		if (region->vm_top > region->vm_start)
647 			delete_nommu_region(region);
648 		up_write(&nommu_region_sem);
649 
650 		if (region->vm_file)
651 			fput(region->vm_file);
652 
653 		/* IO memory and memory shared directly out of the pagecache
654 		 * from ramfs/tmpfs mustn't be released here */
655 		if (region->vm_flags & VM_MAPPED_COPY) {
656 			kdebug("free series");
657 			free_page_series(region->vm_start, region->vm_top);
658 		}
659 		kmem_cache_free(vm_region_jar, region);
660 	} else {
661 		up_write(&nommu_region_sem);
662 	}
663 }
664 
665 /*
666  * release a reference to a region
667  */
668 static void put_nommu_region(struct vm_region *region)
669 {
670 	down_write(&nommu_region_sem);
671 	__put_nommu_region(region);
672 }
673 
674 /*
675  * update protection on a vma
676  */
677 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
678 {
679 #ifdef CONFIG_MPU
680 	struct mm_struct *mm = vma->vm_mm;
681 	long start = vma->vm_start & PAGE_MASK;
682 	while (start < vma->vm_end) {
683 		protect_page(mm, start, flags);
684 		start += PAGE_SIZE;
685 	}
686 	update_protections(mm);
687 #endif
688 }
689 
690 /*
691  * add a VMA into a process's mm_struct in the appropriate place in the list
692  * and tree and add to the address space's page tree also if not an anonymous
693  * page
694  * - should be called with mm->mmap_sem held writelocked
695  */
696 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
697 {
698 	struct vm_area_struct *pvma, *prev;
699 	struct address_space *mapping;
700 	struct rb_node **p, *parent, *rb_prev;
701 
702 	kenter(",%p", vma);
703 
704 	BUG_ON(!vma->vm_region);
705 
706 	mm->map_count++;
707 	vma->vm_mm = mm;
708 
709 	protect_vma(vma, vma->vm_flags);
710 
711 	/* add the VMA to the mapping */
712 	if (vma->vm_file) {
713 		mapping = vma->vm_file->f_mapping;
714 
715 		mutex_lock(&mapping->i_mmap_mutex);
716 		flush_dcache_mmap_lock(mapping);
717 		vma_interval_tree_insert(vma, &mapping->i_mmap);
718 		flush_dcache_mmap_unlock(mapping);
719 		mutex_unlock(&mapping->i_mmap_mutex);
720 	}
721 
722 	/* add the VMA to the tree */
723 	parent = rb_prev = NULL;
724 	p = &mm->mm_rb.rb_node;
725 	while (*p) {
726 		parent = *p;
727 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
728 
729 		/* sort by: start addr, end addr, VMA struct addr in that order
730 		 * (the latter is necessary as we may get identical VMAs) */
731 		if (vma->vm_start < pvma->vm_start)
732 			p = &(*p)->rb_left;
733 		else if (vma->vm_start > pvma->vm_start) {
734 			rb_prev = parent;
735 			p = &(*p)->rb_right;
736 		} else if (vma->vm_end < pvma->vm_end)
737 			p = &(*p)->rb_left;
738 		else if (vma->vm_end > pvma->vm_end) {
739 			rb_prev = parent;
740 			p = &(*p)->rb_right;
741 		} else if (vma < pvma)
742 			p = &(*p)->rb_left;
743 		else if (vma > pvma) {
744 			rb_prev = parent;
745 			p = &(*p)->rb_right;
746 		} else
747 			BUG();
748 	}
749 
750 	rb_link_node(&vma->vm_rb, parent, p);
751 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
752 
753 	/* add VMA to the VMA list also */
754 	prev = NULL;
755 	if (rb_prev)
756 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
757 
758 	__vma_link_list(mm, vma, prev, parent);
759 }
760 
761 /*
762  * delete a VMA from its owning mm_struct and address space
763  */
764 static void delete_vma_from_mm(struct vm_area_struct *vma)
765 {
766 	struct address_space *mapping;
767 	struct mm_struct *mm = vma->vm_mm;
768 
769 	kenter("%p", vma);
770 
771 	protect_vma(vma, 0);
772 
773 	mm->map_count--;
774 	if (mm->mmap_cache == vma)
775 		mm->mmap_cache = NULL;
776 
777 	/* remove the VMA from the mapping */
778 	if (vma->vm_file) {
779 		mapping = vma->vm_file->f_mapping;
780 
781 		mutex_lock(&mapping->i_mmap_mutex);
782 		flush_dcache_mmap_lock(mapping);
783 		vma_interval_tree_remove(vma, &mapping->i_mmap);
784 		flush_dcache_mmap_unlock(mapping);
785 		mutex_unlock(&mapping->i_mmap_mutex);
786 	}
787 
788 	/* remove from the MM's tree and list */
789 	rb_erase(&vma->vm_rb, &mm->mm_rb);
790 
791 	if (vma->vm_prev)
792 		vma->vm_prev->vm_next = vma->vm_next;
793 	else
794 		mm->mmap = vma->vm_next;
795 
796 	if (vma->vm_next)
797 		vma->vm_next->vm_prev = vma->vm_prev;
798 }
799 
800 /*
801  * destroy a VMA record
802  */
803 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
804 {
805 	kenter("%p", vma);
806 	if (vma->vm_ops && vma->vm_ops->close)
807 		vma->vm_ops->close(vma);
808 	if (vma->vm_file)
809 		fput(vma->vm_file);
810 	put_nommu_region(vma->vm_region);
811 	kmem_cache_free(vm_area_cachep, vma);
812 }
813 
814 /*
815  * look up the first VMA in which addr resides, NULL if none
816  * - should be called with mm->mmap_sem at least held readlocked
817  */
818 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
819 {
820 	struct vm_area_struct *vma;
821 
822 	/* check the cache first */
823 	vma = mm->mmap_cache;
824 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
825 		return vma;
826 
827 	/* trawl the list (there may be multiple mappings in which addr
828 	 * resides) */
829 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
830 		if (vma->vm_start > addr)
831 			return NULL;
832 		if (vma->vm_end > addr) {
833 			mm->mmap_cache = vma;
834 			return vma;
835 		}
836 	}
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(find_vma);
841 
842 /*
843  * find a VMA
844  * - we don't extend stack VMAs under NOMMU conditions
845  */
846 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
847 {
848 	return find_vma(mm, addr);
849 }
850 
851 /*
852  * expand a stack to a given address
853  * - not supported under NOMMU conditions
854  */
855 int expand_stack(struct vm_area_struct *vma, unsigned long address)
856 {
857 	return -ENOMEM;
858 }
859 
860 /*
861  * look up the first VMA exactly that exactly matches addr
862  * - should be called with mm->mmap_sem at least held readlocked
863  */
864 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
865 					     unsigned long addr,
866 					     unsigned long len)
867 {
868 	struct vm_area_struct *vma;
869 	unsigned long end = addr + len;
870 
871 	/* check the cache first */
872 	vma = mm->mmap_cache;
873 	if (vma && vma->vm_start == addr && vma->vm_end == end)
874 		return vma;
875 
876 	/* trawl the list (there may be multiple mappings in which addr
877 	 * resides) */
878 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
879 		if (vma->vm_start < addr)
880 			continue;
881 		if (vma->vm_start > addr)
882 			return NULL;
883 		if (vma->vm_end == end) {
884 			mm->mmap_cache = vma;
885 			return vma;
886 		}
887 	}
888 
889 	return NULL;
890 }
891 
892 /*
893  * determine whether a mapping should be permitted and, if so, what sort of
894  * mapping we're capable of supporting
895  */
896 static int validate_mmap_request(struct file *file,
897 				 unsigned long addr,
898 				 unsigned long len,
899 				 unsigned long prot,
900 				 unsigned long flags,
901 				 unsigned long pgoff,
902 				 unsigned long *_capabilities)
903 {
904 	unsigned long capabilities, rlen;
905 	int ret;
906 
907 	/* do the simple checks first */
908 	if (flags & MAP_FIXED) {
909 		printk(KERN_DEBUG
910 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
911 		       current->pid);
912 		return -EINVAL;
913 	}
914 
915 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
916 	    (flags & MAP_TYPE) != MAP_SHARED)
917 		return -EINVAL;
918 
919 	if (!len)
920 		return -EINVAL;
921 
922 	/* Careful about overflows.. */
923 	rlen = PAGE_ALIGN(len);
924 	if (!rlen || rlen > TASK_SIZE)
925 		return -ENOMEM;
926 
927 	/* offset overflow? */
928 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
929 		return -EOVERFLOW;
930 
931 	if (file) {
932 		/* validate file mapping requests */
933 		struct address_space *mapping;
934 
935 		/* files must support mmap */
936 		if (!file->f_op || !file->f_op->mmap)
937 			return -ENODEV;
938 
939 		/* work out if what we've got could possibly be shared
940 		 * - we support chardevs that provide their own "memory"
941 		 * - we support files/blockdevs that are memory backed
942 		 */
943 		mapping = file->f_mapping;
944 		if (!mapping)
945 			mapping = file->f_path.dentry->d_inode->i_mapping;
946 
947 		capabilities = 0;
948 		if (mapping && mapping->backing_dev_info)
949 			capabilities = mapping->backing_dev_info->capabilities;
950 
951 		if (!capabilities) {
952 			/* no explicit capabilities set, so assume some
953 			 * defaults */
954 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
955 			case S_IFREG:
956 			case S_IFBLK:
957 				capabilities = BDI_CAP_MAP_COPY;
958 				break;
959 
960 			case S_IFCHR:
961 				capabilities =
962 					BDI_CAP_MAP_DIRECT |
963 					BDI_CAP_READ_MAP |
964 					BDI_CAP_WRITE_MAP;
965 				break;
966 
967 			default:
968 				return -EINVAL;
969 			}
970 		}
971 
972 		/* eliminate any capabilities that we can't support on this
973 		 * device */
974 		if (!file->f_op->get_unmapped_area)
975 			capabilities &= ~BDI_CAP_MAP_DIRECT;
976 		if (!file->f_op->read)
977 			capabilities &= ~BDI_CAP_MAP_COPY;
978 
979 		/* The file shall have been opened with read permission. */
980 		if (!(file->f_mode & FMODE_READ))
981 			return -EACCES;
982 
983 		if (flags & MAP_SHARED) {
984 			/* do checks for writing, appending and locking */
985 			if ((prot & PROT_WRITE) &&
986 			    !(file->f_mode & FMODE_WRITE))
987 				return -EACCES;
988 
989 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
990 			    (file->f_mode & FMODE_WRITE))
991 				return -EACCES;
992 
993 			if (locks_verify_locked(file->f_path.dentry->d_inode))
994 				return -EAGAIN;
995 
996 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
997 				return -ENODEV;
998 
999 			/* we mustn't privatise shared mappings */
1000 			capabilities &= ~BDI_CAP_MAP_COPY;
1001 		}
1002 		else {
1003 			/* we're going to read the file into private memory we
1004 			 * allocate */
1005 			if (!(capabilities & BDI_CAP_MAP_COPY))
1006 				return -ENODEV;
1007 
1008 			/* we don't permit a private writable mapping to be
1009 			 * shared with the backing device */
1010 			if (prot & PROT_WRITE)
1011 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1012 		}
1013 
1014 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1015 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1016 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1017 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1018 			    ) {
1019 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1020 				if (flags & MAP_SHARED) {
1021 					printk(KERN_WARNING
1022 					       "MAP_SHARED not completely supported on !MMU\n");
1023 					return -EINVAL;
1024 				}
1025 			}
1026 		}
1027 
1028 		/* handle executable mappings and implied executable
1029 		 * mappings */
1030 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1031 			if (prot & PROT_EXEC)
1032 				return -EPERM;
1033 		}
1034 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1035 			/* handle implication of PROT_EXEC by PROT_READ */
1036 			if (current->personality & READ_IMPLIES_EXEC) {
1037 				if (capabilities & BDI_CAP_EXEC_MAP)
1038 					prot |= PROT_EXEC;
1039 			}
1040 		}
1041 		else if ((prot & PROT_READ) &&
1042 			 (prot & PROT_EXEC) &&
1043 			 !(capabilities & BDI_CAP_EXEC_MAP)
1044 			 ) {
1045 			/* backing file is not executable, try to copy */
1046 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1047 		}
1048 	}
1049 	else {
1050 		/* anonymous mappings are always memory backed and can be
1051 		 * privately mapped
1052 		 */
1053 		capabilities = BDI_CAP_MAP_COPY;
1054 
1055 		/* handle PROT_EXEC implication by PROT_READ */
1056 		if ((prot & PROT_READ) &&
1057 		    (current->personality & READ_IMPLIES_EXEC))
1058 			prot |= PROT_EXEC;
1059 	}
1060 
1061 	/* allow the security API to have its say */
1062 	ret = security_mmap_addr(addr);
1063 	if (ret < 0)
1064 		return ret;
1065 
1066 	/* looks okay */
1067 	*_capabilities = capabilities;
1068 	return 0;
1069 }
1070 
1071 /*
1072  * we've determined that we can make the mapping, now translate what we
1073  * now know into VMA flags
1074  */
1075 static unsigned long determine_vm_flags(struct file *file,
1076 					unsigned long prot,
1077 					unsigned long flags,
1078 					unsigned long capabilities)
1079 {
1080 	unsigned long vm_flags;
1081 
1082 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1083 	/* vm_flags |= mm->def_flags; */
1084 
1085 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1086 		/* attempt to share read-only copies of mapped file chunks */
1087 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1088 		if (file && !(prot & PROT_WRITE))
1089 			vm_flags |= VM_MAYSHARE;
1090 	} else {
1091 		/* overlay a shareable mapping on the backing device or inode
1092 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1093 		 * romfs/cramfs */
1094 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1095 		if (flags & MAP_SHARED)
1096 			vm_flags |= VM_SHARED;
1097 	}
1098 
1099 	/* refuse to let anyone share private mappings with this process if
1100 	 * it's being traced - otherwise breakpoints set in it may interfere
1101 	 * with another untraced process
1102 	 */
1103 	if ((flags & MAP_PRIVATE) && current->ptrace)
1104 		vm_flags &= ~VM_MAYSHARE;
1105 
1106 	return vm_flags;
1107 }
1108 
1109 /*
1110  * set up a shared mapping on a file (the driver or filesystem provides and
1111  * pins the storage)
1112  */
1113 static int do_mmap_shared_file(struct vm_area_struct *vma)
1114 {
1115 	int ret;
1116 
1117 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1118 	if (ret == 0) {
1119 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1120 		return 0;
1121 	}
1122 	if (ret != -ENOSYS)
1123 		return ret;
1124 
1125 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1126 	 * opposed to tried but failed) so we can only give a suitable error as
1127 	 * it's not possible to make a private copy if MAP_SHARED was given */
1128 	return -ENODEV;
1129 }
1130 
1131 /*
1132  * set up a private mapping or an anonymous shared mapping
1133  */
1134 static int do_mmap_private(struct vm_area_struct *vma,
1135 			   struct vm_region *region,
1136 			   unsigned long len,
1137 			   unsigned long capabilities)
1138 {
1139 	struct page *pages;
1140 	unsigned long total, point, n;
1141 	void *base;
1142 	int ret, order;
1143 
1144 	/* invoke the file's mapping function so that it can keep track of
1145 	 * shared mappings on devices or memory
1146 	 * - VM_MAYSHARE will be set if it may attempt to share
1147 	 */
1148 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1149 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1150 		if (ret == 0) {
1151 			/* shouldn't return success if we're not sharing */
1152 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1153 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1154 			return 0;
1155 		}
1156 		if (ret != -ENOSYS)
1157 			return ret;
1158 
1159 		/* getting an ENOSYS error indicates that direct mmap isn't
1160 		 * possible (as opposed to tried but failed) so we'll try to
1161 		 * make a private copy of the data and map that instead */
1162 	}
1163 
1164 
1165 	/* allocate some memory to hold the mapping
1166 	 * - note that this may not return a page-aligned address if the object
1167 	 *   we're allocating is smaller than a page
1168 	 */
1169 	order = get_order(len);
1170 	kdebug("alloc order %d for %lx", order, len);
1171 
1172 	pages = alloc_pages(GFP_KERNEL, order);
1173 	if (!pages)
1174 		goto enomem;
1175 
1176 	total = 1 << order;
1177 	atomic_long_add(total, &mmap_pages_allocated);
1178 
1179 	point = len >> PAGE_SHIFT;
1180 
1181 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1182 	 * the excess */
1183 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1184 		while (total > point) {
1185 			order = ilog2(total - point);
1186 			n = 1 << order;
1187 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1188 			atomic_long_sub(n, &mmap_pages_allocated);
1189 			total -= n;
1190 			set_page_refcounted(pages + total);
1191 			__free_pages(pages + total, order);
1192 		}
1193 	}
1194 
1195 	for (point = 1; point < total; point++)
1196 		set_page_refcounted(&pages[point]);
1197 
1198 	base = page_address(pages);
1199 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1200 	region->vm_start = (unsigned long) base;
1201 	region->vm_end   = region->vm_start + len;
1202 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1203 
1204 	vma->vm_start = region->vm_start;
1205 	vma->vm_end   = region->vm_start + len;
1206 
1207 	if (vma->vm_file) {
1208 		/* read the contents of a file into the copy */
1209 		mm_segment_t old_fs;
1210 		loff_t fpos;
1211 
1212 		fpos = vma->vm_pgoff;
1213 		fpos <<= PAGE_SHIFT;
1214 
1215 		old_fs = get_fs();
1216 		set_fs(KERNEL_DS);
1217 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1218 		set_fs(old_fs);
1219 
1220 		if (ret < 0)
1221 			goto error_free;
1222 
1223 		/* clear the last little bit */
1224 		if (ret < len)
1225 			memset(base + ret, 0, len - ret);
1226 
1227 	}
1228 
1229 	return 0;
1230 
1231 error_free:
1232 	free_page_series(region->vm_start, region->vm_top);
1233 	region->vm_start = vma->vm_start = 0;
1234 	region->vm_end   = vma->vm_end = 0;
1235 	region->vm_top   = 0;
1236 	return ret;
1237 
1238 enomem:
1239 	printk("Allocation of length %lu from process %d (%s) failed\n",
1240 	       len, current->pid, current->comm);
1241 	show_free_areas(0);
1242 	return -ENOMEM;
1243 }
1244 
1245 /*
1246  * handle mapping creation for uClinux
1247  */
1248 unsigned long do_mmap_pgoff(struct file *file,
1249 			    unsigned long addr,
1250 			    unsigned long len,
1251 			    unsigned long prot,
1252 			    unsigned long flags,
1253 			    unsigned long pgoff)
1254 {
1255 	struct vm_area_struct *vma;
1256 	struct vm_region *region;
1257 	struct rb_node *rb;
1258 	unsigned long capabilities, vm_flags, result;
1259 	int ret;
1260 
1261 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1262 
1263 	/* decide whether we should attempt the mapping, and if so what sort of
1264 	 * mapping */
1265 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1266 				    &capabilities);
1267 	if (ret < 0) {
1268 		kleave(" = %d [val]", ret);
1269 		return ret;
1270 	}
1271 
1272 	/* we ignore the address hint */
1273 	addr = 0;
1274 	len = PAGE_ALIGN(len);
1275 
1276 	/* we've determined that we can make the mapping, now translate what we
1277 	 * now know into VMA flags */
1278 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1279 
1280 	/* we're going to need to record the mapping */
1281 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1282 	if (!region)
1283 		goto error_getting_region;
1284 
1285 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1286 	if (!vma)
1287 		goto error_getting_vma;
1288 
1289 	region->vm_usage = 1;
1290 	region->vm_flags = vm_flags;
1291 	region->vm_pgoff = pgoff;
1292 
1293 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1294 	vma->vm_flags = vm_flags;
1295 	vma->vm_pgoff = pgoff;
1296 
1297 	if (file) {
1298 		region->vm_file = get_file(file);
1299 		vma->vm_file = get_file(file);
1300 	}
1301 
1302 	down_write(&nommu_region_sem);
1303 
1304 	/* if we want to share, we need to check for regions created by other
1305 	 * mmap() calls that overlap with our proposed mapping
1306 	 * - we can only share with a superset match on most regular files
1307 	 * - shared mappings on character devices and memory backed files are
1308 	 *   permitted to overlap inexactly as far as we are concerned for in
1309 	 *   these cases, sharing is handled in the driver or filesystem rather
1310 	 *   than here
1311 	 */
1312 	if (vm_flags & VM_MAYSHARE) {
1313 		struct vm_region *pregion;
1314 		unsigned long pglen, rpglen, pgend, rpgend, start;
1315 
1316 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1317 		pgend = pgoff + pglen;
1318 
1319 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1320 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1321 
1322 			if (!(pregion->vm_flags & VM_MAYSHARE))
1323 				continue;
1324 
1325 			/* search for overlapping mappings on the same file */
1326 			if (pregion->vm_file->f_path.dentry->d_inode !=
1327 			    file->f_path.dentry->d_inode)
1328 				continue;
1329 
1330 			if (pregion->vm_pgoff >= pgend)
1331 				continue;
1332 
1333 			rpglen = pregion->vm_end - pregion->vm_start;
1334 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1335 			rpgend = pregion->vm_pgoff + rpglen;
1336 			if (pgoff >= rpgend)
1337 				continue;
1338 
1339 			/* handle inexactly overlapping matches between
1340 			 * mappings */
1341 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1342 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1343 				/* new mapping is not a subset of the region */
1344 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1345 					goto sharing_violation;
1346 				continue;
1347 			}
1348 
1349 			/* we've found a region we can share */
1350 			pregion->vm_usage++;
1351 			vma->vm_region = pregion;
1352 			start = pregion->vm_start;
1353 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1354 			vma->vm_start = start;
1355 			vma->vm_end = start + len;
1356 
1357 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1358 				kdebug("share copy");
1359 				vma->vm_flags |= VM_MAPPED_COPY;
1360 			} else {
1361 				kdebug("share mmap");
1362 				ret = do_mmap_shared_file(vma);
1363 				if (ret < 0) {
1364 					vma->vm_region = NULL;
1365 					vma->vm_start = 0;
1366 					vma->vm_end = 0;
1367 					pregion->vm_usage--;
1368 					pregion = NULL;
1369 					goto error_just_free;
1370 				}
1371 			}
1372 			fput(region->vm_file);
1373 			kmem_cache_free(vm_region_jar, region);
1374 			region = pregion;
1375 			result = start;
1376 			goto share;
1377 		}
1378 
1379 		/* obtain the address at which to make a shared mapping
1380 		 * - this is the hook for quasi-memory character devices to
1381 		 *   tell us the location of a shared mapping
1382 		 */
1383 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1384 			addr = file->f_op->get_unmapped_area(file, addr, len,
1385 							     pgoff, flags);
1386 			if (IS_ERR_VALUE(addr)) {
1387 				ret = addr;
1388 				if (ret != -ENOSYS)
1389 					goto error_just_free;
1390 
1391 				/* the driver refused to tell us where to site
1392 				 * the mapping so we'll have to attempt to copy
1393 				 * it */
1394 				ret = -ENODEV;
1395 				if (!(capabilities & BDI_CAP_MAP_COPY))
1396 					goto error_just_free;
1397 
1398 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1399 			} else {
1400 				vma->vm_start = region->vm_start = addr;
1401 				vma->vm_end = region->vm_end = addr + len;
1402 			}
1403 		}
1404 	}
1405 
1406 	vma->vm_region = region;
1407 
1408 	/* set up the mapping
1409 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1410 	 */
1411 	if (file && vma->vm_flags & VM_SHARED)
1412 		ret = do_mmap_shared_file(vma);
1413 	else
1414 		ret = do_mmap_private(vma, region, len, capabilities);
1415 	if (ret < 0)
1416 		goto error_just_free;
1417 	add_nommu_region(region);
1418 
1419 	/* clear anonymous mappings that don't ask for uninitialized data */
1420 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1421 		memset((void *)region->vm_start, 0,
1422 		       region->vm_end - region->vm_start);
1423 
1424 	/* okay... we have a mapping; now we have to register it */
1425 	result = vma->vm_start;
1426 
1427 	current->mm->total_vm += len >> PAGE_SHIFT;
1428 
1429 share:
1430 	add_vma_to_mm(current->mm, vma);
1431 
1432 	/* we flush the region from the icache only when the first executable
1433 	 * mapping of it is made  */
1434 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1435 		flush_icache_range(region->vm_start, region->vm_end);
1436 		region->vm_icache_flushed = true;
1437 	}
1438 
1439 	up_write(&nommu_region_sem);
1440 
1441 	kleave(" = %lx", result);
1442 	return result;
1443 
1444 error_just_free:
1445 	up_write(&nommu_region_sem);
1446 error:
1447 	if (region->vm_file)
1448 		fput(region->vm_file);
1449 	kmem_cache_free(vm_region_jar, region);
1450 	if (vma->vm_file)
1451 		fput(vma->vm_file);
1452 	kmem_cache_free(vm_area_cachep, vma);
1453 	kleave(" = %d", ret);
1454 	return ret;
1455 
1456 sharing_violation:
1457 	up_write(&nommu_region_sem);
1458 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1459 	ret = -EINVAL;
1460 	goto error;
1461 
1462 error_getting_vma:
1463 	kmem_cache_free(vm_region_jar, region);
1464 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1465 	       " from process %d failed\n",
1466 	       len, current->pid);
1467 	show_free_areas(0);
1468 	return -ENOMEM;
1469 
1470 error_getting_region:
1471 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1472 	       " from process %d failed\n",
1473 	       len, current->pid);
1474 	show_free_areas(0);
1475 	return -ENOMEM;
1476 }
1477 
1478 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1479 		unsigned long, prot, unsigned long, flags,
1480 		unsigned long, fd, unsigned long, pgoff)
1481 {
1482 	struct file *file = NULL;
1483 	unsigned long retval = -EBADF;
1484 
1485 	audit_mmap_fd(fd, flags);
1486 	if (!(flags & MAP_ANONYMOUS)) {
1487 		file = fget(fd);
1488 		if (!file)
1489 			goto out;
1490 	}
1491 
1492 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1493 
1494 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1495 
1496 	if (file)
1497 		fput(file);
1498 out:
1499 	return retval;
1500 }
1501 
1502 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1503 struct mmap_arg_struct {
1504 	unsigned long addr;
1505 	unsigned long len;
1506 	unsigned long prot;
1507 	unsigned long flags;
1508 	unsigned long fd;
1509 	unsigned long offset;
1510 };
1511 
1512 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1513 {
1514 	struct mmap_arg_struct a;
1515 
1516 	if (copy_from_user(&a, arg, sizeof(a)))
1517 		return -EFAULT;
1518 	if (a.offset & ~PAGE_MASK)
1519 		return -EINVAL;
1520 
1521 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1522 			      a.offset >> PAGE_SHIFT);
1523 }
1524 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1525 
1526 /*
1527  * split a vma into two pieces at address 'addr', a new vma is allocated either
1528  * for the first part or the tail.
1529  */
1530 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1531 	      unsigned long addr, int new_below)
1532 {
1533 	struct vm_area_struct *new;
1534 	struct vm_region *region;
1535 	unsigned long npages;
1536 
1537 	kenter("");
1538 
1539 	/* we're only permitted to split anonymous regions (these should have
1540 	 * only a single usage on the region) */
1541 	if (vma->vm_file)
1542 		return -ENOMEM;
1543 
1544 	if (mm->map_count >= sysctl_max_map_count)
1545 		return -ENOMEM;
1546 
1547 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1548 	if (!region)
1549 		return -ENOMEM;
1550 
1551 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1552 	if (!new) {
1553 		kmem_cache_free(vm_region_jar, region);
1554 		return -ENOMEM;
1555 	}
1556 
1557 	/* most fields are the same, copy all, and then fixup */
1558 	*new = *vma;
1559 	*region = *vma->vm_region;
1560 	new->vm_region = region;
1561 
1562 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1563 
1564 	if (new_below) {
1565 		region->vm_top = region->vm_end = new->vm_end = addr;
1566 	} else {
1567 		region->vm_start = new->vm_start = addr;
1568 		region->vm_pgoff = new->vm_pgoff += npages;
1569 	}
1570 
1571 	if (new->vm_ops && new->vm_ops->open)
1572 		new->vm_ops->open(new);
1573 
1574 	delete_vma_from_mm(vma);
1575 	down_write(&nommu_region_sem);
1576 	delete_nommu_region(vma->vm_region);
1577 	if (new_below) {
1578 		vma->vm_region->vm_start = vma->vm_start = addr;
1579 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1580 	} else {
1581 		vma->vm_region->vm_end = vma->vm_end = addr;
1582 		vma->vm_region->vm_top = addr;
1583 	}
1584 	add_nommu_region(vma->vm_region);
1585 	add_nommu_region(new->vm_region);
1586 	up_write(&nommu_region_sem);
1587 	add_vma_to_mm(mm, vma);
1588 	add_vma_to_mm(mm, new);
1589 	return 0;
1590 }
1591 
1592 /*
1593  * shrink a VMA by removing the specified chunk from either the beginning or
1594  * the end
1595  */
1596 static int shrink_vma(struct mm_struct *mm,
1597 		      struct vm_area_struct *vma,
1598 		      unsigned long from, unsigned long to)
1599 {
1600 	struct vm_region *region;
1601 
1602 	kenter("");
1603 
1604 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1605 	 * and list */
1606 	delete_vma_from_mm(vma);
1607 	if (from > vma->vm_start)
1608 		vma->vm_end = from;
1609 	else
1610 		vma->vm_start = to;
1611 	add_vma_to_mm(mm, vma);
1612 
1613 	/* cut the backing region down to size */
1614 	region = vma->vm_region;
1615 	BUG_ON(region->vm_usage != 1);
1616 
1617 	down_write(&nommu_region_sem);
1618 	delete_nommu_region(region);
1619 	if (from > region->vm_start) {
1620 		to = region->vm_top;
1621 		region->vm_top = region->vm_end = from;
1622 	} else {
1623 		region->vm_start = to;
1624 	}
1625 	add_nommu_region(region);
1626 	up_write(&nommu_region_sem);
1627 
1628 	free_page_series(from, to);
1629 	return 0;
1630 }
1631 
1632 /*
1633  * release a mapping
1634  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1635  *   VMA, though it need not cover the whole VMA
1636  */
1637 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1638 {
1639 	struct vm_area_struct *vma;
1640 	unsigned long end;
1641 	int ret;
1642 
1643 	kenter(",%lx,%zx", start, len);
1644 
1645 	len = PAGE_ALIGN(len);
1646 	if (len == 0)
1647 		return -EINVAL;
1648 
1649 	end = start + len;
1650 
1651 	/* find the first potentially overlapping VMA */
1652 	vma = find_vma(mm, start);
1653 	if (!vma) {
1654 		static int limit = 0;
1655 		if (limit < 5) {
1656 			printk(KERN_WARNING
1657 			       "munmap of memory not mmapped by process %d"
1658 			       " (%s): 0x%lx-0x%lx\n",
1659 			       current->pid, current->comm,
1660 			       start, start + len - 1);
1661 			limit++;
1662 		}
1663 		return -EINVAL;
1664 	}
1665 
1666 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1667 	if (vma->vm_file) {
1668 		do {
1669 			if (start > vma->vm_start) {
1670 				kleave(" = -EINVAL [miss]");
1671 				return -EINVAL;
1672 			}
1673 			if (end == vma->vm_end)
1674 				goto erase_whole_vma;
1675 			vma = vma->vm_next;
1676 		} while (vma);
1677 		kleave(" = -EINVAL [split file]");
1678 		return -EINVAL;
1679 	} else {
1680 		/* the chunk must be a subset of the VMA found */
1681 		if (start == vma->vm_start && end == vma->vm_end)
1682 			goto erase_whole_vma;
1683 		if (start < vma->vm_start || end > vma->vm_end) {
1684 			kleave(" = -EINVAL [superset]");
1685 			return -EINVAL;
1686 		}
1687 		if (start & ~PAGE_MASK) {
1688 			kleave(" = -EINVAL [unaligned start]");
1689 			return -EINVAL;
1690 		}
1691 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1692 			kleave(" = -EINVAL [unaligned split]");
1693 			return -EINVAL;
1694 		}
1695 		if (start != vma->vm_start && end != vma->vm_end) {
1696 			ret = split_vma(mm, vma, start, 1);
1697 			if (ret < 0) {
1698 				kleave(" = %d [split]", ret);
1699 				return ret;
1700 			}
1701 		}
1702 		return shrink_vma(mm, vma, start, end);
1703 	}
1704 
1705 erase_whole_vma:
1706 	delete_vma_from_mm(vma);
1707 	delete_vma(mm, vma);
1708 	kleave(" = 0");
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL(do_munmap);
1712 
1713 int vm_munmap(unsigned long addr, size_t len)
1714 {
1715 	struct mm_struct *mm = current->mm;
1716 	int ret;
1717 
1718 	down_write(&mm->mmap_sem);
1719 	ret = do_munmap(mm, addr, len);
1720 	up_write(&mm->mmap_sem);
1721 	return ret;
1722 }
1723 EXPORT_SYMBOL(vm_munmap);
1724 
1725 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1726 {
1727 	return vm_munmap(addr, len);
1728 }
1729 
1730 /*
1731  * release all the mappings made in a process's VM space
1732  */
1733 void exit_mmap(struct mm_struct *mm)
1734 {
1735 	struct vm_area_struct *vma;
1736 
1737 	if (!mm)
1738 		return;
1739 
1740 	kenter("");
1741 
1742 	mm->total_vm = 0;
1743 
1744 	while ((vma = mm->mmap)) {
1745 		mm->mmap = vma->vm_next;
1746 		delete_vma_from_mm(vma);
1747 		delete_vma(mm, vma);
1748 		cond_resched();
1749 	}
1750 
1751 	kleave("");
1752 }
1753 
1754 unsigned long vm_brk(unsigned long addr, unsigned long len)
1755 {
1756 	return -ENOMEM;
1757 }
1758 
1759 /*
1760  * expand (or shrink) an existing mapping, potentially moving it at the same
1761  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1762  *
1763  * under NOMMU conditions, we only permit changing a mapping's size, and only
1764  * as long as it stays within the region allocated by do_mmap_private() and the
1765  * block is not shareable
1766  *
1767  * MREMAP_FIXED is not supported under NOMMU conditions
1768  */
1769 unsigned long do_mremap(unsigned long addr,
1770 			unsigned long old_len, unsigned long new_len,
1771 			unsigned long flags, unsigned long new_addr)
1772 {
1773 	struct vm_area_struct *vma;
1774 
1775 	/* insanity checks first */
1776 	old_len = PAGE_ALIGN(old_len);
1777 	new_len = PAGE_ALIGN(new_len);
1778 	if (old_len == 0 || new_len == 0)
1779 		return (unsigned long) -EINVAL;
1780 
1781 	if (addr & ~PAGE_MASK)
1782 		return -EINVAL;
1783 
1784 	if (flags & MREMAP_FIXED && new_addr != addr)
1785 		return (unsigned long) -EINVAL;
1786 
1787 	vma = find_vma_exact(current->mm, addr, old_len);
1788 	if (!vma)
1789 		return (unsigned long) -EINVAL;
1790 
1791 	if (vma->vm_end != vma->vm_start + old_len)
1792 		return (unsigned long) -EFAULT;
1793 
1794 	if (vma->vm_flags & VM_MAYSHARE)
1795 		return (unsigned long) -EPERM;
1796 
1797 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1798 		return (unsigned long) -ENOMEM;
1799 
1800 	/* all checks complete - do it */
1801 	vma->vm_end = vma->vm_start + new_len;
1802 	return vma->vm_start;
1803 }
1804 EXPORT_SYMBOL(do_mremap);
1805 
1806 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1807 		unsigned long, new_len, unsigned long, flags,
1808 		unsigned long, new_addr)
1809 {
1810 	unsigned long ret;
1811 
1812 	down_write(&current->mm->mmap_sem);
1813 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1814 	up_write(&current->mm->mmap_sem);
1815 	return ret;
1816 }
1817 
1818 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1819 			unsigned int foll_flags)
1820 {
1821 	return NULL;
1822 }
1823 
1824 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1825 		unsigned long pfn, unsigned long size, pgprot_t prot)
1826 {
1827 	if (addr != (pfn << PAGE_SHIFT))
1828 		return -EINVAL;
1829 
1830 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1831 	return 0;
1832 }
1833 EXPORT_SYMBOL(remap_pfn_range);
1834 
1835 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1836 			unsigned long pgoff)
1837 {
1838 	unsigned int size = vma->vm_end - vma->vm_start;
1839 
1840 	if (!(vma->vm_flags & VM_USERMAP))
1841 		return -EINVAL;
1842 
1843 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1844 	vma->vm_end = vma->vm_start + size;
1845 
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL(remap_vmalloc_range);
1849 
1850 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1851 	unsigned long len, unsigned long pgoff, unsigned long flags)
1852 {
1853 	return -ENOMEM;
1854 }
1855 
1856 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1857 {
1858 }
1859 
1860 void unmap_mapping_range(struct address_space *mapping,
1861 			 loff_t const holebegin, loff_t const holelen,
1862 			 int even_cows)
1863 {
1864 }
1865 EXPORT_SYMBOL(unmap_mapping_range);
1866 
1867 /*
1868  * Check that a process has enough memory to allocate a new virtual
1869  * mapping. 0 means there is enough memory for the allocation to
1870  * succeed and -ENOMEM implies there is not.
1871  *
1872  * We currently support three overcommit policies, which are set via the
1873  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1874  *
1875  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1876  * Additional code 2002 Jul 20 by Robert Love.
1877  *
1878  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1879  *
1880  * Note this is a helper function intended to be used by LSMs which
1881  * wish to use this logic.
1882  */
1883 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1884 {
1885 	unsigned long free, allowed;
1886 
1887 	vm_acct_memory(pages);
1888 
1889 	/*
1890 	 * Sometimes we want to use more memory than we have
1891 	 */
1892 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1893 		return 0;
1894 
1895 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1896 		free = global_page_state(NR_FREE_PAGES);
1897 		free += global_page_state(NR_FILE_PAGES);
1898 
1899 		/*
1900 		 * shmem pages shouldn't be counted as free in this
1901 		 * case, they can't be purged, only swapped out, and
1902 		 * that won't affect the overall amount of available
1903 		 * memory in the system.
1904 		 */
1905 		free -= global_page_state(NR_SHMEM);
1906 
1907 		free += nr_swap_pages;
1908 
1909 		/*
1910 		 * Any slabs which are created with the
1911 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1912 		 * which are reclaimable, under pressure.  The dentry
1913 		 * cache and most inode caches should fall into this
1914 		 */
1915 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1916 
1917 		/*
1918 		 * Leave reserved pages. The pages are not for anonymous pages.
1919 		 */
1920 		if (free <= totalreserve_pages)
1921 			goto error;
1922 		else
1923 			free -= totalreserve_pages;
1924 
1925 		/*
1926 		 * Leave the last 3% for root
1927 		 */
1928 		if (!cap_sys_admin)
1929 			free -= free / 32;
1930 
1931 		if (free > pages)
1932 			return 0;
1933 
1934 		goto error;
1935 	}
1936 
1937 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1938 	/*
1939 	 * Leave the last 3% for root
1940 	 */
1941 	if (!cap_sys_admin)
1942 		allowed -= allowed / 32;
1943 	allowed += total_swap_pages;
1944 
1945 	/* Don't let a single process grow too big:
1946 	   leave 3% of the size of this process for other processes */
1947 	if (mm)
1948 		allowed -= mm->total_vm / 32;
1949 
1950 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1951 		return 0;
1952 
1953 error:
1954 	vm_unacct_memory(pages);
1955 
1956 	return -ENOMEM;
1957 }
1958 
1959 int in_gate_area_no_mm(unsigned long addr)
1960 {
1961 	return 0;
1962 }
1963 
1964 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1965 {
1966 	BUG();
1967 	return 0;
1968 }
1969 EXPORT_SYMBOL(filemap_fault);
1970 
1971 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1972 			     unsigned long size, pgoff_t pgoff)
1973 {
1974 	BUG();
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL(generic_file_remap_pages);
1978 
1979 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1980 		unsigned long addr, void *buf, int len, int write)
1981 {
1982 	struct vm_area_struct *vma;
1983 
1984 	down_read(&mm->mmap_sem);
1985 
1986 	/* the access must start within one of the target process's mappings */
1987 	vma = find_vma(mm, addr);
1988 	if (vma) {
1989 		/* don't overrun this mapping */
1990 		if (addr + len >= vma->vm_end)
1991 			len = vma->vm_end - addr;
1992 
1993 		/* only read or write mappings where it is permitted */
1994 		if (write && vma->vm_flags & VM_MAYWRITE)
1995 			copy_to_user_page(vma, NULL, addr,
1996 					 (void *) addr, buf, len);
1997 		else if (!write && vma->vm_flags & VM_MAYREAD)
1998 			copy_from_user_page(vma, NULL, addr,
1999 					    buf, (void *) addr, len);
2000 		else
2001 			len = 0;
2002 	} else {
2003 		len = 0;
2004 	}
2005 
2006 	up_read(&mm->mmap_sem);
2007 
2008 	return len;
2009 }
2010 
2011 /**
2012  * @access_remote_vm - access another process' address space
2013  * @mm:		the mm_struct of the target address space
2014  * @addr:	start address to access
2015  * @buf:	source or destination buffer
2016  * @len:	number of bytes to transfer
2017  * @write:	whether the access is a write
2018  *
2019  * The caller must hold a reference on @mm.
2020  */
2021 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2022 		void *buf, int len, int write)
2023 {
2024 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2025 }
2026 
2027 /*
2028  * Access another process' address space.
2029  * - source/target buffer must be kernel space
2030  */
2031 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2032 {
2033 	struct mm_struct *mm;
2034 
2035 	if (addr + len < addr)
2036 		return 0;
2037 
2038 	mm = get_task_mm(tsk);
2039 	if (!mm)
2040 		return 0;
2041 
2042 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2043 
2044 	mmput(mm);
2045 	return len;
2046 }
2047 
2048 /**
2049  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2050  * @inode: The inode to check
2051  * @size: The current filesize of the inode
2052  * @newsize: The proposed filesize of the inode
2053  *
2054  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2055  * make sure that that any outstanding VMAs aren't broken and then shrink the
2056  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2057  * automatically grant mappings that are too large.
2058  */
2059 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2060 				size_t newsize)
2061 {
2062 	struct vm_area_struct *vma;
2063 	struct vm_region *region;
2064 	pgoff_t low, high;
2065 	size_t r_size, r_top;
2066 
2067 	low = newsize >> PAGE_SHIFT;
2068 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2069 
2070 	down_write(&nommu_region_sem);
2071 	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2072 
2073 	/* search for VMAs that fall within the dead zone */
2074 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2075 		/* found one - only interested if it's shared out of the page
2076 		 * cache */
2077 		if (vma->vm_flags & VM_SHARED) {
2078 			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2079 			up_write(&nommu_region_sem);
2080 			return -ETXTBSY; /* not quite true, but near enough */
2081 		}
2082 	}
2083 
2084 	/* reduce any regions that overlap the dead zone - if in existence,
2085 	 * these will be pointed to by VMAs that don't overlap the dead zone
2086 	 *
2087 	 * we don't check for any regions that start beyond the EOF as there
2088 	 * shouldn't be any
2089 	 */
2090 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2091 				  0, ULONG_MAX) {
2092 		if (!(vma->vm_flags & VM_SHARED))
2093 			continue;
2094 
2095 		region = vma->vm_region;
2096 		r_size = region->vm_top - region->vm_start;
2097 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2098 
2099 		if (r_top > newsize) {
2100 			region->vm_top -= r_top - newsize;
2101 			if (region->vm_end > region->vm_top)
2102 				region->vm_end = region->vm_top;
2103 		}
2104 	}
2105 
2106 	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2107 	up_write(&nommu_region_sem);
2108 	return 0;
2109 }
2110