xref: /linux/mm/nommu.c (revision 82a08bde3cf7bbbe90de57baa181bebf676582c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 unsigned long highest_memmap_pfn;
46 int heap_stack_gap = 0;
47 
48 atomic_long_t mmap_pages_allocated;
49 
50 
51 /* list of mapped, potentially shareable regions */
52 static struct kmem_cache *vm_region_jar;
53 struct rb_root nommu_region_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_region_sem);
55 
56 const struct vm_operations_struct generic_file_vm_ops = {
57 };
58 
59 /*
60  * Return the total memory allocated for this pointer, not
61  * just what the caller asked for.
62  *
63  * Doesn't have to be accurate, i.e. may have races.
64  */
65 unsigned int kobjsize(const void *objp)
66 {
67 	struct page *page;
68 
69 	/*
70 	 * If the object we have should not have ksize performed on it,
71 	 * return size of 0
72 	 */
73 	if (!objp || !virt_addr_valid(objp))
74 		return 0;
75 
76 	page = virt_to_head_page(objp);
77 
78 	/*
79 	 * If the allocator sets PageSlab, we know the pointer came from
80 	 * kmalloc().
81 	 */
82 	if (PageSlab(page))
83 		return ksize(objp);
84 
85 	/*
86 	 * If it's not a compound page, see if we have a matching VMA
87 	 * region. This test is intentionally done in reverse order,
88 	 * so if there's no VMA, we still fall through and hand back
89 	 * PAGE_SIZE for 0-order pages.
90 	 */
91 	if (!PageCompound(page)) {
92 		struct vm_area_struct *vma;
93 
94 		vma = find_vma(current->mm, (unsigned long)objp);
95 		if (vma)
96 			return vma->vm_end - vma->vm_start;
97 	}
98 
99 	/*
100 	 * The ksize() function is only guaranteed to work for pointers
101 	 * returned by kmalloc(). So handle arbitrary pointers here.
102 	 */
103 	return page_size(page);
104 }
105 
106 void vfree(const void *addr)
107 {
108 	kfree(addr);
109 }
110 EXPORT_SYMBOL(vfree);
111 
112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
113 {
114 	/*
115 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
116 	 * returns only a logical address.
117 	 */
118 	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
119 }
120 EXPORT_SYMBOL(__vmalloc_noprof);
121 
122 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
123 {
124 	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
125 }
126 
127 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
128 		unsigned long start, unsigned long end, gfp_t gfp_mask,
129 		pgprot_t prot, unsigned long vm_flags, int node,
130 		const void *caller)
131 {
132 	return __vmalloc_noprof(size, gfp_mask);
133 }
134 
135 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
136 		int node, const void *caller)
137 {
138 	return __vmalloc_noprof(size, gfp_mask);
139 }
140 
141 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
142 {
143 	void *ret;
144 
145 	ret = __vmalloc(size, flags);
146 	if (ret) {
147 		struct vm_area_struct *vma;
148 
149 		mmap_write_lock(current->mm);
150 		vma = find_vma(current->mm, (unsigned long)ret);
151 		if (vma)
152 			vm_flags_set(vma, VM_USERMAP);
153 		mmap_write_unlock(current->mm);
154 	}
155 
156 	return ret;
157 }
158 
159 void *vmalloc_user_noprof(unsigned long size)
160 {
161 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
162 }
163 EXPORT_SYMBOL(vmalloc_user_noprof);
164 
165 struct page *vmalloc_to_page(const void *addr)
166 {
167 	return virt_to_page(addr);
168 }
169 EXPORT_SYMBOL(vmalloc_to_page);
170 
171 unsigned long vmalloc_to_pfn(const void *addr)
172 {
173 	return page_to_pfn(virt_to_page(addr));
174 }
175 EXPORT_SYMBOL(vmalloc_to_pfn);
176 
177 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
178 {
179 	/* Don't allow overflow */
180 	if ((unsigned long) addr + count < count)
181 		count = -(unsigned long) addr;
182 
183 	return copy_to_iter(addr, count, iter);
184 }
185 
186 /*
187  *	vmalloc  -  allocate virtually contiguous memory
188  *
189  *	@size:		allocation size
190  *
191  *	Allocate enough pages to cover @size from the page level
192  *	allocator and map them into contiguous kernel virtual space.
193  *
194  *	For tight control over page level allocator and protection flags
195  *	use __vmalloc() instead.
196  */
197 void *vmalloc_noprof(unsigned long size)
198 {
199 	return __vmalloc_noprof(size, GFP_KERNEL);
200 }
201 EXPORT_SYMBOL(vmalloc_noprof);
202 
203 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof);
204 
205 /*
206  *	vzalloc - allocate virtually contiguous memory with zero fill
207  *
208  *	@size:		allocation size
209  *
210  *	Allocate enough pages to cover @size from the page level
211  *	allocator and map them into contiguous kernel virtual space.
212  *	The memory allocated is set to zero.
213  *
214  *	For tight control over page level allocator and protection flags
215  *	use __vmalloc() instead.
216  */
217 void *vzalloc_noprof(unsigned long size)
218 {
219 	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
220 }
221 EXPORT_SYMBOL(vzalloc_noprof);
222 
223 /**
224  * vmalloc_node - allocate memory on a specific node
225  * @size:	allocation size
226  * @node:	numa node
227  *
228  * Allocate enough pages to cover @size from the page level
229  * allocator and map them into contiguous kernel virtual space.
230  *
231  * For tight control over page level allocator and protection flags
232  * use __vmalloc() instead.
233  */
234 void *vmalloc_node_noprof(unsigned long size, int node)
235 {
236 	return vmalloc_noprof(size);
237 }
238 EXPORT_SYMBOL(vmalloc_node_noprof);
239 
240 /**
241  * vzalloc_node - allocate memory on a specific node with zero fill
242  * @size:	allocation size
243  * @node:	numa node
244  *
245  * Allocate enough pages to cover @size from the page level
246  * allocator and map them into contiguous kernel virtual space.
247  * The memory allocated is set to zero.
248  *
249  * For tight control over page level allocator and protection flags
250  * use __vmalloc() instead.
251  */
252 void *vzalloc_node_noprof(unsigned long size, int node)
253 {
254 	return vzalloc_noprof(size);
255 }
256 EXPORT_SYMBOL(vzalloc_node_noprof);
257 
258 /**
259  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
260  *	@size:		allocation size
261  *
262  *	Allocate enough 32bit PA addressable pages to cover @size from the
263  *	page level allocator and map them into contiguous kernel virtual space.
264  */
265 void *vmalloc_32_noprof(unsigned long size)
266 {
267 	return __vmalloc_noprof(size, GFP_KERNEL);
268 }
269 EXPORT_SYMBOL(vmalloc_32_noprof);
270 
271 /**
272  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
273  *	@size:		allocation size
274  *
275  * The resulting memory area is 32bit addressable and zeroed so it can be
276  * mapped to userspace without leaking data.
277  *
278  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
279  * remap_vmalloc_range() are permissible.
280  */
281 void *vmalloc_32_user_noprof(unsigned long size)
282 {
283 	/*
284 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
285 	 * but for now this can simply use vmalloc_user() directly.
286 	 */
287 	return vmalloc_user_noprof(size);
288 }
289 EXPORT_SYMBOL(vmalloc_32_user_noprof);
290 
291 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
292 {
293 	BUG();
294 	return NULL;
295 }
296 EXPORT_SYMBOL(vmap);
297 
298 void vunmap(const void *addr)
299 {
300 	BUG();
301 }
302 EXPORT_SYMBOL(vunmap);
303 
304 void *vm_map_ram(struct page **pages, unsigned int count, int node)
305 {
306 	BUG();
307 	return NULL;
308 }
309 EXPORT_SYMBOL(vm_map_ram);
310 
311 void vm_unmap_ram(const void *mem, unsigned int count)
312 {
313 	BUG();
314 }
315 EXPORT_SYMBOL(vm_unmap_ram);
316 
317 void vm_unmap_aliases(void)
318 {
319 }
320 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
321 
322 void free_vm_area(struct vm_struct *area)
323 {
324 	BUG();
325 }
326 EXPORT_SYMBOL_GPL(free_vm_area);
327 
328 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
329 		   struct page *page)
330 {
331 	return -EINVAL;
332 }
333 EXPORT_SYMBOL(vm_insert_page);
334 
335 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
336 			struct page **pages, unsigned long *num)
337 {
338 	return -EINVAL;
339 }
340 EXPORT_SYMBOL(vm_insert_pages);
341 
342 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
343 			unsigned long num)
344 {
345 	return -EINVAL;
346 }
347 EXPORT_SYMBOL(vm_map_pages);
348 
349 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
350 				unsigned long num)
351 {
352 	return -EINVAL;
353 }
354 EXPORT_SYMBOL(vm_map_pages_zero);
355 
356 /*
357  *  sys_brk() for the most part doesn't need the global kernel
358  *  lock, except when an application is doing something nasty
359  *  like trying to un-brk an area that has already been mapped
360  *  to a regular file.  in this case, the unmapping will need
361  *  to invoke file system routines that need the global lock.
362  */
363 SYSCALL_DEFINE1(brk, unsigned long, brk)
364 {
365 	struct mm_struct *mm = current->mm;
366 
367 	if (brk < mm->start_brk || brk > mm->context.end_brk)
368 		return mm->brk;
369 
370 	if (mm->brk == brk)
371 		return mm->brk;
372 
373 	/*
374 	 * Always allow shrinking brk
375 	 */
376 	if (brk <= mm->brk) {
377 		mm->brk = brk;
378 		return brk;
379 	}
380 
381 	/*
382 	 * Ok, looks good - let it rip.
383 	 */
384 	flush_icache_user_range(mm->brk, brk);
385 	return mm->brk = brk;
386 }
387 
388 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
389 
390 static const struct ctl_table nommu_table[] = {
391 	{
392 		.procname	= "nr_trim_pages",
393 		.data		= &sysctl_nr_trim_pages,
394 		.maxlen		= sizeof(sysctl_nr_trim_pages),
395 		.mode		= 0644,
396 		.proc_handler	= proc_dointvec_minmax,
397 		.extra1		= SYSCTL_ZERO,
398 	},
399 };
400 
401 /*
402  * initialise the percpu counter for VM and region record slabs
403  */
404 void __init mmap_init(void)
405 {
406 	int ret;
407 
408 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
409 	VM_BUG_ON(ret);
410 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
411 	register_sysctl_init("vm", nommu_table);
412 }
413 
414 /*
415  * validate the region tree
416  * - the caller must hold the region lock
417  */
418 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
419 static noinline void validate_nommu_regions(void)
420 {
421 	struct vm_region *region, *last;
422 	struct rb_node *p, *lastp;
423 
424 	lastp = rb_first(&nommu_region_tree);
425 	if (!lastp)
426 		return;
427 
428 	last = rb_entry(lastp, struct vm_region, vm_rb);
429 	BUG_ON(last->vm_end <= last->vm_start);
430 	BUG_ON(last->vm_top < last->vm_end);
431 
432 	while ((p = rb_next(lastp))) {
433 		region = rb_entry(p, struct vm_region, vm_rb);
434 		last = rb_entry(lastp, struct vm_region, vm_rb);
435 
436 		BUG_ON(region->vm_end <= region->vm_start);
437 		BUG_ON(region->vm_top < region->vm_end);
438 		BUG_ON(region->vm_start < last->vm_top);
439 
440 		lastp = p;
441 	}
442 }
443 #else
444 static void validate_nommu_regions(void)
445 {
446 }
447 #endif
448 
449 /*
450  * add a region into the global tree
451  */
452 static void add_nommu_region(struct vm_region *region)
453 {
454 	struct vm_region *pregion;
455 	struct rb_node **p, *parent;
456 
457 	validate_nommu_regions();
458 
459 	parent = NULL;
460 	p = &nommu_region_tree.rb_node;
461 	while (*p) {
462 		parent = *p;
463 		pregion = rb_entry(parent, struct vm_region, vm_rb);
464 		if (region->vm_start < pregion->vm_start)
465 			p = &(*p)->rb_left;
466 		else if (region->vm_start > pregion->vm_start)
467 			p = &(*p)->rb_right;
468 		else if (pregion == region)
469 			return;
470 		else
471 			BUG();
472 	}
473 
474 	rb_link_node(&region->vm_rb, parent, p);
475 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
476 
477 	validate_nommu_regions();
478 }
479 
480 /*
481  * delete a region from the global tree
482  */
483 static void delete_nommu_region(struct vm_region *region)
484 {
485 	BUG_ON(!nommu_region_tree.rb_node);
486 
487 	validate_nommu_regions();
488 	rb_erase(&region->vm_rb, &nommu_region_tree);
489 	validate_nommu_regions();
490 }
491 
492 /*
493  * free a contiguous series of pages
494  */
495 static void free_page_series(unsigned long from, unsigned long to)
496 {
497 	for (; from < to; from += PAGE_SIZE) {
498 		struct page *page = virt_to_page((void *)from);
499 
500 		atomic_long_dec(&mmap_pages_allocated);
501 		put_page(page);
502 	}
503 }
504 
505 /*
506  * release a reference to a region
507  * - the caller must hold the region semaphore for writing, which this releases
508  * - the region may not have been added to the tree yet, in which case vm_top
509  *   will equal vm_start
510  */
511 static void __put_nommu_region(struct vm_region *region)
512 	__releases(nommu_region_sem)
513 {
514 	BUG_ON(!nommu_region_tree.rb_node);
515 
516 	if (--region->vm_usage == 0) {
517 		if (region->vm_top > region->vm_start)
518 			delete_nommu_region(region);
519 		up_write(&nommu_region_sem);
520 
521 		if (region->vm_file)
522 			fput(region->vm_file);
523 
524 		/* IO memory and memory shared directly out of the pagecache
525 		 * from ramfs/tmpfs mustn't be released here */
526 		if (region->vm_flags & VM_MAPPED_COPY)
527 			free_page_series(region->vm_start, region->vm_top);
528 		kmem_cache_free(vm_region_jar, region);
529 	} else {
530 		up_write(&nommu_region_sem);
531 	}
532 }
533 
534 /*
535  * release a reference to a region
536  */
537 static void put_nommu_region(struct vm_region *region)
538 {
539 	down_write(&nommu_region_sem);
540 	__put_nommu_region(region);
541 }
542 
543 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
544 {
545 	vma->vm_mm = mm;
546 
547 	/* add the VMA to the mapping */
548 	if (vma->vm_file) {
549 		struct address_space *mapping = vma->vm_file->f_mapping;
550 
551 		i_mmap_lock_write(mapping);
552 		flush_dcache_mmap_lock(mapping);
553 		vma_interval_tree_insert(vma, &mapping->i_mmap);
554 		flush_dcache_mmap_unlock(mapping);
555 		i_mmap_unlock_write(mapping);
556 	}
557 }
558 
559 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
560 {
561 	vma->vm_mm->map_count--;
562 	/* remove the VMA from the mapping */
563 	if (vma->vm_file) {
564 		struct address_space *mapping;
565 		mapping = vma->vm_file->f_mapping;
566 
567 		i_mmap_lock_write(mapping);
568 		flush_dcache_mmap_lock(mapping);
569 		vma_interval_tree_remove(vma, &mapping->i_mmap);
570 		flush_dcache_mmap_unlock(mapping);
571 		i_mmap_unlock_write(mapping);
572 	}
573 }
574 
575 /*
576  * delete a VMA from its owning mm_struct and address space
577  */
578 static int delete_vma_from_mm(struct vm_area_struct *vma)
579 {
580 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
581 
582 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
583 	if (vma_iter_prealloc(&vmi, NULL)) {
584 		pr_warn("Allocation of vma tree for process %d failed\n",
585 		       current->pid);
586 		return -ENOMEM;
587 	}
588 	cleanup_vma_from_mm(vma);
589 
590 	/* remove from the MM's tree and list */
591 	vma_iter_clear(&vmi);
592 	return 0;
593 }
594 /*
595  * destroy a VMA record
596  */
597 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
598 {
599 	vma_close(vma);
600 	if (vma->vm_file)
601 		fput(vma->vm_file);
602 	put_nommu_region(vma->vm_region);
603 	vm_area_free(vma);
604 }
605 
606 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
607 					     unsigned long start_addr,
608 					     unsigned long end_addr)
609 {
610 	unsigned long index = start_addr;
611 
612 	mmap_assert_locked(mm);
613 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
614 }
615 EXPORT_SYMBOL(find_vma_intersection);
616 
617 /*
618  * look up the first VMA in which addr resides, NULL if none
619  * - should be called with mm->mmap_lock at least held readlocked
620  */
621 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
622 {
623 	VMA_ITERATOR(vmi, mm, addr);
624 
625 	return vma_iter_load(&vmi);
626 }
627 EXPORT_SYMBOL(find_vma);
628 
629 /*
630  * expand a stack to a given address
631  * - not supported under NOMMU conditions
632  */
633 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
634 {
635 	return -ENOMEM;
636 }
637 
638 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
639 {
640 	mmap_read_unlock(mm);
641 	return NULL;
642 }
643 
644 /*
645  * look up the first VMA exactly that exactly matches addr
646  * - should be called with mm->mmap_lock at least held readlocked
647  */
648 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
649 					     unsigned long addr,
650 					     unsigned long len)
651 {
652 	struct vm_area_struct *vma;
653 	unsigned long end = addr + len;
654 	VMA_ITERATOR(vmi, mm, addr);
655 
656 	vma = vma_iter_load(&vmi);
657 	if (!vma)
658 		return NULL;
659 	if (vma->vm_start != addr)
660 		return NULL;
661 	if (vma->vm_end != end)
662 		return NULL;
663 
664 	return vma;
665 }
666 
667 /*
668  * determine whether a mapping should be permitted and, if so, what sort of
669  * mapping we're capable of supporting
670  */
671 static int validate_mmap_request(struct file *file,
672 				 unsigned long addr,
673 				 unsigned long len,
674 				 unsigned long prot,
675 				 unsigned long flags,
676 				 unsigned long pgoff,
677 				 unsigned long *_capabilities)
678 {
679 	unsigned long capabilities, rlen;
680 	int ret;
681 
682 	/* do the simple checks first */
683 	if (flags & MAP_FIXED)
684 		return -EINVAL;
685 
686 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
687 	    (flags & MAP_TYPE) != MAP_SHARED)
688 		return -EINVAL;
689 
690 	if (!len)
691 		return -EINVAL;
692 
693 	/* Careful about overflows.. */
694 	rlen = PAGE_ALIGN(len);
695 	if (!rlen || rlen > TASK_SIZE)
696 		return -ENOMEM;
697 
698 	/* offset overflow? */
699 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
700 		return -EOVERFLOW;
701 
702 	if (file) {
703 		/* files must support mmap */
704 		if (!file->f_op->mmap)
705 			return -ENODEV;
706 
707 		/* work out if what we've got could possibly be shared
708 		 * - we support chardevs that provide their own "memory"
709 		 * - we support files/blockdevs that are memory backed
710 		 */
711 		if (file->f_op->mmap_capabilities) {
712 			capabilities = file->f_op->mmap_capabilities(file);
713 		} else {
714 			/* no explicit capabilities set, so assume some
715 			 * defaults */
716 			switch (file_inode(file)->i_mode & S_IFMT) {
717 			case S_IFREG:
718 			case S_IFBLK:
719 				capabilities = NOMMU_MAP_COPY;
720 				break;
721 
722 			case S_IFCHR:
723 				capabilities =
724 					NOMMU_MAP_DIRECT |
725 					NOMMU_MAP_READ |
726 					NOMMU_MAP_WRITE;
727 				break;
728 
729 			default:
730 				return -EINVAL;
731 			}
732 		}
733 
734 		/* eliminate any capabilities that we can't support on this
735 		 * device */
736 		if (!file->f_op->get_unmapped_area)
737 			capabilities &= ~NOMMU_MAP_DIRECT;
738 		if (!(file->f_mode & FMODE_CAN_READ))
739 			capabilities &= ~NOMMU_MAP_COPY;
740 
741 		/* The file shall have been opened with read permission. */
742 		if (!(file->f_mode & FMODE_READ))
743 			return -EACCES;
744 
745 		if (flags & MAP_SHARED) {
746 			/* do checks for writing, appending and locking */
747 			if ((prot & PROT_WRITE) &&
748 			    !(file->f_mode & FMODE_WRITE))
749 				return -EACCES;
750 
751 			if (IS_APPEND(file_inode(file)) &&
752 			    (file->f_mode & FMODE_WRITE))
753 				return -EACCES;
754 
755 			if (!(capabilities & NOMMU_MAP_DIRECT))
756 				return -ENODEV;
757 
758 			/* we mustn't privatise shared mappings */
759 			capabilities &= ~NOMMU_MAP_COPY;
760 		} else {
761 			/* we're going to read the file into private memory we
762 			 * allocate */
763 			if (!(capabilities & NOMMU_MAP_COPY))
764 				return -ENODEV;
765 
766 			/* we don't permit a private writable mapping to be
767 			 * shared with the backing device */
768 			if (prot & PROT_WRITE)
769 				capabilities &= ~NOMMU_MAP_DIRECT;
770 		}
771 
772 		if (capabilities & NOMMU_MAP_DIRECT) {
773 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
774 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
775 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
776 			    ) {
777 				capabilities &= ~NOMMU_MAP_DIRECT;
778 				if (flags & MAP_SHARED) {
779 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
780 					return -EINVAL;
781 				}
782 			}
783 		}
784 
785 		/* handle executable mappings and implied executable
786 		 * mappings */
787 		if (path_noexec(&file->f_path)) {
788 			if (prot & PROT_EXEC)
789 				return -EPERM;
790 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
791 			/* handle implication of PROT_EXEC by PROT_READ */
792 			if (current->personality & READ_IMPLIES_EXEC) {
793 				if (capabilities & NOMMU_MAP_EXEC)
794 					prot |= PROT_EXEC;
795 			}
796 		} else if ((prot & PROT_READ) &&
797 			 (prot & PROT_EXEC) &&
798 			 !(capabilities & NOMMU_MAP_EXEC)
799 			 ) {
800 			/* backing file is not executable, try to copy */
801 			capabilities &= ~NOMMU_MAP_DIRECT;
802 		}
803 	} else {
804 		/* anonymous mappings are always memory backed and can be
805 		 * privately mapped
806 		 */
807 		capabilities = NOMMU_MAP_COPY;
808 
809 		/* handle PROT_EXEC implication by PROT_READ */
810 		if ((prot & PROT_READ) &&
811 		    (current->personality & READ_IMPLIES_EXEC))
812 			prot |= PROT_EXEC;
813 	}
814 
815 	/* allow the security API to have its say */
816 	ret = security_mmap_addr(addr);
817 	if (ret < 0)
818 		return ret;
819 
820 	/* looks okay */
821 	*_capabilities = capabilities;
822 	return 0;
823 }
824 
825 /*
826  * we've determined that we can make the mapping, now translate what we
827  * now know into VMA flags
828  */
829 static unsigned long determine_vm_flags(struct file *file,
830 					unsigned long prot,
831 					unsigned long flags,
832 					unsigned long capabilities)
833 {
834 	unsigned long vm_flags;
835 
836 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
837 
838 	if (!file) {
839 		/*
840 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
841 		 * there is no fork().
842 		 */
843 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
844 	} else if (flags & MAP_PRIVATE) {
845 		/* MAP_PRIVATE file mapping */
846 		if (capabilities & NOMMU_MAP_DIRECT)
847 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
848 		else
849 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
850 
851 		if (!(prot & PROT_WRITE) && !current->ptrace)
852 			/*
853 			 * R/O private file mapping which cannot be used to
854 			 * modify memory, especially also not via active ptrace
855 			 * (e.g., set breakpoints) or later by upgrading
856 			 * permissions (no mprotect()). We can try overlaying
857 			 * the file mapping, which will work e.g., on chardevs,
858 			 * ramfs/tmpfs/shmfs and romfs/cramf.
859 			 */
860 			vm_flags |= VM_MAYOVERLAY;
861 	} else {
862 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
863 		vm_flags |= VM_SHARED | VM_MAYSHARE |
864 			    (capabilities & NOMMU_VMFLAGS);
865 	}
866 
867 	return vm_flags;
868 }
869 
870 /*
871  * set up a shared mapping on a file (the driver or filesystem provides and
872  * pins the storage)
873  */
874 static int do_mmap_shared_file(struct vm_area_struct *vma)
875 {
876 	int ret;
877 
878 	ret = mmap_file(vma->vm_file, vma);
879 	if (ret == 0) {
880 		vma->vm_region->vm_top = vma->vm_region->vm_end;
881 		return 0;
882 	}
883 	if (ret != -ENOSYS)
884 		return ret;
885 
886 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
887 	 * opposed to tried but failed) so we can only give a suitable error as
888 	 * it's not possible to make a private copy if MAP_SHARED was given */
889 	return -ENODEV;
890 }
891 
892 /*
893  * set up a private mapping or an anonymous shared mapping
894  */
895 static int do_mmap_private(struct vm_area_struct *vma,
896 			   struct vm_region *region,
897 			   unsigned long len,
898 			   unsigned long capabilities)
899 {
900 	unsigned long total, point;
901 	void *base;
902 	int ret, order;
903 
904 	/*
905 	 * Invoke the file's mapping function so that it can keep track of
906 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
907 	 * it may attempt to share, which will make is_nommu_shared_mapping()
908 	 * happy.
909 	 */
910 	if (capabilities & NOMMU_MAP_DIRECT) {
911 		ret = mmap_file(vma->vm_file, vma);
912 		/* shouldn't return success if we're not sharing */
913 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
914 			ret = -ENOSYS;
915 		if (ret == 0) {
916 			vma->vm_region->vm_top = vma->vm_region->vm_end;
917 			return 0;
918 		}
919 		if (ret != -ENOSYS)
920 			return ret;
921 
922 		/* getting an ENOSYS error indicates that direct mmap isn't
923 		 * possible (as opposed to tried but failed) so we'll try to
924 		 * make a private copy of the data and map that instead */
925 	}
926 
927 
928 	/* allocate some memory to hold the mapping
929 	 * - note that this may not return a page-aligned address if the object
930 	 *   we're allocating is smaller than a page
931 	 */
932 	order = get_order(len);
933 	total = 1 << order;
934 	point = len >> PAGE_SHIFT;
935 
936 	/* we don't want to allocate a power-of-2 sized page set */
937 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
938 		total = point;
939 
940 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
941 	if (!base)
942 		goto enomem;
943 
944 	atomic_long_add(total, &mmap_pages_allocated);
945 
946 	vm_flags_set(vma, VM_MAPPED_COPY);
947 	region->vm_flags = vma->vm_flags;
948 	region->vm_start = (unsigned long) base;
949 	region->vm_end   = region->vm_start + len;
950 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
951 
952 	vma->vm_start = region->vm_start;
953 	vma->vm_end   = region->vm_start + len;
954 
955 	if (vma->vm_file) {
956 		/* read the contents of a file into the copy */
957 		loff_t fpos;
958 
959 		fpos = vma->vm_pgoff;
960 		fpos <<= PAGE_SHIFT;
961 
962 		ret = kernel_read(vma->vm_file, base, len, &fpos);
963 		if (ret < 0)
964 			goto error_free;
965 
966 		/* clear the last little bit */
967 		if (ret < len)
968 			memset(base + ret, 0, len - ret);
969 
970 	} else {
971 		vma_set_anonymous(vma);
972 	}
973 
974 	return 0;
975 
976 error_free:
977 	free_page_series(region->vm_start, region->vm_top);
978 	region->vm_start = vma->vm_start = 0;
979 	region->vm_end   = vma->vm_end = 0;
980 	region->vm_top   = 0;
981 	return ret;
982 
983 enomem:
984 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
985 	       len, current->pid, current->comm);
986 	show_mem();
987 	return -ENOMEM;
988 }
989 
990 /*
991  * handle mapping creation for uClinux
992  */
993 unsigned long do_mmap(struct file *file,
994 			unsigned long addr,
995 			unsigned long len,
996 			unsigned long prot,
997 			unsigned long flags,
998 			vm_flags_t vm_flags,
999 			unsigned long pgoff,
1000 			unsigned long *populate,
1001 			struct list_head *uf)
1002 {
1003 	struct vm_area_struct *vma;
1004 	struct vm_region *region;
1005 	struct rb_node *rb;
1006 	unsigned long capabilities, result;
1007 	int ret;
1008 	VMA_ITERATOR(vmi, current->mm, 0);
1009 
1010 	*populate = 0;
1011 
1012 	/* decide whether we should attempt the mapping, and if so what sort of
1013 	 * mapping */
1014 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1015 				    &capabilities);
1016 	if (ret < 0)
1017 		return ret;
1018 
1019 	/* we ignore the address hint */
1020 	addr = 0;
1021 	len = PAGE_ALIGN(len);
1022 
1023 	/* we've determined that we can make the mapping, now translate what we
1024 	 * now know into VMA flags */
1025 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1026 
1027 
1028 	/* we're going to need to record the mapping */
1029 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1030 	if (!region)
1031 		goto error_getting_region;
1032 
1033 	vma = vm_area_alloc(current->mm);
1034 	if (!vma)
1035 		goto error_getting_vma;
1036 
1037 	region->vm_usage = 1;
1038 	region->vm_flags = vm_flags;
1039 	region->vm_pgoff = pgoff;
1040 
1041 	vm_flags_init(vma, vm_flags);
1042 	vma->vm_pgoff = pgoff;
1043 
1044 	if (file) {
1045 		region->vm_file = get_file(file);
1046 		vma->vm_file = get_file(file);
1047 	}
1048 
1049 	down_write(&nommu_region_sem);
1050 
1051 	/* if we want to share, we need to check for regions created by other
1052 	 * mmap() calls that overlap with our proposed mapping
1053 	 * - we can only share with a superset match on most regular files
1054 	 * - shared mappings on character devices and memory backed files are
1055 	 *   permitted to overlap inexactly as far as we are concerned for in
1056 	 *   these cases, sharing is handled in the driver or filesystem rather
1057 	 *   than here
1058 	 */
1059 	if (is_nommu_shared_mapping(vm_flags)) {
1060 		struct vm_region *pregion;
1061 		unsigned long pglen, rpglen, pgend, rpgend, start;
1062 
1063 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1064 		pgend = pgoff + pglen;
1065 
1066 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1067 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1068 
1069 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1070 				continue;
1071 
1072 			/* search for overlapping mappings on the same file */
1073 			if (file_inode(pregion->vm_file) !=
1074 			    file_inode(file))
1075 				continue;
1076 
1077 			if (pregion->vm_pgoff >= pgend)
1078 				continue;
1079 
1080 			rpglen = pregion->vm_end - pregion->vm_start;
1081 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1082 			rpgend = pregion->vm_pgoff + rpglen;
1083 			if (pgoff >= rpgend)
1084 				continue;
1085 
1086 			/* handle inexactly overlapping matches between
1087 			 * mappings */
1088 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1089 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1090 				/* new mapping is not a subset of the region */
1091 				if (!(capabilities & NOMMU_MAP_DIRECT))
1092 					goto sharing_violation;
1093 				continue;
1094 			}
1095 
1096 			/* we've found a region we can share */
1097 			pregion->vm_usage++;
1098 			vma->vm_region = pregion;
1099 			start = pregion->vm_start;
1100 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1101 			vma->vm_start = start;
1102 			vma->vm_end = start + len;
1103 
1104 			if (pregion->vm_flags & VM_MAPPED_COPY)
1105 				vm_flags_set(vma, VM_MAPPED_COPY);
1106 			else {
1107 				ret = do_mmap_shared_file(vma);
1108 				if (ret < 0) {
1109 					vma->vm_region = NULL;
1110 					vma->vm_start = 0;
1111 					vma->vm_end = 0;
1112 					pregion->vm_usage--;
1113 					pregion = NULL;
1114 					goto error_just_free;
1115 				}
1116 			}
1117 			fput(region->vm_file);
1118 			kmem_cache_free(vm_region_jar, region);
1119 			region = pregion;
1120 			result = start;
1121 			goto share;
1122 		}
1123 
1124 		/* obtain the address at which to make a shared mapping
1125 		 * - this is the hook for quasi-memory character devices to
1126 		 *   tell us the location of a shared mapping
1127 		 */
1128 		if (capabilities & NOMMU_MAP_DIRECT) {
1129 			addr = file->f_op->get_unmapped_area(file, addr, len,
1130 							     pgoff, flags);
1131 			if (IS_ERR_VALUE(addr)) {
1132 				ret = addr;
1133 				if (ret != -ENOSYS)
1134 					goto error_just_free;
1135 
1136 				/* the driver refused to tell us where to site
1137 				 * the mapping so we'll have to attempt to copy
1138 				 * it */
1139 				ret = -ENODEV;
1140 				if (!(capabilities & NOMMU_MAP_COPY))
1141 					goto error_just_free;
1142 
1143 				capabilities &= ~NOMMU_MAP_DIRECT;
1144 			} else {
1145 				vma->vm_start = region->vm_start = addr;
1146 				vma->vm_end = region->vm_end = addr + len;
1147 			}
1148 		}
1149 	}
1150 
1151 	vma->vm_region = region;
1152 
1153 	/* set up the mapping
1154 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1155 	 */
1156 	if (file && vma->vm_flags & VM_SHARED)
1157 		ret = do_mmap_shared_file(vma);
1158 	else
1159 		ret = do_mmap_private(vma, region, len, capabilities);
1160 	if (ret < 0)
1161 		goto error_just_free;
1162 	add_nommu_region(region);
1163 
1164 	/* clear anonymous mappings that don't ask for uninitialized data */
1165 	if (!vma->vm_file &&
1166 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1167 	     !(flags & MAP_UNINITIALIZED)))
1168 		memset((void *)region->vm_start, 0,
1169 		       region->vm_end - region->vm_start);
1170 
1171 	/* okay... we have a mapping; now we have to register it */
1172 	result = vma->vm_start;
1173 
1174 	current->mm->total_vm += len >> PAGE_SHIFT;
1175 
1176 share:
1177 	BUG_ON(!vma->vm_region);
1178 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1179 	if (vma_iter_prealloc(&vmi, vma))
1180 		goto error_just_free;
1181 
1182 	setup_vma_to_mm(vma, current->mm);
1183 	current->mm->map_count++;
1184 	/* add the VMA to the tree */
1185 	vma_iter_store_new(&vmi, vma);
1186 
1187 	/* we flush the region from the icache only when the first executable
1188 	 * mapping of it is made  */
1189 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1190 		flush_icache_user_range(region->vm_start, region->vm_end);
1191 		region->vm_icache_flushed = true;
1192 	}
1193 
1194 	up_write(&nommu_region_sem);
1195 
1196 	return result;
1197 
1198 error_just_free:
1199 	up_write(&nommu_region_sem);
1200 error:
1201 	vma_iter_free(&vmi);
1202 	if (region->vm_file)
1203 		fput(region->vm_file);
1204 	kmem_cache_free(vm_region_jar, region);
1205 	if (vma->vm_file)
1206 		fput(vma->vm_file);
1207 	vm_area_free(vma);
1208 	return ret;
1209 
1210 sharing_violation:
1211 	up_write(&nommu_region_sem);
1212 	pr_warn("Attempt to share mismatched mappings\n");
1213 	ret = -EINVAL;
1214 	goto error;
1215 
1216 error_getting_vma:
1217 	kmem_cache_free(vm_region_jar, region);
1218 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1219 			len, current->pid);
1220 	show_mem();
1221 	return -ENOMEM;
1222 
1223 error_getting_region:
1224 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1225 			len, current->pid);
1226 	show_mem();
1227 	return -ENOMEM;
1228 }
1229 
1230 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1231 			      unsigned long prot, unsigned long flags,
1232 			      unsigned long fd, unsigned long pgoff)
1233 {
1234 	struct file *file = NULL;
1235 	unsigned long retval = -EBADF;
1236 
1237 	audit_mmap_fd(fd, flags);
1238 	if (!(flags & MAP_ANONYMOUS)) {
1239 		file = fget(fd);
1240 		if (!file)
1241 			goto out;
1242 	}
1243 
1244 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1245 
1246 	if (file)
1247 		fput(file);
1248 out:
1249 	return retval;
1250 }
1251 
1252 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1253 		unsigned long, prot, unsigned long, flags,
1254 		unsigned long, fd, unsigned long, pgoff)
1255 {
1256 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1257 }
1258 
1259 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1260 struct mmap_arg_struct {
1261 	unsigned long addr;
1262 	unsigned long len;
1263 	unsigned long prot;
1264 	unsigned long flags;
1265 	unsigned long fd;
1266 	unsigned long offset;
1267 };
1268 
1269 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1270 {
1271 	struct mmap_arg_struct a;
1272 
1273 	if (copy_from_user(&a, arg, sizeof(a)))
1274 		return -EFAULT;
1275 	if (offset_in_page(a.offset))
1276 		return -EINVAL;
1277 
1278 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1279 			       a.offset >> PAGE_SHIFT);
1280 }
1281 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1282 
1283 /*
1284  * split a vma into two pieces at address 'addr', a new vma is allocated either
1285  * for the first part or the tail.
1286  */
1287 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1288 		     unsigned long addr, int new_below)
1289 {
1290 	struct vm_area_struct *new;
1291 	struct vm_region *region;
1292 	unsigned long npages;
1293 	struct mm_struct *mm;
1294 
1295 	/* we're only permitted to split anonymous regions (these should have
1296 	 * only a single usage on the region) */
1297 	if (vma->vm_file)
1298 		return -ENOMEM;
1299 
1300 	mm = vma->vm_mm;
1301 	if (mm->map_count >= sysctl_max_map_count)
1302 		return -ENOMEM;
1303 
1304 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1305 	if (!region)
1306 		return -ENOMEM;
1307 
1308 	new = vm_area_dup(vma);
1309 	if (!new)
1310 		goto err_vma_dup;
1311 
1312 	/* most fields are the same, copy all, and then fixup */
1313 	*region = *vma->vm_region;
1314 	new->vm_region = region;
1315 
1316 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1317 
1318 	if (new_below) {
1319 		region->vm_top = region->vm_end = new->vm_end = addr;
1320 	} else {
1321 		region->vm_start = new->vm_start = addr;
1322 		region->vm_pgoff = new->vm_pgoff += npages;
1323 	}
1324 
1325 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1326 	if (vma_iter_prealloc(vmi, vma)) {
1327 		pr_warn("Allocation of vma tree for process %d failed\n",
1328 			current->pid);
1329 		goto err_vmi_preallocate;
1330 	}
1331 
1332 	if (new->vm_ops && new->vm_ops->open)
1333 		new->vm_ops->open(new);
1334 
1335 	down_write(&nommu_region_sem);
1336 	delete_nommu_region(vma->vm_region);
1337 	if (new_below) {
1338 		vma->vm_region->vm_start = vma->vm_start = addr;
1339 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1340 	} else {
1341 		vma->vm_region->vm_end = vma->vm_end = addr;
1342 		vma->vm_region->vm_top = addr;
1343 	}
1344 	add_nommu_region(vma->vm_region);
1345 	add_nommu_region(new->vm_region);
1346 	up_write(&nommu_region_sem);
1347 
1348 	setup_vma_to_mm(vma, mm);
1349 	setup_vma_to_mm(new, mm);
1350 	vma_iter_store_new(vmi, new);
1351 	mm->map_count++;
1352 	return 0;
1353 
1354 err_vmi_preallocate:
1355 	vm_area_free(new);
1356 err_vma_dup:
1357 	kmem_cache_free(vm_region_jar, region);
1358 	return -ENOMEM;
1359 }
1360 
1361 /*
1362  * shrink a VMA by removing the specified chunk from either the beginning or
1363  * the end
1364  */
1365 static int vmi_shrink_vma(struct vma_iterator *vmi,
1366 		      struct vm_area_struct *vma,
1367 		      unsigned long from, unsigned long to)
1368 {
1369 	struct vm_region *region;
1370 
1371 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1372 	 * and list */
1373 	if (from > vma->vm_start) {
1374 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1375 			return -ENOMEM;
1376 		vma->vm_end = from;
1377 	} else {
1378 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1379 			return -ENOMEM;
1380 		vma->vm_start = to;
1381 	}
1382 
1383 	/* cut the backing region down to size */
1384 	region = vma->vm_region;
1385 	BUG_ON(region->vm_usage != 1);
1386 
1387 	down_write(&nommu_region_sem);
1388 	delete_nommu_region(region);
1389 	if (from > region->vm_start) {
1390 		to = region->vm_top;
1391 		region->vm_top = region->vm_end = from;
1392 	} else {
1393 		region->vm_start = to;
1394 	}
1395 	add_nommu_region(region);
1396 	up_write(&nommu_region_sem);
1397 
1398 	free_page_series(from, to);
1399 	return 0;
1400 }
1401 
1402 /*
1403  * release a mapping
1404  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1405  *   VMA, though it need not cover the whole VMA
1406  */
1407 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1408 {
1409 	VMA_ITERATOR(vmi, mm, start);
1410 	struct vm_area_struct *vma;
1411 	unsigned long end;
1412 	int ret = 0;
1413 
1414 	len = PAGE_ALIGN(len);
1415 	if (len == 0)
1416 		return -EINVAL;
1417 
1418 	end = start + len;
1419 
1420 	/* find the first potentially overlapping VMA */
1421 	vma = vma_find(&vmi, end);
1422 	if (!vma) {
1423 		static int limit;
1424 		if (limit < 5) {
1425 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1426 					current->pid, current->comm,
1427 					start, start + len - 1);
1428 			limit++;
1429 		}
1430 		return -EINVAL;
1431 	}
1432 
1433 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1434 	if (vma->vm_file) {
1435 		do {
1436 			if (start > vma->vm_start)
1437 				return -EINVAL;
1438 			if (end == vma->vm_end)
1439 				goto erase_whole_vma;
1440 			vma = vma_find(&vmi, end);
1441 		} while (vma);
1442 		return -EINVAL;
1443 	} else {
1444 		/* the chunk must be a subset of the VMA found */
1445 		if (start == vma->vm_start && end == vma->vm_end)
1446 			goto erase_whole_vma;
1447 		if (start < vma->vm_start || end > vma->vm_end)
1448 			return -EINVAL;
1449 		if (offset_in_page(start))
1450 			return -EINVAL;
1451 		if (end != vma->vm_end && offset_in_page(end))
1452 			return -EINVAL;
1453 		if (start != vma->vm_start && end != vma->vm_end) {
1454 			ret = split_vma(&vmi, vma, start, 1);
1455 			if (ret < 0)
1456 				return ret;
1457 		}
1458 		return vmi_shrink_vma(&vmi, vma, start, end);
1459 	}
1460 
1461 erase_whole_vma:
1462 	if (delete_vma_from_mm(vma))
1463 		ret = -ENOMEM;
1464 	else
1465 		delete_vma(mm, vma);
1466 	return ret;
1467 }
1468 
1469 int vm_munmap(unsigned long addr, size_t len)
1470 {
1471 	struct mm_struct *mm = current->mm;
1472 	int ret;
1473 
1474 	mmap_write_lock(mm);
1475 	ret = do_munmap(mm, addr, len, NULL);
1476 	mmap_write_unlock(mm);
1477 	return ret;
1478 }
1479 EXPORT_SYMBOL(vm_munmap);
1480 
1481 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1482 {
1483 	return vm_munmap(addr, len);
1484 }
1485 
1486 /*
1487  * release all the mappings made in a process's VM space
1488  */
1489 void exit_mmap(struct mm_struct *mm)
1490 {
1491 	VMA_ITERATOR(vmi, mm, 0);
1492 	struct vm_area_struct *vma;
1493 
1494 	if (!mm)
1495 		return;
1496 
1497 	mm->total_vm = 0;
1498 
1499 	/*
1500 	 * Lock the mm to avoid assert complaining even though this is the only
1501 	 * user of the mm
1502 	 */
1503 	mmap_write_lock(mm);
1504 	for_each_vma(vmi, vma) {
1505 		cleanup_vma_from_mm(vma);
1506 		delete_vma(mm, vma);
1507 		cond_resched();
1508 	}
1509 	__mt_destroy(&mm->mm_mt);
1510 	mmap_write_unlock(mm);
1511 }
1512 
1513 /*
1514  * expand (or shrink) an existing mapping, potentially moving it at the same
1515  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1516  *
1517  * under NOMMU conditions, we only permit changing a mapping's size, and only
1518  * as long as it stays within the region allocated by do_mmap_private() and the
1519  * block is not shareable
1520  *
1521  * MREMAP_FIXED is not supported under NOMMU conditions
1522  */
1523 static unsigned long do_mremap(unsigned long addr,
1524 			unsigned long old_len, unsigned long new_len,
1525 			unsigned long flags, unsigned long new_addr)
1526 {
1527 	struct vm_area_struct *vma;
1528 
1529 	/* insanity checks first */
1530 	old_len = PAGE_ALIGN(old_len);
1531 	new_len = PAGE_ALIGN(new_len);
1532 	if (old_len == 0 || new_len == 0)
1533 		return (unsigned long) -EINVAL;
1534 
1535 	if (offset_in_page(addr))
1536 		return -EINVAL;
1537 
1538 	if (flags & MREMAP_FIXED && new_addr != addr)
1539 		return (unsigned long) -EINVAL;
1540 
1541 	vma = find_vma_exact(current->mm, addr, old_len);
1542 	if (!vma)
1543 		return (unsigned long) -EINVAL;
1544 
1545 	if (vma->vm_end != vma->vm_start + old_len)
1546 		return (unsigned long) -EFAULT;
1547 
1548 	if (is_nommu_shared_mapping(vma->vm_flags))
1549 		return (unsigned long) -EPERM;
1550 
1551 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1552 		return (unsigned long) -ENOMEM;
1553 
1554 	/* all checks complete - do it */
1555 	vma->vm_end = vma->vm_start + new_len;
1556 	return vma->vm_start;
1557 }
1558 
1559 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1560 		unsigned long, new_len, unsigned long, flags,
1561 		unsigned long, new_addr)
1562 {
1563 	unsigned long ret;
1564 
1565 	mmap_write_lock(current->mm);
1566 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1567 	mmap_write_unlock(current->mm);
1568 	return ret;
1569 }
1570 
1571 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1572 		unsigned long pfn, unsigned long size, pgprot_t prot)
1573 {
1574 	if (addr != (pfn << PAGE_SHIFT))
1575 		return -EINVAL;
1576 
1577 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1578 	return 0;
1579 }
1580 EXPORT_SYMBOL(remap_pfn_range);
1581 
1582 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1583 {
1584 	unsigned long pfn = start >> PAGE_SHIFT;
1585 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1586 
1587 	pfn += vma->vm_pgoff;
1588 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1589 }
1590 EXPORT_SYMBOL(vm_iomap_memory);
1591 
1592 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1593 			unsigned long pgoff)
1594 {
1595 	unsigned int size = vma->vm_end - vma->vm_start;
1596 
1597 	if (!(vma->vm_flags & VM_USERMAP))
1598 		return -EINVAL;
1599 
1600 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1601 	vma->vm_end = vma->vm_start + size;
1602 
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL(remap_vmalloc_range);
1606 
1607 vm_fault_t filemap_fault(struct vm_fault *vmf)
1608 {
1609 	BUG();
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(filemap_fault);
1613 
1614 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1615 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1616 {
1617 	BUG();
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL(filemap_map_pages);
1621 
1622 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1623 			      void *buf, int len, unsigned int gup_flags)
1624 {
1625 	struct vm_area_struct *vma;
1626 	int write = gup_flags & FOLL_WRITE;
1627 
1628 	if (mmap_read_lock_killable(mm))
1629 		return 0;
1630 
1631 	/* the access must start within one of the target process's mappings */
1632 	vma = find_vma(mm, addr);
1633 	if (vma) {
1634 		/* don't overrun this mapping */
1635 		if (addr + len >= vma->vm_end)
1636 			len = vma->vm_end - addr;
1637 
1638 		/* only read or write mappings where it is permitted */
1639 		if (write && vma->vm_flags & VM_MAYWRITE)
1640 			copy_to_user_page(vma, NULL, addr,
1641 					 (void *) addr, buf, len);
1642 		else if (!write && vma->vm_flags & VM_MAYREAD)
1643 			copy_from_user_page(vma, NULL, addr,
1644 					    buf, (void *) addr, len);
1645 		else
1646 			len = 0;
1647 	} else {
1648 		len = 0;
1649 	}
1650 
1651 	mmap_read_unlock(mm);
1652 
1653 	return len;
1654 }
1655 
1656 /**
1657  * access_remote_vm - access another process' address space
1658  * @mm:		the mm_struct of the target address space
1659  * @addr:	start address to access
1660  * @buf:	source or destination buffer
1661  * @len:	number of bytes to transfer
1662  * @gup_flags:	flags modifying lookup behaviour
1663  *
1664  * The caller must hold a reference on @mm.
1665  */
1666 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1667 		void *buf, int len, unsigned int gup_flags)
1668 {
1669 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1670 }
1671 
1672 /*
1673  * Access another process' address space.
1674  * - source/target buffer must be kernel space
1675  */
1676 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1677 		unsigned int gup_flags)
1678 {
1679 	struct mm_struct *mm;
1680 
1681 	if (addr + len < addr)
1682 		return 0;
1683 
1684 	mm = get_task_mm(tsk);
1685 	if (!mm)
1686 		return 0;
1687 
1688 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1689 
1690 	mmput(mm);
1691 	return len;
1692 }
1693 EXPORT_SYMBOL_GPL(access_process_vm);
1694 
1695 #ifdef CONFIG_BPF_SYSCALL
1696 /*
1697  * Copy a string from another process's address space as given in mm.
1698  * If there is any error return -EFAULT.
1699  */
1700 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
1701 				void *buf, int len)
1702 {
1703 	unsigned long addr_end;
1704 	struct vm_area_struct *vma;
1705 	int ret = -EFAULT;
1706 
1707 	*(char *)buf = '\0';
1708 
1709 	if (mmap_read_lock_killable(mm))
1710 		return ret;
1711 
1712 	/* the access must start within one of the target process's mappings */
1713 	vma = find_vma(mm, addr);
1714 	if (!vma)
1715 		goto out;
1716 
1717 	if (check_add_overflow(addr, len, &addr_end))
1718 		goto out;
1719 
1720 	/* don't overrun this mapping */
1721 	if (addr_end > vma->vm_end)
1722 		len = vma->vm_end - addr;
1723 
1724 	/* only read mappings where it is permitted */
1725 	if (vma->vm_flags & VM_MAYREAD) {
1726 		ret = strscpy(buf, (char *)addr, len);
1727 		if (ret < 0)
1728 			ret = len - 1;
1729 	}
1730 
1731 out:
1732 	mmap_read_unlock(mm);
1733 	return ret;
1734 }
1735 
1736 /**
1737  * copy_remote_vm_str - copy a string from another process's address space.
1738  * @tsk:	the task of the target address space
1739  * @addr:	start address to read from
1740  * @buf:	destination buffer
1741  * @len:	number of bytes to copy
1742  * @gup_flags:	flags modifying lookup behaviour (unused)
1743  *
1744  * The caller must hold a reference on @mm.
1745  *
1746  * Return: number of bytes copied from @addr (source) to @buf (destination);
1747  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
1748  * buffer. On any error, return -EFAULT.
1749  */
1750 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
1751 		       void *buf, int len, unsigned int gup_flags)
1752 {
1753 	struct mm_struct *mm;
1754 	int ret;
1755 
1756 	if (unlikely(len == 0))
1757 		return 0;
1758 
1759 	mm = get_task_mm(tsk);
1760 	if (!mm) {
1761 		*(char *)buf = '\0';
1762 		return -EFAULT;
1763 	}
1764 
1765 	ret = __copy_remote_vm_str(mm, addr, buf, len);
1766 
1767 	mmput(mm);
1768 
1769 	return ret;
1770 }
1771 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
1772 #endif /* CONFIG_BPF_SYSCALL */
1773 
1774 /**
1775  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1776  * @inode: The inode to check
1777  * @size: The current filesize of the inode
1778  * @newsize: The proposed filesize of the inode
1779  *
1780  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1781  * make sure that any outstanding VMAs aren't broken and then shrink the
1782  * vm_regions that extend beyond so that do_mmap() doesn't
1783  * automatically grant mappings that are too large.
1784  */
1785 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1786 				size_t newsize)
1787 {
1788 	struct vm_area_struct *vma;
1789 	struct vm_region *region;
1790 	pgoff_t low, high;
1791 	size_t r_size, r_top;
1792 
1793 	low = newsize >> PAGE_SHIFT;
1794 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1795 
1796 	down_write(&nommu_region_sem);
1797 	i_mmap_lock_read(inode->i_mapping);
1798 
1799 	/* search for VMAs that fall within the dead zone */
1800 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1801 		/* found one - only interested if it's shared out of the page
1802 		 * cache */
1803 		if (vma->vm_flags & VM_SHARED) {
1804 			i_mmap_unlock_read(inode->i_mapping);
1805 			up_write(&nommu_region_sem);
1806 			return -ETXTBSY; /* not quite true, but near enough */
1807 		}
1808 	}
1809 
1810 	/* reduce any regions that overlap the dead zone - if in existence,
1811 	 * these will be pointed to by VMAs that don't overlap the dead zone
1812 	 *
1813 	 * we don't check for any regions that start beyond the EOF as there
1814 	 * shouldn't be any
1815 	 */
1816 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1817 		if (!(vma->vm_flags & VM_SHARED))
1818 			continue;
1819 
1820 		region = vma->vm_region;
1821 		r_size = region->vm_top - region->vm_start;
1822 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1823 
1824 		if (r_top > newsize) {
1825 			region->vm_top -= r_top - newsize;
1826 			if (region->vm_end > region->vm_top)
1827 				region->vm_end = region->vm_top;
1828 		}
1829 	}
1830 
1831 	i_mmap_unlock_read(inode->i_mapping);
1832 	up_write(&nommu_region_sem);
1833 	return 0;
1834 }
1835 
1836 /*
1837  * Initialise sysctl_user_reserve_kbytes.
1838  *
1839  * This is intended to prevent a user from starting a single memory hogging
1840  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1841  * mode.
1842  *
1843  * The default value is min(3% of free memory, 128MB)
1844  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1845  */
1846 static int __meminit init_user_reserve(void)
1847 {
1848 	unsigned long free_kbytes;
1849 
1850 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1851 
1852 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1853 	return 0;
1854 }
1855 subsys_initcall(init_user_reserve);
1856 
1857 /*
1858  * Initialise sysctl_admin_reserve_kbytes.
1859  *
1860  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1861  * to log in and kill a memory hogging process.
1862  *
1863  * Systems with more than 256MB will reserve 8MB, enough to recover
1864  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1865  * only reserve 3% of free pages by default.
1866  */
1867 static int __meminit init_admin_reserve(void)
1868 {
1869 	unsigned long free_kbytes;
1870 
1871 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1872 
1873 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1874 	return 0;
1875 }
1876 subsys_initcall(init_admin_reserve);
1877