1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 unsigned long highest_memmap_pfn; 46 int heap_stack_gap = 0; 47 48 atomic_long_t mmap_pages_allocated; 49 50 51 /* list of mapped, potentially shareable regions */ 52 static struct kmem_cache *vm_region_jar; 53 struct rb_root nommu_region_tree = RB_ROOT; 54 DECLARE_RWSEM(nommu_region_sem); 55 56 const struct vm_operations_struct generic_file_vm_ops = { 57 }; 58 59 /* 60 * Return the total memory allocated for this pointer, not 61 * just what the caller asked for. 62 * 63 * Doesn't have to be accurate, i.e. may have races. 64 */ 65 unsigned int kobjsize(const void *objp) 66 { 67 struct page *page; 68 69 /* 70 * If the object we have should not have ksize performed on it, 71 * return size of 0 72 */ 73 if (!objp || !virt_addr_valid(objp)) 74 return 0; 75 76 page = virt_to_head_page(objp); 77 78 /* 79 * If the allocator sets PageSlab, we know the pointer came from 80 * kmalloc(). 81 */ 82 if (PageSlab(page)) 83 return ksize(objp); 84 85 /* 86 * If it's not a compound page, see if we have a matching VMA 87 * region. This test is intentionally done in reverse order, 88 * so if there's no VMA, we still fall through and hand back 89 * PAGE_SIZE for 0-order pages. 90 */ 91 if (!PageCompound(page)) { 92 struct vm_area_struct *vma; 93 94 vma = find_vma(current->mm, (unsigned long)objp); 95 if (vma) 96 return vma->vm_end - vma->vm_start; 97 } 98 99 /* 100 * The ksize() function is only guaranteed to work for pointers 101 * returned by kmalloc(). So handle arbitrary pointers here. 102 */ 103 return page_size(page); 104 } 105 106 void vfree(const void *addr) 107 { 108 kfree(addr); 109 } 110 EXPORT_SYMBOL(vfree); 111 112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 113 { 114 /* 115 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 116 * returns only a logical address. 117 */ 118 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 119 } 120 EXPORT_SYMBOL(__vmalloc_noprof); 121 122 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 123 { 124 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM); 125 } 126 127 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 128 unsigned long start, unsigned long end, gfp_t gfp_mask, 129 pgprot_t prot, unsigned long vm_flags, int node, 130 const void *caller) 131 { 132 return __vmalloc_noprof(size, gfp_mask); 133 } 134 135 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask, 136 int node, const void *caller) 137 { 138 return __vmalloc_noprof(size, gfp_mask); 139 } 140 141 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 142 { 143 void *ret; 144 145 ret = __vmalloc(size, flags); 146 if (ret) { 147 struct vm_area_struct *vma; 148 149 mmap_write_lock(current->mm); 150 vma = find_vma(current->mm, (unsigned long)ret); 151 if (vma) 152 vm_flags_set(vma, VM_USERMAP); 153 mmap_write_unlock(current->mm); 154 } 155 156 return ret; 157 } 158 159 void *vmalloc_user_noprof(unsigned long size) 160 { 161 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 162 } 163 EXPORT_SYMBOL(vmalloc_user_noprof); 164 165 struct page *vmalloc_to_page(const void *addr) 166 { 167 return virt_to_page(addr); 168 } 169 EXPORT_SYMBOL(vmalloc_to_page); 170 171 unsigned long vmalloc_to_pfn(const void *addr) 172 { 173 return page_to_pfn(virt_to_page(addr)); 174 } 175 EXPORT_SYMBOL(vmalloc_to_pfn); 176 177 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 178 { 179 /* Don't allow overflow */ 180 if ((unsigned long) addr + count < count) 181 count = -(unsigned long) addr; 182 183 return copy_to_iter(addr, count, iter); 184 } 185 186 /* 187 * vmalloc - allocate virtually contiguous memory 188 * 189 * @size: allocation size 190 * 191 * Allocate enough pages to cover @size from the page level 192 * allocator and map them into contiguous kernel virtual space. 193 * 194 * For tight control over page level allocator and protection flags 195 * use __vmalloc() instead. 196 */ 197 void *vmalloc_noprof(unsigned long size) 198 { 199 return __vmalloc_noprof(size, GFP_KERNEL); 200 } 201 EXPORT_SYMBOL(vmalloc_noprof); 202 203 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof); 204 205 /* 206 * vzalloc - allocate virtually contiguous memory with zero fill 207 * 208 * @size: allocation size 209 * 210 * Allocate enough pages to cover @size from the page level 211 * allocator and map them into contiguous kernel virtual space. 212 * The memory allocated is set to zero. 213 * 214 * For tight control over page level allocator and protection flags 215 * use __vmalloc() instead. 216 */ 217 void *vzalloc_noprof(unsigned long size) 218 { 219 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO); 220 } 221 EXPORT_SYMBOL(vzalloc_noprof); 222 223 /** 224 * vmalloc_node - allocate memory on a specific node 225 * @size: allocation size 226 * @node: numa node 227 * 228 * Allocate enough pages to cover @size from the page level 229 * allocator and map them into contiguous kernel virtual space. 230 * 231 * For tight control over page level allocator and protection flags 232 * use __vmalloc() instead. 233 */ 234 void *vmalloc_node_noprof(unsigned long size, int node) 235 { 236 return vmalloc_noprof(size); 237 } 238 EXPORT_SYMBOL(vmalloc_node_noprof); 239 240 /** 241 * vzalloc_node - allocate memory on a specific node with zero fill 242 * @size: allocation size 243 * @node: numa node 244 * 245 * Allocate enough pages to cover @size from the page level 246 * allocator and map them into contiguous kernel virtual space. 247 * The memory allocated is set to zero. 248 * 249 * For tight control over page level allocator and protection flags 250 * use __vmalloc() instead. 251 */ 252 void *vzalloc_node_noprof(unsigned long size, int node) 253 { 254 return vzalloc_noprof(size); 255 } 256 EXPORT_SYMBOL(vzalloc_node_noprof); 257 258 /** 259 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 260 * @size: allocation size 261 * 262 * Allocate enough 32bit PA addressable pages to cover @size from the 263 * page level allocator and map them into contiguous kernel virtual space. 264 */ 265 void *vmalloc_32_noprof(unsigned long size) 266 { 267 return __vmalloc_noprof(size, GFP_KERNEL); 268 } 269 EXPORT_SYMBOL(vmalloc_32_noprof); 270 271 /** 272 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 273 * @size: allocation size 274 * 275 * The resulting memory area is 32bit addressable and zeroed so it can be 276 * mapped to userspace without leaking data. 277 * 278 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 279 * remap_vmalloc_range() are permissible. 280 */ 281 void *vmalloc_32_user_noprof(unsigned long size) 282 { 283 /* 284 * We'll have to sort out the ZONE_DMA bits for 64-bit, 285 * but for now this can simply use vmalloc_user() directly. 286 */ 287 return vmalloc_user_noprof(size); 288 } 289 EXPORT_SYMBOL(vmalloc_32_user_noprof); 290 291 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 292 { 293 BUG(); 294 return NULL; 295 } 296 EXPORT_SYMBOL(vmap); 297 298 void vunmap(const void *addr) 299 { 300 BUG(); 301 } 302 EXPORT_SYMBOL(vunmap); 303 304 void *vm_map_ram(struct page **pages, unsigned int count, int node) 305 { 306 BUG(); 307 return NULL; 308 } 309 EXPORT_SYMBOL(vm_map_ram); 310 311 void vm_unmap_ram(const void *mem, unsigned int count) 312 { 313 BUG(); 314 } 315 EXPORT_SYMBOL(vm_unmap_ram); 316 317 void vm_unmap_aliases(void) 318 { 319 } 320 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 321 322 void free_vm_area(struct vm_struct *area) 323 { 324 BUG(); 325 } 326 EXPORT_SYMBOL_GPL(free_vm_area); 327 328 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 329 struct page *page) 330 { 331 return -EINVAL; 332 } 333 EXPORT_SYMBOL(vm_insert_page); 334 335 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 336 struct page **pages, unsigned long *num) 337 { 338 return -EINVAL; 339 } 340 EXPORT_SYMBOL(vm_insert_pages); 341 342 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 343 unsigned long num) 344 { 345 return -EINVAL; 346 } 347 EXPORT_SYMBOL(vm_map_pages); 348 349 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 350 unsigned long num) 351 { 352 return -EINVAL; 353 } 354 EXPORT_SYMBOL(vm_map_pages_zero); 355 356 /* 357 * sys_brk() for the most part doesn't need the global kernel 358 * lock, except when an application is doing something nasty 359 * like trying to un-brk an area that has already been mapped 360 * to a regular file. in this case, the unmapping will need 361 * to invoke file system routines that need the global lock. 362 */ 363 SYSCALL_DEFINE1(brk, unsigned long, brk) 364 { 365 struct mm_struct *mm = current->mm; 366 367 if (brk < mm->start_brk || brk > mm->context.end_brk) 368 return mm->brk; 369 370 if (mm->brk == brk) 371 return mm->brk; 372 373 /* 374 * Always allow shrinking brk 375 */ 376 if (brk <= mm->brk) { 377 mm->brk = brk; 378 return brk; 379 } 380 381 /* 382 * Ok, looks good - let it rip. 383 */ 384 flush_icache_user_range(mm->brk, brk); 385 return mm->brk = brk; 386 } 387 388 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 389 390 static const struct ctl_table nommu_table[] = { 391 { 392 .procname = "nr_trim_pages", 393 .data = &sysctl_nr_trim_pages, 394 .maxlen = sizeof(sysctl_nr_trim_pages), 395 .mode = 0644, 396 .proc_handler = proc_dointvec_minmax, 397 .extra1 = SYSCTL_ZERO, 398 }, 399 }; 400 401 /* 402 * initialise the percpu counter for VM and region record slabs 403 */ 404 void __init mmap_init(void) 405 { 406 int ret; 407 408 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 409 VM_BUG_ON(ret); 410 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 411 register_sysctl_init("vm", nommu_table); 412 } 413 414 /* 415 * validate the region tree 416 * - the caller must hold the region lock 417 */ 418 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 419 static noinline void validate_nommu_regions(void) 420 { 421 struct vm_region *region, *last; 422 struct rb_node *p, *lastp; 423 424 lastp = rb_first(&nommu_region_tree); 425 if (!lastp) 426 return; 427 428 last = rb_entry(lastp, struct vm_region, vm_rb); 429 BUG_ON(last->vm_end <= last->vm_start); 430 BUG_ON(last->vm_top < last->vm_end); 431 432 while ((p = rb_next(lastp))) { 433 region = rb_entry(p, struct vm_region, vm_rb); 434 last = rb_entry(lastp, struct vm_region, vm_rb); 435 436 BUG_ON(region->vm_end <= region->vm_start); 437 BUG_ON(region->vm_top < region->vm_end); 438 BUG_ON(region->vm_start < last->vm_top); 439 440 lastp = p; 441 } 442 } 443 #else 444 static void validate_nommu_regions(void) 445 { 446 } 447 #endif 448 449 /* 450 * add a region into the global tree 451 */ 452 static void add_nommu_region(struct vm_region *region) 453 { 454 struct vm_region *pregion; 455 struct rb_node **p, *parent; 456 457 validate_nommu_regions(); 458 459 parent = NULL; 460 p = &nommu_region_tree.rb_node; 461 while (*p) { 462 parent = *p; 463 pregion = rb_entry(parent, struct vm_region, vm_rb); 464 if (region->vm_start < pregion->vm_start) 465 p = &(*p)->rb_left; 466 else if (region->vm_start > pregion->vm_start) 467 p = &(*p)->rb_right; 468 else if (pregion == region) 469 return; 470 else 471 BUG(); 472 } 473 474 rb_link_node(®ion->vm_rb, parent, p); 475 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 476 477 validate_nommu_regions(); 478 } 479 480 /* 481 * delete a region from the global tree 482 */ 483 static void delete_nommu_region(struct vm_region *region) 484 { 485 BUG_ON(!nommu_region_tree.rb_node); 486 487 validate_nommu_regions(); 488 rb_erase(®ion->vm_rb, &nommu_region_tree); 489 validate_nommu_regions(); 490 } 491 492 /* 493 * free a contiguous series of pages 494 */ 495 static void free_page_series(unsigned long from, unsigned long to) 496 { 497 for (; from < to; from += PAGE_SIZE) { 498 struct page *page = virt_to_page((void *)from); 499 500 atomic_long_dec(&mmap_pages_allocated); 501 put_page(page); 502 } 503 } 504 505 /* 506 * release a reference to a region 507 * - the caller must hold the region semaphore for writing, which this releases 508 * - the region may not have been added to the tree yet, in which case vm_top 509 * will equal vm_start 510 */ 511 static void __put_nommu_region(struct vm_region *region) 512 __releases(nommu_region_sem) 513 { 514 BUG_ON(!nommu_region_tree.rb_node); 515 516 if (--region->vm_usage == 0) { 517 if (region->vm_top > region->vm_start) 518 delete_nommu_region(region); 519 up_write(&nommu_region_sem); 520 521 if (region->vm_file) 522 fput(region->vm_file); 523 524 /* IO memory and memory shared directly out of the pagecache 525 * from ramfs/tmpfs mustn't be released here */ 526 if (region->vm_flags & VM_MAPPED_COPY) 527 free_page_series(region->vm_start, region->vm_top); 528 kmem_cache_free(vm_region_jar, region); 529 } else { 530 up_write(&nommu_region_sem); 531 } 532 } 533 534 /* 535 * release a reference to a region 536 */ 537 static void put_nommu_region(struct vm_region *region) 538 { 539 down_write(&nommu_region_sem); 540 __put_nommu_region(region); 541 } 542 543 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 544 { 545 vma->vm_mm = mm; 546 547 /* add the VMA to the mapping */ 548 if (vma->vm_file) { 549 struct address_space *mapping = vma->vm_file->f_mapping; 550 551 i_mmap_lock_write(mapping); 552 flush_dcache_mmap_lock(mapping); 553 vma_interval_tree_insert(vma, &mapping->i_mmap); 554 flush_dcache_mmap_unlock(mapping); 555 i_mmap_unlock_write(mapping); 556 } 557 } 558 559 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 560 { 561 vma->vm_mm->map_count--; 562 /* remove the VMA from the mapping */ 563 if (vma->vm_file) { 564 struct address_space *mapping; 565 mapping = vma->vm_file->f_mapping; 566 567 i_mmap_lock_write(mapping); 568 flush_dcache_mmap_lock(mapping); 569 vma_interval_tree_remove(vma, &mapping->i_mmap); 570 flush_dcache_mmap_unlock(mapping); 571 i_mmap_unlock_write(mapping); 572 } 573 } 574 575 /* 576 * delete a VMA from its owning mm_struct and address space 577 */ 578 static int delete_vma_from_mm(struct vm_area_struct *vma) 579 { 580 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 581 582 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 583 if (vma_iter_prealloc(&vmi, NULL)) { 584 pr_warn("Allocation of vma tree for process %d failed\n", 585 current->pid); 586 return -ENOMEM; 587 } 588 cleanup_vma_from_mm(vma); 589 590 /* remove from the MM's tree and list */ 591 vma_iter_clear(&vmi); 592 return 0; 593 } 594 /* 595 * destroy a VMA record 596 */ 597 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 598 { 599 vma_close(vma); 600 if (vma->vm_file) 601 fput(vma->vm_file); 602 put_nommu_region(vma->vm_region); 603 vm_area_free(vma); 604 } 605 606 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 607 unsigned long start_addr, 608 unsigned long end_addr) 609 { 610 unsigned long index = start_addr; 611 612 mmap_assert_locked(mm); 613 return mt_find(&mm->mm_mt, &index, end_addr - 1); 614 } 615 EXPORT_SYMBOL(find_vma_intersection); 616 617 /* 618 * look up the first VMA in which addr resides, NULL if none 619 * - should be called with mm->mmap_lock at least held readlocked 620 */ 621 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 622 { 623 VMA_ITERATOR(vmi, mm, addr); 624 625 return vma_iter_load(&vmi); 626 } 627 EXPORT_SYMBOL(find_vma); 628 629 /* 630 * At least xtensa ends up having protection faults even with no 631 * MMU.. No stack expansion, at least. 632 */ 633 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 634 unsigned long addr, struct pt_regs *regs) 635 { 636 struct vm_area_struct *vma; 637 638 mmap_read_lock(mm); 639 vma = vma_lookup(mm, addr); 640 if (!vma) 641 mmap_read_unlock(mm); 642 return vma; 643 } 644 645 /* 646 * expand a stack to a given address 647 * - not supported under NOMMU conditions 648 */ 649 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 650 { 651 return -ENOMEM; 652 } 653 654 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 655 { 656 mmap_read_unlock(mm); 657 return NULL; 658 } 659 660 /* 661 * look up the first VMA exactly that exactly matches addr 662 * - should be called with mm->mmap_lock at least held readlocked 663 */ 664 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 665 unsigned long addr, 666 unsigned long len) 667 { 668 struct vm_area_struct *vma; 669 unsigned long end = addr + len; 670 VMA_ITERATOR(vmi, mm, addr); 671 672 vma = vma_iter_load(&vmi); 673 if (!vma) 674 return NULL; 675 if (vma->vm_start != addr) 676 return NULL; 677 if (vma->vm_end != end) 678 return NULL; 679 680 return vma; 681 } 682 683 /* 684 * determine whether a mapping should be permitted and, if so, what sort of 685 * mapping we're capable of supporting 686 */ 687 static int validate_mmap_request(struct file *file, 688 unsigned long addr, 689 unsigned long len, 690 unsigned long prot, 691 unsigned long flags, 692 unsigned long pgoff, 693 unsigned long *_capabilities) 694 { 695 unsigned long capabilities, rlen; 696 int ret; 697 698 /* do the simple checks first */ 699 if (flags & MAP_FIXED) 700 return -EINVAL; 701 702 if ((flags & MAP_TYPE) != MAP_PRIVATE && 703 (flags & MAP_TYPE) != MAP_SHARED) 704 return -EINVAL; 705 706 if (!len) 707 return -EINVAL; 708 709 /* Careful about overflows.. */ 710 rlen = PAGE_ALIGN(len); 711 if (!rlen || rlen > TASK_SIZE) 712 return -ENOMEM; 713 714 /* offset overflow? */ 715 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 716 return -EOVERFLOW; 717 718 if (file) { 719 /* files must support mmap */ 720 if (!file->f_op->mmap) 721 return -ENODEV; 722 723 /* work out if what we've got could possibly be shared 724 * - we support chardevs that provide their own "memory" 725 * - we support files/blockdevs that are memory backed 726 */ 727 if (file->f_op->mmap_capabilities) { 728 capabilities = file->f_op->mmap_capabilities(file); 729 } else { 730 /* no explicit capabilities set, so assume some 731 * defaults */ 732 switch (file_inode(file)->i_mode & S_IFMT) { 733 case S_IFREG: 734 case S_IFBLK: 735 capabilities = NOMMU_MAP_COPY; 736 break; 737 738 case S_IFCHR: 739 capabilities = 740 NOMMU_MAP_DIRECT | 741 NOMMU_MAP_READ | 742 NOMMU_MAP_WRITE; 743 break; 744 745 default: 746 return -EINVAL; 747 } 748 } 749 750 /* eliminate any capabilities that we can't support on this 751 * device */ 752 if (!file->f_op->get_unmapped_area) 753 capabilities &= ~NOMMU_MAP_DIRECT; 754 if (!(file->f_mode & FMODE_CAN_READ)) 755 capabilities &= ~NOMMU_MAP_COPY; 756 757 /* The file shall have been opened with read permission. */ 758 if (!(file->f_mode & FMODE_READ)) 759 return -EACCES; 760 761 if (flags & MAP_SHARED) { 762 /* do checks for writing, appending and locking */ 763 if ((prot & PROT_WRITE) && 764 !(file->f_mode & FMODE_WRITE)) 765 return -EACCES; 766 767 if (IS_APPEND(file_inode(file)) && 768 (file->f_mode & FMODE_WRITE)) 769 return -EACCES; 770 771 if (!(capabilities & NOMMU_MAP_DIRECT)) 772 return -ENODEV; 773 774 /* we mustn't privatise shared mappings */ 775 capabilities &= ~NOMMU_MAP_COPY; 776 } else { 777 /* we're going to read the file into private memory we 778 * allocate */ 779 if (!(capabilities & NOMMU_MAP_COPY)) 780 return -ENODEV; 781 782 /* we don't permit a private writable mapping to be 783 * shared with the backing device */ 784 if (prot & PROT_WRITE) 785 capabilities &= ~NOMMU_MAP_DIRECT; 786 } 787 788 if (capabilities & NOMMU_MAP_DIRECT) { 789 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 790 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 791 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 792 ) { 793 capabilities &= ~NOMMU_MAP_DIRECT; 794 if (flags & MAP_SHARED) { 795 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 796 return -EINVAL; 797 } 798 } 799 } 800 801 /* handle executable mappings and implied executable 802 * mappings */ 803 if (path_noexec(&file->f_path)) { 804 if (prot & PROT_EXEC) 805 return -EPERM; 806 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 807 /* handle implication of PROT_EXEC by PROT_READ */ 808 if (current->personality & READ_IMPLIES_EXEC) { 809 if (capabilities & NOMMU_MAP_EXEC) 810 prot |= PROT_EXEC; 811 } 812 } else if ((prot & PROT_READ) && 813 (prot & PROT_EXEC) && 814 !(capabilities & NOMMU_MAP_EXEC) 815 ) { 816 /* backing file is not executable, try to copy */ 817 capabilities &= ~NOMMU_MAP_DIRECT; 818 } 819 } else { 820 /* anonymous mappings are always memory backed and can be 821 * privately mapped 822 */ 823 capabilities = NOMMU_MAP_COPY; 824 825 /* handle PROT_EXEC implication by PROT_READ */ 826 if ((prot & PROT_READ) && 827 (current->personality & READ_IMPLIES_EXEC)) 828 prot |= PROT_EXEC; 829 } 830 831 /* allow the security API to have its say */ 832 ret = security_mmap_addr(addr); 833 if (ret < 0) 834 return ret; 835 836 /* looks okay */ 837 *_capabilities = capabilities; 838 return 0; 839 } 840 841 /* 842 * we've determined that we can make the mapping, now translate what we 843 * now know into VMA flags 844 */ 845 static unsigned long determine_vm_flags(struct file *file, 846 unsigned long prot, 847 unsigned long flags, 848 unsigned long capabilities) 849 { 850 unsigned long vm_flags; 851 852 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags); 853 854 if (!file) { 855 /* 856 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 857 * there is no fork(). 858 */ 859 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 860 } else if (flags & MAP_PRIVATE) { 861 /* MAP_PRIVATE file mapping */ 862 if (capabilities & NOMMU_MAP_DIRECT) 863 vm_flags |= (capabilities & NOMMU_VMFLAGS); 864 else 865 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 866 867 if (!(prot & PROT_WRITE) && !current->ptrace) 868 /* 869 * R/O private file mapping which cannot be used to 870 * modify memory, especially also not via active ptrace 871 * (e.g., set breakpoints) or later by upgrading 872 * permissions (no mprotect()). We can try overlaying 873 * the file mapping, which will work e.g., on chardevs, 874 * ramfs/tmpfs/shmfs and romfs/cramf. 875 */ 876 vm_flags |= VM_MAYOVERLAY; 877 } else { 878 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 879 vm_flags |= VM_SHARED | VM_MAYSHARE | 880 (capabilities & NOMMU_VMFLAGS); 881 } 882 883 return vm_flags; 884 } 885 886 /* 887 * set up a shared mapping on a file (the driver or filesystem provides and 888 * pins the storage) 889 */ 890 static int do_mmap_shared_file(struct vm_area_struct *vma) 891 { 892 int ret; 893 894 ret = mmap_file(vma->vm_file, vma); 895 if (ret == 0) { 896 vma->vm_region->vm_top = vma->vm_region->vm_end; 897 return 0; 898 } 899 if (ret != -ENOSYS) 900 return ret; 901 902 /* getting -ENOSYS indicates that direct mmap isn't possible (as 903 * opposed to tried but failed) so we can only give a suitable error as 904 * it's not possible to make a private copy if MAP_SHARED was given */ 905 return -ENODEV; 906 } 907 908 /* 909 * set up a private mapping or an anonymous shared mapping 910 */ 911 static int do_mmap_private(struct vm_area_struct *vma, 912 struct vm_region *region, 913 unsigned long len, 914 unsigned long capabilities) 915 { 916 unsigned long total, point; 917 void *base; 918 int ret, order; 919 920 /* 921 * Invoke the file's mapping function so that it can keep track of 922 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 923 * it may attempt to share, which will make is_nommu_shared_mapping() 924 * happy. 925 */ 926 if (capabilities & NOMMU_MAP_DIRECT) { 927 ret = mmap_file(vma->vm_file, vma); 928 /* shouldn't return success if we're not sharing */ 929 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 930 ret = -ENOSYS; 931 if (ret == 0) { 932 vma->vm_region->vm_top = vma->vm_region->vm_end; 933 return 0; 934 } 935 if (ret != -ENOSYS) 936 return ret; 937 938 /* getting an ENOSYS error indicates that direct mmap isn't 939 * possible (as opposed to tried but failed) so we'll try to 940 * make a private copy of the data and map that instead */ 941 } 942 943 944 /* allocate some memory to hold the mapping 945 * - note that this may not return a page-aligned address if the object 946 * we're allocating is smaller than a page 947 */ 948 order = get_order(len); 949 total = 1 << order; 950 point = len >> PAGE_SHIFT; 951 952 /* we don't want to allocate a power-of-2 sized page set */ 953 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 954 total = point; 955 956 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 957 if (!base) 958 goto enomem; 959 960 atomic_long_add(total, &mmap_pages_allocated); 961 962 vm_flags_set(vma, VM_MAPPED_COPY); 963 region->vm_flags = vma->vm_flags; 964 region->vm_start = (unsigned long) base; 965 region->vm_end = region->vm_start + len; 966 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 967 968 vma->vm_start = region->vm_start; 969 vma->vm_end = region->vm_start + len; 970 971 if (vma->vm_file) { 972 /* read the contents of a file into the copy */ 973 loff_t fpos; 974 975 fpos = vma->vm_pgoff; 976 fpos <<= PAGE_SHIFT; 977 978 ret = kernel_read(vma->vm_file, base, len, &fpos); 979 if (ret < 0) 980 goto error_free; 981 982 /* clear the last little bit */ 983 if (ret < len) 984 memset(base + ret, 0, len - ret); 985 986 } else { 987 vma_set_anonymous(vma); 988 } 989 990 return 0; 991 992 error_free: 993 free_page_series(region->vm_start, region->vm_top); 994 region->vm_start = vma->vm_start = 0; 995 region->vm_end = vma->vm_end = 0; 996 region->vm_top = 0; 997 return ret; 998 999 enomem: 1000 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1001 len, current->pid, current->comm); 1002 show_mem(); 1003 return -ENOMEM; 1004 } 1005 1006 /* 1007 * handle mapping creation for uClinux 1008 */ 1009 unsigned long do_mmap(struct file *file, 1010 unsigned long addr, 1011 unsigned long len, 1012 unsigned long prot, 1013 unsigned long flags, 1014 vm_flags_t vm_flags, 1015 unsigned long pgoff, 1016 unsigned long *populate, 1017 struct list_head *uf) 1018 { 1019 struct vm_area_struct *vma; 1020 struct vm_region *region; 1021 struct rb_node *rb; 1022 unsigned long capabilities, result; 1023 int ret; 1024 VMA_ITERATOR(vmi, current->mm, 0); 1025 1026 *populate = 0; 1027 1028 /* decide whether we should attempt the mapping, and if so what sort of 1029 * mapping */ 1030 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1031 &capabilities); 1032 if (ret < 0) 1033 return ret; 1034 1035 /* we ignore the address hint */ 1036 addr = 0; 1037 len = PAGE_ALIGN(len); 1038 1039 /* we've determined that we can make the mapping, now translate what we 1040 * now know into VMA flags */ 1041 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1042 1043 1044 /* we're going to need to record the mapping */ 1045 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1046 if (!region) 1047 goto error_getting_region; 1048 1049 vma = vm_area_alloc(current->mm); 1050 if (!vma) 1051 goto error_getting_vma; 1052 1053 region->vm_usage = 1; 1054 region->vm_flags = vm_flags; 1055 region->vm_pgoff = pgoff; 1056 1057 vm_flags_init(vma, vm_flags); 1058 vma->vm_pgoff = pgoff; 1059 1060 if (file) { 1061 region->vm_file = get_file(file); 1062 vma->vm_file = get_file(file); 1063 } 1064 1065 down_write(&nommu_region_sem); 1066 1067 /* if we want to share, we need to check for regions created by other 1068 * mmap() calls that overlap with our proposed mapping 1069 * - we can only share with a superset match on most regular files 1070 * - shared mappings on character devices and memory backed files are 1071 * permitted to overlap inexactly as far as we are concerned for in 1072 * these cases, sharing is handled in the driver or filesystem rather 1073 * than here 1074 */ 1075 if (is_nommu_shared_mapping(vm_flags)) { 1076 struct vm_region *pregion; 1077 unsigned long pglen, rpglen, pgend, rpgend, start; 1078 1079 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1080 pgend = pgoff + pglen; 1081 1082 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1083 pregion = rb_entry(rb, struct vm_region, vm_rb); 1084 1085 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1086 continue; 1087 1088 /* search for overlapping mappings on the same file */ 1089 if (file_inode(pregion->vm_file) != 1090 file_inode(file)) 1091 continue; 1092 1093 if (pregion->vm_pgoff >= pgend) 1094 continue; 1095 1096 rpglen = pregion->vm_end - pregion->vm_start; 1097 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1098 rpgend = pregion->vm_pgoff + rpglen; 1099 if (pgoff >= rpgend) 1100 continue; 1101 1102 /* handle inexactly overlapping matches between 1103 * mappings */ 1104 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1105 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1106 /* new mapping is not a subset of the region */ 1107 if (!(capabilities & NOMMU_MAP_DIRECT)) 1108 goto sharing_violation; 1109 continue; 1110 } 1111 1112 /* we've found a region we can share */ 1113 pregion->vm_usage++; 1114 vma->vm_region = pregion; 1115 start = pregion->vm_start; 1116 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1117 vma->vm_start = start; 1118 vma->vm_end = start + len; 1119 1120 if (pregion->vm_flags & VM_MAPPED_COPY) 1121 vm_flags_set(vma, VM_MAPPED_COPY); 1122 else { 1123 ret = do_mmap_shared_file(vma); 1124 if (ret < 0) { 1125 vma->vm_region = NULL; 1126 vma->vm_start = 0; 1127 vma->vm_end = 0; 1128 pregion->vm_usage--; 1129 pregion = NULL; 1130 goto error_just_free; 1131 } 1132 } 1133 fput(region->vm_file); 1134 kmem_cache_free(vm_region_jar, region); 1135 region = pregion; 1136 result = start; 1137 goto share; 1138 } 1139 1140 /* obtain the address at which to make a shared mapping 1141 * - this is the hook for quasi-memory character devices to 1142 * tell us the location of a shared mapping 1143 */ 1144 if (capabilities & NOMMU_MAP_DIRECT) { 1145 addr = file->f_op->get_unmapped_area(file, addr, len, 1146 pgoff, flags); 1147 if (IS_ERR_VALUE(addr)) { 1148 ret = addr; 1149 if (ret != -ENOSYS) 1150 goto error_just_free; 1151 1152 /* the driver refused to tell us where to site 1153 * the mapping so we'll have to attempt to copy 1154 * it */ 1155 ret = -ENODEV; 1156 if (!(capabilities & NOMMU_MAP_COPY)) 1157 goto error_just_free; 1158 1159 capabilities &= ~NOMMU_MAP_DIRECT; 1160 } else { 1161 vma->vm_start = region->vm_start = addr; 1162 vma->vm_end = region->vm_end = addr + len; 1163 } 1164 } 1165 } 1166 1167 vma->vm_region = region; 1168 1169 /* set up the mapping 1170 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1171 */ 1172 if (file && vma->vm_flags & VM_SHARED) 1173 ret = do_mmap_shared_file(vma); 1174 else 1175 ret = do_mmap_private(vma, region, len, capabilities); 1176 if (ret < 0) 1177 goto error_just_free; 1178 add_nommu_region(region); 1179 1180 /* clear anonymous mappings that don't ask for uninitialized data */ 1181 if (!vma->vm_file && 1182 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1183 !(flags & MAP_UNINITIALIZED))) 1184 memset((void *)region->vm_start, 0, 1185 region->vm_end - region->vm_start); 1186 1187 /* okay... we have a mapping; now we have to register it */ 1188 result = vma->vm_start; 1189 1190 current->mm->total_vm += len >> PAGE_SHIFT; 1191 1192 share: 1193 BUG_ON(!vma->vm_region); 1194 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1195 if (vma_iter_prealloc(&vmi, vma)) 1196 goto error_just_free; 1197 1198 setup_vma_to_mm(vma, current->mm); 1199 current->mm->map_count++; 1200 /* add the VMA to the tree */ 1201 vma_iter_store_new(&vmi, vma); 1202 1203 /* we flush the region from the icache only when the first executable 1204 * mapping of it is made */ 1205 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1206 flush_icache_user_range(region->vm_start, region->vm_end); 1207 region->vm_icache_flushed = true; 1208 } 1209 1210 up_write(&nommu_region_sem); 1211 1212 return result; 1213 1214 error_just_free: 1215 up_write(&nommu_region_sem); 1216 error: 1217 vma_iter_free(&vmi); 1218 if (region->vm_file) 1219 fput(region->vm_file); 1220 kmem_cache_free(vm_region_jar, region); 1221 if (vma->vm_file) 1222 fput(vma->vm_file); 1223 vm_area_free(vma); 1224 return ret; 1225 1226 sharing_violation: 1227 up_write(&nommu_region_sem); 1228 pr_warn("Attempt to share mismatched mappings\n"); 1229 ret = -EINVAL; 1230 goto error; 1231 1232 error_getting_vma: 1233 kmem_cache_free(vm_region_jar, region); 1234 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1235 len, current->pid); 1236 show_mem(); 1237 return -ENOMEM; 1238 1239 error_getting_region: 1240 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1241 len, current->pid); 1242 show_mem(); 1243 return -ENOMEM; 1244 } 1245 1246 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1247 unsigned long prot, unsigned long flags, 1248 unsigned long fd, unsigned long pgoff) 1249 { 1250 struct file *file = NULL; 1251 unsigned long retval = -EBADF; 1252 1253 audit_mmap_fd(fd, flags); 1254 if (!(flags & MAP_ANONYMOUS)) { 1255 file = fget(fd); 1256 if (!file) 1257 goto out; 1258 } 1259 1260 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1261 1262 if (file) 1263 fput(file); 1264 out: 1265 return retval; 1266 } 1267 1268 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1269 unsigned long, prot, unsigned long, flags, 1270 unsigned long, fd, unsigned long, pgoff) 1271 { 1272 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1273 } 1274 1275 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1276 struct mmap_arg_struct { 1277 unsigned long addr; 1278 unsigned long len; 1279 unsigned long prot; 1280 unsigned long flags; 1281 unsigned long fd; 1282 unsigned long offset; 1283 }; 1284 1285 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1286 { 1287 struct mmap_arg_struct a; 1288 1289 if (copy_from_user(&a, arg, sizeof(a))) 1290 return -EFAULT; 1291 if (offset_in_page(a.offset)) 1292 return -EINVAL; 1293 1294 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1295 a.offset >> PAGE_SHIFT); 1296 } 1297 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1298 1299 /* 1300 * split a vma into two pieces at address 'addr', a new vma is allocated either 1301 * for the first part or the tail. 1302 */ 1303 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1304 unsigned long addr, int new_below) 1305 { 1306 struct vm_area_struct *new; 1307 struct vm_region *region; 1308 unsigned long npages; 1309 struct mm_struct *mm; 1310 1311 /* we're only permitted to split anonymous regions (these should have 1312 * only a single usage on the region) */ 1313 if (vma->vm_file) 1314 return -ENOMEM; 1315 1316 mm = vma->vm_mm; 1317 if (mm->map_count >= sysctl_max_map_count) 1318 return -ENOMEM; 1319 1320 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1321 if (!region) 1322 return -ENOMEM; 1323 1324 new = vm_area_dup(vma); 1325 if (!new) 1326 goto err_vma_dup; 1327 1328 /* most fields are the same, copy all, and then fixup */ 1329 *region = *vma->vm_region; 1330 new->vm_region = region; 1331 1332 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1333 1334 if (new_below) { 1335 region->vm_top = region->vm_end = new->vm_end = addr; 1336 } else { 1337 region->vm_start = new->vm_start = addr; 1338 region->vm_pgoff = new->vm_pgoff += npages; 1339 } 1340 1341 vma_iter_config(vmi, new->vm_start, new->vm_end); 1342 if (vma_iter_prealloc(vmi, vma)) { 1343 pr_warn("Allocation of vma tree for process %d failed\n", 1344 current->pid); 1345 goto err_vmi_preallocate; 1346 } 1347 1348 if (new->vm_ops && new->vm_ops->open) 1349 new->vm_ops->open(new); 1350 1351 down_write(&nommu_region_sem); 1352 delete_nommu_region(vma->vm_region); 1353 if (new_below) { 1354 vma->vm_region->vm_start = vma->vm_start = addr; 1355 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1356 } else { 1357 vma->vm_region->vm_end = vma->vm_end = addr; 1358 vma->vm_region->vm_top = addr; 1359 } 1360 add_nommu_region(vma->vm_region); 1361 add_nommu_region(new->vm_region); 1362 up_write(&nommu_region_sem); 1363 1364 setup_vma_to_mm(vma, mm); 1365 setup_vma_to_mm(new, mm); 1366 vma_iter_store_new(vmi, new); 1367 mm->map_count++; 1368 return 0; 1369 1370 err_vmi_preallocate: 1371 vm_area_free(new); 1372 err_vma_dup: 1373 kmem_cache_free(vm_region_jar, region); 1374 return -ENOMEM; 1375 } 1376 1377 /* 1378 * shrink a VMA by removing the specified chunk from either the beginning or 1379 * the end 1380 */ 1381 static int vmi_shrink_vma(struct vma_iterator *vmi, 1382 struct vm_area_struct *vma, 1383 unsigned long from, unsigned long to) 1384 { 1385 struct vm_region *region; 1386 1387 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1388 * and list */ 1389 if (from > vma->vm_start) { 1390 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1391 return -ENOMEM; 1392 vma->vm_end = from; 1393 } else { 1394 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1395 return -ENOMEM; 1396 vma->vm_start = to; 1397 } 1398 1399 /* cut the backing region down to size */ 1400 region = vma->vm_region; 1401 BUG_ON(region->vm_usage != 1); 1402 1403 down_write(&nommu_region_sem); 1404 delete_nommu_region(region); 1405 if (from > region->vm_start) { 1406 to = region->vm_top; 1407 region->vm_top = region->vm_end = from; 1408 } else { 1409 region->vm_start = to; 1410 } 1411 add_nommu_region(region); 1412 up_write(&nommu_region_sem); 1413 1414 free_page_series(from, to); 1415 return 0; 1416 } 1417 1418 /* 1419 * release a mapping 1420 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1421 * VMA, though it need not cover the whole VMA 1422 */ 1423 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1424 { 1425 VMA_ITERATOR(vmi, mm, start); 1426 struct vm_area_struct *vma; 1427 unsigned long end; 1428 int ret = 0; 1429 1430 len = PAGE_ALIGN(len); 1431 if (len == 0) 1432 return -EINVAL; 1433 1434 end = start + len; 1435 1436 /* find the first potentially overlapping VMA */ 1437 vma = vma_find(&vmi, end); 1438 if (!vma) { 1439 static int limit; 1440 if (limit < 5) { 1441 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1442 current->pid, current->comm, 1443 start, start + len - 1); 1444 limit++; 1445 } 1446 return -EINVAL; 1447 } 1448 1449 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1450 if (vma->vm_file) { 1451 do { 1452 if (start > vma->vm_start) 1453 return -EINVAL; 1454 if (end == vma->vm_end) 1455 goto erase_whole_vma; 1456 vma = vma_find(&vmi, end); 1457 } while (vma); 1458 return -EINVAL; 1459 } else { 1460 /* the chunk must be a subset of the VMA found */ 1461 if (start == vma->vm_start && end == vma->vm_end) 1462 goto erase_whole_vma; 1463 if (start < vma->vm_start || end > vma->vm_end) 1464 return -EINVAL; 1465 if (offset_in_page(start)) 1466 return -EINVAL; 1467 if (end != vma->vm_end && offset_in_page(end)) 1468 return -EINVAL; 1469 if (start != vma->vm_start && end != vma->vm_end) { 1470 ret = split_vma(&vmi, vma, start, 1); 1471 if (ret < 0) 1472 return ret; 1473 } 1474 return vmi_shrink_vma(&vmi, vma, start, end); 1475 } 1476 1477 erase_whole_vma: 1478 if (delete_vma_from_mm(vma)) 1479 ret = -ENOMEM; 1480 else 1481 delete_vma(mm, vma); 1482 return ret; 1483 } 1484 1485 int vm_munmap(unsigned long addr, size_t len) 1486 { 1487 struct mm_struct *mm = current->mm; 1488 int ret; 1489 1490 mmap_write_lock(mm); 1491 ret = do_munmap(mm, addr, len, NULL); 1492 mmap_write_unlock(mm); 1493 return ret; 1494 } 1495 EXPORT_SYMBOL(vm_munmap); 1496 1497 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1498 { 1499 return vm_munmap(addr, len); 1500 } 1501 1502 /* 1503 * release all the mappings made in a process's VM space 1504 */ 1505 void exit_mmap(struct mm_struct *mm) 1506 { 1507 VMA_ITERATOR(vmi, mm, 0); 1508 struct vm_area_struct *vma; 1509 1510 if (!mm) 1511 return; 1512 1513 mm->total_vm = 0; 1514 1515 /* 1516 * Lock the mm to avoid assert complaining even though this is the only 1517 * user of the mm 1518 */ 1519 mmap_write_lock(mm); 1520 for_each_vma(vmi, vma) { 1521 cleanup_vma_from_mm(vma); 1522 delete_vma(mm, vma); 1523 cond_resched(); 1524 } 1525 __mt_destroy(&mm->mm_mt); 1526 mmap_write_unlock(mm); 1527 } 1528 1529 /* 1530 * expand (or shrink) an existing mapping, potentially moving it at the same 1531 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1532 * 1533 * under NOMMU conditions, we only permit changing a mapping's size, and only 1534 * as long as it stays within the region allocated by do_mmap_private() and the 1535 * block is not shareable 1536 * 1537 * MREMAP_FIXED is not supported under NOMMU conditions 1538 */ 1539 static unsigned long do_mremap(unsigned long addr, 1540 unsigned long old_len, unsigned long new_len, 1541 unsigned long flags, unsigned long new_addr) 1542 { 1543 struct vm_area_struct *vma; 1544 1545 /* insanity checks first */ 1546 old_len = PAGE_ALIGN(old_len); 1547 new_len = PAGE_ALIGN(new_len); 1548 if (old_len == 0 || new_len == 0) 1549 return (unsigned long) -EINVAL; 1550 1551 if (offset_in_page(addr)) 1552 return -EINVAL; 1553 1554 if (flags & MREMAP_FIXED && new_addr != addr) 1555 return (unsigned long) -EINVAL; 1556 1557 vma = find_vma_exact(current->mm, addr, old_len); 1558 if (!vma) 1559 return (unsigned long) -EINVAL; 1560 1561 if (vma->vm_end != vma->vm_start + old_len) 1562 return (unsigned long) -EFAULT; 1563 1564 if (is_nommu_shared_mapping(vma->vm_flags)) 1565 return (unsigned long) -EPERM; 1566 1567 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1568 return (unsigned long) -ENOMEM; 1569 1570 /* all checks complete - do it */ 1571 vma->vm_end = vma->vm_start + new_len; 1572 return vma->vm_start; 1573 } 1574 1575 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1576 unsigned long, new_len, unsigned long, flags, 1577 unsigned long, new_addr) 1578 { 1579 unsigned long ret; 1580 1581 mmap_write_lock(current->mm); 1582 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1583 mmap_write_unlock(current->mm); 1584 return ret; 1585 } 1586 1587 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1588 unsigned long pfn, unsigned long size, pgprot_t prot) 1589 { 1590 if (addr != (pfn << PAGE_SHIFT)) 1591 return -EINVAL; 1592 1593 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1594 return 0; 1595 } 1596 EXPORT_SYMBOL(remap_pfn_range); 1597 1598 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1599 { 1600 unsigned long pfn = start >> PAGE_SHIFT; 1601 unsigned long vm_len = vma->vm_end - vma->vm_start; 1602 1603 pfn += vma->vm_pgoff; 1604 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1605 } 1606 EXPORT_SYMBOL(vm_iomap_memory); 1607 1608 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1609 unsigned long pgoff) 1610 { 1611 unsigned int size = vma->vm_end - vma->vm_start; 1612 1613 if (!(vma->vm_flags & VM_USERMAP)) 1614 return -EINVAL; 1615 1616 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1617 vma->vm_end = vma->vm_start + size; 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL(remap_vmalloc_range); 1622 1623 vm_fault_t filemap_fault(struct vm_fault *vmf) 1624 { 1625 BUG(); 1626 return 0; 1627 } 1628 EXPORT_SYMBOL(filemap_fault); 1629 1630 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1631 pgoff_t start_pgoff, pgoff_t end_pgoff) 1632 { 1633 BUG(); 1634 return 0; 1635 } 1636 EXPORT_SYMBOL(filemap_map_pages); 1637 1638 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1639 void *buf, int len, unsigned int gup_flags) 1640 { 1641 struct vm_area_struct *vma; 1642 int write = gup_flags & FOLL_WRITE; 1643 1644 if (mmap_read_lock_killable(mm)) 1645 return 0; 1646 1647 /* the access must start within one of the target process's mappings */ 1648 vma = find_vma(mm, addr); 1649 if (vma) { 1650 /* don't overrun this mapping */ 1651 if (addr + len >= vma->vm_end) 1652 len = vma->vm_end - addr; 1653 1654 /* only read or write mappings where it is permitted */ 1655 if (write && vma->vm_flags & VM_MAYWRITE) 1656 copy_to_user_page(vma, NULL, addr, 1657 (void *) addr, buf, len); 1658 else if (!write && vma->vm_flags & VM_MAYREAD) 1659 copy_from_user_page(vma, NULL, addr, 1660 buf, (void *) addr, len); 1661 else 1662 len = 0; 1663 } else { 1664 len = 0; 1665 } 1666 1667 mmap_read_unlock(mm); 1668 1669 return len; 1670 } 1671 1672 /** 1673 * access_remote_vm - access another process' address space 1674 * @mm: the mm_struct of the target address space 1675 * @addr: start address to access 1676 * @buf: source or destination buffer 1677 * @len: number of bytes to transfer 1678 * @gup_flags: flags modifying lookup behaviour 1679 * 1680 * The caller must hold a reference on @mm. 1681 */ 1682 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1683 void *buf, int len, unsigned int gup_flags) 1684 { 1685 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1686 } 1687 1688 /* 1689 * Access another process' address space. 1690 * - source/target buffer must be kernel space 1691 */ 1692 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1693 unsigned int gup_flags) 1694 { 1695 struct mm_struct *mm; 1696 1697 if (addr + len < addr) 1698 return 0; 1699 1700 mm = get_task_mm(tsk); 1701 if (!mm) 1702 return 0; 1703 1704 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1705 1706 mmput(mm); 1707 return len; 1708 } 1709 EXPORT_SYMBOL_GPL(access_process_vm); 1710 1711 #ifdef CONFIG_BPF_SYSCALL 1712 /* 1713 * Copy a string from another process's address space as given in mm. 1714 * If there is any error return -EFAULT. 1715 */ 1716 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 1717 void *buf, int len) 1718 { 1719 unsigned long addr_end; 1720 struct vm_area_struct *vma; 1721 int ret = -EFAULT; 1722 1723 *(char *)buf = '\0'; 1724 1725 if (mmap_read_lock_killable(mm)) 1726 return ret; 1727 1728 /* the access must start within one of the target process's mappings */ 1729 vma = find_vma(mm, addr); 1730 if (!vma) 1731 goto out; 1732 1733 if (check_add_overflow(addr, len, &addr_end)) 1734 goto out; 1735 1736 /* don't overrun this mapping */ 1737 if (addr_end > vma->vm_end) 1738 len = vma->vm_end - addr; 1739 1740 /* only read mappings where it is permitted */ 1741 if (vma->vm_flags & VM_MAYREAD) { 1742 ret = strscpy(buf, (char *)addr, len); 1743 if (ret < 0) 1744 ret = len - 1; 1745 } 1746 1747 out: 1748 mmap_read_unlock(mm); 1749 return ret; 1750 } 1751 1752 /** 1753 * copy_remote_vm_str - copy a string from another process's address space. 1754 * @tsk: the task of the target address space 1755 * @addr: start address to read from 1756 * @buf: destination buffer 1757 * @len: number of bytes to copy 1758 * @gup_flags: flags modifying lookup behaviour (unused) 1759 * 1760 * The caller must hold a reference on @mm. 1761 * 1762 * Return: number of bytes copied from @addr (source) to @buf (destination); 1763 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 1764 * buffer. On any error, return -EFAULT. 1765 */ 1766 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 1767 void *buf, int len, unsigned int gup_flags) 1768 { 1769 struct mm_struct *mm; 1770 int ret; 1771 1772 if (unlikely(len == 0)) 1773 return 0; 1774 1775 mm = get_task_mm(tsk); 1776 if (!mm) { 1777 *(char *)buf = '\0'; 1778 return -EFAULT; 1779 } 1780 1781 ret = __copy_remote_vm_str(mm, addr, buf, len); 1782 1783 mmput(mm); 1784 1785 return ret; 1786 } 1787 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 1788 #endif /* CONFIG_BPF_SYSCALL */ 1789 1790 /** 1791 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1792 * @inode: The inode to check 1793 * @size: The current filesize of the inode 1794 * @newsize: The proposed filesize of the inode 1795 * 1796 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1797 * make sure that any outstanding VMAs aren't broken and then shrink the 1798 * vm_regions that extend beyond so that do_mmap() doesn't 1799 * automatically grant mappings that are too large. 1800 */ 1801 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1802 size_t newsize) 1803 { 1804 struct vm_area_struct *vma; 1805 struct vm_region *region; 1806 pgoff_t low, high; 1807 size_t r_size, r_top; 1808 1809 low = newsize >> PAGE_SHIFT; 1810 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1811 1812 down_write(&nommu_region_sem); 1813 i_mmap_lock_read(inode->i_mapping); 1814 1815 /* search for VMAs that fall within the dead zone */ 1816 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1817 /* found one - only interested if it's shared out of the page 1818 * cache */ 1819 if (vma->vm_flags & VM_SHARED) { 1820 i_mmap_unlock_read(inode->i_mapping); 1821 up_write(&nommu_region_sem); 1822 return -ETXTBSY; /* not quite true, but near enough */ 1823 } 1824 } 1825 1826 /* reduce any regions that overlap the dead zone - if in existence, 1827 * these will be pointed to by VMAs that don't overlap the dead zone 1828 * 1829 * we don't check for any regions that start beyond the EOF as there 1830 * shouldn't be any 1831 */ 1832 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1833 if (!(vma->vm_flags & VM_SHARED)) 1834 continue; 1835 1836 region = vma->vm_region; 1837 r_size = region->vm_top - region->vm_start; 1838 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1839 1840 if (r_top > newsize) { 1841 region->vm_top -= r_top - newsize; 1842 if (region->vm_end > region->vm_top) 1843 region->vm_end = region->vm_top; 1844 } 1845 } 1846 1847 i_mmap_unlock_read(inode->i_mapping); 1848 up_write(&nommu_region_sem); 1849 return 0; 1850 } 1851 1852 /* 1853 * Initialise sysctl_user_reserve_kbytes. 1854 * 1855 * This is intended to prevent a user from starting a single memory hogging 1856 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1857 * mode. 1858 * 1859 * The default value is min(3% of free memory, 128MB) 1860 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1861 */ 1862 static int __meminit init_user_reserve(void) 1863 { 1864 unsigned long free_kbytes; 1865 1866 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1867 1868 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1869 return 0; 1870 } 1871 subsys_initcall(init_user_reserve); 1872 1873 /* 1874 * Initialise sysctl_admin_reserve_kbytes. 1875 * 1876 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1877 * to log in and kill a memory hogging process. 1878 * 1879 * Systems with more than 256MB will reserve 8MB, enough to recover 1880 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1881 * only reserve 3% of free pages by default. 1882 */ 1883 static int __meminit init_admin_reserve(void) 1884 { 1885 unsigned long free_kbytes; 1886 1887 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1888 1889 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1890 return 0; 1891 } 1892 subsys_initcall(init_admin_reserve); 1893