xref: /linux/mm/nommu.c (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 	return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157 
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
159 {
160 	void *ret;
161 
162 	ret = __vmalloc(size, flags, PAGE_KERNEL);
163 	if (ret) {
164 		struct vm_area_struct *vma;
165 
166 		down_write(&current->mm->mmap_sem);
167 		vma = find_vma(current->mm, (unsigned long)ret);
168 		if (vma)
169 			vma->vm_flags |= VM_USERMAP;
170 		up_write(&current->mm->mmap_sem);
171 	}
172 
173 	return ret;
174 }
175 
176 void *vmalloc_user(unsigned long size)
177 {
178 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
179 }
180 EXPORT_SYMBOL(vmalloc_user);
181 
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
183 {
184 	return __vmalloc_user_flags(size, flags | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
187 
188 struct page *vmalloc_to_page(const void *addr)
189 {
190 	return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193 
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196 	return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199 
200 long vread(char *buf, char *addr, unsigned long count)
201 {
202 	/* Don't allow overflow */
203 	if ((unsigned long) buf + count < count)
204 		count = -(unsigned long) buf;
205 
206 	memcpy(buf, addr, count);
207 	return count;
208 }
209 
210 long vwrite(char *buf, char *addr, unsigned long count)
211 {
212 	/* Don't allow overflow */
213 	if ((unsigned long) addr + count < count)
214 		count = -(unsigned long) addr;
215 
216 	memcpy(addr, buf, count);
217 	return count;
218 }
219 
220 /*
221  *	vmalloc  -  allocate virtually contiguous memory
222  *
223  *	@size:		allocation size
224  *
225  *	Allocate enough pages to cover @size from the page level
226  *	allocator and map them into contiguous kernel virtual space.
227  *
228  *	For tight control over page level allocator and protection flags
229  *	use __vmalloc() instead.
230  */
231 void *vmalloc(unsigned long size)
232 {
233        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
234 }
235 EXPORT_SYMBOL(vmalloc);
236 
237 /*
238  *	vzalloc - allocate virtually contiguous memory with zero fill
239  *
240  *	@size:		allocation size
241  *
242  *	Allocate enough pages to cover @size from the page level
243  *	allocator and map them into contiguous kernel virtual space.
244  *	The memory allocated is set to zero.
245  *
246  *	For tight control over page level allocator and protection flags
247  *	use __vmalloc() instead.
248  */
249 void *vzalloc(unsigned long size)
250 {
251 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252 			PAGE_KERNEL);
253 }
254 EXPORT_SYMBOL(vzalloc);
255 
256 /**
257  * vmalloc_node - allocate memory on a specific node
258  * @size:	allocation size
259  * @node:	numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  *
264  * For tight control over page level allocator and protection flags
265  * use __vmalloc() instead.
266  */
267 void *vmalloc_node(unsigned long size, int node)
268 {
269 	return vmalloc(size);
270 }
271 EXPORT_SYMBOL(vmalloc_node);
272 
273 /**
274  * vzalloc_node - allocate memory on a specific node with zero fill
275  * @size:	allocation size
276  * @node:	numa node
277  *
278  * Allocate enough pages to cover @size from the page level
279  * allocator and map them into contiguous kernel virtual space.
280  * The memory allocated is set to zero.
281  *
282  * For tight control over page level allocator and protection flags
283  * use __vmalloc() instead.
284  */
285 void *vzalloc_node(unsigned long size, int node)
286 {
287 	return vzalloc(size);
288 }
289 EXPORT_SYMBOL(vzalloc_node);
290 
291 /**
292  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
293  *	@size:		allocation size
294  *
295  *	Kernel-internal function to allocate enough pages to cover @size
296  *	the page level allocator and map them into contiguous and
297  *	executable kernel virtual space.
298  *
299  *	For tight control over page level allocator and protection flags
300  *	use __vmalloc() instead.
301  */
302 
303 void *vmalloc_exec(unsigned long size)
304 {
305 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
306 }
307 
308 /**
309  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
310  *	@size:		allocation size
311  *
312  *	Allocate enough 32bit PA addressable pages to cover @size from the
313  *	page level allocator and map them into contiguous kernel virtual space.
314  */
315 void *vmalloc_32(unsigned long size)
316 {
317 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc_32);
320 
321 /**
322  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323  *	@size:		allocation size
324  *
325  * The resulting memory area is 32bit addressable and zeroed so it can be
326  * mapped to userspace without leaking data.
327  *
328  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329  * remap_vmalloc_range() are permissible.
330  */
331 void *vmalloc_32_user(unsigned long size)
332 {
333 	/*
334 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
335 	 * but for now this can simply use vmalloc_user() directly.
336 	 */
337 	return vmalloc_user(size);
338 }
339 EXPORT_SYMBOL(vmalloc_32_user);
340 
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
342 {
343 	BUG();
344 	return NULL;
345 }
346 EXPORT_SYMBOL(vmap);
347 
348 void vunmap(const void *addr)
349 {
350 	BUG();
351 }
352 EXPORT_SYMBOL(vunmap);
353 
354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
355 {
356 	BUG();
357 	return NULL;
358 }
359 EXPORT_SYMBOL(vm_map_ram);
360 
361 void vm_unmap_ram(const void *mem, unsigned int count)
362 {
363 	BUG();
364 }
365 EXPORT_SYMBOL(vm_unmap_ram);
366 
367 void vm_unmap_aliases(void)
368 {
369 }
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
371 
372 /*
373  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
374  * have one.
375  */
376 void __weak vmalloc_sync_all(void)
377 {
378 }
379 
380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
381 {
382 	BUG();
383 	return NULL;
384 }
385 EXPORT_SYMBOL_GPL(alloc_vm_area);
386 
387 void free_vm_area(struct vm_struct *area)
388 {
389 	BUG();
390 }
391 EXPORT_SYMBOL_GPL(free_vm_area);
392 
393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
394 		   struct page *page)
395 {
396 	return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_insert_page);
399 
400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
401 			unsigned long num)
402 {
403 	return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages);
406 
407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
408 				unsigned long num)
409 {
410 	return -EINVAL;
411 }
412 EXPORT_SYMBOL(vm_map_pages_zero);
413 
414 /*
415  *  sys_brk() for the most part doesn't need the global kernel
416  *  lock, except when an application is doing something nasty
417  *  like trying to un-brk an area that has already been mapped
418  *  to a regular file.  in this case, the unmapping will need
419  *  to invoke file system routines that need the global lock.
420  */
421 SYSCALL_DEFINE1(brk, unsigned long, brk)
422 {
423 	struct mm_struct *mm = current->mm;
424 
425 	if (brk < mm->start_brk || brk > mm->context.end_brk)
426 		return mm->brk;
427 
428 	if (mm->brk == brk)
429 		return mm->brk;
430 
431 	/*
432 	 * Always allow shrinking brk
433 	 */
434 	if (brk <= mm->brk) {
435 		mm->brk = brk;
436 		return brk;
437 	}
438 
439 	/*
440 	 * Ok, looks good - let it rip.
441 	 */
442 	flush_icache_range(mm->brk, brk);
443 	return mm->brk = brk;
444 }
445 
446 /*
447  * initialise the percpu counter for VM and region record slabs
448  */
449 void __init mmap_init(void)
450 {
451 	int ret;
452 
453 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
454 	VM_BUG_ON(ret);
455 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
456 }
457 
458 /*
459  * validate the region tree
460  * - the caller must hold the region lock
461  */
462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
463 static noinline void validate_nommu_regions(void)
464 {
465 	struct vm_region *region, *last;
466 	struct rb_node *p, *lastp;
467 
468 	lastp = rb_first(&nommu_region_tree);
469 	if (!lastp)
470 		return;
471 
472 	last = rb_entry(lastp, struct vm_region, vm_rb);
473 	BUG_ON(last->vm_end <= last->vm_start);
474 	BUG_ON(last->vm_top < last->vm_end);
475 
476 	while ((p = rb_next(lastp))) {
477 		region = rb_entry(p, struct vm_region, vm_rb);
478 		last = rb_entry(lastp, struct vm_region, vm_rb);
479 
480 		BUG_ON(region->vm_end <= region->vm_start);
481 		BUG_ON(region->vm_top < region->vm_end);
482 		BUG_ON(region->vm_start < last->vm_top);
483 
484 		lastp = p;
485 	}
486 }
487 #else
488 static void validate_nommu_regions(void)
489 {
490 }
491 #endif
492 
493 /*
494  * add a region into the global tree
495  */
496 static void add_nommu_region(struct vm_region *region)
497 {
498 	struct vm_region *pregion;
499 	struct rb_node **p, *parent;
500 
501 	validate_nommu_regions();
502 
503 	parent = NULL;
504 	p = &nommu_region_tree.rb_node;
505 	while (*p) {
506 		parent = *p;
507 		pregion = rb_entry(parent, struct vm_region, vm_rb);
508 		if (region->vm_start < pregion->vm_start)
509 			p = &(*p)->rb_left;
510 		else if (region->vm_start > pregion->vm_start)
511 			p = &(*p)->rb_right;
512 		else if (pregion == region)
513 			return;
514 		else
515 			BUG();
516 	}
517 
518 	rb_link_node(&region->vm_rb, parent, p);
519 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
520 
521 	validate_nommu_regions();
522 }
523 
524 /*
525  * delete a region from the global tree
526  */
527 static void delete_nommu_region(struct vm_region *region)
528 {
529 	BUG_ON(!nommu_region_tree.rb_node);
530 
531 	validate_nommu_regions();
532 	rb_erase(&region->vm_rb, &nommu_region_tree);
533 	validate_nommu_regions();
534 }
535 
536 /*
537  * free a contiguous series of pages
538  */
539 static void free_page_series(unsigned long from, unsigned long to)
540 {
541 	for (; from < to; from += PAGE_SIZE) {
542 		struct page *page = virt_to_page(from);
543 
544 		atomic_long_dec(&mmap_pages_allocated);
545 		put_page(page);
546 	}
547 }
548 
549 /*
550  * release a reference to a region
551  * - the caller must hold the region semaphore for writing, which this releases
552  * - the region may not have been added to the tree yet, in which case vm_top
553  *   will equal vm_start
554  */
555 static void __put_nommu_region(struct vm_region *region)
556 	__releases(nommu_region_sem)
557 {
558 	BUG_ON(!nommu_region_tree.rb_node);
559 
560 	if (--region->vm_usage == 0) {
561 		if (region->vm_top > region->vm_start)
562 			delete_nommu_region(region);
563 		up_write(&nommu_region_sem);
564 
565 		if (region->vm_file)
566 			fput(region->vm_file);
567 
568 		/* IO memory and memory shared directly out of the pagecache
569 		 * from ramfs/tmpfs mustn't be released here */
570 		if (region->vm_flags & VM_MAPPED_COPY)
571 			free_page_series(region->vm_start, region->vm_top);
572 		kmem_cache_free(vm_region_jar, region);
573 	} else {
574 		up_write(&nommu_region_sem);
575 	}
576 }
577 
578 /*
579  * release a reference to a region
580  */
581 static void put_nommu_region(struct vm_region *region)
582 {
583 	down_write(&nommu_region_sem);
584 	__put_nommu_region(region);
585 }
586 
587 /*
588  * add a VMA into a process's mm_struct in the appropriate place in the list
589  * and tree and add to the address space's page tree also if not an anonymous
590  * page
591  * - should be called with mm->mmap_sem held writelocked
592  */
593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
594 {
595 	struct vm_area_struct *pvma, *prev;
596 	struct address_space *mapping;
597 	struct rb_node **p, *parent, *rb_prev;
598 
599 	BUG_ON(!vma->vm_region);
600 
601 	mm->map_count++;
602 	vma->vm_mm = mm;
603 
604 	/* add the VMA to the mapping */
605 	if (vma->vm_file) {
606 		mapping = vma->vm_file->f_mapping;
607 
608 		i_mmap_lock_write(mapping);
609 		flush_dcache_mmap_lock(mapping);
610 		vma_interval_tree_insert(vma, &mapping->i_mmap);
611 		flush_dcache_mmap_unlock(mapping);
612 		i_mmap_unlock_write(mapping);
613 	}
614 
615 	/* add the VMA to the tree */
616 	parent = rb_prev = NULL;
617 	p = &mm->mm_rb.rb_node;
618 	while (*p) {
619 		parent = *p;
620 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
621 
622 		/* sort by: start addr, end addr, VMA struct addr in that order
623 		 * (the latter is necessary as we may get identical VMAs) */
624 		if (vma->vm_start < pvma->vm_start)
625 			p = &(*p)->rb_left;
626 		else if (vma->vm_start > pvma->vm_start) {
627 			rb_prev = parent;
628 			p = &(*p)->rb_right;
629 		} else if (vma->vm_end < pvma->vm_end)
630 			p = &(*p)->rb_left;
631 		else if (vma->vm_end > pvma->vm_end) {
632 			rb_prev = parent;
633 			p = &(*p)->rb_right;
634 		} else if (vma < pvma)
635 			p = &(*p)->rb_left;
636 		else if (vma > pvma) {
637 			rb_prev = parent;
638 			p = &(*p)->rb_right;
639 		} else
640 			BUG();
641 	}
642 
643 	rb_link_node(&vma->vm_rb, parent, p);
644 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
645 
646 	/* add VMA to the VMA list also */
647 	prev = NULL;
648 	if (rb_prev)
649 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
650 
651 	__vma_link_list(mm, vma, prev, parent);
652 }
653 
654 /*
655  * delete a VMA from its owning mm_struct and address space
656  */
657 static void delete_vma_from_mm(struct vm_area_struct *vma)
658 {
659 	int i;
660 	struct address_space *mapping;
661 	struct mm_struct *mm = vma->vm_mm;
662 	struct task_struct *curr = current;
663 
664 	mm->map_count--;
665 	for (i = 0; i < VMACACHE_SIZE; i++) {
666 		/* if the vma is cached, invalidate the entire cache */
667 		if (curr->vmacache.vmas[i] == vma) {
668 			vmacache_invalidate(mm);
669 			break;
670 		}
671 	}
672 
673 	/* remove the VMA from the mapping */
674 	if (vma->vm_file) {
675 		mapping = vma->vm_file->f_mapping;
676 
677 		i_mmap_lock_write(mapping);
678 		flush_dcache_mmap_lock(mapping);
679 		vma_interval_tree_remove(vma, &mapping->i_mmap);
680 		flush_dcache_mmap_unlock(mapping);
681 		i_mmap_unlock_write(mapping);
682 	}
683 
684 	/* remove from the MM's tree and list */
685 	rb_erase(&vma->vm_rb, &mm->mm_rb);
686 
687 	if (vma->vm_prev)
688 		vma->vm_prev->vm_next = vma->vm_next;
689 	else
690 		mm->mmap = vma->vm_next;
691 
692 	if (vma->vm_next)
693 		vma->vm_next->vm_prev = vma->vm_prev;
694 }
695 
696 /*
697  * destroy a VMA record
698  */
699 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
700 {
701 	if (vma->vm_ops && vma->vm_ops->close)
702 		vma->vm_ops->close(vma);
703 	if (vma->vm_file)
704 		fput(vma->vm_file);
705 	put_nommu_region(vma->vm_region);
706 	vm_area_free(vma);
707 }
708 
709 /*
710  * look up the first VMA in which addr resides, NULL if none
711  * - should be called with mm->mmap_sem at least held readlocked
712  */
713 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
714 {
715 	struct vm_area_struct *vma;
716 
717 	/* check the cache first */
718 	vma = vmacache_find(mm, addr);
719 	if (likely(vma))
720 		return vma;
721 
722 	/* trawl the list (there may be multiple mappings in which addr
723 	 * resides) */
724 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
725 		if (vma->vm_start > addr)
726 			return NULL;
727 		if (vma->vm_end > addr) {
728 			vmacache_update(addr, vma);
729 			return vma;
730 		}
731 	}
732 
733 	return NULL;
734 }
735 EXPORT_SYMBOL(find_vma);
736 
737 /*
738  * find a VMA
739  * - we don't extend stack VMAs under NOMMU conditions
740  */
741 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
742 {
743 	return find_vma(mm, addr);
744 }
745 
746 /*
747  * expand a stack to a given address
748  * - not supported under NOMMU conditions
749  */
750 int expand_stack(struct vm_area_struct *vma, unsigned long address)
751 {
752 	return -ENOMEM;
753 }
754 
755 /*
756  * look up the first VMA exactly that exactly matches addr
757  * - should be called with mm->mmap_sem at least held readlocked
758  */
759 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
760 					     unsigned long addr,
761 					     unsigned long len)
762 {
763 	struct vm_area_struct *vma;
764 	unsigned long end = addr + len;
765 
766 	/* check the cache first */
767 	vma = vmacache_find_exact(mm, addr, end);
768 	if (vma)
769 		return vma;
770 
771 	/* trawl the list (there may be multiple mappings in which addr
772 	 * resides) */
773 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
774 		if (vma->vm_start < addr)
775 			continue;
776 		if (vma->vm_start > addr)
777 			return NULL;
778 		if (vma->vm_end == end) {
779 			vmacache_update(addr, vma);
780 			return vma;
781 		}
782 	}
783 
784 	return NULL;
785 }
786 
787 /*
788  * determine whether a mapping should be permitted and, if so, what sort of
789  * mapping we're capable of supporting
790  */
791 static int validate_mmap_request(struct file *file,
792 				 unsigned long addr,
793 				 unsigned long len,
794 				 unsigned long prot,
795 				 unsigned long flags,
796 				 unsigned long pgoff,
797 				 unsigned long *_capabilities)
798 {
799 	unsigned long capabilities, rlen;
800 	int ret;
801 
802 	/* do the simple checks first */
803 	if (flags & MAP_FIXED)
804 		return -EINVAL;
805 
806 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
807 	    (flags & MAP_TYPE) != MAP_SHARED)
808 		return -EINVAL;
809 
810 	if (!len)
811 		return -EINVAL;
812 
813 	/* Careful about overflows.. */
814 	rlen = PAGE_ALIGN(len);
815 	if (!rlen || rlen > TASK_SIZE)
816 		return -ENOMEM;
817 
818 	/* offset overflow? */
819 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
820 		return -EOVERFLOW;
821 
822 	if (file) {
823 		/* files must support mmap */
824 		if (!file->f_op->mmap)
825 			return -ENODEV;
826 
827 		/* work out if what we've got could possibly be shared
828 		 * - we support chardevs that provide their own "memory"
829 		 * - we support files/blockdevs that are memory backed
830 		 */
831 		if (file->f_op->mmap_capabilities) {
832 			capabilities = file->f_op->mmap_capabilities(file);
833 		} else {
834 			/* no explicit capabilities set, so assume some
835 			 * defaults */
836 			switch (file_inode(file)->i_mode & S_IFMT) {
837 			case S_IFREG:
838 			case S_IFBLK:
839 				capabilities = NOMMU_MAP_COPY;
840 				break;
841 
842 			case S_IFCHR:
843 				capabilities =
844 					NOMMU_MAP_DIRECT |
845 					NOMMU_MAP_READ |
846 					NOMMU_MAP_WRITE;
847 				break;
848 
849 			default:
850 				return -EINVAL;
851 			}
852 		}
853 
854 		/* eliminate any capabilities that we can't support on this
855 		 * device */
856 		if (!file->f_op->get_unmapped_area)
857 			capabilities &= ~NOMMU_MAP_DIRECT;
858 		if (!(file->f_mode & FMODE_CAN_READ))
859 			capabilities &= ~NOMMU_MAP_COPY;
860 
861 		/* The file shall have been opened with read permission. */
862 		if (!(file->f_mode & FMODE_READ))
863 			return -EACCES;
864 
865 		if (flags & MAP_SHARED) {
866 			/* do checks for writing, appending and locking */
867 			if ((prot & PROT_WRITE) &&
868 			    !(file->f_mode & FMODE_WRITE))
869 				return -EACCES;
870 
871 			if (IS_APPEND(file_inode(file)) &&
872 			    (file->f_mode & FMODE_WRITE))
873 				return -EACCES;
874 
875 			if (locks_verify_locked(file))
876 				return -EAGAIN;
877 
878 			if (!(capabilities & NOMMU_MAP_DIRECT))
879 				return -ENODEV;
880 
881 			/* we mustn't privatise shared mappings */
882 			capabilities &= ~NOMMU_MAP_COPY;
883 		} else {
884 			/* we're going to read the file into private memory we
885 			 * allocate */
886 			if (!(capabilities & NOMMU_MAP_COPY))
887 				return -ENODEV;
888 
889 			/* we don't permit a private writable mapping to be
890 			 * shared with the backing device */
891 			if (prot & PROT_WRITE)
892 				capabilities &= ~NOMMU_MAP_DIRECT;
893 		}
894 
895 		if (capabilities & NOMMU_MAP_DIRECT) {
896 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
897 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
898 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
899 			    ) {
900 				capabilities &= ~NOMMU_MAP_DIRECT;
901 				if (flags & MAP_SHARED) {
902 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
903 					return -EINVAL;
904 				}
905 			}
906 		}
907 
908 		/* handle executable mappings and implied executable
909 		 * mappings */
910 		if (path_noexec(&file->f_path)) {
911 			if (prot & PROT_EXEC)
912 				return -EPERM;
913 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
914 			/* handle implication of PROT_EXEC by PROT_READ */
915 			if (current->personality & READ_IMPLIES_EXEC) {
916 				if (capabilities & NOMMU_MAP_EXEC)
917 					prot |= PROT_EXEC;
918 			}
919 		} else if ((prot & PROT_READ) &&
920 			 (prot & PROT_EXEC) &&
921 			 !(capabilities & NOMMU_MAP_EXEC)
922 			 ) {
923 			/* backing file is not executable, try to copy */
924 			capabilities &= ~NOMMU_MAP_DIRECT;
925 		}
926 	} else {
927 		/* anonymous mappings are always memory backed and can be
928 		 * privately mapped
929 		 */
930 		capabilities = NOMMU_MAP_COPY;
931 
932 		/* handle PROT_EXEC implication by PROT_READ */
933 		if ((prot & PROT_READ) &&
934 		    (current->personality & READ_IMPLIES_EXEC))
935 			prot |= PROT_EXEC;
936 	}
937 
938 	/* allow the security API to have its say */
939 	ret = security_mmap_addr(addr);
940 	if (ret < 0)
941 		return ret;
942 
943 	/* looks okay */
944 	*_capabilities = capabilities;
945 	return 0;
946 }
947 
948 /*
949  * we've determined that we can make the mapping, now translate what we
950  * now know into VMA flags
951  */
952 static unsigned long determine_vm_flags(struct file *file,
953 					unsigned long prot,
954 					unsigned long flags,
955 					unsigned long capabilities)
956 {
957 	unsigned long vm_flags;
958 
959 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
960 	/* vm_flags |= mm->def_flags; */
961 
962 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
963 		/* attempt to share read-only copies of mapped file chunks */
964 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
965 		if (file && !(prot & PROT_WRITE))
966 			vm_flags |= VM_MAYSHARE;
967 	} else {
968 		/* overlay a shareable mapping on the backing device or inode
969 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
970 		 * romfs/cramfs */
971 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
972 		if (flags & MAP_SHARED)
973 			vm_flags |= VM_SHARED;
974 	}
975 
976 	/* refuse to let anyone share private mappings with this process if
977 	 * it's being traced - otherwise breakpoints set in it may interfere
978 	 * with another untraced process
979 	 */
980 	if ((flags & MAP_PRIVATE) && current->ptrace)
981 		vm_flags &= ~VM_MAYSHARE;
982 
983 	return vm_flags;
984 }
985 
986 /*
987  * set up a shared mapping on a file (the driver or filesystem provides and
988  * pins the storage)
989  */
990 static int do_mmap_shared_file(struct vm_area_struct *vma)
991 {
992 	int ret;
993 
994 	ret = call_mmap(vma->vm_file, vma);
995 	if (ret == 0) {
996 		vma->vm_region->vm_top = vma->vm_region->vm_end;
997 		return 0;
998 	}
999 	if (ret != -ENOSYS)
1000 		return ret;
1001 
1002 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1003 	 * opposed to tried but failed) so we can only give a suitable error as
1004 	 * it's not possible to make a private copy if MAP_SHARED was given */
1005 	return -ENODEV;
1006 }
1007 
1008 /*
1009  * set up a private mapping or an anonymous shared mapping
1010  */
1011 static int do_mmap_private(struct vm_area_struct *vma,
1012 			   struct vm_region *region,
1013 			   unsigned long len,
1014 			   unsigned long capabilities)
1015 {
1016 	unsigned long total, point;
1017 	void *base;
1018 	int ret, order;
1019 
1020 	/* invoke the file's mapping function so that it can keep track of
1021 	 * shared mappings on devices or memory
1022 	 * - VM_MAYSHARE will be set if it may attempt to share
1023 	 */
1024 	if (capabilities & NOMMU_MAP_DIRECT) {
1025 		ret = call_mmap(vma->vm_file, vma);
1026 		if (ret == 0) {
1027 			/* shouldn't return success if we're not sharing */
1028 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1029 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1030 			return 0;
1031 		}
1032 		if (ret != -ENOSYS)
1033 			return ret;
1034 
1035 		/* getting an ENOSYS error indicates that direct mmap isn't
1036 		 * possible (as opposed to tried but failed) so we'll try to
1037 		 * make a private copy of the data and map that instead */
1038 	}
1039 
1040 
1041 	/* allocate some memory to hold the mapping
1042 	 * - note that this may not return a page-aligned address if the object
1043 	 *   we're allocating is smaller than a page
1044 	 */
1045 	order = get_order(len);
1046 	total = 1 << order;
1047 	point = len >> PAGE_SHIFT;
1048 
1049 	/* we don't want to allocate a power-of-2 sized page set */
1050 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1051 		total = point;
1052 
1053 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1054 	if (!base)
1055 		goto enomem;
1056 
1057 	atomic_long_add(total, &mmap_pages_allocated);
1058 
1059 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1060 	region->vm_start = (unsigned long) base;
1061 	region->vm_end   = region->vm_start + len;
1062 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1063 
1064 	vma->vm_start = region->vm_start;
1065 	vma->vm_end   = region->vm_start + len;
1066 
1067 	if (vma->vm_file) {
1068 		/* read the contents of a file into the copy */
1069 		loff_t fpos;
1070 
1071 		fpos = vma->vm_pgoff;
1072 		fpos <<= PAGE_SHIFT;
1073 
1074 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1075 		if (ret < 0)
1076 			goto error_free;
1077 
1078 		/* clear the last little bit */
1079 		if (ret < len)
1080 			memset(base + ret, 0, len - ret);
1081 
1082 	} else {
1083 		vma_set_anonymous(vma);
1084 	}
1085 
1086 	return 0;
1087 
1088 error_free:
1089 	free_page_series(region->vm_start, region->vm_top);
1090 	region->vm_start = vma->vm_start = 0;
1091 	region->vm_end   = vma->vm_end = 0;
1092 	region->vm_top   = 0;
1093 	return ret;
1094 
1095 enomem:
1096 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1097 	       len, current->pid, current->comm);
1098 	show_free_areas(0, NULL);
1099 	return -ENOMEM;
1100 }
1101 
1102 /*
1103  * handle mapping creation for uClinux
1104  */
1105 unsigned long do_mmap(struct file *file,
1106 			unsigned long addr,
1107 			unsigned long len,
1108 			unsigned long prot,
1109 			unsigned long flags,
1110 			vm_flags_t vm_flags,
1111 			unsigned long pgoff,
1112 			unsigned long *populate,
1113 			struct list_head *uf)
1114 {
1115 	struct vm_area_struct *vma;
1116 	struct vm_region *region;
1117 	struct rb_node *rb;
1118 	unsigned long capabilities, result;
1119 	int ret;
1120 
1121 	*populate = 0;
1122 
1123 	/* decide whether we should attempt the mapping, and if so what sort of
1124 	 * mapping */
1125 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1126 				    &capabilities);
1127 	if (ret < 0)
1128 		return ret;
1129 
1130 	/* we ignore the address hint */
1131 	addr = 0;
1132 	len = PAGE_ALIGN(len);
1133 
1134 	/* we've determined that we can make the mapping, now translate what we
1135 	 * now know into VMA flags */
1136 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1137 
1138 	/* we're going to need to record the mapping */
1139 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1140 	if (!region)
1141 		goto error_getting_region;
1142 
1143 	vma = vm_area_alloc(current->mm);
1144 	if (!vma)
1145 		goto error_getting_vma;
1146 
1147 	region->vm_usage = 1;
1148 	region->vm_flags = vm_flags;
1149 	region->vm_pgoff = pgoff;
1150 
1151 	vma->vm_flags = vm_flags;
1152 	vma->vm_pgoff = pgoff;
1153 
1154 	if (file) {
1155 		region->vm_file = get_file(file);
1156 		vma->vm_file = get_file(file);
1157 	}
1158 
1159 	down_write(&nommu_region_sem);
1160 
1161 	/* if we want to share, we need to check for regions created by other
1162 	 * mmap() calls that overlap with our proposed mapping
1163 	 * - we can only share with a superset match on most regular files
1164 	 * - shared mappings on character devices and memory backed files are
1165 	 *   permitted to overlap inexactly as far as we are concerned for in
1166 	 *   these cases, sharing is handled in the driver or filesystem rather
1167 	 *   than here
1168 	 */
1169 	if (vm_flags & VM_MAYSHARE) {
1170 		struct vm_region *pregion;
1171 		unsigned long pglen, rpglen, pgend, rpgend, start;
1172 
1173 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1174 		pgend = pgoff + pglen;
1175 
1176 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1177 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1178 
1179 			if (!(pregion->vm_flags & VM_MAYSHARE))
1180 				continue;
1181 
1182 			/* search for overlapping mappings on the same file */
1183 			if (file_inode(pregion->vm_file) !=
1184 			    file_inode(file))
1185 				continue;
1186 
1187 			if (pregion->vm_pgoff >= pgend)
1188 				continue;
1189 
1190 			rpglen = pregion->vm_end - pregion->vm_start;
1191 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 			rpgend = pregion->vm_pgoff + rpglen;
1193 			if (pgoff >= rpgend)
1194 				continue;
1195 
1196 			/* handle inexactly overlapping matches between
1197 			 * mappings */
1198 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1199 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1200 				/* new mapping is not a subset of the region */
1201 				if (!(capabilities & NOMMU_MAP_DIRECT))
1202 					goto sharing_violation;
1203 				continue;
1204 			}
1205 
1206 			/* we've found a region we can share */
1207 			pregion->vm_usage++;
1208 			vma->vm_region = pregion;
1209 			start = pregion->vm_start;
1210 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1211 			vma->vm_start = start;
1212 			vma->vm_end = start + len;
1213 
1214 			if (pregion->vm_flags & VM_MAPPED_COPY)
1215 				vma->vm_flags |= VM_MAPPED_COPY;
1216 			else {
1217 				ret = do_mmap_shared_file(vma);
1218 				if (ret < 0) {
1219 					vma->vm_region = NULL;
1220 					vma->vm_start = 0;
1221 					vma->vm_end = 0;
1222 					pregion->vm_usage--;
1223 					pregion = NULL;
1224 					goto error_just_free;
1225 				}
1226 			}
1227 			fput(region->vm_file);
1228 			kmem_cache_free(vm_region_jar, region);
1229 			region = pregion;
1230 			result = start;
1231 			goto share;
1232 		}
1233 
1234 		/* obtain the address at which to make a shared mapping
1235 		 * - this is the hook for quasi-memory character devices to
1236 		 *   tell us the location of a shared mapping
1237 		 */
1238 		if (capabilities & NOMMU_MAP_DIRECT) {
1239 			addr = file->f_op->get_unmapped_area(file, addr, len,
1240 							     pgoff, flags);
1241 			if (IS_ERR_VALUE(addr)) {
1242 				ret = addr;
1243 				if (ret != -ENOSYS)
1244 					goto error_just_free;
1245 
1246 				/* the driver refused to tell us where to site
1247 				 * the mapping so we'll have to attempt to copy
1248 				 * it */
1249 				ret = -ENODEV;
1250 				if (!(capabilities & NOMMU_MAP_COPY))
1251 					goto error_just_free;
1252 
1253 				capabilities &= ~NOMMU_MAP_DIRECT;
1254 			} else {
1255 				vma->vm_start = region->vm_start = addr;
1256 				vma->vm_end = region->vm_end = addr + len;
1257 			}
1258 		}
1259 	}
1260 
1261 	vma->vm_region = region;
1262 
1263 	/* set up the mapping
1264 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1265 	 */
1266 	if (file && vma->vm_flags & VM_SHARED)
1267 		ret = do_mmap_shared_file(vma);
1268 	else
1269 		ret = do_mmap_private(vma, region, len, capabilities);
1270 	if (ret < 0)
1271 		goto error_just_free;
1272 	add_nommu_region(region);
1273 
1274 	/* clear anonymous mappings that don't ask for uninitialized data */
1275 	if (!vma->vm_file &&
1276 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1277 	     !(flags & MAP_UNINITIALIZED)))
1278 		memset((void *)region->vm_start, 0,
1279 		       region->vm_end - region->vm_start);
1280 
1281 	/* okay... we have a mapping; now we have to register it */
1282 	result = vma->vm_start;
1283 
1284 	current->mm->total_vm += len >> PAGE_SHIFT;
1285 
1286 share:
1287 	add_vma_to_mm(current->mm, vma);
1288 
1289 	/* we flush the region from the icache only when the first executable
1290 	 * mapping of it is made  */
1291 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1292 		flush_icache_range(region->vm_start, region->vm_end);
1293 		region->vm_icache_flushed = true;
1294 	}
1295 
1296 	up_write(&nommu_region_sem);
1297 
1298 	return result;
1299 
1300 error_just_free:
1301 	up_write(&nommu_region_sem);
1302 error:
1303 	if (region->vm_file)
1304 		fput(region->vm_file);
1305 	kmem_cache_free(vm_region_jar, region);
1306 	if (vma->vm_file)
1307 		fput(vma->vm_file);
1308 	vm_area_free(vma);
1309 	return ret;
1310 
1311 sharing_violation:
1312 	up_write(&nommu_region_sem);
1313 	pr_warn("Attempt to share mismatched mappings\n");
1314 	ret = -EINVAL;
1315 	goto error;
1316 
1317 error_getting_vma:
1318 	kmem_cache_free(vm_region_jar, region);
1319 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1320 			len, current->pid);
1321 	show_free_areas(0, NULL);
1322 	return -ENOMEM;
1323 
1324 error_getting_region:
1325 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1326 			len, current->pid);
1327 	show_free_areas(0, NULL);
1328 	return -ENOMEM;
1329 }
1330 
1331 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1332 			      unsigned long prot, unsigned long flags,
1333 			      unsigned long fd, unsigned long pgoff)
1334 {
1335 	struct file *file = NULL;
1336 	unsigned long retval = -EBADF;
1337 
1338 	audit_mmap_fd(fd, flags);
1339 	if (!(flags & MAP_ANONYMOUS)) {
1340 		file = fget(fd);
1341 		if (!file)
1342 			goto out;
1343 	}
1344 
1345 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1346 
1347 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1348 
1349 	if (file)
1350 		fput(file);
1351 out:
1352 	return retval;
1353 }
1354 
1355 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356 		unsigned long, prot, unsigned long, flags,
1357 		unsigned long, fd, unsigned long, pgoff)
1358 {
1359 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1360 }
1361 
1362 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1363 struct mmap_arg_struct {
1364 	unsigned long addr;
1365 	unsigned long len;
1366 	unsigned long prot;
1367 	unsigned long flags;
1368 	unsigned long fd;
1369 	unsigned long offset;
1370 };
1371 
1372 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1373 {
1374 	struct mmap_arg_struct a;
1375 
1376 	if (copy_from_user(&a, arg, sizeof(a)))
1377 		return -EFAULT;
1378 	if (offset_in_page(a.offset))
1379 		return -EINVAL;
1380 
1381 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1382 			       a.offset >> PAGE_SHIFT);
1383 }
1384 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1385 
1386 /*
1387  * split a vma into two pieces at address 'addr', a new vma is allocated either
1388  * for the first part or the tail.
1389  */
1390 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1391 	      unsigned long addr, int new_below)
1392 {
1393 	struct vm_area_struct *new;
1394 	struct vm_region *region;
1395 	unsigned long npages;
1396 
1397 	/* we're only permitted to split anonymous regions (these should have
1398 	 * only a single usage on the region) */
1399 	if (vma->vm_file)
1400 		return -ENOMEM;
1401 
1402 	if (mm->map_count >= sysctl_max_map_count)
1403 		return -ENOMEM;
1404 
1405 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1406 	if (!region)
1407 		return -ENOMEM;
1408 
1409 	new = vm_area_dup(vma);
1410 	if (!new) {
1411 		kmem_cache_free(vm_region_jar, region);
1412 		return -ENOMEM;
1413 	}
1414 
1415 	/* most fields are the same, copy all, and then fixup */
1416 	*region = *vma->vm_region;
1417 	new->vm_region = region;
1418 
1419 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1420 
1421 	if (new_below) {
1422 		region->vm_top = region->vm_end = new->vm_end = addr;
1423 	} else {
1424 		region->vm_start = new->vm_start = addr;
1425 		region->vm_pgoff = new->vm_pgoff += npages;
1426 	}
1427 
1428 	if (new->vm_ops && new->vm_ops->open)
1429 		new->vm_ops->open(new);
1430 
1431 	delete_vma_from_mm(vma);
1432 	down_write(&nommu_region_sem);
1433 	delete_nommu_region(vma->vm_region);
1434 	if (new_below) {
1435 		vma->vm_region->vm_start = vma->vm_start = addr;
1436 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1437 	} else {
1438 		vma->vm_region->vm_end = vma->vm_end = addr;
1439 		vma->vm_region->vm_top = addr;
1440 	}
1441 	add_nommu_region(vma->vm_region);
1442 	add_nommu_region(new->vm_region);
1443 	up_write(&nommu_region_sem);
1444 	add_vma_to_mm(mm, vma);
1445 	add_vma_to_mm(mm, new);
1446 	return 0;
1447 }
1448 
1449 /*
1450  * shrink a VMA by removing the specified chunk from either the beginning or
1451  * the end
1452  */
1453 static int shrink_vma(struct mm_struct *mm,
1454 		      struct vm_area_struct *vma,
1455 		      unsigned long from, unsigned long to)
1456 {
1457 	struct vm_region *region;
1458 
1459 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1460 	 * and list */
1461 	delete_vma_from_mm(vma);
1462 	if (from > vma->vm_start)
1463 		vma->vm_end = from;
1464 	else
1465 		vma->vm_start = to;
1466 	add_vma_to_mm(mm, vma);
1467 
1468 	/* cut the backing region down to size */
1469 	region = vma->vm_region;
1470 	BUG_ON(region->vm_usage != 1);
1471 
1472 	down_write(&nommu_region_sem);
1473 	delete_nommu_region(region);
1474 	if (from > region->vm_start) {
1475 		to = region->vm_top;
1476 		region->vm_top = region->vm_end = from;
1477 	} else {
1478 		region->vm_start = to;
1479 	}
1480 	add_nommu_region(region);
1481 	up_write(&nommu_region_sem);
1482 
1483 	free_page_series(from, to);
1484 	return 0;
1485 }
1486 
1487 /*
1488  * release a mapping
1489  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1490  *   VMA, though it need not cover the whole VMA
1491  */
1492 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1493 {
1494 	struct vm_area_struct *vma;
1495 	unsigned long end;
1496 	int ret;
1497 
1498 	len = PAGE_ALIGN(len);
1499 	if (len == 0)
1500 		return -EINVAL;
1501 
1502 	end = start + len;
1503 
1504 	/* find the first potentially overlapping VMA */
1505 	vma = find_vma(mm, start);
1506 	if (!vma) {
1507 		static int limit;
1508 		if (limit < 5) {
1509 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1510 					current->pid, current->comm,
1511 					start, start + len - 1);
1512 			limit++;
1513 		}
1514 		return -EINVAL;
1515 	}
1516 
1517 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1518 	if (vma->vm_file) {
1519 		do {
1520 			if (start > vma->vm_start)
1521 				return -EINVAL;
1522 			if (end == vma->vm_end)
1523 				goto erase_whole_vma;
1524 			vma = vma->vm_next;
1525 		} while (vma);
1526 		return -EINVAL;
1527 	} else {
1528 		/* the chunk must be a subset of the VMA found */
1529 		if (start == vma->vm_start && end == vma->vm_end)
1530 			goto erase_whole_vma;
1531 		if (start < vma->vm_start || end > vma->vm_end)
1532 			return -EINVAL;
1533 		if (offset_in_page(start))
1534 			return -EINVAL;
1535 		if (end != vma->vm_end && offset_in_page(end))
1536 			return -EINVAL;
1537 		if (start != vma->vm_start && end != vma->vm_end) {
1538 			ret = split_vma(mm, vma, start, 1);
1539 			if (ret < 0)
1540 				return ret;
1541 		}
1542 		return shrink_vma(mm, vma, start, end);
1543 	}
1544 
1545 erase_whole_vma:
1546 	delete_vma_from_mm(vma);
1547 	delete_vma(mm, vma);
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL(do_munmap);
1551 
1552 int vm_munmap(unsigned long addr, size_t len)
1553 {
1554 	struct mm_struct *mm = current->mm;
1555 	int ret;
1556 
1557 	down_write(&mm->mmap_sem);
1558 	ret = do_munmap(mm, addr, len, NULL);
1559 	up_write(&mm->mmap_sem);
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(vm_munmap);
1563 
1564 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1565 {
1566 	return vm_munmap(addr, len);
1567 }
1568 
1569 /*
1570  * release all the mappings made in a process's VM space
1571  */
1572 void exit_mmap(struct mm_struct *mm)
1573 {
1574 	struct vm_area_struct *vma;
1575 
1576 	if (!mm)
1577 		return;
1578 
1579 	mm->total_vm = 0;
1580 
1581 	while ((vma = mm->mmap)) {
1582 		mm->mmap = vma->vm_next;
1583 		delete_vma_from_mm(vma);
1584 		delete_vma(mm, vma);
1585 		cond_resched();
1586 	}
1587 }
1588 
1589 int vm_brk(unsigned long addr, unsigned long len)
1590 {
1591 	return -ENOMEM;
1592 }
1593 
1594 /*
1595  * expand (or shrink) an existing mapping, potentially moving it at the same
1596  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1597  *
1598  * under NOMMU conditions, we only permit changing a mapping's size, and only
1599  * as long as it stays within the region allocated by do_mmap_private() and the
1600  * block is not shareable
1601  *
1602  * MREMAP_FIXED is not supported under NOMMU conditions
1603  */
1604 static unsigned long do_mremap(unsigned long addr,
1605 			unsigned long old_len, unsigned long new_len,
1606 			unsigned long flags, unsigned long new_addr)
1607 {
1608 	struct vm_area_struct *vma;
1609 
1610 	/* insanity checks first */
1611 	old_len = PAGE_ALIGN(old_len);
1612 	new_len = PAGE_ALIGN(new_len);
1613 	if (old_len == 0 || new_len == 0)
1614 		return (unsigned long) -EINVAL;
1615 
1616 	if (offset_in_page(addr))
1617 		return -EINVAL;
1618 
1619 	if (flags & MREMAP_FIXED && new_addr != addr)
1620 		return (unsigned long) -EINVAL;
1621 
1622 	vma = find_vma_exact(current->mm, addr, old_len);
1623 	if (!vma)
1624 		return (unsigned long) -EINVAL;
1625 
1626 	if (vma->vm_end != vma->vm_start + old_len)
1627 		return (unsigned long) -EFAULT;
1628 
1629 	if (vma->vm_flags & VM_MAYSHARE)
1630 		return (unsigned long) -EPERM;
1631 
1632 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1633 		return (unsigned long) -ENOMEM;
1634 
1635 	/* all checks complete - do it */
1636 	vma->vm_end = vma->vm_start + new_len;
1637 	return vma->vm_start;
1638 }
1639 
1640 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1641 		unsigned long, new_len, unsigned long, flags,
1642 		unsigned long, new_addr)
1643 {
1644 	unsigned long ret;
1645 
1646 	down_write(&current->mm->mmap_sem);
1647 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1648 	up_write(&current->mm->mmap_sem);
1649 	return ret;
1650 }
1651 
1652 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1653 			 unsigned int foll_flags)
1654 {
1655 	return NULL;
1656 }
1657 
1658 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1659 		unsigned long pfn, unsigned long size, pgprot_t prot)
1660 {
1661 	if (addr != (pfn << PAGE_SHIFT))
1662 		return -EINVAL;
1663 
1664 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL(remap_pfn_range);
1668 
1669 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1670 {
1671 	unsigned long pfn = start >> PAGE_SHIFT;
1672 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1673 
1674 	pfn += vma->vm_pgoff;
1675 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1676 }
1677 EXPORT_SYMBOL(vm_iomap_memory);
1678 
1679 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1680 			unsigned long pgoff)
1681 {
1682 	unsigned int size = vma->vm_end - vma->vm_start;
1683 
1684 	if (!(vma->vm_flags & VM_USERMAP))
1685 		return -EINVAL;
1686 
1687 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1688 	vma->vm_end = vma->vm_start + size;
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(remap_vmalloc_range);
1693 
1694 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1695 	unsigned long len, unsigned long pgoff, unsigned long flags)
1696 {
1697 	return -ENOMEM;
1698 }
1699 
1700 vm_fault_t filemap_fault(struct vm_fault *vmf)
1701 {
1702 	BUG();
1703 	return 0;
1704 }
1705 EXPORT_SYMBOL(filemap_fault);
1706 
1707 void filemap_map_pages(struct vm_fault *vmf,
1708 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1709 {
1710 	BUG();
1711 }
1712 EXPORT_SYMBOL(filemap_map_pages);
1713 
1714 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1715 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1716 {
1717 	struct vm_area_struct *vma;
1718 	int write = gup_flags & FOLL_WRITE;
1719 
1720 	if (down_read_killable(&mm->mmap_sem))
1721 		return 0;
1722 
1723 	/* the access must start within one of the target process's mappings */
1724 	vma = find_vma(mm, addr);
1725 	if (vma) {
1726 		/* don't overrun this mapping */
1727 		if (addr + len >= vma->vm_end)
1728 			len = vma->vm_end - addr;
1729 
1730 		/* only read or write mappings where it is permitted */
1731 		if (write && vma->vm_flags & VM_MAYWRITE)
1732 			copy_to_user_page(vma, NULL, addr,
1733 					 (void *) addr, buf, len);
1734 		else if (!write && vma->vm_flags & VM_MAYREAD)
1735 			copy_from_user_page(vma, NULL, addr,
1736 					    buf, (void *) addr, len);
1737 		else
1738 			len = 0;
1739 	} else {
1740 		len = 0;
1741 	}
1742 
1743 	up_read(&mm->mmap_sem);
1744 
1745 	return len;
1746 }
1747 
1748 /**
1749  * access_remote_vm - access another process' address space
1750  * @mm:		the mm_struct of the target address space
1751  * @addr:	start address to access
1752  * @buf:	source or destination buffer
1753  * @len:	number of bytes to transfer
1754  * @gup_flags:	flags modifying lookup behaviour
1755  *
1756  * The caller must hold a reference on @mm.
1757  */
1758 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1759 		void *buf, int len, unsigned int gup_flags)
1760 {
1761 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1762 }
1763 
1764 /*
1765  * Access another process' address space.
1766  * - source/target buffer must be kernel space
1767  */
1768 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1769 		unsigned int gup_flags)
1770 {
1771 	struct mm_struct *mm;
1772 
1773 	if (addr + len < addr)
1774 		return 0;
1775 
1776 	mm = get_task_mm(tsk);
1777 	if (!mm)
1778 		return 0;
1779 
1780 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1781 
1782 	mmput(mm);
1783 	return len;
1784 }
1785 EXPORT_SYMBOL_GPL(access_process_vm);
1786 
1787 /**
1788  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1789  * @inode: The inode to check
1790  * @size: The current filesize of the inode
1791  * @newsize: The proposed filesize of the inode
1792  *
1793  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1794  * make sure that that any outstanding VMAs aren't broken and then shrink the
1795  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1796  * automatically grant mappings that are too large.
1797  */
1798 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1799 				size_t newsize)
1800 {
1801 	struct vm_area_struct *vma;
1802 	struct vm_region *region;
1803 	pgoff_t low, high;
1804 	size_t r_size, r_top;
1805 
1806 	low = newsize >> PAGE_SHIFT;
1807 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1808 
1809 	down_write(&nommu_region_sem);
1810 	i_mmap_lock_read(inode->i_mapping);
1811 
1812 	/* search for VMAs that fall within the dead zone */
1813 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1814 		/* found one - only interested if it's shared out of the page
1815 		 * cache */
1816 		if (vma->vm_flags & VM_SHARED) {
1817 			i_mmap_unlock_read(inode->i_mapping);
1818 			up_write(&nommu_region_sem);
1819 			return -ETXTBSY; /* not quite true, but near enough */
1820 		}
1821 	}
1822 
1823 	/* reduce any regions that overlap the dead zone - if in existence,
1824 	 * these will be pointed to by VMAs that don't overlap the dead zone
1825 	 *
1826 	 * we don't check for any regions that start beyond the EOF as there
1827 	 * shouldn't be any
1828 	 */
1829 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1830 		if (!(vma->vm_flags & VM_SHARED))
1831 			continue;
1832 
1833 		region = vma->vm_region;
1834 		r_size = region->vm_top - region->vm_start;
1835 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1836 
1837 		if (r_top > newsize) {
1838 			region->vm_top -= r_top - newsize;
1839 			if (region->vm_end > region->vm_top)
1840 				region->vm_end = region->vm_top;
1841 		}
1842 	}
1843 
1844 	i_mmap_unlock_read(inode->i_mapping);
1845 	up_write(&nommu_region_sem);
1846 	return 0;
1847 }
1848 
1849 /*
1850  * Initialise sysctl_user_reserve_kbytes.
1851  *
1852  * This is intended to prevent a user from starting a single memory hogging
1853  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1854  * mode.
1855  *
1856  * The default value is min(3% of free memory, 128MB)
1857  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1858  */
1859 static int __meminit init_user_reserve(void)
1860 {
1861 	unsigned long free_kbytes;
1862 
1863 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1864 
1865 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1866 	return 0;
1867 }
1868 subsys_initcall(init_user_reserve);
1869 
1870 /*
1871  * Initialise sysctl_admin_reserve_kbytes.
1872  *
1873  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1874  * to log in and kill a memory hogging process.
1875  *
1876  * Systems with more than 256MB will reserve 8MB, enough to recover
1877  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1878  * only reserve 3% of free pages by default.
1879  */
1880 static int __meminit init_admin_reserve(void)
1881 {
1882 	unsigned long free_kbytes;
1883 
1884 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1885 
1886 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1887 	return 0;
1888 }
1889 subsys_initcall(init_admin_reserve);
1890