1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/nommu-mmap.txt 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 154 { 155 return __vmalloc(size, flags, PAGE_KERNEL); 156 } 157 158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 159 { 160 void *ret; 161 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 if (ret) { 164 struct vm_area_struct *vma; 165 166 down_write(¤t->mm->mmap_sem); 167 vma = find_vma(current->mm, (unsigned long)ret); 168 if (vma) 169 vma->vm_flags |= VM_USERMAP; 170 up_write(¤t->mm->mmap_sem); 171 } 172 173 return ret; 174 } 175 176 void *vmalloc_user(unsigned long size) 177 { 178 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 179 } 180 EXPORT_SYMBOL(vmalloc_user); 181 182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags) 183 { 184 return __vmalloc_user_flags(size, flags | __GFP_ZERO); 185 } 186 EXPORT_SYMBOL(vmalloc_user_node_flags); 187 188 struct page *vmalloc_to_page(const void *addr) 189 { 190 return virt_to_page(addr); 191 } 192 EXPORT_SYMBOL(vmalloc_to_page); 193 194 unsigned long vmalloc_to_pfn(const void *addr) 195 { 196 return page_to_pfn(virt_to_page(addr)); 197 } 198 EXPORT_SYMBOL(vmalloc_to_pfn); 199 200 long vread(char *buf, char *addr, unsigned long count) 201 { 202 /* Don't allow overflow */ 203 if ((unsigned long) buf + count < count) 204 count = -(unsigned long) buf; 205 206 memcpy(buf, addr, count); 207 return count; 208 } 209 210 long vwrite(char *buf, char *addr, unsigned long count) 211 { 212 /* Don't allow overflow */ 213 if ((unsigned long) addr + count < count) 214 count = -(unsigned long) addr; 215 216 memcpy(addr, buf, count); 217 return count; 218 } 219 220 /* 221 * vmalloc - allocate virtually contiguous memory 222 * 223 * @size: allocation size 224 * 225 * Allocate enough pages to cover @size from the page level 226 * allocator and map them into contiguous kernel virtual space. 227 * 228 * For tight control over page level allocator and protection flags 229 * use __vmalloc() instead. 230 */ 231 void *vmalloc(unsigned long size) 232 { 233 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 234 } 235 EXPORT_SYMBOL(vmalloc); 236 237 /* 238 * vzalloc - allocate virtually contiguous memory with zero fill 239 * 240 * @size: allocation size 241 * 242 * Allocate enough pages to cover @size from the page level 243 * allocator and map them into contiguous kernel virtual space. 244 * The memory allocated is set to zero. 245 * 246 * For tight control over page level allocator and protection flags 247 * use __vmalloc() instead. 248 */ 249 void *vzalloc(unsigned long size) 250 { 251 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 252 PAGE_KERNEL); 253 } 254 EXPORT_SYMBOL(vzalloc); 255 256 /** 257 * vmalloc_node - allocate memory on a specific node 258 * @size: allocation size 259 * @node: numa node 260 * 261 * Allocate enough pages to cover @size from the page level 262 * allocator and map them into contiguous kernel virtual space. 263 * 264 * For tight control over page level allocator and protection flags 265 * use __vmalloc() instead. 266 */ 267 void *vmalloc_node(unsigned long size, int node) 268 { 269 return vmalloc(size); 270 } 271 EXPORT_SYMBOL(vmalloc_node); 272 273 /** 274 * vzalloc_node - allocate memory on a specific node with zero fill 275 * @size: allocation size 276 * @node: numa node 277 * 278 * Allocate enough pages to cover @size from the page level 279 * allocator and map them into contiguous kernel virtual space. 280 * The memory allocated is set to zero. 281 * 282 * For tight control over page level allocator and protection flags 283 * use __vmalloc() instead. 284 */ 285 void *vzalloc_node(unsigned long size, int node) 286 { 287 return vzalloc(size); 288 } 289 EXPORT_SYMBOL(vzalloc_node); 290 291 /** 292 * vmalloc_exec - allocate virtually contiguous, executable memory 293 * @size: allocation size 294 * 295 * Kernel-internal function to allocate enough pages to cover @size 296 * the page level allocator and map them into contiguous and 297 * executable kernel virtual space. 298 * 299 * For tight control over page level allocator and protection flags 300 * use __vmalloc() instead. 301 */ 302 303 void *vmalloc_exec(unsigned long size) 304 { 305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 306 } 307 308 /** 309 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 310 * @size: allocation size 311 * 312 * Allocate enough 32bit PA addressable pages to cover @size from the 313 * page level allocator and map them into contiguous kernel virtual space. 314 */ 315 void *vmalloc_32(unsigned long size) 316 { 317 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 318 } 319 EXPORT_SYMBOL(vmalloc_32); 320 321 /** 322 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 323 * @size: allocation size 324 * 325 * The resulting memory area is 32bit addressable and zeroed so it can be 326 * mapped to userspace without leaking data. 327 * 328 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 329 * remap_vmalloc_range() are permissible. 330 */ 331 void *vmalloc_32_user(unsigned long size) 332 { 333 /* 334 * We'll have to sort out the ZONE_DMA bits for 64-bit, 335 * but for now this can simply use vmalloc_user() directly. 336 */ 337 return vmalloc_user(size); 338 } 339 EXPORT_SYMBOL(vmalloc_32_user); 340 341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 342 { 343 BUG(); 344 return NULL; 345 } 346 EXPORT_SYMBOL(vmap); 347 348 void vunmap(const void *addr) 349 { 350 BUG(); 351 } 352 EXPORT_SYMBOL(vunmap); 353 354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 355 { 356 BUG(); 357 return NULL; 358 } 359 EXPORT_SYMBOL(vm_map_ram); 360 361 void vm_unmap_ram(const void *mem, unsigned int count) 362 { 363 BUG(); 364 } 365 EXPORT_SYMBOL(vm_unmap_ram); 366 367 void vm_unmap_aliases(void) 368 { 369 } 370 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 371 372 /* 373 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 374 * have one. 375 */ 376 void __weak vmalloc_sync_all(void) 377 { 378 } 379 380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 381 { 382 BUG(); 383 return NULL; 384 } 385 EXPORT_SYMBOL_GPL(alloc_vm_area); 386 387 void free_vm_area(struct vm_struct *area) 388 { 389 BUG(); 390 } 391 EXPORT_SYMBOL_GPL(free_vm_area); 392 393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 394 struct page *page) 395 { 396 return -EINVAL; 397 } 398 EXPORT_SYMBOL(vm_insert_page); 399 400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 401 unsigned long num) 402 { 403 return -EINVAL; 404 } 405 EXPORT_SYMBOL(vm_map_pages); 406 407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 408 unsigned long num) 409 { 410 return -EINVAL; 411 } 412 EXPORT_SYMBOL(vm_map_pages_zero); 413 414 /* 415 * sys_brk() for the most part doesn't need the global kernel 416 * lock, except when an application is doing something nasty 417 * like trying to un-brk an area that has already been mapped 418 * to a regular file. in this case, the unmapping will need 419 * to invoke file system routines that need the global lock. 420 */ 421 SYSCALL_DEFINE1(brk, unsigned long, brk) 422 { 423 struct mm_struct *mm = current->mm; 424 425 if (brk < mm->start_brk || brk > mm->context.end_brk) 426 return mm->brk; 427 428 if (mm->brk == brk) 429 return mm->brk; 430 431 /* 432 * Always allow shrinking brk 433 */ 434 if (brk <= mm->brk) { 435 mm->brk = brk; 436 return brk; 437 } 438 439 /* 440 * Ok, looks good - let it rip. 441 */ 442 flush_icache_range(mm->brk, brk); 443 return mm->brk = brk; 444 } 445 446 /* 447 * initialise the percpu counter for VM and region record slabs 448 */ 449 void __init mmap_init(void) 450 { 451 int ret; 452 453 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 454 VM_BUG_ON(ret); 455 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 456 } 457 458 /* 459 * validate the region tree 460 * - the caller must hold the region lock 461 */ 462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 463 static noinline void validate_nommu_regions(void) 464 { 465 struct vm_region *region, *last; 466 struct rb_node *p, *lastp; 467 468 lastp = rb_first(&nommu_region_tree); 469 if (!lastp) 470 return; 471 472 last = rb_entry(lastp, struct vm_region, vm_rb); 473 BUG_ON(last->vm_end <= last->vm_start); 474 BUG_ON(last->vm_top < last->vm_end); 475 476 while ((p = rb_next(lastp))) { 477 region = rb_entry(p, struct vm_region, vm_rb); 478 last = rb_entry(lastp, struct vm_region, vm_rb); 479 480 BUG_ON(region->vm_end <= region->vm_start); 481 BUG_ON(region->vm_top < region->vm_end); 482 BUG_ON(region->vm_start < last->vm_top); 483 484 lastp = p; 485 } 486 } 487 #else 488 static void validate_nommu_regions(void) 489 { 490 } 491 #endif 492 493 /* 494 * add a region into the global tree 495 */ 496 static void add_nommu_region(struct vm_region *region) 497 { 498 struct vm_region *pregion; 499 struct rb_node **p, *parent; 500 501 validate_nommu_regions(); 502 503 parent = NULL; 504 p = &nommu_region_tree.rb_node; 505 while (*p) { 506 parent = *p; 507 pregion = rb_entry(parent, struct vm_region, vm_rb); 508 if (region->vm_start < pregion->vm_start) 509 p = &(*p)->rb_left; 510 else if (region->vm_start > pregion->vm_start) 511 p = &(*p)->rb_right; 512 else if (pregion == region) 513 return; 514 else 515 BUG(); 516 } 517 518 rb_link_node(®ion->vm_rb, parent, p); 519 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 520 521 validate_nommu_regions(); 522 } 523 524 /* 525 * delete a region from the global tree 526 */ 527 static void delete_nommu_region(struct vm_region *region) 528 { 529 BUG_ON(!nommu_region_tree.rb_node); 530 531 validate_nommu_regions(); 532 rb_erase(®ion->vm_rb, &nommu_region_tree); 533 validate_nommu_regions(); 534 } 535 536 /* 537 * free a contiguous series of pages 538 */ 539 static void free_page_series(unsigned long from, unsigned long to) 540 { 541 for (; from < to; from += PAGE_SIZE) { 542 struct page *page = virt_to_page(from); 543 544 atomic_long_dec(&mmap_pages_allocated); 545 put_page(page); 546 } 547 } 548 549 /* 550 * release a reference to a region 551 * - the caller must hold the region semaphore for writing, which this releases 552 * - the region may not have been added to the tree yet, in which case vm_top 553 * will equal vm_start 554 */ 555 static void __put_nommu_region(struct vm_region *region) 556 __releases(nommu_region_sem) 557 { 558 BUG_ON(!nommu_region_tree.rb_node); 559 560 if (--region->vm_usage == 0) { 561 if (region->vm_top > region->vm_start) 562 delete_nommu_region(region); 563 up_write(&nommu_region_sem); 564 565 if (region->vm_file) 566 fput(region->vm_file); 567 568 /* IO memory and memory shared directly out of the pagecache 569 * from ramfs/tmpfs mustn't be released here */ 570 if (region->vm_flags & VM_MAPPED_COPY) 571 free_page_series(region->vm_start, region->vm_top); 572 kmem_cache_free(vm_region_jar, region); 573 } else { 574 up_write(&nommu_region_sem); 575 } 576 } 577 578 /* 579 * release a reference to a region 580 */ 581 static void put_nommu_region(struct vm_region *region) 582 { 583 down_write(&nommu_region_sem); 584 __put_nommu_region(region); 585 } 586 587 /* 588 * add a VMA into a process's mm_struct in the appropriate place in the list 589 * and tree and add to the address space's page tree also if not an anonymous 590 * page 591 * - should be called with mm->mmap_sem held writelocked 592 */ 593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 594 { 595 struct vm_area_struct *pvma, *prev; 596 struct address_space *mapping; 597 struct rb_node **p, *parent, *rb_prev; 598 599 BUG_ON(!vma->vm_region); 600 601 mm->map_count++; 602 vma->vm_mm = mm; 603 604 /* add the VMA to the mapping */ 605 if (vma->vm_file) { 606 mapping = vma->vm_file->f_mapping; 607 608 i_mmap_lock_write(mapping); 609 flush_dcache_mmap_lock(mapping); 610 vma_interval_tree_insert(vma, &mapping->i_mmap); 611 flush_dcache_mmap_unlock(mapping); 612 i_mmap_unlock_write(mapping); 613 } 614 615 /* add the VMA to the tree */ 616 parent = rb_prev = NULL; 617 p = &mm->mm_rb.rb_node; 618 while (*p) { 619 parent = *p; 620 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 621 622 /* sort by: start addr, end addr, VMA struct addr in that order 623 * (the latter is necessary as we may get identical VMAs) */ 624 if (vma->vm_start < pvma->vm_start) 625 p = &(*p)->rb_left; 626 else if (vma->vm_start > pvma->vm_start) { 627 rb_prev = parent; 628 p = &(*p)->rb_right; 629 } else if (vma->vm_end < pvma->vm_end) 630 p = &(*p)->rb_left; 631 else if (vma->vm_end > pvma->vm_end) { 632 rb_prev = parent; 633 p = &(*p)->rb_right; 634 } else if (vma < pvma) 635 p = &(*p)->rb_left; 636 else if (vma > pvma) { 637 rb_prev = parent; 638 p = &(*p)->rb_right; 639 } else 640 BUG(); 641 } 642 643 rb_link_node(&vma->vm_rb, parent, p); 644 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 645 646 /* add VMA to the VMA list also */ 647 prev = NULL; 648 if (rb_prev) 649 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 650 651 __vma_link_list(mm, vma, prev, parent); 652 } 653 654 /* 655 * delete a VMA from its owning mm_struct and address space 656 */ 657 static void delete_vma_from_mm(struct vm_area_struct *vma) 658 { 659 int i; 660 struct address_space *mapping; 661 struct mm_struct *mm = vma->vm_mm; 662 struct task_struct *curr = current; 663 664 mm->map_count--; 665 for (i = 0; i < VMACACHE_SIZE; i++) { 666 /* if the vma is cached, invalidate the entire cache */ 667 if (curr->vmacache.vmas[i] == vma) { 668 vmacache_invalidate(mm); 669 break; 670 } 671 } 672 673 /* remove the VMA from the mapping */ 674 if (vma->vm_file) { 675 mapping = vma->vm_file->f_mapping; 676 677 i_mmap_lock_write(mapping); 678 flush_dcache_mmap_lock(mapping); 679 vma_interval_tree_remove(vma, &mapping->i_mmap); 680 flush_dcache_mmap_unlock(mapping); 681 i_mmap_unlock_write(mapping); 682 } 683 684 /* remove from the MM's tree and list */ 685 rb_erase(&vma->vm_rb, &mm->mm_rb); 686 687 if (vma->vm_prev) 688 vma->vm_prev->vm_next = vma->vm_next; 689 else 690 mm->mmap = vma->vm_next; 691 692 if (vma->vm_next) 693 vma->vm_next->vm_prev = vma->vm_prev; 694 } 695 696 /* 697 * destroy a VMA record 698 */ 699 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 700 { 701 if (vma->vm_ops && vma->vm_ops->close) 702 vma->vm_ops->close(vma); 703 if (vma->vm_file) 704 fput(vma->vm_file); 705 put_nommu_region(vma->vm_region); 706 vm_area_free(vma); 707 } 708 709 /* 710 * look up the first VMA in which addr resides, NULL if none 711 * - should be called with mm->mmap_sem at least held readlocked 712 */ 713 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 714 { 715 struct vm_area_struct *vma; 716 717 /* check the cache first */ 718 vma = vmacache_find(mm, addr); 719 if (likely(vma)) 720 return vma; 721 722 /* trawl the list (there may be multiple mappings in which addr 723 * resides) */ 724 for (vma = mm->mmap; vma; vma = vma->vm_next) { 725 if (vma->vm_start > addr) 726 return NULL; 727 if (vma->vm_end > addr) { 728 vmacache_update(addr, vma); 729 return vma; 730 } 731 } 732 733 return NULL; 734 } 735 EXPORT_SYMBOL(find_vma); 736 737 /* 738 * find a VMA 739 * - we don't extend stack VMAs under NOMMU conditions 740 */ 741 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 742 { 743 return find_vma(mm, addr); 744 } 745 746 /* 747 * expand a stack to a given address 748 * - not supported under NOMMU conditions 749 */ 750 int expand_stack(struct vm_area_struct *vma, unsigned long address) 751 { 752 return -ENOMEM; 753 } 754 755 /* 756 * look up the first VMA exactly that exactly matches addr 757 * - should be called with mm->mmap_sem at least held readlocked 758 */ 759 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 760 unsigned long addr, 761 unsigned long len) 762 { 763 struct vm_area_struct *vma; 764 unsigned long end = addr + len; 765 766 /* check the cache first */ 767 vma = vmacache_find_exact(mm, addr, end); 768 if (vma) 769 return vma; 770 771 /* trawl the list (there may be multiple mappings in which addr 772 * resides) */ 773 for (vma = mm->mmap; vma; vma = vma->vm_next) { 774 if (vma->vm_start < addr) 775 continue; 776 if (vma->vm_start > addr) 777 return NULL; 778 if (vma->vm_end == end) { 779 vmacache_update(addr, vma); 780 return vma; 781 } 782 } 783 784 return NULL; 785 } 786 787 /* 788 * determine whether a mapping should be permitted and, if so, what sort of 789 * mapping we're capable of supporting 790 */ 791 static int validate_mmap_request(struct file *file, 792 unsigned long addr, 793 unsigned long len, 794 unsigned long prot, 795 unsigned long flags, 796 unsigned long pgoff, 797 unsigned long *_capabilities) 798 { 799 unsigned long capabilities, rlen; 800 int ret; 801 802 /* do the simple checks first */ 803 if (flags & MAP_FIXED) 804 return -EINVAL; 805 806 if ((flags & MAP_TYPE) != MAP_PRIVATE && 807 (flags & MAP_TYPE) != MAP_SHARED) 808 return -EINVAL; 809 810 if (!len) 811 return -EINVAL; 812 813 /* Careful about overflows.. */ 814 rlen = PAGE_ALIGN(len); 815 if (!rlen || rlen > TASK_SIZE) 816 return -ENOMEM; 817 818 /* offset overflow? */ 819 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 820 return -EOVERFLOW; 821 822 if (file) { 823 /* files must support mmap */ 824 if (!file->f_op->mmap) 825 return -ENODEV; 826 827 /* work out if what we've got could possibly be shared 828 * - we support chardevs that provide their own "memory" 829 * - we support files/blockdevs that are memory backed 830 */ 831 if (file->f_op->mmap_capabilities) { 832 capabilities = file->f_op->mmap_capabilities(file); 833 } else { 834 /* no explicit capabilities set, so assume some 835 * defaults */ 836 switch (file_inode(file)->i_mode & S_IFMT) { 837 case S_IFREG: 838 case S_IFBLK: 839 capabilities = NOMMU_MAP_COPY; 840 break; 841 842 case S_IFCHR: 843 capabilities = 844 NOMMU_MAP_DIRECT | 845 NOMMU_MAP_READ | 846 NOMMU_MAP_WRITE; 847 break; 848 849 default: 850 return -EINVAL; 851 } 852 } 853 854 /* eliminate any capabilities that we can't support on this 855 * device */ 856 if (!file->f_op->get_unmapped_area) 857 capabilities &= ~NOMMU_MAP_DIRECT; 858 if (!(file->f_mode & FMODE_CAN_READ)) 859 capabilities &= ~NOMMU_MAP_COPY; 860 861 /* The file shall have been opened with read permission. */ 862 if (!(file->f_mode & FMODE_READ)) 863 return -EACCES; 864 865 if (flags & MAP_SHARED) { 866 /* do checks for writing, appending and locking */ 867 if ((prot & PROT_WRITE) && 868 !(file->f_mode & FMODE_WRITE)) 869 return -EACCES; 870 871 if (IS_APPEND(file_inode(file)) && 872 (file->f_mode & FMODE_WRITE)) 873 return -EACCES; 874 875 if (locks_verify_locked(file)) 876 return -EAGAIN; 877 878 if (!(capabilities & NOMMU_MAP_DIRECT)) 879 return -ENODEV; 880 881 /* we mustn't privatise shared mappings */ 882 capabilities &= ~NOMMU_MAP_COPY; 883 } else { 884 /* we're going to read the file into private memory we 885 * allocate */ 886 if (!(capabilities & NOMMU_MAP_COPY)) 887 return -ENODEV; 888 889 /* we don't permit a private writable mapping to be 890 * shared with the backing device */ 891 if (prot & PROT_WRITE) 892 capabilities &= ~NOMMU_MAP_DIRECT; 893 } 894 895 if (capabilities & NOMMU_MAP_DIRECT) { 896 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 897 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 898 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 899 ) { 900 capabilities &= ~NOMMU_MAP_DIRECT; 901 if (flags & MAP_SHARED) { 902 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 903 return -EINVAL; 904 } 905 } 906 } 907 908 /* handle executable mappings and implied executable 909 * mappings */ 910 if (path_noexec(&file->f_path)) { 911 if (prot & PROT_EXEC) 912 return -EPERM; 913 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 914 /* handle implication of PROT_EXEC by PROT_READ */ 915 if (current->personality & READ_IMPLIES_EXEC) { 916 if (capabilities & NOMMU_MAP_EXEC) 917 prot |= PROT_EXEC; 918 } 919 } else if ((prot & PROT_READ) && 920 (prot & PROT_EXEC) && 921 !(capabilities & NOMMU_MAP_EXEC) 922 ) { 923 /* backing file is not executable, try to copy */ 924 capabilities &= ~NOMMU_MAP_DIRECT; 925 } 926 } else { 927 /* anonymous mappings are always memory backed and can be 928 * privately mapped 929 */ 930 capabilities = NOMMU_MAP_COPY; 931 932 /* handle PROT_EXEC implication by PROT_READ */ 933 if ((prot & PROT_READ) && 934 (current->personality & READ_IMPLIES_EXEC)) 935 prot |= PROT_EXEC; 936 } 937 938 /* allow the security API to have its say */ 939 ret = security_mmap_addr(addr); 940 if (ret < 0) 941 return ret; 942 943 /* looks okay */ 944 *_capabilities = capabilities; 945 return 0; 946 } 947 948 /* 949 * we've determined that we can make the mapping, now translate what we 950 * now know into VMA flags 951 */ 952 static unsigned long determine_vm_flags(struct file *file, 953 unsigned long prot, 954 unsigned long flags, 955 unsigned long capabilities) 956 { 957 unsigned long vm_flags; 958 959 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 960 /* vm_flags |= mm->def_flags; */ 961 962 if (!(capabilities & NOMMU_MAP_DIRECT)) { 963 /* attempt to share read-only copies of mapped file chunks */ 964 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 965 if (file && !(prot & PROT_WRITE)) 966 vm_flags |= VM_MAYSHARE; 967 } else { 968 /* overlay a shareable mapping on the backing device or inode 969 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 970 * romfs/cramfs */ 971 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 972 if (flags & MAP_SHARED) 973 vm_flags |= VM_SHARED; 974 } 975 976 /* refuse to let anyone share private mappings with this process if 977 * it's being traced - otherwise breakpoints set in it may interfere 978 * with another untraced process 979 */ 980 if ((flags & MAP_PRIVATE) && current->ptrace) 981 vm_flags &= ~VM_MAYSHARE; 982 983 return vm_flags; 984 } 985 986 /* 987 * set up a shared mapping on a file (the driver or filesystem provides and 988 * pins the storage) 989 */ 990 static int do_mmap_shared_file(struct vm_area_struct *vma) 991 { 992 int ret; 993 994 ret = call_mmap(vma->vm_file, vma); 995 if (ret == 0) { 996 vma->vm_region->vm_top = vma->vm_region->vm_end; 997 return 0; 998 } 999 if (ret != -ENOSYS) 1000 return ret; 1001 1002 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1003 * opposed to tried but failed) so we can only give a suitable error as 1004 * it's not possible to make a private copy if MAP_SHARED was given */ 1005 return -ENODEV; 1006 } 1007 1008 /* 1009 * set up a private mapping or an anonymous shared mapping 1010 */ 1011 static int do_mmap_private(struct vm_area_struct *vma, 1012 struct vm_region *region, 1013 unsigned long len, 1014 unsigned long capabilities) 1015 { 1016 unsigned long total, point; 1017 void *base; 1018 int ret, order; 1019 1020 /* invoke the file's mapping function so that it can keep track of 1021 * shared mappings on devices or memory 1022 * - VM_MAYSHARE will be set if it may attempt to share 1023 */ 1024 if (capabilities & NOMMU_MAP_DIRECT) { 1025 ret = call_mmap(vma->vm_file, vma); 1026 if (ret == 0) { 1027 /* shouldn't return success if we're not sharing */ 1028 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1029 vma->vm_region->vm_top = vma->vm_region->vm_end; 1030 return 0; 1031 } 1032 if (ret != -ENOSYS) 1033 return ret; 1034 1035 /* getting an ENOSYS error indicates that direct mmap isn't 1036 * possible (as opposed to tried but failed) so we'll try to 1037 * make a private copy of the data and map that instead */ 1038 } 1039 1040 1041 /* allocate some memory to hold the mapping 1042 * - note that this may not return a page-aligned address if the object 1043 * we're allocating is smaller than a page 1044 */ 1045 order = get_order(len); 1046 total = 1 << order; 1047 point = len >> PAGE_SHIFT; 1048 1049 /* we don't want to allocate a power-of-2 sized page set */ 1050 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1051 total = point; 1052 1053 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1054 if (!base) 1055 goto enomem; 1056 1057 atomic_long_add(total, &mmap_pages_allocated); 1058 1059 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1060 region->vm_start = (unsigned long) base; 1061 region->vm_end = region->vm_start + len; 1062 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1063 1064 vma->vm_start = region->vm_start; 1065 vma->vm_end = region->vm_start + len; 1066 1067 if (vma->vm_file) { 1068 /* read the contents of a file into the copy */ 1069 loff_t fpos; 1070 1071 fpos = vma->vm_pgoff; 1072 fpos <<= PAGE_SHIFT; 1073 1074 ret = kernel_read(vma->vm_file, base, len, &fpos); 1075 if (ret < 0) 1076 goto error_free; 1077 1078 /* clear the last little bit */ 1079 if (ret < len) 1080 memset(base + ret, 0, len - ret); 1081 1082 } else { 1083 vma_set_anonymous(vma); 1084 } 1085 1086 return 0; 1087 1088 error_free: 1089 free_page_series(region->vm_start, region->vm_top); 1090 region->vm_start = vma->vm_start = 0; 1091 region->vm_end = vma->vm_end = 0; 1092 region->vm_top = 0; 1093 return ret; 1094 1095 enomem: 1096 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1097 len, current->pid, current->comm); 1098 show_free_areas(0, NULL); 1099 return -ENOMEM; 1100 } 1101 1102 /* 1103 * handle mapping creation for uClinux 1104 */ 1105 unsigned long do_mmap(struct file *file, 1106 unsigned long addr, 1107 unsigned long len, 1108 unsigned long prot, 1109 unsigned long flags, 1110 vm_flags_t vm_flags, 1111 unsigned long pgoff, 1112 unsigned long *populate, 1113 struct list_head *uf) 1114 { 1115 struct vm_area_struct *vma; 1116 struct vm_region *region; 1117 struct rb_node *rb; 1118 unsigned long capabilities, result; 1119 int ret; 1120 1121 *populate = 0; 1122 1123 /* decide whether we should attempt the mapping, and if so what sort of 1124 * mapping */ 1125 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1126 &capabilities); 1127 if (ret < 0) 1128 return ret; 1129 1130 /* we ignore the address hint */ 1131 addr = 0; 1132 len = PAGE_ALIGN(len); 1133 1134 /* we've determined that we can make the mapping, now translate what we 1135 * now know into VMA flags */ 1136 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1137 1138 /* we're going to need to record the mapping */ 1139 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1140 if (!region) 1141 goto error_getting_region; 1142 1143 vma = vm_area_alloc(current->mm); 1144 if (!vma) 1145 goto error_getting_vma; 1146 1147 region->vm_usage = 1; 1148 region->vm_flags = vm_flags; 1149 region->vm_pgoff = pgoff; 1150 1151 vma->vm_flags = vm_flags; 1152 vma->vm_pgoff = pgoff; 1153 1154 if (file) { 1155 region->vm_file = get_file(file); 1156 vma->vm_file = get_file(file); 1157 } 1158 1159 down_write(&nommu_region_sem); 1160 1161 /* if we want to share, we need to check for regions created by other 1162 * mmap() calls that overlap with our proposed mapping 1163 * - we can only share with a superset match on most regular files 1164 * - shared mappings on character devices and memory backed files are 1165 * permitted to overlap inexactly as far as we are concerned for in 1166 * these cases, sharing is handled in the driver or filesystem rather 1167 * than here 1168 */ 1169 if (vm_flags & VM_MAYSHARE) { 1170 struct vm_region *pregion; 1171 unsigned long pglen, rpglen, pgend, rpgend, start; 1172 1173 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1174 pgend = pgoff + pglen; 1175 1176 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1177 pregion = rb_entry(rb, struct vm_region, vm_rb); 1178 1179 if (!(pregion->vm_flags & VM_MAYSHARE)) 1180 continue; 1181 1182 /* search for overlapping mappings on the same file */ 1183 if (file_inode(pregion->vm_file) != 1184 file_inode(file)) 1185 continue; 1186 1187 if (pregion->vm_pgoff >= pgend) 1188 continue; 1189 1190 rpglen = pregion->vm_end - pregion->vm_start; 1191 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1192 rpgend = pregion->vm_pgoff + rpglen; 1193 if (pgoff >= rpgend) 1194 continue; 1195 1196 /* handle inexactly overlapping matches between 1197 * mappings */ 1198 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1199 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1200 /* new mapping is not a subset of the region */ 1201 if (!(capabilities & NOMMU_MAP_DIRECT)) 1202 goto sharing_violation; 1203 continue; 1204 } 1205 1206 /* we've found a region we can share */ 1207 pregion->vm_usage++; 1208 vma->vm_region = pregion; 1209 start = pregion->vm_start; 1210 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1211 vma->vm_start = start; 1212 vma->vm_end = start + len; 1213 1214 if (pregion->vm_flags & VM_MAPPED_COPY) 1215 vma->vm_flags |= VM_MAPPED_COPY; 1216 else { 1217 ret = do_mmap_shared_file(vma); 1218 if (ret < 0) { 1219 vma->vm_region = NULL; 1220 vma->vm_start = 0; 1221 vma->vm_end = 0; 1222 pregion->vm_usage--; 1223 pregion = NULL; 1224 goto error_just_free; 1225 } 1226 } 1227 fput(region->vm_file); 1228 kmem_cache_free(vm_region_jar, region); 1229 region = pregion; 1230 result = start; 1231 goto share; 1232 } 1233 1234 /* obtain the address at which to make a shared mapping 1235 * - this is the hook for quasi-memory character devices to 1236 * tell us the location of a shared mapping 1237 */ 1238 if (capabilities & NOMMU_MAP_DIRECT) { 1239 addr = file->f_op->get_unmapped_area(file, addr, len, 1240 pgoff, flags); 1241 if (IS_ERR_VALUE(addr)) { 1242 ret = addr; 1243 if (ret != -ENOSYS) 1244 goto error_just_free; 1245 1246 /* the driver refused to tell us where to site 1247 * the mapping so we'll have to attempt to copy 1248 * it */ 1249 ret = -ENODEV; 1250 if (!(capabilities & NOMMU_MAP_COPY)) 1251 goto error_just_free; 1252 1253 capabilities &= ~NOMMU_MAP_DIRECT; 1254 } else { 1255 vma->vm_start = region->vm_start = addr; 1256 vma->vm_end = region->vm_end = addr + len; 1257 } 1258 } 1259 } 1260 1261 vma->vm_region = region; 1262 1263 /* set up the mapping 1264 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1265 */ 1266 if (file && vma->vm_flags & VM_SHARED) 1267 ret = do_mmap_shared_file(vma); 1268 else 1269 ret = do_mmap_private(vma, region, len, capabilities); 1270 if (ret < 0) 1271 goto error_just_free; 1272 add_nommu_region(region); 1273 1274 /* clear anonymous mappings that don't ask for uninitialized data */ 1275 if (!vma->vm_file && 1276 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1277 !(flags & MAP_UNINITIALIZED))) 1278 memset((void *)region->vm_start, 0, 1279 region->vm_end - region->vm_start); 1280 1281 /* okay... we have a mapping; now we have to register it */ 1282 result = vma->vm_start; 1283 1284 current->mm->total_vm += len >> PAGE_SHIFT; 1285 1286 share: 1287 add_vma_to_mm(current->mm, vma); 1288 1289 /* we flush the region from the icache only when the first executable 1290 * mapping of it is made */ 1291 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1292 flush_icache_range(region->vm_start, region->vm_end); 1293 region->vm_icache_flushed = true; 1294 } 1295 1296 up_write(&nommu_region_sem); 1297 1298 return result; 1299 1300 error_just_free: 1301 up_write(&nommu_region_sem); 1302 error: 1303 if (region->vm_file) 1304 fput(region->vm_file); 1305 kmem_cache_free(vm_region_jar, region); 1306 if (vma->vm_file) 1307 fput(vma->vm_file); 1308 vm_area_free(vma); 1309 return ret; 1310 1311 sharing_violation: 1312 up_write(&nommu_region_sem); 1313 pr_warn("Attempt to share mismatched mappings\n"); 1314 ret = -EINVAL; 1315 goto error; 1316 1317 error_getting_vma: 1318 kmem_cache_free(vm_region_jar, region); 1319 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1320 len, current->pid); 1321 show_free_areas(0, NULL); 1322 return -ENOMEM; 1323 1324 error_getting_region: 1325 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1326 len, current->pid); 1327 show_free_areas(0, NULL); 1328 return -ENOMEM; 1329 } 1330 1331 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1332 unsigned long prot, unsigned long flags, 1333 unsigned long fd, unsigned long pgoff) 1334 { 1335 struct file *file = NULL; 1336 unsigned long retval = -EBADF; 1337 1338 audit_mmap_fd(fd, flags); 1339 if (!(flags & MAP_ANONYMOUS)) { 1340 file = fget(fd); 1341 if (!file) 1342 goto out; 1343 } 1344 1345 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1346 1347 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1348 1349 if (file) 1350 fput(file); 1351 out: 1352 return retval; 1353 } 1354 1355 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1356 unsigned long, prot, unsigned long, flags, 1357 unsigned long, fd, unsigned long, pgoff) 1358 { 1359 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1360 } 1361 1362 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1363 struct mmap_arg_struct { 1364 unsigned long addr; 1365 unsigned long len; 1366 unsigned long prot; 1367 unsigned long flags; 1368 unsigned long fd; 1369 unsigned long offset; 1370 }; 1371 1372 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1373 { 1374 struct mmap_arg_struct a; 1375 1376 if (copy_from_user(&a, arg, sizeof(a))) 1377 return -EFAULT; 1378 if (offset_in_page(a.offset)) 1379 return -EINVAL; 1380 1381 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1382 a.offset >> PAGE_SHIFT); 1383 } 1384 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1385 1386 /* 1387 * split a vma into two pieces at address 'addr', a new vma is allocated either 1388 * for the first part or the tail. 1389 */ 1390 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1391 unsigned long addr, int new_below) 1392 { 1393 struct vm_area_struct *new; 1394 struct vm_region *region; 1395 unsigned long npages; 1396 1397 /* we're only permitted to split anonymous regions (these should have 1398 * only a single usage on the region) */ 1399 if (vma->vm_file) 1400 return -ENOMEM; 1401 1402 if (mm->map_count >= sysctl_max_map_count) 1403 return -ENOMEM; 1404 1405 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1406 if (!region) 1407 return -ENOMEM; 1408 1409 new = vm_area_dup(vma); 1410 if (!new) { 1411 kmem_cache_free(vm_region_jar, region); 1412 return -ENOMEM; 1413 } 1414 1415 /* most fields are the same, copy all, and then fixup */ 1416 *region = *vma->vm_region; 1417 new->vm_region = region; 1418 1419 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1420 1421 if (new_below) { 1422 region->vm_top = region->vm_end = new->vm_end = addr; 1423 } else { 1424 region->vm_start = new->vm_start = addr; 1425 region->vm_pgoff = new->vm_pgoff += npages; 1426 } 1427 1428 if (new->vm_ops && new->vm_ops->open) 1429 new->vm_ops->open(new); 1430 1431 delete_vma_from_mm(vma); 1432 down_write(&nommu_region_sem); 1433 delete_nommu_region(vma->vm_region); 1434 if (new_below) { 1435 vma->vm_region->vm_start = vma->vm_start = addr; 1436 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1437 } else { 1438 vma->vm_region->vm_end = vma->vm_end = addr; 1439 vma->vm_region->vm_top = addr; 1440 } 1441 add_nommu_region(vma->vm_region); 1442 add_nommu_region(new->vm_region); 1443 up_write(&nommu_region_sem); 1444 add_vma_to_mm(mm, vma); 1445 add_vma_to_mm(mm, new); 1446 return 0; 1447 } 1448 1449 /* 1450 * shrink a VMA by removing the specified chunk from either the beginning or 1451 * the end 1452 */ 1453 static int shrink_vma(struct mm_struct *mm, 1454 struct vm_area_struct *vma, 1455 unsigned long from, unsigned long to) 1456 { 1457 struct vm_region *region; 1458 1459 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1460 * and list */ 1461 delete_vma_from_mm(vma); 1462 if (from > vma->vm_start) 1463 vma->vm_end = from; 1464 else 1465 vma->vm_start = to; 1466 add_vma_to_mm(mm, vma); 1467 1468 /* cut the backing region down to size */ 1469 region = vma->vm_region; 1470 BUG_ON(region->vm_usage != 1); 1471 1472 down_write(&nommu_region_sem); 1473 delete_nommu_region(region); 1474 if (from > region->vm_start) { 1475 to = region->vm_top; 1476 region->vm_top = region->vm_end = from; 1477 } else { 1478 region->vm_start = to; 1479 } 1480 add_nommu_region(region); 1481 up_write(&nommu_region_sem); 1482 1483 free_page_series(from, to); 1484 return 0; 1485 } 1486 1487 /* 1488 * release a mapping 1489 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1490 * VMA, though it need not cover the whole VMA 1491 */ 1492 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1493 { 1494 struct vm_area_struct *vma; 1495 unsigned long end; 1496 int ret; 1497 1498 len = PAGE_ALIGN(len); 1499 if (len == 0) 1500 return -EINVAL; 1501 1502 end = start + len; 1503 1504 /* find the first potentially overlapping VMA */ 1505 vma = find_vma(mm, start); 1506 if (!vma) { 1507 static int limit; 1508 if (limit < 5) { 1509 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1510 current->pid, current->comm, 1511 start, start + len - 1); 1512 limit++; 1513 } 1514 return -EINVAL; 1515 } 1516 1517 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1518 if (vma->vm_file) { 1519 do { 1520 if (start > vma->vm_start) 1521 return -EINVAL; 1522 if (end == vma->vm_end) 1523 goto erase_whole_vma; 1524 vma = vma->vm_next; 1525 } while (vma); 1526 return -EINVAL; 1527 } else { 1528 /* the chunk must be a subset of the VMA found */ 1529 if (start == vma->vm_start && end == vma->vm_end) 1530 goto erase_whole_vma; 1531 if (start < vma->vm_start || end > vma->vm_end) 1532 return -EINVAL; 1533 if (offset_in_page(start)) 1534 return -EINVAL; 1535 if (end != vma->vm_end && offset_in_page(end)) 1536 return -EINVAL; 1537 if (start != vma->vm_start && end != vma->vm_end) { 1538 ret = split_vma(mm, vma, start, 1); 1539 if (ret < 0) 1540 return ret; 1541 } 1542 return shrink_vma(mm, vma, start, end); 1543 } 1544 1545 erase_whole_vma: 1546 delete_vma_from_mm(vma); 1547 delete_vma(mm, vma); 1548 return 0; 1549 } 1550 EXPORT_SYMBOL(do_munmap); 1551 1552 int vm_munmap(unsigned long addr, size_t len) 1553 { 1554 struct mm_struct *mm = current->mm; 1555 int ret; 1556 1557 down_write(&mm->mmap_sem); 1558 ret = do_munmap(mm, addr, len, NULL); 1559 up_write(&mm->mmap_sem); 1560 return ret; 1561 } 1562 EXPORT_SYMBOL(vm_munmap); 1563 1564 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1565 { 1566 return vm_munmap(addr, len); 1567 } 1568 1569 /* 1570 * release all the mappings made in a process's VM space 1571 */ 1572 void exit_mmap(struct mm_struct *mm) 1573 { 1574 struct vm_area_struct *vma; 1575 1576 if (!mm) 1577 return; 1578 1579 mm->total_vm = 0; 1580 1581 while ((vma = mm->mmap)) { 1582 mm->mmap = vma->vm_next; 1583 delete_vma_from_mm(vma); 1584 delete_vma(mm, vma); 1585 cond_resched(); 1586 } 1587 } 1588 1589 int vm_brk(unsigned long addr, unsigned long len) 1590 { 1591 return -ENOMEM; 1592 } 1593 1594 /* 1595 * expand (or shrink) an existing mapping, potentially moving it at the same 1596 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1597 * 1598 * under NOMMU conditions, we only permit changing a mapping's size, and only 1599 * as long as it stays within the region allocated by do_mmap_private() and the 1600 * block is not shareable 1601 * 1602 * MREMAP_FIXED is not supported under NOMMU conditions 1603 */ 1604 static unsigned long do_mremap(unsigned long addr, 1605 unsigned long old_len, unsigned long new_len, 1606 unsigned long flags, unsigned long new_addr) 1607 { 1608 struct vm_area_struct *vma; 1609 1610 /* insanity checks first */ 1611 old_len = PAGE_ALIGN(old_len); 1612 new_len = PAGE_ALIGN(new_len); 1613 if (old_len == 0 || new_len == 0) 1614 return (unsigned long) -EINVAL; 1615 1616 if (offset_in_page(addr)) 1617 return -EINVAL; 1618 1619 if (flags & MREMAP_FIXED && new_addr != addr) 1620 return (unsigned long) -EINVAL; 1621 1622 vma = find_vma_exact(current->mm, addr, old_len); 1623 if (!vma) 1624 return (unsigned long) -EINVAL; 1625 1626 if (vma->vm_end != vma->vm_start + old_len) 1627 return (unsigned long) -EFAULT; 1628 1629 if (vma->vm_flags & VM_MAYSHARE) 1630 return (unsigned long) -EPERM; 1631 1632 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1633 return (unsigned long) -ENOMEM; 1634 1635 /* all checks complete - do it */ 1636 vma->vm_end = vma->vm_start + new_len; 1637 return vma->vm_start; 1638 } 1639 1640 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1641 unsigned long, new_len, unsigned long, flags, 1642 unsigned long, new_addr) 1643 { 1644 unsigned long ret; 1645 1646 down_write(¤t->mm->mmap_sem); 1647 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1648 up_write(¤t->mm->mmap_sem); 1649 return ret; 1650 } 1651 1652 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1653 unsigned int foll_flags) 1654 { 1655 return NULL; 1656 } 1657 1658 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1659 unsigned long pfn, unsigned long size, pgprot_t prot) 1660 { 1661 if (addr != (pfn << PAGE_SHIFT)) 1662 return -EINVAL; 1663 1664 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1665 return 0; 1666 } 1667 EXPORT_SYMBOL(remap_pfn_range); 1668 1669 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1670 { 1671 unsigned long pfn = start >> PAGE_SHIFT; 1672 unsigned long vm_len = vma->vm_end - vma->vm_start; 1673 1674 pfn += vma->vm_pgoff; 1675 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1676 } 1677 EXPORT_SYMBOL(vm_iomap_memory); 1678 1679 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1680 unsigned long pgoff) 1681 { 1682 unsigned int size = vma->vm_end - vma->vm_start; 1683 1684 if (!(vma->vm_flags & VM_USERMAP)) 1685 return -EINVAL; 1686 1687 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1688 vma->vm_end = vma->vm_start + size; 1689 1690 return 0; 1691 } 1692 EXPORT_SYMBOL(remap_vmalloc_range); 1693 1694 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1695 unsigned long len, unsigned long pgoff, unsigned long flags) 1696 { 1697 return -ENOMEM; 1698 } 1699 1700 vm_fault_t filemap_fault(struct vm_fault *vmf) 1701 { 1702 BUG(); 1703 return 0; 1704 } 1705 EXPORT_SYMBOL(filemap_fault); 1706 1707 void filemap_map_pages(struct vm_fault *vmf, 1708 pgoff_t start_pgoff, pgoff_t end_pgoff) 1709 { 1710 BUG(); 1711 } 1712 EXPORT_SYMBOL(filemap_map_pages); 1713 1714 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1715 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1716 { 1717 struct vm_area_struct *vma; 1718 int write = gup_flags & FOLL_WRITE; 1719 1720 if (down_read_killable(&mm->mmap_sem)) 1721 return 0; 1722 1723 /* the access must start within one of the target process's mappings */ 1724 vma = find_vma(mm, addr); 1725 if (vma) { 1726 /* don't overrun this mapping */ 1727 if (addr + len >= vma->vm_end) 1728 len = vma->vm_end - addr; 1729 1730 /* only read or write mappings where it is permitted */ 1731 if (write && vma->vm_flags & VM_MAYWRITE) 1732 copy_to_user_page(vma, NULL, addr, 1733 (void *) addr, buf, len); 1734 else if (!write && vma->vm_flags & VM_MAYREAD) 1735 copy_from_user_page(vma, NULL, addr, 1736 buf, (void *) addr, len); 1737 else 1738 len = 0; 1739 } else { 1740 len = 0; 1741 } 1742 1743 up_read(&mm->mmap_sem); 1744 1745 return len; 1746 } 1747 1748 /** 1749 * access_remote_vm - access another process' address space 1750 * @mm: the mm_struct of the target address space 1751 * @addr: start address to access 1752 * @buf: source or destination buffer 1753 * @len: number of bytes to transfer 1754 * @gup_flags: flags modifying lookup behaviour 1755 * 1756 * The caller must hold a reference on @mm. 1757 */ 1758 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1759 void *buf, int len, unsigned int gup_flags) 1760 { 1761 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1762 } 1763 1764 /* 1765 * Access another process' address space. 1766 * - source/target buffer must be kernel space 1767 */ 1768 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1769 unsigned int gup_flags) 1770 { 1771 struct mm_struct *mm; 1772 1773 if (addr + len < addr) 1774 return 0; 1775 1776 mm = get_task_mm(tsk); 1777 if (!mm) 1778 return 0; 1779 1780 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1781 1782 mmput(mm); 1783 return len; 1784 } 1785 EXPORT_SYMBOL_GPL(access_process_vm); 1786 1787 /** 1788 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1789 * @inode: The inode to check 1790 * @size: The current filesize of the inode 1791 * @newsize: The proposed filesize of the inode 1792 * 1793 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1794 * make sure that that any outstanding VMAs aren't broken and then shrink the 1795 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1796 * automatically grant mappings that are too large. 1797 */ 1798 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1799 size_t newsize) 1800 { 1801 struct vm_area_struct *vma; 1802 struct vm_region *region; 1803 pgoff_t low, high; 1804 size_t r_size, r_top; 1805 1806 low = newsize >> PAGE_SHIFT; 1807 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1808 1809 down_write(&nommu_region_sem); 1810 i_mmap_lock_read(inode->i_mapping); 1811 1812 /* search for VMAs that fall within the dead zone */ 1813 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1814 /* found one - only interested if it's shared out of the page 1815 * cache */ 1816 if (vma->vm_flags & VM_SHARED) { 1817 i_mmap_unlock_read(inode->i_mapping); 1818 up_write(&nommu_region_sem); 1819 return -ETXTBSY; /* not quite true, but near enough */ 1820 } 1821 } 1822 1823 /* reduce any regions that overlap the dead zone - if in existence, 1824 * these will be pointed to by VMAs that don't overlap the dead zone 1825 * 1826 * we don't check for any regions that start beyond the EOF as there 1827 * shouldn't be any 1828 */ 1829 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1830 if (!(vma->vm_flags & VM_SHARED)) 1831 continue; 1832 1833 region = vma->vm_region; 1834 r_size = region->vm_top - region->vm_start; 1835 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1836 1837 if (r_top > newsize) { 1838 region->vm_top -= r_top - newsize; 1839 if (region->vm_end > region->vm_top) 1840 region->vm_end = region->vm_top; 1841 } 1842 } 1843 1844 i_mmap_unlock_read(inode->i_mapping); 1845 up_write(&nommu_region_sem); 1846 return 0; 1847 } 1848 1849 /* 1850 * Initialise sysctl_user_reserve_kbytes. 1851 * 1852 * This is intended to prevent a user from starting a single memory hogging 1853 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1854 * mode. 1855 * 1856 * The default value is min(3% of free memory, 128MB) 1857 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1858 */ 1859 static int __meminit init_user_reserve(void) 1860 { 1861 unsigned long free_kbytes; 1862 1863 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1864 1865 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1866 return 0; 1867 } 1868 subsys_initcall(init_user_reserve); 1869 1870 /* 1871 * Initialise sysctl_admin_reserve_kbytes. 1872 * 1873 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1874 * to log in and kill a memory hogging process. 1875 * 1876 * Systems with more than 256MB will reserve 8MB, enough to recover 1877 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1878 * only reserve 3% of free pages by default. 1879 */ 1880 static int __meminit init_admin_reserve(void) 1881 { 1882 unsigned long free_kbytes; 1883 1884 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1885 1886 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1887 return 0; 1888 } 1889 subsys_initcall(init_admin_reserve); 1890