1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 void vfree(const void *addr) 114 { 115 kfree(addr); 116 } 117 EXPORT_SYMBOL(vfree); 118 119 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 120 { 121 /* 122 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 123 * returns only a logical address. 124 */ 125 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 126 } 127 EXPORT_SYMBOL(__vmalloc_noprof); 128 129 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 130 { 131 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM); 132 } 133 134 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 135 unsigned long start, unsigned long end, gfp_t gfp_mask, 136 pgprot_t prot, unsigned long vm_flags, int node, 137 const void *caller) 138 { 139 return __vmalloc_noprof(size, gfp_mask); 140 } 141 142 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask, 143 int node, const void *caller) 144 { 145 return __vmalloc_noprof(size, gfp_mask); 146 } 147 148 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 149 { 150 void *ret; 151 152 ret = __vmalloc(size, flags); 153 if (ret) { 154 struct vm_area_struct *vma; 155 156 mmap_write_lock(current->mm); 157 vma = find_vma(current->mm, (unsigned long)ret); 158 if (vma) 159 vm_flags_set(vma, VM_USERMAP); 160 mmap_write_unlock(current->mm); 161 } 162 163 return ret; 164 } 165 166 void *vmalloc_user_noprof(unsigned long size) 167 { 168 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 169 } 170 EXPORT_SYMBOL(vmalloc_user_noprof); 171 172 struct page *vmalloc_to_page(const void *addr) 173 { 174 return virt_to_page(addr); 175 } 176 EXPORT_SYMBOL(vmalloc_to_page); 177 178 unsigned long vmalloc_to_pfn(const void *addr) 179 { 180 return page_to_pfn(virt_to_page(addr)); 181 } 182 EXPORT_SYMBOL(vmalloc_to_pfn); 183 184 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 185 { 186 /* Don't allow overflow */ 187 if ((unsigned long) addr + count < count) 188 count = -(unsigned long) addr; 189 190 return copy_to_iter(addr, count, iter); 191 } 192 193 /* 194 * vmalloc - allocate virtually contiguous memory 195 * 196 * @size: allocation size 197 * 198 * Allocate enough pages to cover @size from the page level 199 * allocator and map them into contiguous kernel virtual space. 200 * 201 * For tight control over page level allocator and protection flags 202 * use __vmalloc() instead. 203 */ 204 void *vmalloc_noprof(unsigned long size) 205 { 206 return __vmalloc_noprof(size, GFP_KERNEL); 207 } 208 EXPORT_SYMBOL(vmalloc_noprof); 209 210 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof); 211 212 /* 213 * vzalloc - allocate virtually contiguous memory with zero fill 214 * 215 * @size: allocation size 216 * 217 * Allocate enough pages to cover @size from the page level 218 * allocator and map them into contiguous kernel virtual space. 219 * The memory allocated is set to zero. 220 * 221 * For tight control over page level allocator and protection flags 222 * use __vmalloc() instead. 223 */ 224 void *vzalloc_noprof(unsigned long size) 225 { 226 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO); 227 } 228 EXPORT_SYMBOL(vzalloc_noprof); 229 230 /** 231 * vmalloc_node - allocate memory on a specific node 232 * @size: allocation size 233 * @node: numa node 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * 238 * For tight control over page level allocator and protection flags 239 * use __vmalloc() instead. 240 */ 241 void *vmalloc_node_noprof(unsigned long size, int node) 242 { 243 return vmalloc_noprof(size); 244 } 245 EXPORT_SYMBOL(vmalloc_node_noprof); 246 247 /** 248 * vzalloc_node - allocate memory on a specific node with zero fill 249 * @size: allocation size 250 * @node: numa node 251 * 252 * Allocate enough pages to cover @size from the page level 253 * allocator and map them into contiguous kernel virtual space. 254 * The memory allocated is set to zero. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vzalloc_node_noprof(unsigned long size, int node) 260 { 261 return vzalloc_noprof(size); 262 } 263 EXPORT_SYMBOL(vzalloc_node_noprof); 264 265 /** 266 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 267 * @size: allocation size 268 * 269 * Allocate enough 32bit PA addressable pages to cover @size from the 270 * page level allocator and map them into contiguous kernel virtual space. 271 */ 272 void *vmalloc_32_noprof(unsigned long size) 273 { 274 return __vmalloc_noprof(size, GFP_KERNEL); 275 } 276 EXPORT_SYMBOL(vmalloc_32_noprof); 277 278 /** 279 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 280 * @size: allocation size 281 * 282 * The resulting memory area is 32bit addressable and zeroed so it can be 283 * mapped to userspace without leaking data. 284 * 285 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 286 * remap_vmalloc_range() are permissible. 287 */ 288 void *vmalloc_32_user_noprof(unsigned long size) 289 { 290 /* 291 * We'll have to sort out the ZONE_DMA bits for 64-bit, 292 * but for now this can simply use vmalloc_user() directly. 293 */ 294 return vmalloc_user_noprof(size); 295 } 296 EXPORT_SYMBOL(vmalloc_32_user_noprof); 297 298 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 299 { 300 BUG(); 301 return NULL; 302 } 303 EXPORT_SYMBOL(vmap); 304 305 void vunmap(const void *addr) 306 { 307 BUG(); 308 } 309 EXPORT_SYMBOL(vunmap); 310 311 void *vm_map_ram(struct page **pages, unsigned int count, int node) 312 { 313 BUG(); 314 return NULL; 315 } 316 EXPORT_SYMBOL(vm_map_ram); 317 318 void vm_unmap_ram(const void *mem, unsigned int count) 319 { 320 BUG(); 321 } 322 EXPORT_SYMBOL(vm_unmap_ram); 323 324 void vm_unmap_aliases(void) 325 { 326 } 327 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 328 329 void free_vm_area(struct vm_struct *area) 330 { 331 BUG(); 332 } 333 EXPORT_SYMBOL_GPL(free_vm_area); 334 335 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 336 struct page *page) 337 { 338 return -EINVAL; 339 } 340 EXPORT_SYMBOL(vm_insert_page); 341 342 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 343 struct page **pages, unsigned long *num) 344 { 345 return -EINVAL; 346 } 347 EXPORT_SYMBOL(vm_insert_pages); 348 349 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 350 unsigned long num) 351 { 352 return -EINVAL; 353 } 354 EXPORT_SYMBOL(vm_map_pages); 355 356 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 357 unsigned long num) 358 { 359 return -EINVAL; 360 } 361 EXPORT_SYMBOL(vm_map_pages_zero); 362 363 /* 364 * sys_brk() for the most part doesn't need the global kernel 365 * lock, except when an application is doing something nasty 366 * like trying to un-brk an area that has already been mapped 367 * to a regular file. in this case, the unmapping will need 368 * to invoke file system routines that need the global lock. 369 */ 370 SYSCALL_DEFINE1(brk, unsigned long, brk) 371 { 372 struct mm_struct *mm = current->mm; 373 374 if (brk < mm->start_brk || brk > mm->context.end_brk) 375 return mm->brk; 376 377 if (mm->brk == brk) 378 return mm->brk; 379 380 /* 381 * Always allow shrinking brk 382 */ 383 if (brk <= mm->brk) { 384 mm->brk = brk; 385 return brk; 386 } 387 388 /* 389 * Ok, looks good - let it rip. 390 */ 391 flush_icache_user_range(mm->brk, brk); 392 return mm->brk = brk; 393 } 394 395 /* 396 * initialise the percpu counter for VM and region record slabs 397 */ 398 void __init mmap_init(void) 399 { 400 int ret; 401 402 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 403 VM_BUG_ON(ret); 404 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 405 } 406 407 /* 408 * validate the region tree 409 * - the caller must hold the region lock 410 */ 411 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 412 static noinline void validate_nommu_regions(void) 413 { 414 struct vm_region *region, *last; 415 struct rb_node *p, *lastp; 416 417 lastp = rb_first(&nommu_region_tree); 418 if (!lastp) 419 return; 420 421 last = rb_entry(lastp, struct vm_region, vm_rb); 422 BUG_ON(last->vm_end <= last->vm_start); 423 BUG_ON(last->vm_top < last->vm_end); 424 425 while ((p = rb_next(lastp))) { 426 region = rb_entry(p, struct vm_region, vm_rb); 427 last = rb_entry(lastp, struct vm_region, vm_rb); 428 429 BUG_ON(region->vm_end <= region->vm_start); 430 BUG_ON(region->vm_top < region->vm_end); 431 BUG_ON(region->vm_start < last->vm_top); 432 433 lastp = p; 434 } 435 } 436 #else 437 static void validate_nommu_regions(void) 438 { 439 } 440 #endif 441 442 /* 443 * add a region into the global tree 444 */ 445 static void add_nommu_region(struct vm_region *region) 446 { 447 struct vm_region *pregion; 448 struct rb_node **p, *parent; 449 450 validate_nommu_regions(); 451 452 parent = NULL; 453 p = &nommu_region_tree.rb_node; 454 while (*p) { 455 parent = *p; 456 pregion = rb_entry(parent, struct vm_region, vm_rb); 457 if (region->vm_start < pregion->vm_start) 458 p = &(*p)->rb_left; 459 else if (region->vm_start > pregion->vm_start) 460 p = &(*p)->rb_right; 461 else if (pregion == region) 462 return; 463 else 464 BUG(); 465 } 466 467 rb_link_node(®ion->vm_rb, parent, p); 468 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 469 470 validate_nommu_regions(); 471 } 472 473 /* 474 * delete a region from the global tree 475 */ 476 static void delete_nommu_region(struct vm_region *region) 477 { 478 BUG_ON(!nommu_region_tree.rb_node); 479 480 validate_nommu_regions(); 481 rb_erase(®ion->vm_rb, &nommu_region_tree); 482 validate_nommu_regions(); 483 } 484 485 /* 486 * free a contiguous series of pages 487 */ 488 static void free_page_series(unsigned long from, unsigned long to) 489 { 490 for (; from < to; from += PAGE_SIZE) { 491 struct page *page = virt_to_page((void *)from); 492 493 atomic_long_dec(&mmap_pages_allocated); 494 put_page(page); 495 } 496 } 497 498 /* 499 * release a reference to a region 500 * - the caller must hold the region semaphore for writing, which this releases 501 * - the region may not have been added to the tree yet, in which case vm_top 502 * will equal vm_start 503 */ 504 static void __put_nommu_region(struct vm_region *region) 505 __releases(nommu_region_sem) 506 { 507 BUG_ON(!nommu_region_tree.rb_node); 508 509 if (--region->vm_usage == 0) { 510 if (region->vm_top > region->vm_start) 511 delete_nommu_region(region); 512 up_write(&nommu_region_sem); 513 514 if (region->vm_file) 515 fput(region->vm_file); 516 517 /* IO memory and memory shared directly out of the pagecache 518 * from ramfs/tmpfs mustn't be released here */ 519 if (region->vm_flags & VM_MAPPED_COPY) 520 free_page_series(region->vm_start, region->vm_top); 521 kmem_cache_free(vm_region_jar, region); 522 } else { 523 up_write(&nommu_region_sem); 524 } 525 } 526 527 /* 528 * release a reference to a region 529 */ 530 static void put_nommu_region(struct vm_region *region) 531 { 532 down_write(&nommu_region_sem); 533 __put_nommu_region(region); 534 } 535 536 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 537 { 538 vma->vm_mm = mm; 539 540 /* add the VMA to the mapping */ 541 if (vma->vm_file) { 542 struct address_space *mapping = vma->vm_file->f_mapping; 543 544 i_mmap_lock_write(mapping); 545 flush_dcache_mmap_lock(mapping); 546 vma_interval_tree_insert(vma, &mapping->i_mmap); 547 flush_dcache_mmap_unlock(mapping); 548 i_mmap_unlock_write(mapping); 549 } 550 } 551 552 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 553 { 554 vma->vm_mm->map_count--; 555 /* remove the VMA from the mapping */ 556 if (vma->vm_file) { 557 struct address_space *mapping; 558 mapping = vma->vm_file->f_mapping; 559 560 i_mmap_lock_write(mapping); 561 flush_dcache_mmap_lock(mapping); 562 vma_interval_tree_remove(vma, &mapping->i_mmap); 563 flush_dcache_mmap_unlock(mapping); 564 i_mmap_unlock_write(mapping); 565 } 566 } 567 568 /* 569 * delete a VMA from its owning mm_struct and address space 570 */ 571 static int delete_vma_from_mm(struct vm_area_struct *vma) 572 { 573 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 574 575 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 576 if (vma_iter_prealloc(&vmi, NULL)) { 577 pr_warn("Allocation of vma tree for process %d failed\n", 578 current->pid); 579 return -ENOMEM; 580 } 581 cleanup_vma_from_mm(vma); 582 583 /* remove from the MM's tree and list */ 584 vma_iter_clear(&vmi); 585 return 0; 586 } 587 /* 588 * destroy a VMA record 589 */ 590 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 591 { 592 vma_close(vma); 593 if (vma->vm_file) 594 fput(vma->vm_file); 595 put_nommu_region(vma->vm_region); 596 vm_area_free(vma); 597 } 598 599 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 600 unsigned long start_addr, 601 unsigned long end_addr) 602 { 603 unsigned long index = start_addr; 604 605 mmap_assert_locked(mm); 606 return mt_find(&mm->mm_mt, &index, end_addr - 1); 607 } 608 EXPORT_SYMBOL(find_vma_intersection); 609 610 /* 611 * look up the first VMA in which addr resides, NULL if none 612 * - should be called with mm->mmap_lock at least held readlocked 613 */ 614 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 615 { 616 VMA_ITERATOR(vmi, mm, addr); 617 618 return vma_iter_load(&vmi); 619 } 620 EXPORT_SYMBOL(find_vma); 621 622 /* 623 * At least xtensa ends up having protection faults even with no 624 * MMU.. No stack expansion, at least. 625 */ 626 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 627 unsigned long addr, struct pt_regs *regs) 628 { 629 struct vm_area_struct *vma; 630 631 mmap_read_lock(mm); 632 vma = vma_lookup(mm, addr); 633 if (!vma) 634 mmap_read_unlock(mm); 635 return vma; 636 } 637 638 /* 639 * expand a stack to a given address 640 * - not supported under NOMMU conditions 641 */ 642 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 643 { 644 return -ENOMEM; 645 } 646 647 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 648 { 649 mmap_read_unlock(mm); 650 return NULL; 651 } 652 653 /* 654 * look up the first VMA exactly that exactly matches addr 655 * - should be called with mm->mmap_lock at least held readlocked 656 */ 657 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 658 unsigned long addr, 659 unsigned long len) 660 { 661 struct vm_area_struct *vma; 662 unsigned long end = addr + len; 663 VMA_ITERATOR(vmi, mm, addr); 664 665 vma = vma_iter_load(&vmi); 666 if (!vma) 667 return NULL; 668 if (vma->vm_start != addr) 669 return NULL; 670 if (vma->vm_end != end) 671 return NULL; 672 673 return vma; 674 } 675 676 /* 677 * determine whether a mapping should be permitted and, if so, what sort of 678 * mapping we're capable of supporting 679 */ 680 static int validate_mmap_request(struct file *file, 681 unsigned long addr, 682 unsigned long len, 683 unsigned long prot, 684 unsigned long flags, 685 unsigned long pgoff, 686 unsigned long *_capabilities) 687 { 688 unsigned long capabilities, rlen; 689 int ret; 690 691 /* do the simple checks first */ 692 if (flags & MAP_FIXED) 693 return -EINVAL; 694 695 if ((flags & MAP_TYPE) != MAP_PRIVATE && 696 (flags & MAP_TYPE) != MAP_SHARED) 697 return -EINVAL; 698 699 if (!len) 700 return -EINVAL; 701 702 /* Careful about overflows.. */ 703 rlen = PAGE_ALIGN(len); 704 if (!rlen || rlen > TASK_SIZE) 705 return -ENOMEM; 706 707 /* offset overflow? */ 708 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 709 return -EOVERFLOW; 710 711 if (file) { 712 /* files must support mmap */ 713 if (!file->f_op->mmap) 714 return -ENODEV; 715 716 /* work out if what we've got could possibly be shared 717 * - we support chardevs that provide their own "memory" 718 * - we support files/blockdevs that are memory backed 719 */ 720 if (file->f_op->mmap_capabilities) { 721 capabilities = file->f_op->mmap_capabilities(file); 722 } else { 723 /* no explicit capabilities set, so assume some 724 * defaults */ 725 switch (file_inode(file)->i_mode & S_IFMT) { 726 case S_IFREG: 727 case S_IFBLK: 728 capabilities = NOMMU_MAP_COPY; 729 break; 730 731 case S_IFCHR: 732 capabilities = 733 NOMMU_MAP_DIRECT | 734 NOMMU_MAP_READ | 735 NOMMU_MAP_WRITE; 736 break; 737 738 default: 739 return -EINVAL; 740 } 741 } 742 743 /* eliminate any capabilities that we can't support on this 744 * device */ 745 if (!file->f_op->get_unmapped_area) 746 capabilities &= ~NOMMU_MAP_DIRECT; 747 if (!(file->f_mode & FMODE_CAN_READ)) 748 capabilities &= ~NOMMU_MAP_COPY; 749 750 /* The file shall have been opened with read permission. */ 751 if (!(file->f_mode & FMODE_READ)) 752 return -EACCES; 753 754 if (flags & MAP_SHARED) { 755 /* do checks for writing, appending and locking */ 756 if ((prot & PROT_WRITE) && 757 !(file->f_mode & FMODE_WRITE)) 758 return -EACCES; 759 760 if (IS_APPEND(file_inode(file)) && 761 (file->f_mode & FMODE_WRITE)) 762 return -EACCES; 763 764 if (!(capabilities & NOMMU_MAP_DIRECT)) 765 return -ENODEV; 766 767 /* we mustn't privatise shared mappings */ 768 capabilities &= ~NOMMU_MAP_COPY; 769 } else { 770 /* we're going to read the file into private memory we 771 * allocate */ 772 if (!(capabilities & NOMMU_MAP_COPY)) 773 return -ENODEV; 774 775 /* we don't permit a private writable mapping to be 776 * shared with the backing device */ 777 if (prot & PROT_WRITE) 778 capabilities &= ~NOMMU_MAP_DIRECT; 779 } 780 781 if (capabilities & NOMMU_MAP_DIRECT) { 782 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 783 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 784 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 785 ) { 786 capabilities &= ~NOMMU_MAP_DIRECT; 787 if (flags & MAP_SHARED) { 788 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 789 return -EINVAL; 790 } 791 } 792 } 793 794 /* handle executable mappings and implied executable 795 * mappings */ 796 if (path_noexec(&file->f_path)) { 797 if (prot & PROT_EXEC) 798 return -EPERM; 799 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 800 /* handle implication of PROT_EXEC by PROT_READ */ 801 if (current->personality & READ_IMPLIES_EXEC) { 802 if (capabilities & NOMMU_MAP_EXEC) 803 prot |= PROT_EXEC; 804 } 805 } else if ((prot & PROT_READ) && 806 (prot & PROT_EXEC) && 807 !(capabilities & NOMMU_MAP_EXEC) 808 ) { 809 /* backing file is not executable, try to copy */ 810 capabilities &= ~NOMMU_MAP_DIRECT; 811 } 812 } else { 813 /* anonymous mappings are always memory backed and can be 814 * privately mapped 815 */ 816 capabilities = NOMMU_MAP_COPY; 817 818 /* handle PROT_EXEC implication by PROT_READ */ 819 if ((prot & PROT_READ) && 820 (current->personality & READ_IMPLIES_EXEC)) 821 prot |= PROT_EXEC; 822 } 823 824 /* allow the security API to have its say */ 825 ret = security_mmap_addr(addr); 826 if (ret < 0) 827 return ret; 828 829 /* looks okay */ 830 *_capabilities = capabilities; 831 return 0; 832 } 833 834 /* 835 * we've determined that we can make the mapping, now translate what we 836 * now know into VMA flags 837 */ 838 static unsigned long determine_vm_flags(struct file *file, 839 unsigned long prot, 840 unsigned long flags, 841 unsigned long capabilities) 842 { 843 unsigned long vm_flags; 844 845 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags); 846 847 if (!file) { 848 /* 849 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 850 * there is no fork(). 851 */ 852 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 853 } else if (flags & MAP_PRIVATE) { 854 /* MAP_PRIVATE file mapping */ 855 if (capabilities & NOMMU_MAP_DIRECT) 856 vm_flags |= (capabilities & NOMMU_VMFLAGS); 857 else 858 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 859 860 if (!(prot & PROT_WRITE) && !current->ptrace) 861 /* 862 * R/O private file mapping which cannot be used to 863 * modify memory, especially also not via active ptrace 864 * (e.g., set breakpoints) or later by upgrading 865 * permissions (no mprotect()). We can try overlaying 866 * the file mapping, which will work e.g., on chardevs, 867 * ramfs/tmpfs/shmfs and romfs/cramf. 868 */ 869 vm_flags |= VM_MAYOVERLAY; 870 } else { 871 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 872 vm_flags |= VM_SHARED | VM_MAYSHARE | 873 (capabilities & NOMMU_VMFLAGS); 874 } 875 876 return vm_flags; 877 } 878 879 /* 880 * set up a shared mapping on a file (the driver or filesystem provides and 881 * pins the storage) 882 */ 883 static int do_mmap_shared_file(struct vm_area_struct *vma) 884 { 885 int ret; 886 887 ret = mmap_file(vma->vm_file, vma); 888 if (ret == 0) { 889 vma->vm_region->vm_top = vma->vm_region->vm_end; 890 return 0; 891 } 892 if (ret != -ENOSYS) 893 return ret; 894 895 /* getting -ENOSYS indicates that direct mmap isn't possible (as 896 * opposed to tried but failed) so we can only give a suitable error as 897 * it's not possible to make a private copy if MAP_SHARED was given */ 898 return -ENODEV; 899 } 900 901 /* 902 * set up a private mapping or an anonymous shared mapping 903 */ 904 static int do_mmap_private(struct vm_area_struct *vma, 905 struct vm_region *region, 906 unsigned long len, 907 unsigned long capabilities) 908 { 909 unsigned long total, point; 910 void *base; 911 int ret, order; 912 913 /* 914 * Invoke the file's mapping function so that it can keep track of 915 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 916 * it may attempt to share, which will make is_nommu_shared_mapping() 917 * happy. 918 */ 919 if (capabilities & NOMMU_MAP_DIRECT) { 920 ret = mmap_file(vma->vm_file, vma); 921 /* shouldn't return success if we're not sharing */ 922 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 923 ret = -ENOSYS; 924 if (ret == 0) { 925 vma->vm_region->vm_top = vma->vm_region->vm_end; 926 return 0; 927 } 928 if (ret != -ENOSYS) 929 return ret; 930 931 /* getting an ENOSYS error indicates that direct mmap isn't 932 * possible (as opposed to tried but failed) so we'll try to 933 * make a private copy of the data and map that instead */ 934 } 935 936 937 /* allocate some memory to hold the mapping 938 * - note that this may not return a page-aligned address if the object 939 * we're allocating is smaller than a page 940 */ 941 order = get_order(len); 942 total = 1 << order; 943 point = len >> PAGE_SHIFT; 944 945 /* we don't want to allocate a power-of-2 sized page set */ 946 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 947 total = point; 948 949 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 950 if (!base) 951 goto enomem; 952 953 atomic_long_add(total, &mmap_pages_allocated); 954 955 vm_flags_set(vma, VM_MAPPED_COPY); 956 region->vm_flags = vma->vm_flags; 957 region->vm_start = (unsigned long) base; 958 region->vm_end = region->vm_start + len; 959 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 960 961 vma->vm_start = region->vm_start; 962 vma->vm_end = region->vm_start + len; 963 964 if (vma->vm_file) { 965 /* read the contents of a file into the copy */ 966 loff_t fpos; 967 968 fpos = vma->vm_pgoff; 969 fpos <<= PAGE_SHIFT; 970 971 ret = kernel_read(vma->vm_file, base, len, &fpos); 972 if (ret < 0) 973 goto error_free; 974 975 /* clear the last little bit */ 976 if (ret < len) 977 memset(base + ret, 0, len - ret); 978 979 } else { 980 vma_set_anonymous(vma); 981 } 982 983 return 0; 984 985 error_free: 986 free_page_series(region->vm_start, region->vm_top); 987 region->vm_start = vma->vm_start = 0; 988 region->vm_end = vma->vm_end = 0; 989 region->vm_top = 0; 990 return ret; 991 992 enomem: 993 pr_err("Allocation of length %lu from process %d (%s) failed\n", 994 len, current->pid, current->comm); 995 show_mem(); 996 return -ENOMEM; 997 } 998 999 /* 1000 * handle mapping creation for uClinux 1001 */ 1002 unsigned long do_mmap(struct file *file, 1003 unsigned long addr, 1004 unsigned long len, 1005 unsigned long prot, 1006 unsigned long flags, 1007 vm_flags_t vm_flags, 1008 unsigned long pgoff, 1009 unsigned long *populate, 1010 struct list_head *uf) 1011 { 1012 struct vm_area_struct *vma; 1013 struct vm_region *region; 1014 struct rb_node *rb; 1015 unsigned long capabilities, result; 1016 int ret; 1017 VMA_ITERATOR(vmi, current->mm, 0); 1018 1019 *populate = 0; 1020 1021 /* decide whether we should attempt the mapping, and if so what sort of 1022 * mapping */ 1023 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1024 &capabilities); 1025 if (ret < 0) 1026 return ret; 1027 1028 /* we ignore the address hint */ 1029 addr = 0; 1030 len = PAGE_ALIGN(len); 1031 1032 /* we've determined that we can make the mapping, now translate what we 1033 * now know into VMA flags */ 1034 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1035 1036 1037 /* we're going to need to record the mapping */ 1038 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1039 if (!region) 1040 goto error_getting_region; 1041 1042 vma = vm_area_alloc(current->mm); 1043 if (!vma) 1044 goto error_getting_vma; 1045 1046 region->vm_usage = 1; 1047 region->vm_flags = vm_flags; 1048 region->vm_pgoff = pgoff; 1049 1050 vm_flags_init(vma, vm_flags); 1051 vma->vm_pgoff = pgoff; 1052 1053 if (file) { 1054 region->vm_file = get_file(file); 1055 vma->vm_file = get_file(file); 1056 } 1057 1058 down_write(&nommu_region_sem); 1059 1060 /* if we want to share, we need to check for regions created by other 1061 * mmap() calls that overlap with our proposed mapping 1062 * - we can only share with a superset match on most regular files 1063 * - shared mappings on character devices and memory backed files are 1064 * permitted to overlap inexactly as far as we are concerned for in 1065 * these cases, sharing is handled in the driver or filesystem rather 1066 * than here 1067 */ 1068 if (is_nommu_shared_mapping(vm_flags)) { 1069 struct vm_region *pregion; 1070 unsigned long pglen, rpglen, pgend, rpgend, start; 1071 1072 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1073 pgend = pgoff + pglen; 1074 1075 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1076 pregion = rb_entry(rb, struct vm_region, vm_rb); 1077 1078 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1079 continue; 1080 1081 /* search for overlapping mappings on the same file */ 1082 if (file_inode(pregion->vm_file) != 1083 file_inode(file)) 1084 continue; 1085 1086 if (pregion->vm_pgoff >= pgend) 1087 continue; 1088 1089 rpglen = pregion->vm_end - pregion->vm_start; 1090 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1091 rpgend = pregion->vm_pgoff + rpglen; 1092 if (pgoff >= rpgend) 1093 continue; 1094 1095 /* handle inexactly overlapping matches between 1096 * mappings */ 1097 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1098 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1099 /* new mapping is not a subset of the region */ 1100 if (!(capabilities & NOMMU_MAP_DIRECT)) 1101 goto sharing_violation; 1102 continue; 1103 } 1104 1105 /* we've found a region we can share */ 1106 pregion->vm_usage++; 1107 vma->vm_region = pregion; 1108 start = pregion->vm_start; 1109 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1110 vma->vm_start = start; 1111 vma->vm_end = start + len; 1112 1113 if (pregion->vm_flags & VM_MAPPED_COPY) 1114 vm_flags_set(vma, VM_MAPPED_COPY); 1115 else { 1116 ret = do_mmap_shared_file(vma); 1117 if (ret < 0) { 1118 vma->vm_region = NULL; 1119 vma->vm_start = 0; 1120 vma->vm_end = 0; 1121 pregion->vm_usage--; 1122 pregion = NULL; 1123 goto error_just_free; 1124 } 1125 } 1126 fput(region->vm_file); 1127 kmem_cache_free(vm_region_jar, region); 1128 region = pregion; 1129 result = start; 1130 goto share; 1131 } 1132 1133 /* obtain the address at which to make a shared mapping 1134 * - this is the hook for quasi-memory character devices to 1135 * tell us the location of a shared mapping 1136 */ 1137 if (capabilities & NOMMU_MAP_DIRECT) { 1138 addr = file->f_op->get_unmapped_area(file, addr, len, 1139 pgoff, flags); 1140 if (IS_ERR_VALUE(addr)) { 1141 ret = addr; 1142 if (ret != -ENOSYS) 1143 goto error_just_free; 1144 1145 /* the driver refused to tell us where to site 1146 * the mapping so we'll have to attempt to copy 1147 * it */ 1148 ret = -ENODEV; 1149 if (!(capabilities & NOMMU_MAP_COPY)) 1150 goto error_just_free; 1151 1152 capabilities &= ~NOMMU_MAP_DIRECT; 1153 } else { 1154 vma->vm_start = region->vm_start = addr; 1155 vma->vm_end = region->vm_end = addr + len; 1156 } 1157 } 1158 } 1159 1160 vma->vm_region = region; 1161 1162 /* set up the mapping 1163 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1164 */ 1165 if (file && vma->vm_flags & VM_SHARED) 1166 ret = do_mmap_shared_file(vma); 1167 else 1168 ret = do_mmap_private(vma, region, len, capabilities); 1169 if (ret < 0) 1170 goto error_just_free; 1171 add_nommu_region(region); 1172 1173 /* clear anonymous mappings that don't ask for uninitialized data */ 1174 if (!vma->vm_file && 1175 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1176 !(flags & MAP_UNINITIALIZED))) 1177 memset((void *)region->vm_start, 0, 1178 region->vm_end - region->vm_start); 1179 1180 /* okay... we have a mapping; now we have to register it */ 1181 result = vma->vm_start; 1182 1183 current->mm->total_vm += len >> PAGE_SHIFT; 1184 1185 share: 1186 BUG_ON(!vma->vm_region); 1187 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1188 if (vma_iter_prealloc(&vmi, vma)) 1189 goto error_just_free; 1190 1191 setup_vma_to_mm(vma, current->mm); 1192 current->mm->map_count++; 1193 /* add the VMA to the tree */ 1194 vma_iter_store(&vmi, vma); 1195 1196 /* we flush the region from the icache only when the first executable 1197 * mapping of it is made */ 1198 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1199 flush_icache_user_range(region->vm_start, region->vm_end); 1200 region->vm_icache_flushed = true; 1201 } 1202 1203 up_write(&nommu_region_sem); 1204 1205 return result; 1206 1207 error_just_free: 1208 up_write(&nommu_region_sem); 1209 error: 1210 vma_iter_free(&vmi); 1211 if (region->vm_file) 1212 fput(region->vm_file); 1213 kmem_cache_free(vm_region_jar, region); 1214 if (vma->vm_file) 1215 fput(vma->vm_file); 1216 vm_area_free(vma); 1217 return ret; 1218 1219 sharing_violation: 1220 up_write(&nommu_region_sem); 1221 pr_warn("Attempt to share mismatched mappings\n"); 1222 ret = -EINVAL; 1223 goto error; 1224 1225 error_getting_vma: 1226 kmem_cache_free(vm_region_jar, region); 1227 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1228 len, current->pid); 1229 show_mem(); 1230 return -ENOMEM; 1231 1232 error_getting_region: 1233 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1234 len, current->pid); 1235 show_mem(); 1236 return -ENOMEM; 1237 } 1238 1239 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1240 unsigned long prot, unsigned long flags, 1241 unsigned long fd, unsigned long pgoff) 1242 { 1243 struct file *file = NULL; 1244 unsigned long retval = -EBADF; 1245 1246 audit_mmap_fd(fd, flags); 1247 if (!(flags & MAP_ANONYMOUS)) { 1248 file = fget(fd); 1249 if (!file) 1250 goto out; 1251 } 1252 1253 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1254 1255 if (file) 1256 fput(file); 1257 out: 1258 return retval; 1259 } 1260 1261 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1262 unsigned long, prot, unsigned long, flags, 1263 unsigned long, fd, unsigned long, pgoff) 1264 { 1265 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1266 } 1267 1268 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1269 struct mmap_arg_struct { 1270 unsigned long addr; 1271 unsigned long len; 1272 unsigned long prot; 1273 unsigned long flags; 1274 unsigned long fd; 1275 unsigned long offset; 1276 }; 1277 1278 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1279 { 1280 struct mmap_arg_struct a; 1281 1282 if (copy_from_user(&a, arg, sizeof(a))) 1283 return -EFAULT; 1284 if (offset_in_page(a.offset)) 1285 return -EINVAL; 1286 1287 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1288 a.offset >> PAGE_SHIFT); 1289 } 1290 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1291 1292 /* 1293 * split a vma into two pieces at address 'addr', a new vma is allocated either 1294 * for the first part or the tail. 1295 */ 1296 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1297 unsigned long addr, int new_below) 1298 { 1299 struct vm_area_struct *new; 1300 struct vm_region *region; 1301 unsigned long npages; 1302 struct mm_struct *mm; 1303 1304 /* we're only permitted to split anonymous regions (these should have 1305 * only a single usage on the region) */ 1306 if (vma->vm_file) 1307 return -ENOMEM; 1308 1309 mm = vma->vm_mm; 1310 if (mm->map_count >= sysctl_max_map_count) 1311 return -ENOMEM; 1312 1313 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1314 if (!region) 1315 return -ENOMEM; 1316 1317 new = vm_area_dup(vma); 1318 if (!new) 1319 goto err_vma_dup; 1320 1321 /* most fields are the same, copy all, and then fixup */ 1322 *region = *vma->vm_region; 1323 new->vm_region = region; 1324 1325 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1326 1327 if (new_below) { 1328 region->vm_top = region->vm_end = new->vm_end = addr; 1329 } else { 1330 region->vm_start = new->vm_start = addr; 1331 region->vm_pgoff = new->vm_pgoff += npages; 1332 } 1333 1334 vma_iter_config(vmi, new->vm_start, new->vm_end); 1335 if (vma_iter_prealloc(vmi, vma)) { 1336 pr_warn("Allocation of vma tree for process %d failed\n", 1337 current->pid); 1338 goto err_vmi_preallocate; 1339 } 1340 1341 if (new->vm_ops && new->vm_ops->open) 1342 new->vm_ops->open(new); 1343 1344 down_write(&nommu_region_sem); 1345 delete_nommu_region(vma->vm_region); 1346 if (new_below) { 1347 vma->vm_region->vm_start = vma->vm_start = addr; 1348 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1349 } else { 1350 vma->vm_region->vm_end = vma->vm_end = addr; 1351 vma->vm_region->vm_top = addr; 1352 } 1353 add_nommu_region(vma->vm_region); 1354 add_nommu_region(new->vm_region); 1355 up_write(&nommu_region_sem); 1356 1357 setup_vma_to_mm(vma, mm); 1358 setup_vma_to_mm(new, mm); 1359 vma_iter_store(vmi, new); 1360 mm->map_count++; 1361 return 0; 1362 1363 err_vmi_preallocate: 1364 vm_area_free(new); 1365 err_vma_dup: 1366 kmem_cache_free(vm_region_jar, region); 1367 return -ENOMEM; 1368 } 1369 1370 /* 1371 * shrink a VMA by removing the specified chunk from either the beginning or 1372 * the end 1373 */ 1374 static int vmi_shrink_vma(struct vma_iterator *vmi, 1375 struct vm_area_struct *vma, 1376 unsigned long from, unsigned long to) 1377 { 1378 struct vm_region *region; 1379 1380 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1381 * and list */ 1382 if (from > vma->vm_start) { 1383 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1384 return -ENOMEM; 1385 vma->vm_end = from; 1386 } else { 1387 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1388 return -ENOMEM; 1389 vma->vm_start = to; 1390 } 1391 1392 /* cut the backing region down to size */ 1393 region = vma->vm_region; 1394 BUG_ON(region->vm_usage != 1); 1395 1396 down_write(&nommu_region_sem); 1397 delete_nommu_region(region); 1398 if (from > region->vm_start) { 1399 to = region->vm_top; 1400 region->vm_top = region->vm_end = from; 1401 } else { 1402 region->vm_start = to; 1403 } 1404 add_nommu_region(region); 1405 up_write(&nommu_region_sem); 1406 1407 free_page_series(from, to); 1408 return 0; 1409 } 1410 1411 /* 1412 * release a mapping 1413 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1414 * VMA, though it need not cover the whole VMA 1415 */ 1416 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1417 { 1418 VMA_ITERATOR(vmi, mm, start); 1419 struct vm_area_struct *vma; 1420 unsigned long end; 1421 int ret = 0; 1422 1423 len = PAGE_ALIGN(len); 1424 if (len == 0) 1425 return -EINVAL; 1426 1427 end = start + len; 1428 1429 /* find the first potentially overlapping VMA */ 1430 vma = vma_find(&vmi, end); 1431 if (!vma) { 1432 static int limit; 1433 if (limit < 5) { 1434 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1435 current->pid, current->comm, 1436 start, start + len - 1); 1437 limit++; 1438 } 1439 return -EINVAL; 1440 } 1441 1442 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1443 if (vma->vm_file) { 1444 do { 1445 if (start > vma->vm_start) 1446 return -EINVAL; 1447 if (end == vma->vm_end) 1448 goto erase_whole_vma; 1449 vma = vma_find(&vmi, end); 1450 } while (vma); 1451 return -EINVAL; 1452 } else { 1453 /* the chunk must be a subset of the VMA found */ 1454 if (start == vma->vm_start && end == vma->vm_end) 1455 goto erase_whole_vma; 1456 if (start < vma->vm_start || end > vma->vm_end) 1457 return -EINVAL; 1458 if (offset_in_page(start)) 1459 return -EINVAL; 1460 if (end != vma->vm_end && offset_in_page(end)) 1461 return -EINVAL; 1462 if (start != vma->vm_start && end != vma->vm_end) { 1463 ret = split_vma(&vmi, vma, start, 1); 1464 if (ret < 0) 1465 return ret; 1466 } 1467 return vmi_shrink_vma(&vmi, vma, start, end); 1468 } 1469 1470 erase_whole_vma: 1471 if (delete_vma_from_mm(vma)) 1472 ret = -ENOMEM; 1473 else 1474 delete_vma(mm, vma); 1475 return ret; 1476 } 1477 1478 int vm_munmap(unsigned long addr, size_t len) 1479 { 1480 struct mm_struct *mm = current->mm; 1481 int ret; 1482 1483 mmap_write_lock(mm); 1484 ret = do_munmap(mm, addr, len, NULL); 1485 mmap_write_unlock(mm); 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(vm_munmap); 1489 1490 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1491 { 1492 return vm_munmap(addr, len); 1493 } 1494 1495 /* 1496 * release all the mappings made in a process's VM space 1497 */ 1498 void exit_mmap(struct mm_struct *mm) 1499 { 1500 VMA_ITERATOR(vmi, mm, 0); 1501 struct vm_area_struct *vma; 1502 1503 if (!mm) 1504 return; 1505 1506 mm->total_vm = 0; 1507 1508 /* 1509 * Lock the mm to avoid assert complaining even though this is the only 1510 * user of the mm 1511 */ 1512 mmap_write_lock(mm); 1513 for_each_vma(vmi, vma) { 1514 cleanup_vma_from_mm(vma); 1515 delete_vma(mm, vma); 1516 cond_resched(); 1517 } 1518 __mt_destroy(&mm->mm_mt); 1519 mmap_write_unlock(mm); 1520 } 1521 1522 /* 1523 * expand (or shrink) an existing mapping, potentially moving it at the same 1524 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1525 * 1526 * under NOMMU conditions, we only permit changing a mapping's size, and only 1527 * as long as it stays within the region allocated by do_mmap_private() and the 1528 * block is not shareable 1529 * 1530 * MREMAP_FIXED is not supported under NOMMU conditions 1531 */ 1532 static unsigned long do_mremap(unsigned long addr, 1533 unsigned long old_len, unsigned long new_len, 1534 unsigned long flags, unsigned long new_addr) 1535 { 1536 struct vm_area_struct *vma; 1537 1538 /* insanity checks first */ 1539 old_len = PAGE_ALIGN(old_len); 1540 new_len = PAGE_ALIGN(new_len); 1541 if (old_len == 0 || new_len == 0) 1542 return (unsigned long) -EINVAL; 1543 1544 if (offset_in_page(addr)) 1545 return -EINVAL; 1546 1547 if (flags & MREMAP_FIXED && new_addr != addr) 1548 return (unsigned long) -EINVAL; 1549 1550 vma = find_vma_exact(current->mm, addr, old_len); 1551 if (!vma) 1552 return (unsigned long) -EINVAL; 1553 1554 if (vma->vm_end != vma->vm_start + old_len) 1555 return (unsigned long) -EFAULT; 1556 1557 if (is_nommu_shared_mapping(vma->vm_flags)) 1558 return (unsigned long) -EPERM; 1559 1560 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1561 return (unsigned long) -ENOMEM; 1562 1563 /* all checks complete - do it */ 1564 vma->vm_end = vma->vm_start + new_len; 1565 return vma->vm_start; 1566 } 1567 1568 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1569 unsigned long, new_len, unsigned long, flags, 1570 unsigned long, new_addr) 1571 { 1572 unsigned long ret; 1573 1574 mmap_write_lock(current->mm); 1575 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1576 mmap_write_unlock(current->mm); 1577 return ret; 1578 } 1579 1580 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1581 unsigned long pfn, unsigned long size, pgprot_t prot) 1582 { 1583 if (addr != (pfn << PAGE_SHIFT)) 1584 return -EINVAL; 1585 1586 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1587 return 0; 1588 } 1589 EXPORT_SYMBOL(remap_pfn_range); 1590 1591 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1592 { 1593 unsigned long pfn = start >> PAGE_SHIFT; 1594 unsigned long vm_len = vma->vm_end - vma->vm_start; 1595 1596 pfn += vma->vm_pgoff; 1597 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1598 } 1599 EXPORT_SYMBOL(vm_iomap_memory); 1600 1601 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1602 unsigned long pgoff) 1603 { 1604 unsigned int size = vma->vm_end - vma->vm_start; 1605 1606 if (!(vma->vm_flags & VM_USERMAP)) 1607 return -EINVAL; 1608 1609 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1610 vma->vm_end = vma->vm_start + size; 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(remap_vmalloc_range); 1615 1616 vm_fault_t filemap_fault(struct vm_fault *vmf) 1617 { 1618 BUG(); 1619 return 0; 1620 } 1621 EXPORT_SYMBOL(filemap_fault); 1622 1623 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1624 pgoff_t start_pgoff, pgoff_t end_pgoff) 1625 { 1626 BUG(); 1627 return 0; 1628 } 1629 EXPORT_SYMBOL(filemap_map_pages); 1630 1631 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1632 void *buf, int len, unsigned int gup_flags) 1633 { 1634 struct vm_area_struct *vma; 1635 int write = gup_flags & FOLL_WRITE; 1636 1637 if (mmap_read_lock_killable(mm)) 1638 return 0; 1639 1640 /* the access must start within one of the target process's mappings */ 1641 vma = find_vma(mm, addr); 1642 if (vma) { 1643 /* don't overrun this mapping */ 1644 if (addr + len >= vma->vm_end) 1645 len = vma->vm_end - addr; 1646 1647 /* only read or write mappings where it is permitted */ 1648 if (write && vma->vm_flags & VM_MAYWRITE) 1649 copy_to_user_page(vma, NULL, addr, 1650 (void *) addr, buf, len); 1651 else if (!write && vma->vm_flags & VM_MAYREAD) 1652 copy_from_user_page(vma, NULL, addr, 1653 buf, (void *) addr, len); 1654 else 1655 len = 0; 1656 } else { 1657 len = 0; 1658 } 1659 1660 mmap_read_unlock(mm); 1661 1662 return len; 1663 } 1664 1665 /** 1666 * access_remote_vm - access another process' address space 1667 * @mm: the mm_struct of the target address space 1668 * @addr: start address to access 1669 * @buf: source or destination buffer 1670 * @len: number of bytes to transfer 1671 * @gup_flags: flags modifying lookup behaviour 1672 * 1673 * The caller must hold a reference on @mm. 1674 */ 1675 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1676 void *buf, int len, unsigned int gup_flags) 1677 { 1678 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1679 } 1680 1681 /* 1682 * Access another process' address space. 1683 * - source/target buffer must be kernel space 1684 */ 1685 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1686 unsigned int gup_flags) 1687 { 1688 struct mm_struct *mm; 1689 1690 if (addr + len < addr) 1691 return 0; 1692 1693 mm = get_task_mm(tsk); 1694 if (!mm) 1695 return 0; 1696 1697 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1698 1699 mmput(mm); 1700 return len; 1701 } 1702 EXPORT_SYMBOL_GPL(access_process_vm); 1703 1704 /** 1705 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1706 * @inode: The inode to check 1707 * @size: The current filesize of the inode 1708 * @newsize: The proposed filesize of the inode 1709 * 1710 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1711 * make sure that any outstanding VMAs aren't broken and then shrink the 1712 * vm_regions that extend beyond so that do_mmap() doesn't 1713 * automatically grant mappings that are too large. 1714 */ 1715 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1716 size_t newsize) 1717 { 1718 struct vm_area_struct *vma; 1719 struct vm_region *region; 1720 pgoff_t low, high; 1721 size_t r_size, r_top; 1722 1723 low = newsize >> PAGE_SHIFT; 1724 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1725 1726 down_write(&nommu_region_sem); 1727 i_mmap_lock_read(inode->i_mapping); 1728 1729 /* search for VMAs that fall within the dead zone */ 1730 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1731 /* found one - only interested if it's shared out of the page 1732 * cache */ 1733 if (vma->vm_flags & VM_SHARED) { 1734 i_mmap_unlock_read(inode->i_mapping); 1735 up_write(&nommu_region_sem); 1736 return -ETXTBSY; /* not quite true, but near enough */ 1737 } 1738 } 1739 1740 /* reduce any regions that overlap the dead zone - if in existence, 1741 * these will be pointed to by VMAs that don't overlap the dead zone 1742 * 1743 * we don't check for any regions that start beyond the EOF as there 1744 * shouldn't be any 1745 */ 1746 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1747 if (!(vma->vm_flags & VM_SHARED)) 1748 continue; 1749 1750 region = vma->vm_region; 1751 r_size = region->vm_top - region->vm_start; 1752 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1753 1754 if (r_top > newsize) { 1755 region->vm_top -= r_top - newsize; 1756 if (region->vm_end > region->vm_top) 1757 region->vm_end = region->vm_top; 1758 } 1759 } 1760 1761 i_mmap_unlock_read(inode->i_mapping); 1762 up_write(&nommu_region_sem); 1763 return 0; 1764 } 1765 1766 /* 1767 * Initialise sysctl_user_reserve_kbytes. 1768 * 1769 * This is intended to prevent a user from starting a single memory hogging 1770 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1771 * mode. 1772 * 1773 * The default value is min(3% of free memory, 128MB) 1774 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1775 */ 1776 static int __meminit init_user_reserve(void) 1777 { 1778 unsigned long free_kbytes; 1779 1780 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1781 1782 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1783 return 0; 1784 } 1785 subsys_initcall(init_user_reserve); 1786 1787 /* 1788 * Initialise sysctl_admin_reserve_kbytes. 1789 * 1790 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1791 * to log in and kill a memory hogging process. 1792 * 1793 * Systems with more than 256MB will reserve 8MB, enough to recover 1794 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1795 * only reserve 3% of free pages by default. 1796 */ 1797 static int __meminit init_admin_reserve(void) 1798 { 1799 unsigned long free_kbytes; 1800 1801 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1802 1803 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1804 return 0; 1805 } 1806 subsys_initcall(init_admin_reserve); 1807